

simulation and analysis ework for f ĥ experiments II III 111

Rogachevsky Oleg

for MPD team

111

LIT JINR 2.03.2016

Nuclotron based Ion Collider fAcility

Global sketch of HEP experiment

Goal

The collision of two heavy nuclei which approach and smash against each other with almost the speed of light creates in the laboratory the primordial state of matter, called Quark-Gluon Plasma (QGP). The QGP expands like a fireball, cools and finally turns into ordinary matter.

"The very goal of the NICA facilities is the search for the mixed phase (MPD = "mixed phase detector") of quark matter and baryon rich hadronic matter as a consequence of a first order phase transition, bearing strong analogies with a liquid-gas phase instability."

NICA priorities

http://theor0.jinr.ru/ twiki-cgi/view/NICA/WebHome

FairRoot universe

20 years of ROOT evolution

Simulation Framework for MPD&BM@N

http://mpd.jinr.ru/

Physics Models

UrQMD Hybrid UrQMD LA QGSM SHIELD on fly HSD PHSD 3 Fluid Dynamics PLUTO

- Inherits basic properties from FairRoot (developed at GSI), C++ classes
- Extended set of event generators for heavy ion collisions
- Detector composition and geometry; particle propagation by GEANT3/4
- Advanced detector response functions, realistic tracking and PID included
- Event display for Monte-Carlo and experimental data

MPDROOT

MPDROOT

New FairSoft patch releases

Installing the external packages

Mohammad

adminUser

FairSoft

Included Packages

- cmake 3.3.2 (only installed if installed version is to old)
- gtest 1.7.0
- gsl 1.16
- boost 1_59_0
- Pythia6 416
- HepMC 2.06.09
- Pythia8 212
- Geant4 10.01.p2
- xrootd 4.1.1
- ROOT v5.34.34 or v6.04.02
- Pluto v5.37
- Geant321+_vmc v2-0
- VGM v4-3
- G4VMC v3-2
- MillePede V04-03-01
- ZeroMQ 4.1.3
- Protocoll Buffers 2.6.1
- Nano Message 0.6-beta

In case the python bindings are build the following additional packages will be installed

- XercesC 3.1.2
- · G4Py Version which comes with Geant4

OS dependences

airRoot											SEARC	я
DME INSTALLATION	CLASS DOCUMENTATION	REPOSITORY	ABOUT	ношто	@GSI	CONTACT						
Home » Installation												
Build Prerequisites								Experiment Frameworks				
Before installing FairRoot of the used Linux distribu programs can't be installe	nager R these Lo	3BRoot ogo	R3BRoo analysis	t - Simulati for R3B	ons and da	ata						
To make the installation p called "external packages compilation flags. In the e	also Rec	Recent content										
The FairSoft package cor some of the system pack of needed system package install the needed package	f ete list <u>Insta</u> s to admi <u>Insta</u>	Installing CbmRoot adminUser Installing the external packages										
The only prerequisite for using the package manage	Iled Moha	Mohammad New FairRoot patch releases florian										
The instructions how to in	Insta	Install Build Prerequisites on Mac OSX										
Installation	<u>u</u>	<u>ID</u>	Install Build	d Prerequisite	s on Mac O	SX) New	FairRoot	release v-1	5 11 availa	ble		

Detector simulation

- Interaction of interest
- Geometry of the system
- Materials used
- Particles of interest
- Generation of test events of particles
- Interactions of particles with matter and EM fields
- Response to detectors
- Records of energies and tracks
- Analysis of the full simulation at whatever detail you like
- ✓ Visualization of the detector system and tracks

GEANT

Experiments framework

Multi Purpose Detector

Stage 2

Stage 1 + ITS,ETOF, EEMC, ECT, CPC

Stage 1 TPC,TOF, ECAL, ZDC, FFD

MPD subdetectors

TPC with Straw tube tracker

Straw tube tracker

MPD subdetectors

Material budget, TPC (XY) 150 100 90 100 80 50 Y [cm] ſ -50 20 -100 10 _150 _150 0 -100-50 50 100 0 150 X [cm]

TPC detailed view

Radiation thickness

Reconstruction chain

- Hits reconstruction in subdetectors
- Tracks reconstruction
- Searching for track candidates in main tracker
- Track propagation using Kalman filter
- Matching with other detectors
- Vertex finding
- Particles identification
- Physics analysis

Clustering in TPC

MPD magnetic field

- Transition from a constant magnetic field to the real field map.
- Interpolation of the field between the map nodes

using
$$L(r, z) = \sum_{i=1}^{5} \sum_{j=1}^{5} a_{ij} r^{i} z^{j}$$

Tracking

MPD acceptance

21/45

Charged particle ID in TPC & TOF

10 9 10(8 80 Ρ 7 dE/dx (keV/cm) 6 60 40 20 0<u></u> -2 3 -1 0 Rigidity (GeV/c)

MPD PID (TOF):

- π/K separation up to p=1.7 GeV/c, above 2 GeV/c - extrapolating the fitted 3G parameters
- Protons up to 3 GeV/c
- dE/dx provide extra PID capability for electrons and low momentum hadrons

MPD Event Display

Particle reconstruction in TPC

GeoTracks

MC points

reconstructed tracks

Hits

Event display for reconstructed tracks

New physics with the MC generators

Barionic Matter @ Nuclotron

Monte-Carlo tracks

GEM hits reconstruction

 Fake hits production is implemented

Station 0 (what is it)

Reconstructed tracks

BM@N magnetic field

- Transition from a constant magnetic field to the real field map.
- Interpolation of the field between the map nodes.
- Extrapolation of the field map to out-of-magnet region.

$$B_{comp}(x, y, z) = C(x, y) \cdot e^{-\frac{(z - \mu(x, y))^2}{2\sigma(x, y)^2}}$$
$$\lim_{z \to \infty} B_{comp}(x, y, z) = 0$$

Tracking in GEM

L1 (CBM) tracking Implementation for GEM

Coordinates transformation With LIT kalman filter

G.Ososkov presentation

GEM tracker properties

Phase space / acceptance to primary protons:

Momentum resolution / detection efficiency

Physics at BM@N

Data... Data... Database

NICA distributed computing

Ферма пакетной обработки задач

LIT

2015 год: Октябрь

Лаборатория	Количество задач	Процессорное время (килоSPECint2000*час)	Астрономическое время (килоSPECint2000*час)							
mpd	4813	152843.92	153237.43							
ЛТФ	116	44997.57	19532.57							
Irb	114	34700.43	8036.72							
ЛЯП	337	22376.83	22509.78							
Ibes	2964	6780.05	8656.51							
ЛИТ	21	1510.31	880.43							
ЛЯР	2	165.14	52.40							

Суммарное использование процессорного времени: 263374.26 килоSPECint2000°в час

MONTE CARLO GENERATORS for NICA/FAIR physics

Ultrarelativistic Quantum Molecular Dynamics (UrQMD)

Femtoscopy

- Quark Gluon String Model
- Shield
- Parton Hadron String Dynamics
- Hybrid UrQMD
- EPOS
- vHLLE UrQMD
- 3 Fluid Dynamics model

Nuclear fragments

Flows

barvon stopping power

Thank you for attention

vHLLE + UrQMD model

Radii versus kT with vHLLE+UrQMD model for $\pi\pi$ at 7.7; 11.5 GeV Source Function with vHLLE + UrQMD model for $\pi\pi$ at 7.7; 11.5 GeV

UrQMD 3.4 model

Source Function with UrQMD 3.4 model for $\pi\pi$ at 5; 7; 9; 11 GeV

Baryon stopping power

3FD Model: Baryon stopping power

model

$C_y = \left(y_{\text{beam}}^3 \frac{d^3 N}{dy^3}\right)_{y=0} / \left(y_{\text{beam}} \frac{dN}{dy}\right)_{y=0} = (y_{\text{beam}}/w_s)^2 \left(\sinh^2 y_s - w_s \cosh y_s\right)$

experiment

NICA physics

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Draft v 10.01 January 24, 2014

> SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

Contents 1) NICA priorities 2) General aspects 3) Phases of QCD matter at high baryon density 4) Hydrodynamics and hadronic observables 5) Femtoscopy, correlations and fluctuations 6) Mechanisms of multi-particle production 7) Electromagnetic probes and chiral in dense QCD matter symmetry 8) Local P and CP violation in hot QCD matter 9) Cumulative processes 10) Polarization effects and spin physics 11) Related topics 12) Fixed Target Experiments 13) Hypernuclei Production in Heavy Ion collisions

Observables

I stage:: mid rapidity region (good performance)

- □ Particle yields and spectra $(\pi, K, p, clusters, \Lambda, \Xi, \Omega)$
- Event-by-event fluctuations
- Femtoscopy involving π, K, p, Λ
- Collective flow for identified hadron species
- Electromagnetic probes (electrons, gammas)

II stage: : extended rapidity + ITS

- Total particle multiplicities
- □ Asymmetries study (better reaction plane determination)
- Di-Lepton precise study (Endcap Calorimeter)
- Charm
- Exotics (soft photons, hypernuclei)

Measurements regarded as complementary to RHIC/BES and CERN/NA61, However, higher statistics & (close to) the total yields for rare probes at MPD No boost invariance at NICA – more accurate source parameters fit without rapidity cut Rapidity dependence of the fireball thermal parameters will be possible at NICA

NICA physics

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Draft v 10.01 January 24, 2014

> SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

Contents 1) NICA priorities 2) General aspects 3) Phases of QCD matter at high baryon density 4) Hydrodynamics and hadronic observables 5) Femtoscopy, correlations and fluctuations 6) Mechanisms of multi-particle production 7) Electromagnetic probes and chiral in dense QCD matter symmetry 8) Local P and CP violation in hot QCD matter 9) Cumulative processes 10) Polarization effects and spin physics 11) Related topics 12) Fixed Target Experiments 13) Hypernuclei Production in Heavy Ion collisions