На правах рукописи

РАЧКОВ Владимир Александрович

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ РОЛИ ПЕРЕРАСПРЕДЕЛЕНИЯ НЕЙТРОНОВ В РЕАКЦИЯХ СЛИЯНИЯ ПРИ ЭНЕРГИЯХ ВБЛИЗИ КУЛОНОВСКОГО БАРЬЕРА

01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико–математических наук

Дубна — 2018

Работа выполнена в Лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований

Научный руководитель:

Карпов Александр Владимирович кандидат физико-математических наук, ЛЯР ОИЯИ, ученый секретарь

Официальные оппоненты:

Косенко Григорий Иванович

доктор физико-математических наук, доцент,

Федеральное государственное казенное военное образовательное учреждение высшего образования «Военная академия материально-технического обеспечения имени генерала армии А. В. Хрулева» Министерства обороны Российской Федерации (ВА МТО), профессор

Хлебников Сергей Васильевич

кандидат физико-математических наук, старший научный сотрудник, Акционерное общество «Радиевый институт имени В. Г. Хлопина», РОСАТОМ, ведущий научный сотрудник

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М. В. Ломоносова»

Защита состоится «____» ____ 2018 года в ______ часов на заседании диссертационного совета Д.720.001.01 на базе Международной межправительственной организации Объединенного института ядерных исследований (ОИЯИ) по адресу: 141980, ул. Жолио-Кюри 6, г. Дубна, Московская область.

С диссертацией можно ознакомиться в библиотеке и на сайте ОИЯИ (http://wwwinfo.jinr.ru/announce_disser.htm)

Автореферат разослан "____" ____ 2018 года.

Ученый секретарь диссертационного совета кандидат физико-математических наук

Быстрицкий Ю. М.

Общая характеристика работы

Актуальность темы. Интерес к реакциям слияния не ослабевает на протяжении уже многих лет как с теоретической, так и с экспериментальной точки зрения. С одной стороны реакции слияния тяжелых ионов с актинидными мишенями при энергиях вблизи и выше кулоновского барьера на сегодняшний день являются единственным инструментом для получения новых сверхтяжелых элементов [1, 2]. С другой стороны изучение реакций слияния средних по массе ядер при подбарьерных энергиях позволяет получить дополнительную информацию о ядро-ядерном взаимодействии, а также о динамике протекания этих реакций. Экстраполяция накопленных знаний в область глубоко подбарьерных энергий важна для понимания процессов астрофизического нуклеосинтеза.

К настоящему времени накоплено большое количество экспериментальных данных по реакциям слияния, а также разработаны теоретические подходы для их анализа. Тем не менее, целый ряд вопросов еще остается открытым. В частности, выяснение роли перераспределения нейтронов в процессе слияния ядер. До настоящего времени считалось, что для реакций слияния, в которых существует возможность промежуточного перераспределения нейтронов с положительными значениями Q, должно экспериментально наблюдаться увеличение сечения при энергиях ниже кулоновского барьера по сравнению с расчетами выполненными в рамках стандартных моделей связи каналов. Типичным примером таких реакций является система 40 Ca + 96 Zr [3, 4]. Однако, в последнее время появились новые экспериментальные данные, свидетельствующие о том, что перераспределение нейтронов не оказывает значимого влияния на слияние ядер. Например, в реакциях ^{60,64}Ni + ¹⁰⁰Mo [5] и ^{64,58}Ni + ¹³⁰Te [6] не наблюдается дополнительного увеличения сечения при подбарьерных энергиях, несмотря на наличие каналов нейтронных передач с положительными значениями Q. Отметим, что Q-значения для перераспределения нейтронов для этих комбинаций по величине сравнимы со значениями для реакции ⁴⁰Ca + ⁹⁶Zr.

Дополнительную информацию о процессе слияния ядер дает так называемая функция распределения по барьерам, которая вблизи кулоновского барьера имеет как правило сложную структуру из нескольких пиков. Структуру функции распределения по барьерам можно воспроизвести в расчетах, учитывающих связь относительного движения ядер с квадрупольными и октупольными колебаниями поверхностей ядер в квантовом подходе метода связи каналов. Однако, в этой модели достаточно трудно учесть влияние перераспределения нейтронов в реакциях слияния. В стационарной постановке проблема возникает при разложении полной волновой функции по вибрационным и/или ротационным состояниям сталкивающихся ядер и одновременно по состояниям с перераспределением нуклонов. Использование при этом неортогонального и переполненного набора базисных функций ведет к усложнению расчетов с применением специальных математических методов.

Из вышеизложенного следует, что вопрос о влиянии каналов перераспределения нейтронов с положительными значениями Q на слияние ядер при энергиях ниже кулоновского барьера, а также одновременный учет связи относительного движения с коллективными степенями свободы и с каналами перераспределения нейтронов до сих пор остается открытым. Таким образом, с точки зрения теоретического анализа реакций слияния, представляется чрезвычайно важным построение и развитие моделей, дающих максимально полное описание процесса слияния, включая влияние коллективных степеней свободы и нейтронных передач.

Цель и задачи диссертации. Основной **целью** данной работы является детальное теоретическое исследование влияния перераспределения нейтронов на процесс слияния ядер при энергиях вблизи кулоновского барьера. Дополнительной целью диссертации было исследование реакций слияния, ведущих к образованию новых изотопов тяжелых и сверхтяжелых элементов.

Для достижения поставленных целей необходимо было решить ряд взаимосвязанных подзадач:

- Построить параметризацию высоты и кривизны кулоновского барьера, необходимую для расчета сечений слияния в эмпирической модели связи каналов.
- Обобщить эмпирическую модель связи каналов на случай одновременного учета связи с каналами вибрационных возбуждений одного из сталкивающихся ядер и ротационных возбуждений другого.
- На основе анализа представительного набора экспериментальных данных по сечениям слияния ядер и реакциям малонуклонных передач подобрать глобальные параметры модели слияния ядер, определяющих вероятность передачи нейтронов в квазиклассическом приближении.
- Установить роль различных степеней свободы ядерной системы (коллективных возбуждений и перераспределения нейтронов) в реакциях слияния.

- Разработать метод учета перераспределения нейтронов при использовании квантовой модели связи каналов.
- Проанализировать новые комбинации сталкивающихся ядер, при слиянии которых могут быть получены новые нейтроннообогащенные изотопы тяжелых и сверхтяжелых элементов.

Основные положения и результаты, выносимые на защиту.

- Обобщение эмпирической модели связи каналов на случай одновременного учета колебаний ядерной поверхности одного из сталкивающихся ядер и статической деформации другого.
- Выбор оптимальных параметров эмпирической модели связи каналов с учетом перераспределения нейтронов.
- Модельное описание увеличения вероятности слияния ядер при энергиях ниже кулоновского барьера, обусловленное совместным влиянием свойств их коллективных возбуждений, каналов передачи нейтронов с Q > 0, а также энергий связи передаваемых нейтронов.
- Результаты расчетов сечений слияния ядер при энергиях вблизи кулоновского барьера с одновременным учетом связи с каналами коллективных возбуждений и перераспределения нейтронов, выполненные в широком диапазоне масс сталкивающихся ядер.
- Описание функции распределения по барьерам в рамках модели, позволяющей учитывать перераспределение нейтронов при использовании квантового метода связи каналов.
- Результаты расчетов сечений образования нейтроннообогащенных тяжелых и сверхтяжелых ядер в реакциях слияния легких нейтронноизбыточных снарядов с актинидными мишенями.

Научная новизна работы.

 Существенно доработана эмпирическая модель связи каналов, широко используемая для описания реакций околобарьерного слияния ядер. Модель обобщена на случай одновременного учета колебаний ядерной поверхности одного из сталкивающихся ядер и вращения другого. Предложен новый набор параметров для эмпирической модели, а также для вероятности передачи нейтронов при слиянии ядер в квазиклассическом приближении. Это позволило описать большую совокупность экспериментальных данных для реакций слияния при энергиях вблизи кулоновского барьера.

- Показано, что усиление слияния ядер при подбарьерных энергиях обусловлено совместным влиянием свойств коллективных возбуждений ядер, каналов передачи нейтронов с положительными значениями Q, а также энергий связи передаваемых нейтронов.
- Реализован способ учета каналов передачи нейтронов в квазиклассическом приближении при использовании квантового метода связи каналов, что позволило впервые описать структуру функции распределения по барьерам в реакциях слияния, для которых значительна роль перераспределения нейтронов.
- Предложены комбинации сталкивающихся ядер и выполнены расчеты сечений реакций слияния, в результате которых могут образоваться 11 новых нейтроннообогащенных изотопов трансфермиевых элементов с Z = 102 – 107 с сечениями, достижимыми на имеющихся экспериментальных установках.

Практическая значимость работы. Результаты работы могут применяться в дальнейшем при исследовании реакций слияния ядер при энергиях вблизи кулоновского барьера, направленных, в частности, на изучение роли каналов коллективных возбуждений и нейтронных передач. Развитые в диссертации теоретические подходы, а также рассчитанные сечения реакций слияния могут быть использованы при подготовке к проведению, а также при анализе соответствующих ядерно-физических экспериментов. Разработанные вычислительные коды эмпирической модели связи каналов включены в базу знаний по ядерной физике низких энергий NRV (http://nrv.jinr.ru), находящуюся в свободном доступе в сети Интернет.

Личный вклад соискателя. В работах, выполненных в соавторстве, автор принимал активное участие на всех этапах выполнения работы: в формулировке методов решения поставленных задач, в разработке численных алгоритмов и написании компьютерного кода, в проведении расчетов, обработке и анализе результатов, а также в подготовке статей к публикации. Лично автору принадлежит приоритет в обобщении эмпирической модели связи каналов на случай одновременного учета колебаний ядерной

поверхности одного из сталкивающихся ядер и вращения другого, выбору оптимальных параметров эмпирической модели связи каналов с учетом перераспределения нейтронов, а также разработке вычислительного кода способа учета каналов передачи нейтронов в квазиклассическом приближении при использовании квантового метода связи каналов, что позволило впервые описать структуру функции распределения по барьерам в реакциях слияния, для которых значительна роль перераспределения нейтронов. Автором путем численных расчетов и анализа эмпирической модели связи каналов дано описание совместного влияния процессов перераспределения нейтронов, свойств коллективных степеней свободы и энергии связи передаваемого нейтрона на процесс слияния атомных ядер. Лично автором были изучены особенности слияния легких нейтронно- и протонноизбыточных ядер с тяжелыми мишенями и сделаны выводы о влиянии развала слабосвязанного ядра и размеров ядра-мишени на процесс слияния. Анализ реакций слияния легких ядер с актинидными мишенями, ведущих к образованию новых изотопов нейтроннообогащенных трансфермиевых элементов выполнен лично автором. Результаты расчетов, представленные в диссертации, а также основные положения, выносимые на защиту, получены лично автором.

Апробация работы. Материалы диссертации доложены автором на 6 международных конференциях и совещаниях. По материалам диссертации опубликовано 11 работ, из них в журналах, включенных в перечень ВАК рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук – 8, а также в журналах, включенных в системы цитирования Scopus и/или Web of Science – 10.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка цитируемой литературы. Полный объем диссертации составляет 113 страниц, включая 47 рисунков и 9 таблиц. Список литературы содержит 141 наименования.

Краткое содержание работы

Во **Введении** изложено современное состояние дел по научной проблеме, на решение которой направлена данная диссертация, сформулированы цели и задачи диссертации.

<u>Первая глава</u> посвящена обсуждению теоретических подходов к анализу реакций слияния вблизи и ниже кулоновского барьера. При изучении реакций слияния легких и средних ядер при энергиях ниже кулоновского барьера, в которых процессами квазиделения можно пренебречь, сечение слияния $\sigma_{\rm fus}$ можно представить в виде парциального разложения:

$$\sigma_{\rm fus}(E) = \frac{\pi \hbar^2}{2\mu E} \sum_{l=0}^{\infty} (2l+1) T_l(E) , \qquad (1)$$

где μ – приведённая масса и l – орбитальный момент относительного движения сталкивающихся ядер, $T_l(E)$ – парциальная проницаемость потенциального барьера.

Важной величиной, характеризующий процесс слияния, является высота потенциального барьера. Обсуждению возможных аппроксимаций потенциальной энергии взаимодействия сталкивающихся ядер, используемых для описания реакций слияния, посвящен Раздел 1.1.

В основе диссертации лежит эмпирическая модель связи каналов с учетом и без учета перераспределения нейтронов, предложенная В. И. Загребаевым [7,8] и существенно доработанная в настоящей диссертации. В модели учет связи относительного движения ядер с их вращением или их динамическими деформациями осуществляется путем усреднения проницаемости многомерного барьера по его высоте. Для расчета проницаемости одномерного барьера в модели используется формула Хилла-Уиллера. При подбарьерных энергиях столкновения аппроксимация барьера слияния перевернутой параболой приводит к завышенным значениям проницаемости (сечения) по сравнению с точными расчетами. В Разделе 1.2.1 предложены новые аппроксимации для вычисления высоты и кривизны барьера в зависимости от углового момента сталкивающихся ядер, а также показано, что сечения слияния, рассчитанные с учетом предложенных аппроксимационных зависимостей, достаточно хорошо согласуются с точными расчетами для реального потенциала.

В Разделе 1.2.3 описана эмпирическая модель связи каналов без учета нейтронных передач. В модель была заложена возможность анализа реак-

Рис. 1: Сечение слияния для реакции ⁴⁸Ca+¹⁵⁴Sm. Символы – экспериментальные данные из работы [9]. Кривые – расчеты в эмпирической модели связи каналов с учетом: статической деформации ¹⁵⁴Sm (пунктирная кривая), октупольных колебаний ⁴⁸Ca (точечная кривая), октупольных колебаний ⁴⁸Ca и вращения статически деформированного ядра ¹⁵⁴Sm (сплошная кривая).

ций слияния, когда оба сталкивающихся ядра сферические в основном состоянии или ядра статически деформированные. Достаточно часто, однако, приходится иметь дело с комбинациями, в которых одно ядро статически деформированное, а второе сферическое в основном состоянии. Примером такой комбинации может быть реакция слияния ⁴⁸Ca+¹⁵⁴Sm [9].

Эмпирическая модель была модифицирована на случай одновременного учета колебаний ядерной поверхности одного ядра и вращения другого. Было обнаружено, что зависимость высоты кулоновского барьера от динамической деформации снаряда, вычисленная для различных ориентаций мишени (θ), может быть приближенно получена параллельным сдвигом зависимости, рассчитанной при $\theta = 0$. Это позволило использовать простое выражение при вычислении барьера *B* для произвольного значения динамической деформации снаряда (β) и ориентации мишени (θ):

$$B(\theta, \beta) = B' + [B(\theta, 0) - B(0, 0)], \qquad (2)$$

где $B' = B(0, \beta)$. В этом случае коэффициент проницаемости, усредненный по высоте барьера, зависящей как от деформации, так и от ориентации ядер, может быть записан в виде:

$$T_l(E) = \frac{1}{2} \int_0^{\pi} \sin\theta \, d\theta \int f(B') \, T_l^{\mathrm{HW}} \left[B\left(\theta, \beta\right); E \right] dB'.$$
(3)

На Рис. 1 представлены результаты расчетов сечений слияния для реак-

ции ⁴⁸Ca+¹⁵⁴Sm в сравнении с экспериментальными данными. Как видно из рисунка, для объяснения экспериментальных данных необходимо учитывать как колебания ядерной поверхности сферического в основном состоянии ядра ⁴⁸Ca, так и вращение статически деформированного ядра ¹⁵⁴Sm (сплошная кривая).

Связь относительного движения сталкивающихся ядер с коллективными степенями свободы более точно можно учесть в квантовой модели связи каналов [10, 11]. Краткому ее обсуждению и сравнению расчетов в эмпирической и квантовой моделях посвящены Разделы 1.2.4 и 1.2.5. Показано, что обе модели могут быть применены для анализа сечений как в случае реакций слияния легких ядер с тяжелыми мишенями, так и при слиянии средних по массе ядер. Однако для анализа структуры функций распределения по барьерам следует использовать микроскопические подходы, например, квантовую модель связи каналов.

В Разделе 1.2.6 описана эмпирическая модель связи каналов с учетом перераспределения нейтронов [8]. В процессе сближения ядер может произойти перераспределение нескольких нейтронов от одного ядра к другому до того как они соприкоснутся и образуют составное ядро. В большинстве случаев, перераспределение нейтронов энергетически невыгодно (значения Q < 0). Но в некоторых случаях перераспределение нейтронов может происходить с положительными значениями Q-реакции. Выигрыш по энергии может привести к понижению потенциальной энергии ядерной системы. Полная вероятность прохождения через потенциальный барьер с учетом динамических деформаций ядер и/или их вращения, а также с учетом перераспределения нейтронов на стадии сближения этих ядер может быть оценена с помощью следующего выражения:

$$\widetilde{T}_{l}^{\mathrm{HW}}(B;E) = \frac{1}{N_{\mathrm{tr}}} \int_{-E}^{\max\{Q_{\mathrm{xn}}\}} [\delta(Q) + \alpha_{\mathrm{tr}}(E,l,Q)] \times T_{l}^{\mathrm{HW}}(B;E+Q) \, dQ, \quad (4)$$

где $\alpha_{\rm tr}(E,l,Q) = \sum_{x=1}^{x_{\rm max}} \alpha_{\rm x}(E,l,Q)$ – вероятность передачи x нейтронов, $T_l^{\rm HW}$ – проницаемость, вычисленная по формуле Хилла-Уиллера с предложенными нами аппроксимационными зависимостями для высоты и ширины барьера. Вероятность передачи нейтронов вычисляется в квазиклассическом приближении:

$$\alpha_x \left(E, l, Q \right) \cong N_x^{-1} \times \exp\left(-Q^2/2\sigma_x^2\right) \times \exp\left(-2\varkappa_x \left[D\left(E, l\right) - D_0\right]\right).$$
(5)

Здесь

$$\varkappa_x = \sum_{i=1}^{x_{\text{max}}} \varkappa(\varepsilon_i), \quad \varkappa(\varepsilon_i) = \sqrt{2\mu_n \varepsilon_i / \hbar^2}, \tag{6}$$

Первая экспонента в формуле (5) учитывает то, что передача нейтрона может происходить в разные возбужденные состояния. Дисперсия распределения величины Q может быть записана в виде:

$$\sigma_x = \sqrt{\frac{2\hbar^2 \varkappa_x B}{\mu R_B}}.$$
(7)

Полная вероятность последовательной передачи x нейтронов в выражении (5) определяется второй экспонентой, где $D(E, l) - D_0$ – эффективное расстояние между ядрами, а D(E, l) – расстояние наибольшего сближения взаимодействующих ядер, движущихся по кулоновским траекториям. Величина D_0 соответствует расстоянию между сталкивающимися ядрами, когда их поверхности максимально перекрываются и имеет вид:

$$D_0 = R_1^{(n)} + R_2^{(n)} + d_0, (8)$$

где $R_i^{(n)} = r_0^{(n)} A^{1/3}$ – радиусы орбит валентных (передаваемых) нейтронов и $r_0^{(n)}$ и d_0 подгоночные параметры. Отметим, что при анализе реакций малонуклонных передач обычно используются следующие значения параметров: $r_0^{(n)} = 1.4$ фм и $d_0 = 0$ (см., например, [12,13]). На основе анализа экспериментальных данных по сечениям слияния и реакциям малонуклонных передач нами был предложен новый набор параметров для вероятности передачи нейтронов при слиянии ядер в квазиклассическом приближении: $r_0^{(n)} = 1.25$ фм и $d_0 = 2.5$ фм. Предложенный набор параметров приводит к бо́льшим значениям D_0 (а, соответственно, к бо́льшим значениям α_x) по сравнению с теми, которые требуются для корректного описания экспериментальных данных по реакциям малонуклонных передач. Объяснить это можно тем, что для реакций слияния эффект увеличения сечения при подбарьерных энергиях из-за перераспределения нейтронов зависит от того, на сколько сильно волновая функция валентного нейтрона проникнет в объем другого ядра в момент их наибольшего сближения, т.е. до того, как ядра соприкоснутся. Можно предположить, что в силу адиабатичности процесса слияния вероятность перераспределения нейтронов достигает максимума в момент их наибольшего сближения. Тогда величину параметра D₀ следует увеличить по сравнению с реакциями малонуклонных передач, поскольку экспериментально определяемая вероятность передачи нейтрона в этих реакциях измеряется в момент, когда сталкивающиеся ядра, после их взаимодействия, разлетаются на бесконечно большое расстояние.

Предложенный набор параметров был зафиксирован и позволил описать большую совокупность экспериментальных данных для реакций слияния при энергиях ниже кулоновского барьера. Результаты расчетов изложены в Разделе 1.2.7.

Во вторая главе в рамках эмпирической модели связи каналов с учетом перераспределения нейтронов изучено совместное влияние свойств коллективных возбуждений ядер, каналов передачи нейтронов, энергий связи передаваемых нейтронов, а также размеров ядер на процесс слияния при энергиях ниже кулоновского барьера.

В Разделе 2.1.1 нами было изучено, как величина $Q_{\rm xn}$ влияет на увеличение сечения слияния при энергиях ниже кулоновского барьера. Проведенные модельные расчеты позволили сделать следующие выводы: во-первых, увеличение значений $Q_{\rm xn}$ приводит к усилению эффекта от перераспределения нейтронов, во-вторых, наибольший вклад дает перераспределение одного и/или двух валентных нейтронов.

В Разделе 2.1.2 обсуждается вопрос о совместном влиянии на процесс слияния коллективных степеней свободы и перераспределения нейтронов. Как отмечалось ранее, в последнее время были экспериментально изучены реакции слияния 60 Ni $+{}^{100}$ Mo [5] и 58 Ni $+{}^{130}$ Te [6], для которых значения $Q_{\rm xn}$ близки по значениям к реакции ⁴⁰Ca+⁹⁶Zr, однако заметного увеличения сечения слияния не наблюдается. Следовательно, наличие положительных Q_{xn} не является достаточным условием для увеличения сечения слияния при подбарьерных энергиях, как считалось до настоящего времени. Отметим, что эмпирическая модель связи каналов с перераспределением нейтронов позволила объяснить эти данные без изменения параметров модели (см. Рис. 2). В разделе приводится количественное и качественное объяснение взаимного влияния коллективных степеней свободы и каналов нейтронных передач в процессе слияния. Показано, что увеличение сечения слияния при подбарьерных энергиях из-за передачи нейтронов наблюдается, когда влияние коллективных степеней свободы мало. Для средних и тяжелых ядер наименьший эффект от связи с коллективными степенями свободы достигается для сферических ядер, имеющих большую энергию первого колебательного состояния (магические ядра или близкие к ним).

Наиболее сильное увеличение сечения при подбарьерных энергиях наблюдается в реакциях слияния легких слабосвязанных нейтронноизбыточных ядер, таких как ⁶He, ^{9,11}Li с тяжелыми мишенями [15]. Учет коллективных степеней свободы ядра-мишени в этом случае оказывает незначительное влияния на процесс слияния. Каналы же передачи нейтронов для

Рис. 2: Сечения слияния: $a - {}^{40}$ Са и 90,96 Zr (кривые – расчет, символы – экспериментальные данные из [3,4]); δ – то же, что и на рисунке 2(*a*), но для реакций 60 Ni+ 100 Mo [5] и 64 Ni+ 100 Mo [14]; *в* – то же, но для реакции 58,64 Ni+ 130 Te [6]. Теоретические кривые: точечные – слияние сферических недеформируемых ядер, сплошные и пунктирные кривые – расчеты в эмпирической модели с учетом и без учета перераспределения нейтронов.

этих реакций характеризуются большими значениями $Q_{\rm xn}$. На сегодняшний день проведено всего несколько экспериментов, в которых исследовалось слияния ядра ⁶Не с тяжелыми мишенями (²³⁸U, ²⁰⁹Bi, ²⁰⁶Pb, ⁶⁴Zn). Во всех экспериментах наблюдалось большое увеличение сечения слияния при энергиях ниже кулоновского барьера из-за перераспределения нейтронов с большими положительными значениям $Q_{\rm xn}$. В Разделе 2.2 приведен анализ этих экспериментальных данных в рамках эмпирической модели связи каналов и демонстрируется хорошее согласие расчетов с экспериментом. Также в разделе обсуждаются вопросы, связанные с особенностями реакций слияния легких экзотических ядер, а именно: как влияет энергии связи передаваемых нейтронов на процесс слияния, каково влияние размеров ядра-мишени, а также оказывает ли существенное влияние развал легкого снаряда в поле ядра-мишени на сечение слияния при подбарьерных энергиях. Модельное изучение реакций слияния с участием легких экзотических ядер в Разделах 2.2.1 – 2.2.3 позволило нам сделать дополнительные выводы:

- энергия связи передаваемых нейтронов в ядре-доноре оказывает сильное влияние на вероятность передачи нейтронов для легких ядер;
- роль каналов развала легкого снаряда весьма мала по сравнению с влиянием каналов коллективных возбуждений и каналов нейтронных передач при энергиях ниже кулоновского барьера;
- увеличение сечения слияния при подбарьерных энергиях слабо зависит от размера ядра-мишени в широком диапазоне атомных масс;

В Разделе 2.2.4 было показано, что эффект от перераспределения нейтронов с положительными значениями *Q* может также наблюдаться в реакциях слияния легких протонноизбыточных ядер со стабильными средними и тяжелыми по массе мишенями. В таких реакциях усиление подбарьерного слияния следует ожидать за счет перераспределения нейтронов от ядра-мишени к снаряду. На сегодняшний день доступен только один набор экспериментальных данных по слиянию ⁸В + ⁵⁸Ni [16] (см. Рис. 3 (*a*)). Для этой комбинации значения Q для передачи одного и двух нейтронов от ядра ⁵⁸Ni к ядру ⁸В положительны. Несмотря на это, значительного увеличения сечения слияния в подбарьерной области энергий не наблюдается. Оба расчета близки друг к другу и достаточно хорошо воспроизводят экспериментальные данные. Причина столь малого эффекта заключается в больших значениях энергии связи нейтронов в ядре ⁵⁸Ni. Нами была

Рис. 3: (*a*) Сечение слияния для реакции ⁸B + ⁵⁸Ni. Символы – экспериментальные данные из работы [16]. (*б*) Теоретические предсказания сечений слияния для реакций ⁸B + ⁹²Zr и ¹⁰B + ⁹⁰Zr. Сплошные и пунктирные кривые соответствуют расчетам сечений в эмпирической модели с учетом и без учета перераспределения нейтронов, соответственно.

предложена комбинация ${}^{8}\text{B} + {}^{92}\text{Zr}$, для которой можно ожидать заметного увеличения сечения слияния при энергии ниже кулоновского барьера с возможностью перераспределения одного и двух нейтронов от ядра ${}^{92}\text{Zr}$ с большими значениями Q и сравнительно малыми энергиями связи передаваемых нейтронов. На Рис. 3 (δ) приведены оценки сечения слияния для этой реакции. Экспериментальное изучение предложенной реакции может подтвердить роль энергии связи нейтронов при слиянии легких ядер.

<u>В третьей главе</u> реализован новый способ учета каналов перераспределения нейтронов с использованием квантовой модели связи каналов. Метод основан на квазиклассическом выражении для вероятностей передачи нейтронов и квантовом рассмотрении связи относительного движения с коллективными (колебания ядерных поверхностей и/или вращение статически деформированных сталкивающихся ядер) степенями свободы. Выражение для проницаемости многомерного потенциального барьера с учетом коллективных степеней свободы и перераспределения нейтронов в рамках разработанного метода имеет следующий вид:

$$T_{l}(E) = N_{\rm tr}^{-1} \int_{-E}^{\max\{Q_{\rm xn}\}} [\delta(Q) + \alpha_{\rm tr}(E, l, Q)] \times T_{l}^{\rm CC}(E+Q) \, dQ, \qquad (9)$$

где T_l^{CC} – коэффициент проницаемости многомерного потенциального барьера, вычисляемый в квантовом методе связи каналов, $\alpha_{\rm tr}$ – вероятность передачи нейтронов в квазиклассическом приближении. Используя выражение (9), сечение слияния может быть найдено по формуле (1). Предложенный способ является шагом вперед на пути микроскопического описания слияния ядер, так как связь относительного движения с коллективными степенями свободы рассматривается на микроскопическом уровне. Параметры этой связи могут быть извлечены непосредственно из экспериментальных свойств сталкивающихся ядер. В Разделе 3.2 обсуждаются результаты расчетов сечений и функций распределения по барьерам для реакций ⁴⁰Ca+^{90,94,96}Zr и ³²S+^{90,94,96}Zr. На Рис. 4 в качестве иллюстрации представлены расчеты сечений и функций распределения по барьерам для реакций слияния ядра ³²S с изотопами ядра Zr. Как видно выполненные расчеты в квантовой модели связи каналов с учетом перераспределения нейтронов (сплошные кривые) хорошо согласуются с экспериментальными данными. Более того, впервые удалось описать структуру функции распределения по барьерам в реакциях слияния, для которых значительную роль играет возможность перераспределения нейтронов.

Также в Разделе 3.2 показано, что выводы о взаимном влиянии коллективных степеней свободы и нейтронных передач, сделанные в Главе 2 на основе эмпирической модели связи каналов с учетом перераспределения нейтронов, подтверждаются в рамках квантовой модели связи каналов с учетом перераспределением нейтронов.

В четвертой главе полученный опыт описания реакций слияния применяется для анализа сечений образования нейтроннообогащенных изотопов тяжелых и сверхтяжелых элементов. При расчете сечений образования изотопов тяжелых ядер предполагается, что можно выделить три основных стадии, которые могут быть вычислены независимо друг от друга: преодоление кулоновского барьера и образование контактной конфигурации, образование составного ядра в возбужденном состоянии и его девозбуждение за счет испускания нейтронов, легких заряженных частиц (протонов и α -частиц), а также излучения γ -квантов. Сечение образования испарительного остатка тяжелого и сверхтяжелого ядра в реакциях слияния в канале

Рис. 4: Сечения слияния и функции распределения по барьерам для реакций ${}^{32}S+{}^{90,94,96}Zr$. Точечные и пунктирные кривые – расчет без учета и с учетом динамических деформаций в квантовой модели связи каналов, соответственно. Сплошные кривые – расчеты в рамках предложенной модели с учетом перераспределений нейтронов. Экспериментальные данные по сечениям и оценкам функции распределения по барьерам (открытые символы) для реакций ${}^{32}S+{}^{90,96}Zr$ – из [17], ${}^{32}S+{}^{94}Zr$ – из [18]. Закрытые символы взяты из работы [19].

с испусканием x нейтронов y протонов и $z \alpha$ -частиц, учитывая перечисленные стадии, может быть представлено в виде [20]:

$$\sigma_{\text{EvR}}^{\text{xn,yp,z\alpha}}(E) = \frac{\pi\hbar^2}{2\mu E} \sum_{l=0}^{\infty} (2l+1) \cdot P_{\text{cont}}(E,l) \cdot P_{\text{CN}}(E,l) \cdot P_{\text{xn,yp,z\alpha}}(E,l) . (10)$$

Здесь $P_{\text{cont}}(E, l)$ – вероятность того, что сталкивающиеся ядра преодолеют кулоновский барьер. Зная свойства сталкивающихся ядер, вычислить се-

чение захвата можно методами, лежащими в основе диссертации. В настоящей главе рассматриваются сильно ассимитричные комбинации: легкий нейтронноизбыточный снаряд и тяжелая мишень. Поэтому можно предположить, что составное ядро образуется из конфигурации двух касающихся ядер с единичной вероятностью, $P_{\rm CN} = 1$. Процесс девозбуждения составного ядра можно рассматривать в рамках статистической модели с использованием базы знаний по ядерной физике низких энергий NRV (http://nrv.jinr.ru) [21, 22].

Были исследованы комбинации сталкивающихся ядер, приводящие к синтезу новых нейтроннообогащенных ядер с Z = 102 - 107. В качестве снарядов выбраны легкие стабильные и радиоактивные нейтронноизбыточные ядра ^{22,23}Ne и ²⁰O. При слиянии этих ядер с актинидными мишенями ²⁴⁸Cm, ²⁴⁹Cf, ²⁴⁹Bk с последующим испарением нейтронов и/или заряженной частицы могут образоваться новые изотопы из интересующей нас области с сечением превышающим 1 пб. В предложенных комбинациях могут быть синтезированы 11 новых ядер, перечисленные в Таблице 1. Также в табли-

Ядро	Реакция	Канал	$\sigma_{ m ER}^{ m max}$ (пб)
²⁶³ No	$^{20}{ m O}+^{248}{ m Cm}$	(αn)	190
$^{263}\mathrm{Lr}$	$^{20}{ m O}$ + $^{248}{ m Cm}$	(p4n)	1200
$^{264}\mathrm{Lr}$	$^{20}{ m O}$ + $^{248}{ m Cm}$	(p3n)	4800
264 Rf	$^{20}{ m O}$ + $^{248}{ m Cm}$	(4n)	$2.1 \cdot 10^5$
	$^{20}{ m O}$ + $^{249}{ m Cf}$	(αn)	80
$^{267}\mathrm{Rf}$	23 Ne + 248 Cm	$(\alpha 2n)$	100
$^{264}\mathrm{Db}$	$^{20}{ m O}$ + $^{249}{ m Cf}$	(p4n)	400
$^{265}\mathrm{Db}$	$^{20}{ m O}$ + $^{249}{ m Cf}$	(p3n)	$1.2\cdot 10^4$
$^{267}\mathrm{Sg}$	23 Ne + 248 Cm	(4n)	$1.5\cdot 10^4$
	22 Ne + 249 Bk	(p3n)	760
	23 Ne + 249 Bk	(p4n)	180
$^{268}\mathrm{Bh}$	22 Ne + 249 Bk	(3n)	9000
$^{268}\mathrm{Sg}$	23 Ne + 248 Cm	(3n)	5300
	22 Ne + 249 Bk	(p2n)	300
	23 Ne + 249 Bk	(p3n)	490
270 Sg	23 Ne + 249 Bk	(p1n)	12

Таблица 1: Рассчитанные максимальные сечения (в пб) для получения новых ядер в каналах испарения xn, pxn и αxn в указанных реакциях слияния.

це приведены максимальные значения сечений в указанных каналах. Так, например, изотоп ²⁶⁸Bh может быть получен с максимальным сечением 9.0 нб в реакции слияния 22 Ne + 249 Bk, в которой образуется составное ядро 271 Bh, с последующим испарением трех нейтронов.

Отметим, что в каналах с испусканием заряженной частицы, как пра-

вило, сечение ниже, чем в каналах с испарением нейтронов. Например, в реакциях $^{20}{\rm O}$ + $^{248}{\rm Cm}$ и $^{20}{\rm O}$ + $^{249}{\rm Cf}$ может образоваться ядро $^{264}{\rm Rf}$ в испарительных каналах 4n и α n, соответственно. Как видно из Таблицы 1, отношение максимумов сечений $\sigma_{\rm EvR}^{4n}/\sigma_{\rm EvR}^{\alpha n}\approx 10^3$. Следовательно, для получения $^{264}{\rm Rf}$ целесообразно использовать первую комбинацию. Также ядра $^{267,268}{\rm Sg}$ могут быть получены в реакции $^{23}{\rm Ne}$ + $^{248}{\rm Cm}$ с испарением четырех и трех нейтронов с бо́льшим выходом, чем в реакциях $^{22,23}{\rm Ne}$ + $^{249}{\rm Bk}$ в р3n и р4n испарительных каналах, соответственно.

В рассматриваемых реакциях ряд нейтроннообогащенных ядер может быть синтезирован только в каналах с испарением заряженных частиц. Так, например, в реакции слияния ²⁰O + ²⁴⁸Cm в α n, p4n и p3n каналах образуются нуклиды ²⁶³No и ^{263,264}Lr. Достаточно большое сечение выхода можно ожидать для ²⁶⁵Db в реакции ²⁰O + ²⁴⁹Cf в p3n канале.

<u>В заключении</u> сформулированы основные результаты и выводы диссертации:

- 1. Эмпирическая модель связи каналов обобщена на случай одновременного учета колебаний ядерной поверхности одного из сталкивающихся ядер и статической деформации другого.
- 2. На основе анализа экспериментальных данных по сечениям нейтронных передач и сечениям слияния ядер предложен и обоснован новый набор параметров эмпирической модели связи каналов, а также для квазиклассической вероятности передачи нейтронов при слиянии ядер. Это позволило описать представительный набор экспериментальных данных для реакций слияния при энергиях вблизи кулоновского барьера.
- 3. Изучено совместное влияние свойств коллективных возбуждений ядер, каналов передачи нейтронов, энергий связи передаваемых нейтронов, а также размеров ядер на процесс слияния при энергиях ниже кулоновского барьера. Показано, что:
 - а) дополнительное увеличение сечения слияния наблюдается, когда ядерная система характеризуется положительными значениями энергий передачи нейтронов Q_{xn}. Увеличение значений Q_{xn} приводит к усилению эффекта от перераспределения нейтронов;
 - б) наибольший вклад дает перераспределение одного и/или двух валентных нейтронов;
 - в) наибольший эффект из-за перераспределения нейтронов с $Q_{\rm xn} > 0$ наблюдается для наиболее «жестких» комбинаций сталкивающих-

ся ядер, т. е. для которых связь с коллективными степенями свободы мала. Для средних и тяжелых ядер наименьший эффект от связи с коллективными степенями свободы достигается для сферических ядер, имеющих большую энергию первого колебательного состояния (магические ядра или близкие к ним);

- г) дополнительное сильное увеличение сечения слияния ожидается в реакциях легких нейтронноизбыточных слабосвязанных ядер с тяжелыми мишенями из-за больших положительных значений Q_{xn} для перераспределения валентных нейтронов и их малой энергии связи. Учет коллективных степеней свободы ядра-мишени в этом случае, играет незначительную роль;
- д) в реакциях с участием нейтронноизбыточных слабосвязанных ядер, фактор усиления слияния слабо зависит от массы и заряда ядрамишени.
- 4. Реализован способ учета каналов передачи нейтронов в квазиклассическом приближении при использовании квантового метода связи каналов, что позволило впервые описать структуру функции распределения по барьерам в реакциях слияния, для которых значительна роль перераспределения нейтронов.
- 5. Предложены комбинации сталкивающихся ядер и выполнены расчеты сечений реакций слияния, в результате которых могут быть получены 11 новых изотопов трансфермиевых элементов с Z = 102 – 107 с сечениями, достижимыми на имеющихся экспериментальных установках.
- 6. Разработанные коды эмпирической модели связи каналов включены в Базу знаний по ядерной физике низких энергий NRV (http://nrv.jinr.ru).

Список цитируемой дитературы

- [1] Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov et al.; Heavy element research at Dubna // Nucl. Phys. A. 2004. Vol. 734, no. 1. P. 109.
- [2] Yu. Ts. Oganessian, V. K. Utyonkov; Super-heavy element research // Rep. Progr. Phys. - 2015. - Vol. 78, no. 3. - P. 036301.

- [3] H. Timmers, D. Ackermann, S. Beghini et al.; A case study of collectivity, transfer and fusion enhancement // Nucl. Phys. A. - 1998. - Vol. 633, no. 3. - Pp. 421 - 445.
- [4] A. M. Stefanini, B. R. Behera, S. Beghini et al.; Sub-barrier fusion of ⁴⁰Ca+⁹⁴Zr: Interplay of phonon and transfer couplings // *Phys. Rev. C.* 2007. Vol. 76. P. 014610.
- [5] A. M. Stefanini, G. Montagnoli, F. Scarlassara et al.; Fusion of ⁶⁰Ni + ¹⁰⁰Mo near and below the Coulomb barrier // Eur. Phys. J. A. 2013. Vol. 49, no. 5. P. 63.
- [6] Z. Kohley, J. F. Liang, D. Shapira et al.; Near-barrier fusion of Sn+Ni and Te + Ni systems: examining the correlation between nucleon transfer and fusion enhancement // Phys. Rev. Lett. - 2011. - Vol. 107. - P. 202701.
- [7] V. I. Zagrebaev; Synthesis of superheavy nuclei: Nucleon collectivization as a mechanism for compound nucleus formation // Phys. Rev. C. - 2001. - Vol. 64. - P. 034606.
- [8] V. I. Zagrebaev; Sub-barrier fusion enhancement due to neutron transfer // Phys. Rev. C. - 2003. - Vol. 67. - P. 061601.
- [9] M. Trotta, A. M. Stefanini, S. Beghini et al.; Fusion hindrance and quasifission in ⁴⁸Ca induced reactions // Eur. Phys. J. A. - 2005. - Vol. 25, no. 1. - Pp. 615-618.
- [10] K. Hagino, N. Rowley, A.T. Kruppa; A program for coupled-channel calculations with all order couplings for heavy-ion fusion reactions // Comput. Phys. Commun. - 1999. - Vol. 123. - P. 143.
- [11] V. I. Zagrebaev, V. V. Samarin; Near-barrier fusion of heavy nuclei: Coupling of channels // Phys. At. Nucl. - 2004. - Vol. 67, no. 8. - Pp. 1462-1477.
- [12] L. Corradi, G. Pollarolo, S. Szilner; Multinucleon transfer processes in heavy-ion reactions // J. Phys. G: Nucl. Part. Phys. - 2009. - Vol. 36, no. 11. - P. 113101.
- [13] L. Corradi, S. Szilner, G. Pollarolo et al.; Single and pair neutron transfers at sub-barrier energies // Phys. Rev. C. - 2011. - Vol. 84. - P. 034603.
- [14] C. L. Jiang, K. E. Rehm, H. Esbensen et al.; Hindrance of heavy-ion fusion at extreme sub-barrier energies in open-shell colliding systems // Phys. Rev. C. - 2005. - Vol. 71. - P. 044613.

- [15] V. I. Zagrebaev, V. V. Samarin, Walter Greiner; Sub-barrier fusion of neutron-rich nuclei and its astrophysical consequences // Phys. Rev. C. - 2007. - Vol. 75. - P. 035809.
- [16] E. F. Aguilera, P. Amador-Valenzuela, E. Martinez-Quiroz et al.; Near-Barrier fusion of the ⁸B+⁵⁸Ni proton-halo system // Phys. Rev. Lett. – 2011. – Vol. 107. – P. 092701.
- [17] H. Q. Zhang, C. J. Lin, F. Yang et al.; Near-barrier fusion of ${}^{32}S + {}^{90,96}$ Zr: The effect of multi-neutron transfers in sub-barrier fusion reactions // *Phys. Rev. C.* - 2010. - Vol. 82. - P. 054609.
- [18] H. M. Jia, C. J. Lin, F. Yang et al.; Fusion of ${}^{32}S + {}^{94}Zr$: Further exploration of the effect of the positive Q_{xn} value neutron transfer channels // *Phys. Rev. C.* 2014. Vol. 89. P. 064605.
- [19] A. V. Karpov, V. A. Rachkov, V. V. Samarin; Quantum coupled-channels model of nuclear fusion with a semiclassical consideration of neutron rearrangement // Phys. Rev. C. - 2015. - Vol. 92. - P. 064603.
- [20] N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov et al.; Competition between complete fusion and quasi-fission in reactions between massive nuclei. The fusion barrier // Phys. Lett. B. - 1993. - Vol. 319, no. 4. -P. 425.
- [21] A. V. Karpov, A. S. Denikin, A. P. Alekseev et al.; NRV web knowledge base on low-energy nuclear physics // Phys. At. Nucl. - 2016. - Vol. 79, no. 5. - P. 749.
- [22] A. V. Karpov, A. S. Denikin, M. A. Naumenko et al.; NRV web knowledge base on low-energy nuclear physics // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - 2017. - Vol. 859. - P. 112.

Результаты диссертации опубликованы в работах:

A. Adel, V.A. Rachkov, A.V. Karpov et al.; Effect of neutron rearrangement on subbarrier fusion reactions // Nucl. Phys. A. — 2012. — Vol. 876. — Pp. 119 – 130.

- [2] V. A. Rachkov, A. Adel, A. V. Karpov et al.; Effect of neutron transfer in the fusion process near and below the Coulomb barrier // AIP Conference Proceedings. — 2012. — Vol. 1491, no. 1. — Pp. 381–382.
- [3] В. А. Рачков, А. Адель, А. В. Карпов и др.; Влияние каналов нейтронных передач на процессы слияния слабосвязанных ядер при подбарьерных энергиях // Изв. РАН. Сер. физ. — 2013. — Vol. 77, no. 4. — Р. 458.
- [4] В. А. Рачков, А. Адель, А. В. Карпов и др.; Усиливает ли перераспределение нейтронов подбарьерное слияние атомных ядер? // Изв. РАН. Сер. физ. – 2014. – Vol. 78, по. 11. – Р. 1381.
- [5] V. A. Rachkov, A. V. Karpov, A. S. Denikin, V. I. Zagrebaev; Examining the enhancement of sub-barrier fusion cross sections by neutron transfer with positive Q values // Phys. Rev. C. — 2014. — Vol. 90. — P. 014614.
- [6] A. V. Karpov, V. A. Rachkov, A. Adel et al. Sub-barrier fusion: does rearrangement of neutrons play a role? // Int. Symp. on Exotic Nuclei, EXON14 / Ed. by Yu. E. Penionzhkevich, Yu. G. Sobolev; Kaliningrad, 2014. — Singapore: World Scientific, 2015. — Pp. 103 – 112.
- [7] A. V. Karpov, V. A. Rachkov, A. S. Denikin, V. I. Zagrebaev; Role of neutron rearrangement channels in sub-barrier fusion // EPJ Web of Conferences. — 2015. — Vol. 86. — P. 00017.
- [8] A. V. Karpov, V. A. Rachkov, V. V. Samarin; Quantum coupled-channels model of nuclear fusion with a semiclassical consideration of neutron rearrangement // Phys. Rev. C. — 2015. — Vol. 92. — P. 064603.
- [9] В. А. Рачков, А. В. Карпов, В. В. Самарин; Полуэмпирическая модель перераспределения нейтронов в квантовом подходе сильной связи каналов // Изв. РАН. Сер. физ. 2016. Т. 80, № 3. С. 304.
- [10] А.В. Карпов, А.С. Деникин, А.П. Алексеев, В. А. Рачков и др.; Сетевая база знаний NRV по ядерной физике низких энергий // Ядерная физика. 2016. Vol. 79, по. 5. Р. 520.
- [11] A. V. Karpov, V. A. Rachkov, V. V. Saiko; Formation of neutronenriched heavy and superheavy nuclei in fusion reactions // Phys. Part. Nucl. Lett. — 2018. — Vol. 15. — Pp. 247–256.