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Introduction

The CERN Program Library is a large collection of general-purpose programs maintained and offered in
both source and object code form on the CERN central computers. Most of these programs were developed
at CERN and are therefore oriented towards the needs of a physics research laboratory. Nearly all, however,
are of a general mathematical or data-handling nature, applicable to a wide range of problems.

The library is heavily used at CERN and it is distributed in binary or source form to several hundred labora-
tories and computer centres outside CERN.

Contents and Organization of the Library

The library contains about 2500 subroutines and complete programs which are grouped together by logical
affiliation into little over 450 program packages. 80% of the programs are written in Fortran77 and the
remainder in C and in assembly code, usually with a FORTRAN version also available.

A unique code is assigned to each package. This code consists of one letter and three or four digits, the
letter indicating the category within our classification scheme. A package consists of one or more related
subprograms with one package name and one or more user-callable entry names, all described briefly in a
“Short write-up”, and if necessary, an additional “Long write-up”.

A complete list of program packages with titles and entries sorted by class is given at the beginning of this
manual. Then follow all the short write-ups, while the Index at the end of the volume shows the page number
(as printed near the inner margin) were a package is defined (in boldface) or referenced.

Acknowledgements

K.S. Kölbig has done most of the work for having this manual nicely formated, particularly in the area of
getting the many mathematical formulae correct.

About the documentation

This document has been produced using LATEX1 with the cernman class and the cernlib package, devel-
oped at CERN. A printable version of each of the routines described in this manual can be obtained as a
compressed PostScript file from CERN by anonymous ftp. For instance, if you want to transfer the descrip-
tion of routine E112, then you would type the following (commands that you have to type are underlined): 2

ftp asisftp.cern.ch

Trying 128.141.201.136...

Connected to asis01.cern.ch.

220 asis01 FTP server (SunOS 4.1) ready.

Name (asis01:username): anonymous

Password: your_mailaddress

ftp> binary

ftp> cd cernlib/doc/ps.dir/shortwrups.dir

ftp> get e112.ps.gz

ftp> quit

1Leslie Lamport, LATEX – A Document Preparation System, second edition. Addison–Wesley, 1994
2You can of course issue multiple get commands in one run. If you do not have the gunzip utility on your machine, you can

get an non-compressed, ready-to-print version by omitting the .gz suffix, i.e. in the example above, get e112.ps.
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Chapter 1: Catalog of Program Packages and Entries

Elementary Functions

B002 PRMFCT Prime Numbers and Prime Factor Decomposition

B100 RBINOM Binomial Coefficient

B101 ATG Arc Tangent Function

B102 ASINH Hyperbolic Arcsine

B105 RPLNML Value of a Polynomial

B300 RSRTNT Integral of type R(x;
p
a + bx+ cx2)

Equations and Special Functions

C200 RZEROX Zero of a Function of One Real Variable

C201 RSNLEQ Numerical Solution of Systems of Nonlinear Equations

C202 RMULLZ Zeros of a Real Polynomial

C205 RZERO Zero of a Function of One Real Variable

C207 RRTEQ3 Roots of a Cubic Equation

C208 RRTEQ4 Roots of a Quartic Equation

C209 CPOLYZ Zeros of a Complex Polynomial

C210 NZERFZ Number of Zeros of a Complex Function

C300 ERF Error Function and Complementary Error Function

C301 FREQ Normal Frequency Function

C302 GAMMA Gamma Function for Positive Argument

C303 GAMMF Gamma Function for Real Argument

C304 ALGAMA Logarithm of the Gamma Function

C305 CGAMMA Gamma Function for Complex Argument

C306 CLGAMA Logarithm of the Gamma Function for Complex Argument

C309 CCLBES Coulomb Wave, Bessel, and Spherical Bessel Functions for Complex Argument(s) and
Order

C312 BESJ0 Bessel Functions J and Y of Orders Zero and One

C313 BESI0 Modified Bessel Functions I and K of Orders Zero and One

C315 RRIZET Riemann Zeta Function

C316 RPSIPG Psi (Digamma) and Polygamma Functions

C317 CPSIPG Psi (Digamma) and Polygamma Functions for Complex Argument

C318 RELFUN Jacobian Elliptic Functions sn, cn, dn

C320 CELFUN Jacobian Elliptic Functions sn, cn, dn for Complex Argument

C321 CGPLG Nielsen’s Generalized Polylogarithm

C322 RFRSIN Fresnel Integrals

C323 RFERDR Fermi-Dirac Function

C324 RATANI Arctangent Integral

C326 RCLAUS Clausen Function
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C327 BSIR4 Modified Bessel Functions I and K of Order 1/4, 1/2 and 3/4

C328 CWHITM Whittaker Function M of Complex Argument and Complex Indices

C330 RASLGF Legendre and Associated Legendre Functions

C331 RFCONC Conical Functions of the First Kind

C332 RDILOG Dilogarithm Function

C334 RGAPNC Incomplete Gamma Functions

C335 CWERF Complex Error Function

C336 RSININ Sine and Cosine Integrals

C337 REXPIN Exponential Integral

C338 CEXPIN Complex Exponential Integral

C339 RDAWSN Dawson’s Integral

C340 BSIR3 Modified Bessel Functions I and K of Order 1/3 and 2/3

C341 BSKA Modified Bessel Functions K of Certain Order

C342 RSTRH0 Struve Functions of Orders Zero and One

C343 BSJA Bessel Functions J and I with Positive Argument and Non-Integer Order

C344 CBSJA Bessel Functions J with Complex Argument and Non-Integer Order

C345 RBZEJY Zeros of Bessel Functions J and Y

C346 RELI1 Elliptic Integrals of First, Second, and Third Kind

C347 RELI1C Complete Elliptic Integrals of First, Second, and Third Kind

C348 CELINT Elliptic Integral for Complex Argument

C349 RTHETA Jacobian Theta Functions

Integration, Minimization, Non-linear Fitting

D101 SIMPS Integration by Simpson’s Rule

D102 RADAPT Adaptive Gaussian Quadrature

D103 GAUSS Adaptive Gaussian Quadrature

D104 RCAUCH Cauchy Principal Value Integration

D105 RTRINT Integration over a Triangle

D106 RGS56P Gaussian Quadrature with Five- and Six-Point Rules

D107 RGQUAD N-Point Gaussian Quadrature

D108 TRAPER Trapezoidal Rule Integration with an Estimated Error

D110 RGMLT Gaussian Quadrature for Multiple Integrals

D113 CGAUSS Adaptive Complex Integration Along a Line Segment

D114 RIWIAD Adaptive Multidimensional Monte-Carlo Integration [Obsolete]

D120 RADMUL Adaptive Quadrature for Multiple Integrals over N -Dimensional Rectangular Regions

D151 DIVON4 Multidimensional Integration or Random Number Generation [Obsolete]

D200 RRKSTP First-order Differential Equations (Runge-Kutta)

D201 RDEQBS First-order Differential Equations (Gragg–Bulirsch–Stoer)

D202 RDEQMR First-order Differential Equations (Runge–Kutta–Merson)

D203 RRKNYS Second-order Differential Equations (Runge–Kutta–Nyström)
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D300 EPDE1 Elliptic Partial Differential Equation

D302 ELPAHY Fast Partial Differential Equation Solver

D401 RDERIV Numerical Differentiation

D501 LEAMAX Constrained Non-Linear Least Squares and Maximum Likelihood Estimation

D503 RMINFC Minimum of a Function of One Variable

D506 MINUIT Function Minimization and Error Analysis

D510 FUMILI Fitting Chisquare and Likelihood Functions [Obsolete]

D601 RFRDH1 Solution of a Linear Fredholm Integral Equation of Second Kind

D700 RFT Real Fast Fourier Transform

D702 CFT Complex Fast Fourier Transform

D705 RFSTFT Real Fast Fourier Transform

D706 CFSTFT Complex Fast Fourier Transform

Interpolation, Approximations, Linear Fitting

E100 POLINT Polynomial Interpolation

E102 MAXIZE Maximum and Minimum Elements of Arrays

E103 AMAXMU Largest Absolute Number in Scattered Vector

E104 FINT Multidimensional Linear Interpolation

E105 DIVDIF Function Interpolation

E106 LOCATR Binary Search for Element in Ordered Array

E201 RLSQPM Least Squares Polynomial Fit

E208 LSQ Least Squares Polynomial Fit [Obsolete]

E210 NORBAS Polynomial Splines / Normalized B-Splines

E211 RCSPLN Cubic Splines and their Integrals

E222 RCHEBN Solution of Overdetermined Linear System in the Chebychev Norm

E230 TL Constrained and Unconstrained Linear Least Squares Fitting

E250 LFIT Least-Squares Fit to Straight Line

E255 PARLSQ Least-Squares Fit to Parabola [Obsolete]

E406 RCHECF Chebyshev Series Coefficients of a Function

E407 RCHSUM Summation of Chebyshev Series

E408 RCHPWS Conversion of Chebyshev to Power and Power to Chebyshev Series

E409 RTRGSM Summation of Trigonometric Series

Matrices, Vectors and Linear Equations

F001 LAPACK Linear Algebra Package

F002 RVADD Elementary Vector Processing

F003 RMADD Elementary Matrix Processing

F004 RMMLT Matrix Multiplication

F010 RINV Linear Equations, Matrix Inversion

F011 RFACT Repeated Solution of Linear Equations, Matrix Inversion, Determinant
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F012 RSINV Symmetric Positive-Definite Linear Systems

F105 POLROT Rotate a Three-Dimensional Polar Coordinate System

F110 MXPACK TC Matrix Manipulation Package [Obsolete]

F112 TR Manipulation of Triangular and Symmetric Matrices

F116 DOTI Scalar Product of Two Space-Time Vectors

F117 CROSS Vector Product of Two 3-Vectors

F118 ROT Rotating a 3-Vector

F121 VECMAN Vector Algebra

F122 SCATTER Search Operations on Sparse Vectors

F123 BVSL Bit Vector Manipulation Package

F150 MXDIPR Direct or Tensor Matrix Product

F406 RBEQN Banded Linear Equations

F500 RLHOIN Linear Homogenous Inequalities

Statistical Analysis and Probability

G100 PROB Upper Tail Probability of Chi-Squared Distribution

G101 CHISIN Inverse of Chi-Square Distribution

G102 PROBKL Kolmogorov Distribution

G103 TKOLMO Kolmogorov Test

G104 STUDIS Student’s T-Distribution and Its Inverse

G105 GAUSIN Inverse of Gaussian Distribution

G106 GAMDIS Gamma Distribution

G110 LANDAU Landau Distribution

G115 VAVLOV Approximate Vavilov Distribution and its Inverse

G116 VVILOV Vavilov Density and Distribution Functions

G900 RANF Random Number Generator [Obsolete]

Operation Research Techniques and Management Science

H101 RSMPLX Linear Optimization Using the Simplex Algorithm

H301 ASSNDX Assignment Problem

Input/Output

I101 EPIO EP Standard Format Input/Output Package

I202 KUIP KUIP - Kit for a User Interface Package

I302 FFREAD Format-Free Input Processing [Obsolete]

Output and Graphical Data Presentation

J200 VIZPRI Print Large Characters

J403 XBANNER Print Banner Text

J530 BINSIZ Reasonable Intervals for Histogram Binning
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Executive Routines

L210 COMIS COMIS - Compilation and Interpretation System

L400 PATCHY Source Code Maintenance

Data Handling

M101 SORTZV Sort One-Dimensional Array

M103 FLPSOR Sort One-Dimensional Array into Itself

M104 SORCHA Sort One-Dimensional Character Array into Itself

M107 SORTR Sort Rows of a Matrix

M109 SORTRQ Sort Rows of a Matrix

M215 PSCALE Find Power-of-Ten Scale for Printing

M220 IE3CONV Conversion To and From IEEE Number Format

M400 CHTOI Portable Conversion Between Type CHARACTER and Type INTEGER

M409 UBUNCH Concentrate and Disperse Character Strings [Partially obsolete]

M421 BITBYT Package for Handling Bits and Bytes

M422 PACBYT Handling Packed Vectors of Bytes

M423 INCBYT Increment a Byte of a Packed Vector

M426 BLOW Unpack Full Words into Bytes

M427 PKCHAR Pack/Unpack Continuous Byte-strings

M428 LOCBYT Search for Byte-Content

M429 NUMBIT Number of One-Bits in a Word

M431 IFROMC Convert Between Character String and Packed ASCII Form

M432 CHPACK Utility Routines for Character String Parsing and Construction

M433 INDEXX Utility Package for Character Manipulation

M434 VXINV Fast VAX Byte Inversion

M436 BUNCH Pack Bytes into Full Words

M437 GETBIT Set or Retrieve a Bit in a String

M438 BTMOVE Move Bit String

M439 GETBYT Set or Retrieve a Bit String

M441 BITPAK Handling Bits and Bytes, Bit Zero the Least Significant

M442 NAMEFD Fortran Emulation of VM/CMS NAMEFIND Command

M501 IUSAME Locating a String of Same Words

M502 UOPTC Decoding Options Characters

M503 UBITS Locate the One-Bits of a Word or an Array

M507 LENOCC Occupied Length of a Character String

M508 BITPOS Find One-Bits in a String
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Debugging, Error Handlng

N001 KERSET Error Processing for Sections A-H of KERNLIB [Partially obsolete]

N002 MTLSET Error Processing for MATHLIB

N100 LOCF Address of a Variable

N103 IUWEED Detect Indefinite and Infinite in an Array

N105 TRACEQ Print Trace-Back

N203 TCDUMP Memory Dump

Service or Housekeeping Programming Aids

Q100 ZEBRA Dynamic Data Structure and Memory Manager

Q120 HIGZ High Level Interface to Graphics and Zebra

Q121 PAW PAW - Physics Analysis Workstation Package

Q122 SIGMA SIGMA - System for Interactive Graphical Mathematical Applications

Q123 FATMEN Distributed File and Tape Management System

Q124 CSPACK Client Server Routines and Utilities

Q180 HEPDB Distributed Database Management System

Q210 ZBOOK Dynamic Memory Management [Obsolete]

Q901 INDENT Indent Fortran Source

Q902 FLOP FLOP - Fortran Language Oriented Parser

Q904 CONVERT Fortran 77 to Fortran 90 source form conversion tool

Q905 WYLBUR Wylbur Phoenix - a Line Editor for ASCII Text Files [Obsolete]

Magnet and Beam Design, Electronics

T604 POISCR Solution of Poisson’s or Laplace’s Equation in Two-Dimensional Regions

Quantum Mechanics, Particle Physics

U101 LOREN4 Lorentz Transformation

U102 LORENF Lorentz Transformations

U111 RWIG3J Wigner 3-j, 6-j, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients

U112 RTCLGN Clebsch-Gordan Coefficients in Rational Form

U501 RDJMNB Beta-Term in Wigner’s D-Function

Random Numbers and General Purpose Utilities

V104 RNDM Uniform Random Numbers [Obsolete]

V105 NRAN Arrays of Uniform Random Numbers [Obsolete]

V113 RANMAR Uniform Random Number Generator

V114 RANECU Uniform Random Number Generator

V115 RANLUX Uniform Random Numbers of Guaranteed Quality

V116 RM48 Double Precision Uniform Random Numbers

V120 RNORML Gaussian-distributed Random Numbers
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V122 CORSET Correlated Gaussian-distributed Random Numbers

V130 RAN3D Random Three-Dimensional Vectors [Obsolete]

V131 RN3DIM Random Three-Dimensional Vectors

V135 RNGAMA Gamma or Chi-Square Random Numbers

V136 RNPSSN Poisson Random Numbers

V137 RNBNML Binomial Random Numbers

V138 RNMNML Multinomial Random Numbers

V149 RNHRAN Random Numbers According to Any Histogram

V150 HISRAN Random Numbers According to Any Histogram [Obsolete]

V151 FUNRAN Random Numbers According to Any Function [Obsolete]

V152 FUNLUX Random Numbers According to Any Function

V202 PERMU Permutations and Combinations

V300 UZERO Preset Parts of an Array

V301 UCOPY Copy an Array

V302 UCOCOP Copy a Scattered Vector

V304 IUCOMP Search a Vector for a Given Element

V306 PROXIM Adjusting an Angle to Another Angle

V401 GRAPH Find Compatible Node-Nets in an Incompatibility Graph

V700 RVNSPC Volume of Intersection of a Circular Cylinder with a Sphere

High Energy Physics Simulation, Kinematics, Phase Space

W150 TRSPRT Transport, Second-Order Beam Optics

W151 TURTLE Beam Transport Simulation, Including Decay

W505 FOWL General Monte-Carlo Phase-Space

W515 GENBOD N-Body Monte-Carlo Event Generator

Statistical Data Analysis and Presentation

Y201 IUCHAN Find Histogram-Channel

Y250 HBOOK Statistical Analysis and Histogramming

Y251 HPLOT HPLOT : HBOOK Graphics Interface for Histogram Plotting

Miscellaneous System-Dependent Facilities

Z001 KERNGT Print KERNLIB Version Numbers

Z007 DATIME Job Time and Date

Z009 CALDAT Calendar Date Conversion

Z020 UMON Usage Monitor for VAX/VMS

Z035 ABEND Abnormal Termination of Fortran Programs

Z036 ABUSER Intercept a Fortran Abend on IBM

Z037 VAXAST Routines to Handle Control-C Interrupts on Vax

Z041 QNEXTE Restart of Next Event
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Z042 JUMPXN Calling a Subroutine by its Address [Obsolete]

Z044 INTRAC Identify Job as Interactive

Z045 IFBATCH Identify Job as Running in Batch Mode

Z203 XINOUT Short List Reading and Writing

Z264 IARGC Returns Command Line Arguments

Z265 CINTF Immediate Interface Routines to the C Library

Z266 WHOAMI Get the Name of the Executing Module

Z267 FTOVAX Convert File-name to and from UNIX Syntax

Z301 VAXTIO VAX Fortran Interface for Reading and Writing ’Foreign’ Tapes

Z303 KAPACK Random Access I/O Using Keywords [Obsolete]

Z310 CFIO Handle Fixed-length Records on Unix Streams

Z311 CIO Handle Unix Disk Files

Z313 TMREAD Terminal Dialog Routines
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PRMFCT CERN Program Library B002

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.11.1995

Language : Fortran Revised:

Prime Numbers and Prime Factor Decomposition

Subroutine subprogram PRMFCT

� sets the first n � 1229 prime numbers p1 = 2; p2 = 3; p5 = 5; : : : ; p1229 = 9973 into an array;

� performs the decomposition of a positive number N < 10007 into its prime factors:

N = 2�1 � 3�2 � 5�3 � � � 9973�1229 ;

� performs the decomposition of the factorialN ! of a positive numberN < 10007 into its prime factors:

N ! = 2�1 � 3�2 � 5�3 � � � 9973�1229:

Note that this allows in particular to handle quotients of factorials of rather large numbers in an exact way.

Structure:

SUBROUTINE subprogram
User Entry Names: PRMFCT
Files Referenced: Unit 6

Usage:

CALL PRMFCT(MODE,N,NPRIME,NPOWER,M)

MODE = 0 : Sets the first n prime numbers into an array.

N (INTEGER) The number n of prime numbers requested.

NPRIME (INTEGER) One-dimensional array of length� N. On exit, NPRIME(j), (j = 1; 2; : : : ; N) contains
the j-th prime numbers pj , where p1 = 2; p2 = 3; p3 = 5; : : :

NPOWER (INTEGER) One-dimensional array of length� N. On exit, NPOWER(j), (j = 1; 2; : : : ; N) contains
the value 1.

M (INTEGER) Contains, on exit, the number n.

MODE = 1; 2 : Performs the decomposition of N (MODE = 1) or N ! (MODE = 2) into its prime factors.

N (INTEGER) The number N itself (MODE = 1) or its factorial (MODE = 2) to be decomposed into
prime factors.

NPRIME (INTEGER) One-dimensional array of length� N. On exit, NPRIME(j), (j = 1; 2; : : : ; M) contains
the j-th prime numbers pj , where p1 = 2; p2 = 3; p3 = 5; : : : .

NPOWER (INTEGER) One-dimensional array of length� N. On exit, NPOWER(j), (j = 1; 2; : : : ; M) contains
the power �j corresponding to the prime number pj .

M (INTEGER) Contains, on exit, the indexM � N defined by �M > 0 and �j = 0 for j > M .
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Restrictions:

MODE = 0 : 1 � N � 1229.
MODE = 1 or MODE = 2 : 2 � N � 10007.

Error handling:

Error B002.1: MODE 6= 0 and MODE 6= 1 and MODE 6= 2.
Error B002.2: N out of range.
In both cases, NPRIME(j) and NPOWER(j), (j = 1; 2; : : : ; N) are set to zero and a message is written on
Unit 6, unless subroutine MTLSET (N002) has been called.
�
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RBINOM CERN Program Library B100

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:15.11.1995

Binomial Coefficient

Function subprograms RBINOM and DBINOM calculate the binomial coefficient

�
x

k

�
=

8><>:
x(x� 1) : : :(x� k + 1)=k! (k > 0)

1 (k = 0)

0 (k < 0)

for real x and integer k. Function subprogram KBINOM calculates the binomial coefficient only for integer
x = n.

On CDC and Cray computers, the double-precision version DBINOM is not available.

Structure:

FUNCTION subprograms
User Entry Names: RBINOM, DBINOM, KBINOM
Obsolete User Entry Names: BINOM � RBINOM

Files Referenced: Unit 6

Usage:

In any arithmetic expression,

RBINOM(X,K), DBINOM(X,K) or KBINOM(N,K)

has the value of the binomial coefficient. RBINOM is of type REAL, DBINOM is of type DOUBLE PRECISION

and X has the same type as the function name. KBINOM, N and K are of type INTEGER.

Restrictions:

Function subprogram KBINOM can compute only binomial coefficients which lie in the integer range of the
machine.

Accuracy:

Full machine accuracy.

Error handling:

If the result of KBINOM would lie outside the integer range of the machine, KBINOM is set equal to zero and
an error message is printed.
�
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ATG CERN Program Library B101

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:15.03.1993

Arc Tangent Function

Function subprogram ATG calculates, for real arguments x1 and x2, (x1; x2) 6= (0:; 0:), an angle � such that

� = arctan(x1=x2) and 0 � � < 2�:

Note that using the Fortran intrinsic function ATAN2 instead of ATG would result in �� < � � �:

Structure:

FUNCTION subprogram

User Entry Names: ATG

Usage:

In any arithmetic expression,

ATG(X1,X2)

has the value of � (in radians). ATG, X1 and X2 are of type REAL.

Notes:

This function subprogram is equivalent to the statement function

ATG(X1,X2)=ATAN2(X1,X2)+(PI-SIGN(PI,X1))

where PI = �.
�
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ASINH CERN Program Library B102

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:15.03.1993

Hyperbolic Arcsine

Function subprograms ASINH and DASINH calculate the hyperbolic arcsine

arcsinh(x) = ln(x+
p
x2 + 1)

for real argument x.

On CDC and Cray computers, the double precision version DASINH is not available

Structure:

FUNCTION subprograms
User Entry Names: ASINH, DASINH

Usage:

In any arithmetic expression,

ASINH(X) or DASINH(X) has the value arcsinh(X),

where ASINH is of type REAL, DASINH is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

ASINH (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DASINH (and ASINH on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 66.

�
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RPLNML CERN Program Library B105

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Value of a Polynomial

Function subprograms RPLNML, DPLNML calculate the value of the polynomial

pn(x) = a0 + a1x+ a2x
2 + � � �+ anx

n

or
qn(x) = a0x

n + a1x
n�1 + a2x

n�2 + � � �+ an

for real values x, whereas function subprograms CPLNML, WPLNML calculate the value of the polynomial

rn(z) = c0 + c1z + c2z
2 + � � �+ cnz

n

or
sn(x) = c0z

n + c1z
n�1 + c2z

n�2 + � � �+ cn

for complex values z.

On CDC and Cray computers, the double-precision versions DPLNML and WPLNML are not available.

Structure:

FUNCTION subprograms
User Entry Names: RPLNML, DPLNML, CPLNML, WPLNML

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tPLNML(X,N,A,MODE)

has, in any arithmetic expression, the value pn(x) or qn(x);

for t = C (type COMPLEX), t = W (type COMPLEX*16),

tPLNML(Z,N,C,MODE)

has, in any arithmetic expression, the value rn(z) or sn(z).

X,Z (type according to t) Arguments x or z, respectively.

N (INTEGER) Degree n of pn(x); qn(x) or rn(z); sn(z).

A,C (type according to t) One-dimensional arrays of dimension (0:d) where d � N, containing the
coefficients ak or ck (k = 0; : : : ; n) in A(k) or C(k), respectively.

MODE (INTEGER) Either +1 for pn(x); rn(z) or -1 for qn(x); sn(z).

Method:

The Horner scheme is used.

Notes:

A reference with N < 0 or MODE different from +1 or -1 returns the value zero.
�
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RSRTNT CERN Program Library B300

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.03.1993

Language : Fortran Revised:

An integral of type R(x;
p
a+ bx+ cx2)

Subroutine subprograms RSRTNT and DSRTNT calculate, based on indefinite integration, the definite integral

I(k; n; a; b; c;u; v) =

Z
v

u

xk dx

(
p
a+ bx+ cx2)n

;

for k = �3;�2;�1; 0; 1; 2; 3 and n = 1; 3, provided that a + bx + cx2 > 0 for u < x < v and the limits
u; v are such that the integral converges. In particular, the Cauchy principal value is taken if k = �1 and
uv < 0.

On CDC and Cray computers, the double-precision version DSRTNT is not provided.

Structure:

SUBROUTINE subprograms
User Entry Names : RSRTNT, DSRTNT
Files Referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tSRTNT(K,N,A,B,C,U,V,RES,LRL)

K (INTEGER) Power k of x.

N (INTEGER) Power n of
p
a+ bx+ cx2.

A,B,C (type according to t) Coefficients a; b; c.

U,V (type according to t) Limits of integration u; v.

RES (type according to t) Contains, on exit, the value I provided LRL = :TRUE:, the value zero other-
wise.

LRL (LOGICAL) Contains, on exit, the value .TRUE. if the integral exists in the sense described above,
the value .FALSE. otherwise.

Restrictions:

1. jAj+ jBj+ jCj 6= 0: 2. jKj � 3; N = 1 or N = 3.

Error handling:

Error B300.1: Restriction 1 is not satisfied. Error B300.2: Restriction 2 is not satisfied.
In both cases, RES is set equal to zero and LRL is set equal to .FALSE., and a message is written on Unit

6, unless subroutine MTLSET (N002) has been called.

References:

1. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, (Academic Press, New York
1980) Sect. 2.26

�
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RZEROX CERN Program Library C200

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.05.1990

Language : Fortran Revised:01.12.1994

Zero of a Function of One Real Variable

Function subprograms RZEROX and DZEROX compute, to an attempted specified accuracy, a zero x0 of a
real-valued function f(x) lying in a given interval [a; b], where f(a) � f(b) � 0.

On computers other than CDC or Cray, only the double precision version DZEROX is available. On CDC and
Cray computers, only the single-precision version RZEROX is available.

Structure:

FUNCTION subprograms
User Entry Names: RZEROX, DZEROX
Obsolete User Entry Names: ZEROX � RZEROX

Files Referenced: Unit 6

External References: User-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tZEROX(A,B,EPS,MAXF,F,MODE)

has, in any arithmetic expression, the value x0.

A,B (type according to t) On entry, A and B must specify the end points of the search interval. Un-
changed on exit.

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.

MAXF (INTEGER) On entry, MAXF must be equal to the maximum permitted number of references to the
function F within the iteration loop. Unchanged on exit.

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

MODE (INTEGER) On entry, MODE = 1 or MODE = 2 defines the algorithm for finding x0 (see Method
and Notes).

Method:

Two algorithims are incorporated in this subprogram. These are described in Ref. 1 as “Algorithm M”
(MODE = 1) and “Algorithm R” (MODE = 2). Both are mixtures of linear interpolation, rational interpolation
and bisection.

Accuracy:

These subprograms try to compute two numbers x0 and x1 lying in the interval [a; b] such that

1. f(x0)f(x1) � 0

2. jf(x0)j � jf(x1)j
3. jx0 � x1j � 2 � EPS � (1 + jx0j)

If successful, the value of x0 is assigned to the function name.
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Notes:

1. MODE = 1 should be used for fairly simple functions whose evaluation is cheap in comparison with
the calculations performed in one iteration step of RZEROX or DZEROX.

2. MODE = 2 should be used for more expensive functions. Convergence should be faster than for
MODE = 1, but the evaluation steps are more expensive.

3. For functions which have a pole near the exact zero, MODE = 1 is recommended because of the special
character of the interpolation formula which is used.

Error handling:

1. F(A) � F(B) > 0. The function value is set equal to zero.

2. MODE has a value other than 1 or 2. The function value is set equal to zero.

3. The number of references to F exceeds MAXF. The function value is set equal to the last computed
value of x0 (see Accuracy)

For each error a message is printed.

Source:

The subprogram is based on Algol programs described in Ref. 1.

References:

1. J.C.P. Bus and T.J. Dekker, Two efficient algorithms with garanteed convergence for finding a zero of
a function, ACM Trans. Math. Software 1 (1975) 330–345.
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RSNLEQ CERN Program Library C201

Author(s) : J.J. Moré, M.Y. Cosnard Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 01.06.1989

Language : Fortran Revised:01.12.1994

Numerical Solution of Systems of Nonlinear Equations

Subroutine subprograms RSNLEQ and DSNLEQ compute a vector xi; (i = 1; 2; : : : ; n), which approximates
an exact solution x�

i
of the system of n nonlinear equations with n unknowns

Fi(x1; : : : ; xn) = 0; (i = 1; 2; : : : ; n):

These subroutines incorporate two convergence test, making use of arguments FTOL and XTOL respectively.
If xi; (i = 1; 2; : : : ; n), denotes the result of the current iteration, and x0

i
the result of the previous iteration,

the calculation is terminated if either of the following tests is successful:

Test 1 : max jFi(x1; : : : ; xn)j � FTOL;

Test 2 : max jxi � x0ij � XTOL �max jxij;

where the maxima are taken over 1 � i � n:

On computers other than CDC and Cray, only the double-precision version DSNLEQ is available. On CDC
and Cray computers, only the single-precision version RSNLEQ is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RSNLEQ, DSNLEQ
Obsolete User Entry Names : SNLEQ � RSNLEQ

Files Referenced : Unit 6

External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tSNLEQ(N,X,F,FTOL,XTOL,MAXF,IPRT,INFO,SUB,W)

N (INTEGER) Number n of equations and variables.

X (type according to t) One-dimensional array of length� N. On entry, X(i); (i= 1; : : : ; N), must
contain an estimate to a solution x�

i
of the system of equations. On exit, X(i) contains the final

estimate to x�
i
.

F (type according to t) One-dimensional array of length � N. On exit, F(i); (i= 1; : : : ; N), con-
tains the final value of the residual Fi(X(1); : : : ; X(N)).

FTOL (type according to t) Accuracy parameter for Test 1.

XTOL (type according to t) Accuracy parameter for Test 2.

MAXF (INTEGER) Maximum permitted number of iterations, where each iteration involves N calls to the
user-supplied subroutine SUB. The recommended value for MAXF is 50*(N+3).

IPRT (INTEGER) If IPRT = 0 no intermediate results are printed.
If IPRT = 1 the values of i and X(i); (i = 1; 2; : : : ; n), are printed after each iteration.

INFO (INTEGER) On exit, the value of INFO shows the reason why execution was terminated as follows:

0 Unacceptable input arguments (N < 1 or FTOL � 0 or XTOL � 0).
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1 Test 1 is successful.
2 Test 2 is successful.
3 Test 1 and Test 2 are both successful.
4 Number of iterations is � MAXF.
5 Approximate (finite difference) Jacobian matrix is singular
6 Iterations are not making good progress.
7 Iterations are diverging.
8 Iterations are converging, but either (i) XTOL is too small, or (ii) convergence is very slow

because the Jacobian is nearly singular near x�
i

or because the variables xi are badly scaled.

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least N*(N+3) elements required as working-space.

The user-supplied SUBROUTINE subprogram SUB should be of the form

SUBROUTINE SUB(N,X,F,K)

DIMENSION X(*),F(*)

...

Statements which set F(K) equal to the value of FK(X(1); :::;X(N)) without changing any other
element of array F.

...

RETURN

END

where X and F are of type t.
Subroutine SUB should not change the value of the argument K unless the user wants to terminate the exe-
cution of tSNLEQ, in which case K should be set equal to a negative integer, whose value will be copied into
argument INFO of tSNLEQ before exit.

Method:

A modification of Brent’s method as described in Ref. 1.

Error handling:

See description of argument INFO.

Notes:

1. Whenever possible the equations Fi = 0 should be numbered in order of increasing nonlinearity.

2. These subroutines do not use any techniques which attempt to obtain global convergence. Conver-
gence may therefore fail to occur if the initial estimate is too far from an exact solution.

Source:

This subroutine has been adapted from the Fortran program published in Ref. 2.

References:

1. J.J. Moré and M.Y. Cosnard, Numerical solution of nonlinear equations, ACM Trans. Math. Software
5 (1979) 64–85.

2. J.J. Moré and M.Y. Cosnard, Algorithm 554 BRENTM, A FORTRAN subroutine for the numerical
solution of systems of nonlinear equations, Collected Algorithms from CACM (1980).
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RMULLZ CERN Program Library C202

Author(s) : H.-H. Umstätter Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.06.1992

Language : Fortran Revised:

Zeros of a Real Polynomial

Subroutine subprogram RMULLZ and DMULLZ compute the zeros of the polynomial

P (z) = a0z
n + a1z

n�1 + : : :+ an�1z + an

of degree n with real coefficients ak and a0 6= 0.

On computers other than CDC or Cray, only the double-precision version DMULLZ is available. On CDC and
Cray computers, only the single-precision version RMULLZ is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RMULLZ, DMULLZ
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tMULLZ(A,N,MAXIT,Z)

A (type according to t) One-dimensional array of dimension (0:d), where d � N, containing the
coefficients ak ; (k = 0; 1; : : : ; n).

N (INTEGER) The degree n.

MAXIT (INTEGER) The maximum number of iterations permitted.

Z (COMPLEX for t = R, COMPLEX*16 for t = D) One-dimensional array of length� N. On exit, Z(i)
contains an approximation to the zero zi, listed in roughly decreasing order of jzij.

Method:

The method of Muller (see Ref. 1) is used. This is based on iterated inverse quadratic interpolation followed
by deflation to remove each zero as found.

Accuracy:

For well-conditioned polynomials (i.e. polynomials whose zeros are not unduly sensitive to small errors
in the coefficients), the relative error of a computed zero of multiplicity m is of order 10�d=m where d
is the machine precision expressed in decimal digits. For m > 1, the m approximations to the single
multiple zero are uniformly distributed on a small circle of radius of order 10�d=m around the exact zero.
Therefore, if the polynomial is well-conditioned, the true value of the multiple zero will be close to the
centre (zk+1 + : : :+ zk+m)=m of this circle.

Error handling:

Error C202.1: a0 = 0.
Error C202.2: The number of iterations exceeds MAXIT.
In both cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called. If the
number of iterations exceeds MAXIT, those zeros which have not been found are set to 1020.
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Notes:

For difficult cases which lead to too many iterations the following transformations may be applied, singly
or together, to obtain a better-conditioned polynomial:

1. Reverse the order of the coefficients to obtain a polynomial whose zeros are z�1
i

.

2. If the zeros zi are clustered, or are too unsymmetrically positioned with respect to the origin, compute
by synthetic division (see Ref. 3) the coefficients of the polynomial whose argument is w = z � bz,
where bz = �a1=(na0) is the arithmetic mean of the zeros. The mean of the zeros of this new
polynomial is situated at the origin, which is where the subprogram starts searching. Then, provided
jwij < jbzj for most i, zi = wi + bz will be more accurate zeros.

References:

1. D.E. Muller, A method for solving algebraic equations using an automatic computer, MTAC (later
renamed Math. Comp.) 10 (1956) 208–215.

2. J.W. Daniel, Correcting approximations to multiple roots of polynomials, Numer. Math. 9 (1966)
99–102.

3. F.B. Hildebrand, Introduction to numerical analysis, McGraw-Hill, New York (1956), Section 10.9.
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RZERO CERN Program Library C205

Author(s) : T. Pomentale Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 20.04.1970

Language : Fortran Revised:15.03.1993

Zero of a Function of One Real Variable

Subroutine subprograms RZERO and DZERO compute, to an attempted specified accuracy, a zero of a real-
valued function f(x) lying in a given interval [a; b], where f(a) � f(b) � 0.

On CDC and Cray computers, the double-precision version DZERO is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RZERO, DZERO
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tZERO(A,B,X0,R,EPS,MAXF,F)

A,B (type according to t) On entry, A and B must specify the end-points of the search interval. Un-
changed on exit.

X0 (type according to t) On exit, X0 is the computed approximation to a zero x0 of the function f(x).

R (type according to t) On exit, the value of R is such that X0 �x0 < R, unless an error condition is
detected (see Error Handling ).

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter (see Accuracy).
Unchanged on exit.

MAXF (INTEGER) On entry, MAXF must be equal to the maximum permitted number of references to the
function F within the iteration loop. Unchanged on exit.

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

The user-supplied function subprogram Fmust be of the form FUNCTION F(X,I) and must set F(X) = f(X).
The INTEGER argument I is set by RZERO before each reference to F as follows:

I = 1 First reference.

I = 2 Subsequent references.

I = 3 Final reference, before a normal (R > 0) exit.

Method:

A mixed strategy is used, based on the Muller method of parabolic interpolation supplemented by bisection.
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Accuracy:

The routine tries to compute a value X0 such that

jX0� x0j � (1 + X0) � EPS:

If this accuracy is obtained with fewer than MAXF references to the function F within the iteration loop, the
subroutine exits with R positive.

Error handling:

Error C205.1: F(A; 1) � F(B; 1) > 0. X0 is set equal to zero and R is set equal to �2jB� Aj.
Error C205.2: The number of calls to F exceeds MAXF. X0 is set equal to zero and R is set to �jB� Aj=2.
A message is written on Unit 6, unless subroutine MTLSET (N002) has been called.
�
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RRTEQ3 CERN Program Library C207

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.01.1988

Language : Fortran Revised:01.12.1994

Roots of a Cubic Equation

Subroutine subprograms RRTEQ3 and DRTEQ3 compute the three roots of

x3 + rx2 + sx + t = 0 (�)

for real coefficients r; s; t.

On computers other than CDC or Cray, only the double-precision version DRTEQ3 is available. On CDC and
Cray computers, only the single-precision version RRTEQ3 is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RRTEQ3, DRTEQ3
Obsolete User Entry Names: RTEQ3 � RRTEQ3

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tRTEQ3(R,S,T,X,D)

R,S,T (type according to t) Coefficients r; s; t in (�).
X (type according to t) One-dimensional array of length� 3. On exit, X is set as described below.

D (type according to t) On exit, D is set to the value of the discriminant of (�):
> 0 : One real root X(1) and two complex conjugate roots X(2) + iX(3), X(2)� iX(3);
= 0 : Three real roots X(1), X(2), X(3), where at least X(2) = X(3);
< 0 : Three distinct real roots X(1), X(2), X(3).

Method:

The classical method of Tartaglia-Vieta is used. In certain cases, the solutions are improved by Newton
iteration.

Accuracy:

Depends on the coefficients r; s; t. The values of X(1), X(2), X(3) and of D may be inaccurate if |D| is
very small, even in the case of “exact” coefficients.
�
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RRTEQ4 CERN Program Library C208

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.01.1988

Language : Fortran Revised:01.12.1994

Roots of a Quartic Equation

Subroutine subprograms RRTEQ4 and DRTEQ4 compute the four roots of

x4 + ax3 + bx2 + cx+ d = 0 (�)

for real coefficients a; b; c; d.

On computers other than CDC or Cray, only the double-precision version DRTEQ4 is available. On CDC and
Cray computers, only the single-precision version RRTEQ4 is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RRTEQ4, DRTEQ4
Obsolete User Entry Names: RTEQ4 � RRTEQ4

External References: RRTEQ3 (C207), DRTEQ3 (C207)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tRTEQ4(A,B,C,D,Z,DC,MT)

A,B,C,D (type according to t) Coefficients a; b; c; d in (�).
Z (COMPLEX for t = R, COMPLEX*16 for t = D) One-dimensional array of length � 4. On exit,

Z contains the roots of (�).
DC (type according to t) On exit, DC is set to the value of the discriminant of the cubic resolvent

of (�).
MT (INTEGER) On exit, MT specifies the type of the roots:

= 1 : Four real roots in Z(1); : : : ; Z(4);
= 2 : Two pairs of complex conjugate roots, one pair in Z(1),Z(2), the other in Z(3),Z(4);
= 3 : Two real roots in Z(1),Z(2), and one pair of complex conjugate roots in Z(3),Z(4).

Method:

The equation is solved by the classical procedure, i.e., by solving its cubic resolvent and by combining the
square roots of these solutions appropriately.

Accuracy:

Depends on the coefficients a; b; c; d. The values of Z(1); : : : ; Z(4) and of DC may be inaccurate if |DC| is
very small. MT may be uncertain in such cases.
�
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CPOLYZ CERN Program Library C209

Author(s) : T. Pomentale Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.06.1992

Language : Fortran Revised:

Zeros of a Complex Polynomial

Subroutine subprograms CPOLYZ and WPOLYZ compute the zeros of the polynominal

P (z) = c0z
n + c1z

n�1 + � � �+ cn�1z + cn

of degree n with complex coefficients ck and c0 6= 0.
On computers other than CDC or Cray, only the double-precision version WPOLYZ is available. On CDC and
Cray computers, only the single-precision version CPOLYZ is available.

Structure:

SUBROUTINE subprograms
User Entry Names: CPOLYZ, WPOLYZ
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tPOLYZ(C,N,MAXIT,Z,R)

C (type according to t) One-dimensional array of dimension (0:d), where d � N, containing the
coefficients ck; (k = 0; 1; : : : ; n).

N (INTEGER) The degree n.

MAXIT (INTEGER) The maximum number of iterations permitted.

Z (type according to t) One-dimensional array of length� N. On entry, Z(1); : : : ; Z(N) must contain
starting approximations for the zeros zi. If no starting approximations are available, the Z(i) should
be set to zero. On exit, Z(i) contains an approximation to the zero zi.

R (REAL for t = C, DOUBLE PRECISION for t = W) One-dimensional array of dimension � N. On
exit, R(1); : : : ; R(N) contain an estimated radius ri of a circle centered at Z(i) within which the
true zero zi is expected to lie.

Notes:

Note that, because of accumulation of rounding errors, unreliable results can be obtained for large n even
for well-conditioned polynomials.

Error handling:

Error C209.1: c0 = 0.
Error C209.2: The number of iterations exceeds MAXIT.
Error C209.3: An estimated radius ri cannot be computed for a certain value of i.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. T. Pomentale, Homotopy iterative methods for polynomial equations, J. Inst. Maths. Applics. 13
(1974) 201–213.

�
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NZERFZ CERN Program Library C210

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Number of Zeros of a Complex Function

Function subprogram NZERFZ calculates the number of zeros of a complex function f(z) inside a closed
polygon in the complex z-plane. f(z) must be analytic inside this polygon.

Structure:

FUNCTION subprogram
User Entry Names: NZERFZ
Files Referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035), User-supplied FUNCTION subprogram

Usage:

In any arithmetic expression,

NZERFZ(F,ZP,N)

has a value equal to the number of zeros inside the defined polygon.

F Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must set F(Z) = f(Z).

ZP One-dimensional array of length� N containing the vertices of the polygon in the z-plane.

N Number of vertices.

F, ZP and Z (in F) are of type COMPLEX*16 on computers other than CDC or Cray, and of type COMPLEX on
CDC and Cray computers.

Method:

The logarithmic residual (winding number) of f(z) is found by integrating f 0(z)=f(z) numerically along
the edges of the polygon.

Notes:

No zero or singularity of f(z) should lie on or too near the polygon. The edges of the polygon should not
cross each other. Numerically unstable functions (e.g. polynomials of high degree) can result in unreliable
values or in timing problems.

Error handling:

Error C210.1: The integration is not successful. This often indicates that the polygon passes through or too
near to a zero or singularity. The function value is set to zero, and a message is written on Unit 6, unless
subroutine MTLSET (N002) has been called.
�
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ERF CERN Program Library C300

Author(s) : G.A. Erskine Library: MATHLIB or Fortran Compiler Library

Submitter : K.S. Kölbig Submitted: 20.04.1970

Language : Fortran Revised:07.06.1992

Error Function and Complementary Error Function

Function subprograms ERF, ERFC and DERF, DERFC compute the error and complementary error functions

erf(x) =
2p
�

Z
x

0

e�t
2

dt; erfc(x) =
2p
�

Z 1

x

e�t
2

dt;

defined for all values of the real argument x.

On CDC and Cray computers, the double-precision versions DERF and DERFC are not available.

Structure:

FUNCTION subprograms
User Entry Names: ERF, ERFC, DERF, DERFC

Usage:

In any arithmetic expression,

ERF(X) or DERF(X) has the value erf(X),
ERFC(X) or DERFC(X) has the value erfc(X),

where ERF, ERFC, are of type REAL, DERF, DERFC, are of type DOUBLE PRECISION, and X has the same type
as the function name.

Method:

Computation by rational Chebyshev approximation.

Accuracy:

The system-supplied versions (see Notes) have full machine accuracy. The CERN-supplied versions of
ERF and ERFC have full single-precision accuracy (slightly less on CDC and Cray computers). The CERN-
supplied versions of DERF and DERFC have an accuracy of 15 significant digits.

Notes:

On some computers, one or both of these functions is available in the system-supplied Fortran mathematical
library. In this case the system-supplied version will be loaded instead of the CERN version.

References:

1. W.J. Cody, Rational Chebyshev approximations for the error function, Math. Comp. 22 (1969) 631–
637.

�
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FREQ CERN Program Library C301

Author(s) : G.A. Erskine Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.06.1992

Language : Fortran Revised:

Normal Frequency Function

Function subprograms FREQ and DFREQ compute the normal frequency function

freq(x) =
1p
2�

Z
x

�1
e�

1

2
t
2

dt;

defined for all values of the real argument x.

On CDC and Cray computers, the double-precision version DFREQ is not available.

Structure:

FUNCTION subprograms
User Entry Names: FREQ, DFREQ

Usage:

In any arithmetic expression,

FREQ(X) or DFREQ(X) has the value freq(X),

where FREQ is of type REAL, DFREQ is of type DOUBLE PRECISION, and X has the same type as the function
name.

Method:

Computation by rational Chebyshev approximation for the error function, using the formula

freq(x) =

(
1
2
+ 1

2
erf (x=

p
2) (x � 0);

1
2
erfc (jxj=p2) (x < 0):

Accuracy:

FREQ has full single-precision accuracy (slightly less on CDC and Cray computers). DFREQ has an accuracy
of 15 significant digits.

References:

1. W.J. Cody, Rational Chebyshev approximations for the error function, Math. Comp. 22 (1969) 631–
637.
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GAMMA CERN Program Library C302

Author(s) : K.S. Kölbig Library: MATHLIB or Fortran Computer Library

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:15.03.1993

Gamma Function for Positive Argument

Function subprograms GAMMA, DGAMMA and QGAMMA calculate the gamma function

�(x) =

Z 1

0

e�ttx�1dt (x > 0)

for real argument x > 0.

The quadruple-precision version QGAMMA is available only on computers which support a REAL*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: GAMMA, DGAMMA, QGAMMA
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

GAMMA(X), DGAMMA(X) or QGAMMA(X) has the value �(X),

where GAMMA is of type REAL, DGAMMA is of type DOUBLE PRECISION, QGAMMA is of type REAL*16, and X

has the same type as the function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

The system-supplied version (see Notes) has full machine accuracy. The CERN version of GAMMA (except
on CDC and Cray computers) has full single-precision accuracy. The CERN version of DGAMMA, QGAMMA
(and of GAMMA, DGAMMA on CDC and Cray computers) have an accuracy which is approximately one digit
less than machine precision.

Error handling:

Error C302.1: X � 0. The function value is set equal to zero, and a message is written on Unit 6 unless
subroutine MTLSET (N002) has been called.

Notes:

If the function GAMMA or DGAMMA is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 4.

�
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GAMMF CERN Program Library C303

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06 1992

Language : Fortran Revised:

Gamma Function for Real Argument

Function subprograms GAMMF and DGAMMF calculate the gamma function

�(x) =

Z 1

0

e�ttx�1dt (x > 0); �(x) =
�

�(1� x) sin �x
(x < 0)

for real argument x 6= �n; (n = 0; 1; 2; � � �).
On CDC and Cray computers, the double-precision version DGAMMF is not available.

Structure:

FUNCTION subprograms
User Entry Names: GAMMF, DGAMMF
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

GAMMF(X) or DGAMMF(X) has the value �(X),

where GAMMF is of type REAL, DGAMMF is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

GAMMF (except on CDC and Cray computers) has full single-precision accuracy. DGAMMF (and of GAMMF on
CDC and Cray computers) has an accuracy which is approximately one digit less than machine precision.

Error handling:

Error C303.1: X = �n; (n = 0; 1; 2; � � �): The function value is set equal to zero, and a message is written
on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 4.

�
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ALGAMA CERN Program Library C304

Author(s) : K.S. Kölbig Library: MATHLIB or Fortran Compiler Library

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:15.03.1993

Logarithm of the Gamma Function

Function subprograms ALGAMA, DLGAMA and QLGAMA compute the logarithm of the gamma function

ln �(x) = ln

Z 1

0

e�ttx�1 dt (x > 0)

for real argument x > 0.
The quadruple-precision version QLGAMA is available only on computers which support a REAL*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: ALGAMA, DLGAMA, QLGAMA
Obsolete User Entry Names: ALOGAM � ALGAMA, DLOGAM � DLGAMA

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

ALGAMA(X), DLGAMA or QLGAMA(X) has the value ln �(X),

where ALGAMA is of type REAL, DLGAMA is of type DOUBLE PRECISION, QLGAMA is of type REAL*16, and X

has the same type as the function name.

Method:

Rational approximations.

Accuracy:

The system-supplied version (see Notes) has full machine accuracy. The CERN-supplied version of ALGAMA
(except on CDC and Cray computers) has full single-precision accuracy. For most values of the argument
X, the CERN-supplied versions of DLGAMA, QLGAMA (and of ALGAMA, DLGAMA on CDC and Cray computers)
have an accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error C304.1: X � 0. The function value is set equal to zero, and a message is written on on Unit 6,
unless subroutine MTLSET (N002) has been called.

Notes:

If the function ALGAMA or DLGAMA is available in the system-supplied Fortran mathematical library, the
system-supplied function will be loaded instead of the CERN version.

References:

1. W.J. Cody and K.E. Hillstrom, Chebyshev approximations for the natural logarithm of the gamma
function, Math. Comp. 21 (1967) 198–203.

2. J.F. Hart et al., Computer approximations (John Wiley Sons, New York 1968) 287.

�
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CGAMMA CERN Program Library C305

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 02.05.1966

Language : Fortran Revised:15.03.1993

Gamma Function for Complex Argument

Function subprograms CGAMMA and WGAMMA calculate the gamma function

�(z) =

Z 1

0

e�ttz�1dt (Re z > 0)

for complex arguments z 6= �n; (n = 0; 1; 2; � � �).
The double-precision version WGAMMA is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CGAMMA, WGAMMA
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CGAMMA(Z) or WGAMMA(Z) has the value �(Z);

where CGAMMA is of type COMPLEX, WGAMMA is of type COMPLEX*16, and Z has the same type as the function
name.

Method:

The method is described in Ref. 1.

Accuracy:

CGAMMA (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WGAMMA (and CGAMMA on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error C305.1: Z = �n; (n = 0; 1; 2; � � �): The function value is set equal to zero, and a message is written
on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.II, (Academic Press, New York 1969)
304–305

�
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CLGAMA CERN Program Library C306

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.03.1994

Language : Fortran Revised:

Logarithm of the Gamma Function for Complex Argument

Function subprograms CLGAMA and WLGAMA calculate the logarithm of the gamma function

ln �(z) = ln

Z 1

0

e�ttz�1 dt (Re z > 0)

for complex z 6= �n; (n = 0; 1; 2; : : :). The imaginary part Im ln �(z) is calculated in such a way that it is
continuous for j arg zj < �, i.e. it is not taken mod 2�.

The double-precision version WLGAMA is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CLGAMA, WLGAMA
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CLGAMA(Z) or WLGAMA(Z) has the value ln �(Z),

where CLGAMA is of type COMPLEX, WLGAMA is of type COMPLEX*16, and Z has the same type as the function
name.

Method:

The method is described in Ref. 1.

Accuracy:

CLGAMA (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, WLGAMA (and CLGAMA on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:

Error C306.1: Z = �n; (n = 0; 1; 2; � � �): The function value is set equal to zero, and a message is written
on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. K.S. Kölbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex argument, Computer Phys. Comm. 4 (1972) 221–226.

�
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CCLBES CERN Program Library C309

Author(s) : I.J. Thompson, A.R. Barnett Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 15.01.1988

Language : Fortran Revised:15.11.1995

Coulomb Wave, Bessel, and Spherical Bessel Functions for Complex Argument(s) and
Order

Subroutine subprograms CCLBES and WCLBES calculate any one of the following sequences of functions:

1. Regular and irregular Coulomb wave functions F�+n(�; z); G�+n(�; z)
and their first derivatives with respect to z, F 0

�+n(�; z); G
0
�+n(�; z),

or simple combination of these;

2. Spherical Bessel functions j�+n(z); y�+n(z)
and their first derivatives with respect to z, j 0

�+n(z); y
0
�+n(z),

or simple combination of these (spherical Hankel functions);

3. Bessel functions J�+n(z); Y�+n(z)
and their first derivatives with respect to z, J 0

�+n(z); Y
0
�+n(z),

or simple combination of these (Hankel functions);

4. Modified Bessel functions I�+n(z); K�+n(z)
and their first derivatives with respect to z, I 0

�+n(z); K
0
�+n(z);

for complex arguments �; z, complex order �, and n = 0; 1; : : : ; N:

The double-precision version WCLBES is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

SUBROUTINE subprograms
User Entry Names: CCLBES, WCLBES
Internal Entry Names: C309R1, C309R2, C309R3, C309R4, C309R5, C309R6, C309R7, C309R8
Files Referenced: Unit 6

External References: CLGAMA (C306), WLGAMA (C306), CPSIPG (C317), WPSIPG (C317)

Usage:

For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tCLBES(Z,ETA,ZLMIN,NL,F,G,FP,GP,SIG,KFN,MODE,JFAIL,JPR)

Z (type according to t) Argument z 6= 0.

ETA (type according to t) Argument � (ignored if KFN > 0).

ZLMIN (type according to t) Order �min of the first function in the computed sequence.

NL (INTEGER) Specifies the order �min + NL of the last function in the computed sequence.
(NL � 0).

F,G,FP,GP (type according to t) One-dimensional arrays with dimension (0:d) where d is in each case
� NL+ 1. On exit, each of F(n),G(n),FP(n),GP(n) may contain the value of a function
of order �min + n, or its first order derivative, (n = 0; 1; : : : ; NL), as specified jointly by
KFN and |MODE|.
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SIG (type according to t) One-dimensional array with dimension (0:d), where d � NL+ 1. On
exit, provided KFN = 0, SIG(n) contains the Coulomb phase shift �(�) for � = �min +
n; (n = 0; 1; : : : ; NL).

KFN (INTEGER) Specifies, in conjunction with the absolute value of MODE, the type of functions
which are stored.

MODE (INTEGER) The absolute value of MODE specifies, in conjunction with KFN, the type of func-
tion which are stored, and also specifies which of the arrays F,G,FP,GP are in fact set to
meaningful values. The sign of MODE specifies whether or not the functions are multiplied
by a scaling factor.

JFAIL (INTEGER) On exit, JFAIL is set to zero if no error condition is detected. Otherwise JFAIL
is set as described under Error handling .

JPR (INTEGER)

= 0 : Suppress printing of error messages.

= 1 : Print error messages.

The type of function which is stored in array F depends only on KFN, while the type of function which is
stored in array G depends both on KFN and on |MODE|. Arrays FP and GP (if set) contain the first order
derivatives with respect to z of the functions in F and G, respectively. Using the abbreviations (i =

p�1)

F� � F�(�; z); G� � G�(�; z); H�
�

� G� � iF�;

j� � j�(z); y� � y�(z); h
(1;2)

�
� j� � iy�;

J� � J�(z); Y� � Y�(z); H
(1;2)

�
� J� � iY�;

I� � I�(z); K� �K�(z);

the choice of function is given by the following table:

Array jMODEj KFN

�1 or 0 1 2 3

F all values F� j� J� I�

G 1; 2; 3; 4 G� y� Y� K�

11; 12 H+
�

h
(1)

�
H

(1)

�
�

21; 22 H�
�

h
(2)

�
H

(2)

�
�

If KFN=0 the phase shifts �(�) are stored in array SIG. Otherwise SIG is not set.

Which of arrays F,G,FP,GP are in fact set is determined by |MODE| according to the following table:

jMODEj F G FP GP

1, 11, 21 set set set set

2, 12, 22 set set - -

3 set - set -

4 set - - -

In both the tables above, a dash indicates that the corresponding array does not contain meaningful values
on exit. These arrays are, however, used internally as working space, and must therefore be dimensioned
correctly. The sign of MODE specifies whether or not the functions are to be multiplied by a scaling factor,
depending only on z, which will bring their values closer to unity when jzj is large, or � is small and
j�j < jzj. The same scaling factor is applied to the first order derivatives in FP or GP as is applied to the
functions in F or G, respectively.
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MODE > 0 : No scaling factor.

MODE < 0 : Let S = Im(z) if KFN < 3, S = Re(z) if KFN = 3; then the scaling factors for F and G are

F : exp(�jSj) fF; j; J; Ig
G : exp(�jSj) fG; y; Y g

exp(S) fH+; h(1); H(1); Kg
exp(�S) fH�; h(2); H(2)g:

Method:

The method is described in the References.

Restrictions:

See Ref. 1, in particular Sect. 4.

Accuracy:

The absolute values of the results are usually accurate to within two or three decimal digits of the machine
precision. For details of exceptions see Ref. 1, Sect. 4.

Error handling:

If an error condition is detected, JFAIL is set to one of the following values and a message is printed if
JPR = 1.

> 0 An arithmetic error occurred during the final recursion. Correct results are available up to and
including subscript value NL-JFAIL-1.

�1 One of the continued fraction calculations failed or there was an arithmetic error before any results
could be calculated.

�2 Argument out of range.

�3 One or more functions corresponding to �min could not be calculated. Some values corresponding
to � > �min may be correct.

�4 Excessive internal cancellation probably renders the result meaningless.

Source:

This program package is a modified version of the CPC Program Library package COULCC (see Ref. 1). The
changes are formal, not computational.

References:

1. I.J. Thompson and A.R. Barnett, COULCC: A continued-fraction algorithm for Coulomb functions
of complex order with complex arguments, Comput. Phys. Comm. 36 (1985) 363–372.

2. I.J. Thompson and A.R. Barnett, Coulomb and Bessel functions of complex arguments and order, J.
Comput. Phys. 64 (1986) 490–509.

Long Write-up:

A copy of Ref. 1 is available in the Program Library Office.
�
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BESJ0 CERN Program Library C312

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 18.10.1967

Language : Fortran Revised:15.03.1993

Bessel Functions J and Y of Orders Zero and One

Function subprograms BESJ0, BESJ1, BESY0, BESY1 and DBESJ0, DBESJ1, DBESY0, DBESY1 calculate the
Bessel functions

J0(x); J1(x); Y0(x); Y1(x)

for real arguments x, where x > 0 for Y0(x) and Y1(x).

On CDC and Cray computers, the double-precision versions DBESJ0 etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names: BESJ0, BESJ1, BESY0, BESY1, DBESJ0, DBESJ1, DBESY0, DBESY1
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

BESJ0(X) or DBESJ0(X) has the value J0(X),
BESJ1(X) or DBESJ1(X) has the value J1(X),
BESY0(X) or DBESY0(X) has the value Y0(X),
BESY1(X) or DBESY1(X) has the value Y1(X),

where BESJ0 etc. are of type REAL, DBESJ0 etc. are of type DOUBLE PRECISION, and X has the same type
as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

BESJ0 etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument X, DBESJ0 etc. (and BESJ0 etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error C312.1: X � 0 for Y0(x) or Y1(x). The function value is set equal to zero, and a message is written
on Unit 6 unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 322–
324.

�
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BESI0 CERN Program Library C313

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:15.03.1993

Modified Bessel Functions I and K of Orders Zero and One

Function subprograms BESI0, BESI1, BESK0, BESK1 and DBESI0, DBESI1, DBESK0, DBESK1 calculate the
modified Bessel functions

I0(x); I1(x); K0(x); K1(x)

for real arguments x, where x > 0 for K0(x) and K1(x).

On CDC and Cray computers, the double-precision versions DBESI0 etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names: BESI0, BESI1, BESK0, BESK1, EBESI0, EBESI1, EBESK0, EBESK1,

DBESI0, DBESI1, DBESK0, DBESK1, DEBSI0, DEBSI1, DEBSK0, DEBSK1
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

BESI0(X) or DBESI0(X) has the value I0(X),
BESI1(X) or DBESI1(X) has the value I1(X),
BESK0(X) or DBESK0(X) has the value K0(X),
BESK1(X) or DBESK1(X) has the value K1(X),
EBESI0(X) or DEBSI0(X) has the value exp(�jXj) � I0(X),
EBESI1(X) or DEBSI1(X) has the value exp(�jXj) � I1(X),
EBESK0(X) or DEBSK0(X) has the value exp(jXj) �K0(X),
EBESK1(X) or DEBSK1(X) has the value exp(jXj) �K1(X),

where BESI0 etc. are of type REAL, DBESI0 etc. are of type DOUBLE PRECISION, and X has the same type
as the function name.

Method:

Approximation by rational functions (I for jxj < 8, K for 1 � x � 5), by an algorithm based on power
series (K for 0 < x < 1), or else by truncated Chebyshev series.

Accuracy:

BESI0 etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument X, DBESI0 etc. (and BESI0 etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error C313.1: X � 0 for K0(x) or K1(x). The function value is set equal to zero, and a message is written
on Unit 6 unless subroutine MTLSET (N002) has been called.
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References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 329,
331, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.
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RRIZET CERN Program Library C315

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Riemann Zeta Function

Function subprograms RRIZET and DRIZET calculate the Riemann zeta function

�(x) =
1X
k=1

k�x =
1

�(x)

Z 1

0

tx�1

et � 1
dt (x > 1)

for real arguments x 6= 1, where �(x) is defined by analytic continuation for x < 1. For x = 1, �(x) has a
pole of order one.

On CDC and Cray computers, the double-precision version DRIZET is not available.

Structure:

FUNCTION subprograms
User Entry Names: RRIZET, DRIZET
Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RRIZET(X) or DRIZET(X)

has the value �(X) if X < 1, and �(X)�1 if X > 1, where RRIZET is of type REAL, DRIZET is of type DOUBLE
PRECISION, and where X has the same type as the function name.

Method:

Rational Chebyshev approximation. For x < 1
2

the reflection formula for �(x) is used.

Accuracy:

RRIZET (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DRIZET (and RRIZET on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error C315.1: X = 1. The function value is set to zero, and a message is written on Unit 6, unless
subroutine MTLSET (N002) has been called.

References:

1. W.J. Cody, K.E. Hillstrom, and H.C. Thather, Jr., Chebyshev approximations for the
Riemann zeta function, Math. Comp. 25 (1971) 537–547.

�
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RPSIPG CERN Program Library C316

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions

Function subprograms RPSIPG and DPSIPG calculate either the logarithmic derivative of the gamma function
(the psi, or digamma, function)

 (x) �  (0)(x) =
d ln �(x)

dx
or one of the other polygamma functions

 (k)(x) =
dk

dxk
 (x) =

dk+1

dxk+1
ln �(x)

for real arguments x 6= �n; (n = 0; 1; 2; : : :) and k = 0; 1; 2; : : : ; 6.
Note that the Euler constant C = � (1) = 0:57721 : : : (also denoted by ) and the Catalan constant
G = 1

8

�
 0(14)� �2

�
= 0:91596 : : : can be calculated by using this subprogram.

On CDC and Cray computers, the double-precision version DPSIPG is not available.

Structure:

FUNCTION subprograms
User Entry Names: RPSIPG, DPSIPG
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RPSIPG(X,K) or DPSIPG(X,K) has the value  (K)(X),

where RPSIPG is of type REAL, DPSIPG is of type DOUBLE PRECISION, and where X has the same type as
the function name. K is of type INTEGER.

Method:

Rational Chebyshev approximation (k = 0), approximation by truncated Chebyshev series (k > 0), and
functional relations.

Accuracy:

RPSIPG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DPSIPG (and RPSIPG on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error C316.1: K < 0 or K > 6.
Error C316.2: X = �n; (n = 0; 1; 2; : : :).
In both cases, the function value is set to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

References:

1. W.J. Cody, A.J. Strecock and H.C. Thather, Jr., Chebyshev approximations for the psi function, Math.
Comp. 27 (1973) 123–127.

2. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York, l975) 5–6.

�
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CPSIPG CERN Program Library C317

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.11.1995

Language : Fortran Revised:

Psi (Digamma) and Polygamma Functions for Complex Argument

Function subprograms CPSIPG and WPSIPG calculate either the logarithmic derivative of the gamma function
(the psi, or digamma, function)

 (z) �  (0)(z) =
d ln �(z)

dx

or one of the other polygamma functions

 (k)(z) =
dk

dzk
 (z) =

dk+1

dzk+1
ln �(z)

for complex arguments z 6= �n; (n = 0; 1; 2; : : :) and k = 0; 1; 2; 3; 4.

The double-precision version WPSIPG is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CPSIPG, WPSIPG
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CPSIPG(Z,K) or WPSIPG(Z,K) has the value  (K)(Z),

where CPSIPG is of type COMPLEX, WPSIPG is of type COMPLEX*16, and where Z has the same type as the
function name. K is of type INTEGER.

Method:

The method for  (z) described in Ref. 1 is adapted accordingly.

Accuracy:

CPSIPG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WPSIPG (and CPSIPG on CDC and Cray computers) has an accuracy of approximately two
significant digit less than the machine precision.

Error handling:

Error C317.1: K < 0 or K > 4.
Error C317.2: X = �n; (n = 0; 1; 2; : : :).
In both cases, the function value is set to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

References:

1. K.S. Kölbig, Programs for computing the logarithm of the gamma function, and the digamma func-
tion, for complex arguments, Computer Phys. Comm. 4 (1972) 221-226.

�
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RELFUN CERN Program Library C318

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB

Submitter : Submitted: 30.01.1980

Language : Fortran Revised:01.12.1994

Jacobian Elliptic Functions sn, cn, dn

Function subprograms RELFUN and DELFUN calculate, for real argument x and real modulus k, the Jacobian
elliptic functions sn(x; k), cn(x; k) and dn(x; k). The function sn(x; k) is the inverse of the elliptic integral
of the first kind and is defined implicitly by

x =

Z sn( x, k)

0

dup
(1� u2)(1� k2u2) (k2 � 1):

The functions cn(x; k) and dn(x; k) are defined by

sn2(x; k) + cn2(x; k) = 1; k2sn2(x; k) + dn2(x; k) = 1; cn(0; k) = dn(0; k) = 1:

This definition can be extended for k2 > 1 (Ref. 2) by means of

sn(x; k) = k1sn(kx; k1); cn(x; k) = dn(kx; k1); dn(x; k) = cn(kx; k1);

where k1 = 1=k. For k = 0 and k2 = 1 these functions are elementary:

sn(x; 0) = sin x; cn(x; 0) = cos x; dn(x; 0) = 1;

sn(x;�1) = tanh x; cn(x;�1) = dn(x;�1) = sech x:

Note that for k2 6= 1 the Jacobian elliptic functions are periodic (with respect to x) with period 4K(k) if
k2 < 1 and 4k1K(k1) if k2 > 1, where K(k) is the complete elliptic integral of the first kind.

On CDC and Cray computers, the double-precision version DELFUN is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RELFUN, DELFUN
Obsolete User Entry Names: ELFUN � RELFUN

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tELFUN(X,AK2,SN,CN,DN)

X (type according to t) The argument x.

AK2 (type according to t) The value of k2 (the square of the modulus).

SN (type according to t) On exit, SN = sn(X; k).

CN (type according to t) On exit, CN = cn(X; k).

DN (type according to t) On exit, DN = dn(X; k).
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Method:

The sequence of the Gaussian arithmetic-geometric mean is used together with the Gauss transformation
and, where appropriate, the Jacobi imaginary transformation. For values AK2 > 1, the reciprocal modulus
transformation is performed. For details see References.

Accuracy:

RELFUN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, DELFUN (and RELFUN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

jxj � 3K(k) (0 < k2 < 1), jxj � 3k1K(k1) (k
2 > 1), where K(x) is the complete elliptic integral of the

first kind. (See entries RELIKC and DELIKC in RELI1C (C347)).

References:

1. M. Abramowitz and I.A. Stegun, ed., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, Sections 16.12 and 17.6, 9th printing with corrections, (Dover, New York
1972).

2. H.E. Salzer, Quick calculation of Jacobian elliptic functions, Comm. ACM 5 (1962) 399.

3. L.V. King, On the dirct numerical calculation of elliptic functions and integrals, Cambridge Univ.
Press (1924) 32.

4. D.J. Hofsommer and R.P. van de Riet, On the numerical calculation of elliptic integrals of the first
and second kind and the elliptic functions of Jacobi, Numer. Math. 5 (1963) 291–302.

5. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).
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CELFUN CERN Program Library C320

Author(s) : H.-H. Umstätter Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 30.01.1980

Language : Fortran Revised:07.06.1992

Jacobian Elliptic Functions sn, cn, dn for Complex Argument

Function subprograms CELFUN and WELFUN calculate, for complex argument z and real modulus k, the
Jacobian elliptic functions sn(z; k), cn(z; k) and dn(z; k). The function sn(z; k) is the inverse of the elliptic
integral of the first kind and is defined implicitly by

z =

Z sn( z, k)

0

dwp
(1� w2)(1� k2w2)

(k2 � 1):

The functions cn(z; k) and dn(z; k) are defined by

sn2(z; k) + cn2(z; k) = 1; k2sn2(z; k) + dn2(z; k) = 1; cn(0; k) = dn(0; k) = 1:

For k = 0 and k2 = 1 these functions are elementary:

sn(z; 0) = sin z; cn(z; 0) = cos z; dn(z; 0) = 1;

sn(z;�1) = tanh z; cn(z;�1) = dn(z;�1) = sech z:

Note that the Jacobian elliptic functions are doubly-periodic in the z-plane. For details see the relevant
treatises or handbooks.

The double-precision version WELFUN is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

SUBROUTINE subprograms
User Entry Names: CELFUN, WELFUN
External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = C (type COMPLEX), t = W (type COMPLEX*16),

CALL tELFUN(Z,AK2,SN,CN,DN)

Z (type according to t) The argument z.

AK2 (REAL for t = C, DOUBLE PRECISION for t = W) The value of k2 (the square of the modulus).

SN (type according to t) On exit, SN = sn(Z; k).

CN (type according to t) On exit, CN = cn(Z; k).

DN (type according to t) On exit, DN = dn(Z; k).

Method:

The Jacobian elliptic functions with complex argument z = x+ iy are computed from their representations
in terms of Jacobian elliptic functions with real arguments x or y (Ref. 1, formula 125.01). See also the
Short Write-up for ELFUN (C318).
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Accuracy:

CELFUN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WELFUN (and CELFUN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Restrictions:

jRe zj � 3K(k), jIm zj � 3K(k0) where k0 =
p
1� k2 is the complementary modulus, and K(x) is the

complete elliptic integral of the first kind. (See entries RELIKC and DELIKC in RELI1C (C347)).

Error handling:

Error C320.1: jAK2j > 1. The function value is set equal to zero, and a message is written on Unit 6,
unless subroutine MTLSET (N002) has been called.

References:

1. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971).
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CGPLG CERN Program Library C321

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 12.09.1985

Language : Fortran Revised:15.03.1993

Nielsen’s Generalized Polylogarithm

Function subprograms CGPLG and WGPLG calculate the complex-valued generalized polylogarithm function

Sn;m(x) =
(�1)n+m�1
(n� 1)!m!

Z 1

0

t�1 lnn�1 t lnm(1� xt) dt (�)

for real arguments x and integer n and m satisfying 1 � n � 4; 1 � m � 4; n +m � 5; i.e., one of the
functionsS1;1, S1;2, S2;1, S1;3, S2;2, S3;1, S1;4, S2;3, S3;2, S4;1. If x � 1, Sn;m(x) is real, and the imaginary
part is set equal to zero.

The double-precision version WGPLG is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CGPLG, WGPLG
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CGPLG(N,M,X) or WGPLG(N,M,X) has the value SN;M(X),

where CGPLG is of type COMPLEX, WGPLG is of type COMPLEX*16, X is of type REAL for CGPLG and of type
DOUBLE PRECISION for WGPLG, and where N and M are of type INTEGER.

Method:

The method is described in Ref. 1. Note that the imaginary part of the function defined as Sn;m(x) in Ref.
1 has the opposite sign to the imaginary part of the function defined by (*). See Ref. 2.

Accuracy:

CGPLG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the argu-
ment X, WGPLG (and CGPLG on CDC and Cray computers) has an accuracy of approximately two significant
digits less than the machine precision. The loss of accuracy is greater when X is very close to 1.

Error handling:

Error C321.1: N; M < 1 or N; M > 4 or N+ M > 5. The function value is set equal to zero, and a message is
written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. K.S. Kölbig, J.A. Mignaco and E. Remiddi, On Nielsen’s generalized polylogarithms and their nu-
merical calculation, BIT 10 (1970) 38–71.

2. K.S. Kölbig, Nielsen’s generalized polylogarithms, SIAM J. Math. Anal. 17 (1986) 1232–1258.
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RFRSIN CERN Program Library C322

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.05.1987

Language : Fortran Revised:01.12.1994

Fresnel Integrals

Function subprograms RFRSIN, RFRCOS and DFRSIN, DFRCOS calculate the Fresnel integrals

S(x) =

Z
x

0

sin tp
t
dt (x � 0); S(�x) = �S(x);

C(x) =

Z
x

0

cos tp
t
dt (x � 0); C(�x) = �C(x);

for real arguments x.

On CDC and Cray computers, the double-precision versions DFRSIN, DFRCOS are not available.

Structure:

FUNCTION subprograms
User Entry Names: RFRSIN, RFRCOS, DFRSIN, DFRCOS
Obsolete User Entry Names: FRSIN � RFRSIN, FRCOS � RFRCOS

Usage:

In any arithmetic expression,

RFRSIN(X) or DFRSIN(X) has the value S(X),
RFRCOS(X) or DFRCOS(X) has the value C(X),

where RFRSIN, RFRCOS are of type REAL, DFRSIN, DFRCOS are of type DOUBLE PRECISION, and X has the
same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

RFRSIN and RFRCOS (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DFRSIN and DFRCOS (and RFRSIN and RFRCOS on CDC and Cray computers) have
an accuracy of approximately one significant digit less than the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v. II, (Academic Press New York, 1969)
328–329.
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RFERDR CERN Program Library C323

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.05.1987

Language : Fortran Revised:01.12.1994

Fermi-Dirac Function

Function subprograms RFERDR and DFERDR calculate the Fermi-Dirac function

Fk(x) =

Z 1

0

tk=2

1 + et�x
dt

for real argument x, and k = �1; 1; 3:
On CDC and Cray computers, the double-precision version DFERDR is not available.

Structure:

FUNCTION subprograms
User Entry Names: RFERDR, DFERDR
Obsolete User Entry Names: FERDR � RFERDR

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RFERDR(X,K) or DFERDR(X,K) has the value FK(X),

where RFERDR is of type REAL, DFERDR is of type DOUBLE PRECISION, and X has the same type as the
function name. K (INTEGER) = -1, or 1 or 3.

Method:

Rational approximation.

Accuracy:

RFERDR (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DFERDR (and RFERDR on CDC and Cray computers) has, for X > 0, an accuracy of 7-10 digits
and for X < 0, an accuracy of 10 to 14 digits.

Error handling:

Error C323.1: K 6= �1; 1; 3: The function value is set equal to zero, and a message is written on Unit 6,
unless subroutine MTLSET (N002) has been called.

References:

1. W.J. Cody and H.C. Thacher,Jr., Rational approximations for Fermi-Dirac integrals of order �1=2,
1=2 and 3=2, Math. Comp. 21 (1967) 30–40.
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RATANI CERN Program Library C324

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.05.1987

Language : Fortran Revised:01.12.1994

Arctangent integral

Function subprograms RATANI and DATANI calculate the arctangent integral

Ti2(x) =

Z
x

0

arctan t

t
dt

for real argument x.

On CDC and Cray computers, the double-precision version DATANI is not available.

Structure:

FUNCTION subprograms
User Entry Names: RATANI, DATANI
Obsolete User Entry Names: ATANI � RATANI

Usage:

In any arithmetic expression,

RATANI(X) or DATANI(X) has the value Ti2(X),

where RATANI is of type REAL, DATANI is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

RATANI (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DATANI (and RATANI on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press New York, 1975) 67.
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RCLAUS CERN Program Library C326

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Clausen Function

Function subprograms RCLAUS and DCLAUS calculate the Clausen function

Cl2(x) = �
Z

x

0

ln

����2 sin t2
���� dt =

1X
k=1

sin kx

k2

for real arguments x.

On CDC and Cray computers, the double-precision version DCLAUS is not available.

Structure:

FUNCTION subprograms
User Entry Names: RCLAUS, DCLAUS

Usage:

In any arithmetic expression,

RCLAUS(X) or DCLAUS(X) has the value Cl2(X),

where RCLAUS is of type REAL, DCLAUS is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

For 0 � x � �, the function is approximated by truncated Chebyshev series. For x outside this range, the
relations Cl2(� + x) = �Cl2(� � x) and Cl2(2n� � x) = �Cl2(x) are used.

Accuracy:

RCLAUS (except on CDC and Cray computers) has full single-precision accuracy in the interval 0 � x � 2�.
For most values of the argument X 2 [0; 2�], DCLAUS (and RCLAUS on CDC and Cray computers) has an
accuracy of approximately one significant digit less than the machine precision. Accuracy is lost near the
zero of Cl2(x) at x = � and for large values of jxj.
References:

1. K.S. Kölbig, Chebyshev coefficients for the Clausen function Cl2(x), J. Comput. Appl. Math. 64
(1995) 295–297.
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BSIR4 CERN Program Library C327

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.05.1987

Language : Fortran Revised:15.03.1993

Modified Bessel Functions I and K of Order 1/4, 1/2 and 3/4

Function subprograms BSIR4, BSKR4 and DBSIR4, DBSKR4 calculate the modified Bessel functions

I�=4(x) and K�=4(x)

for real arguments x > 0 and � = �3;�2;�1; 1; 2; 3. The value x = 0 is permitted for the functions I if
� > 0. Note that the functionsK are even with respect to �.

On CDC and Cray computers, the double-precision versions DBSIR4 etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names: BSIR4, BSKR4,EBSIR4, EBSKR4, DBSIR4, DBSKR4, DEBIR4, DEBKR4
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

BSIR4(X,NU) or DBSIR4(X,NU) has the value INU=4(X),
BSKR4(X,NU) or DBSKR4(X,NU) has the value KNU=4(X),
EBSIR4(X,NU) or DEBIR4(X,NU) has the value exp(�X) � INU=4(X),
EBSKR4(X,NU) or DEBKR4(X,NU) has the value exp(X) �KNU=4(X),

where BSIR4 etc. are of the type REAL, DBSIR4 etc. are of the type DOUBLE PRECISION, and X has the
same type as the function name. NU is of type INTEGER and must have one of the values -3,-2,-1,1,2,3.

Method:

Approximation by rational functions (I for jxj < 8, K for 1 � x � 5), by an algorithm based on power
series (K for 0 < x < 1), or else by truncated Chebyshev series. The cases j�j = 2 are elementary.

Accuracy:

BSIR4 etc. (except on CDC and Cray computers) have full single-precision accuracy. For most values of the
argument X, DBSIR4 etc. (and BSIR4 etc. on CDC and Cray computers) have an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error C327.1: X � 0, or X < 0, respectively, or NU 6= -3,-2,-1,1,2,3. The function value is set equal
to zero, and a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 350,
357, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.
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CWHITM CERN Program Library C328

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.01.1988

Language : Fortran Revised:15.03.1993

Whittaker Function M of Complex Argument and Complex Indices

Function subprograms CWHITM and WWHITM compute the Whittacker function

M�;�(z) = e�
1

2
zz

1

2
+�M(1

2 + �� �; 1 + 2�; z)

for complex arguments z and complex indices �; �, where M(a; b; z) is Kummer’s function (See Ref. 1).
The z-plane is cut along the negative real axis.

The double-precision version WWHITM is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CWHITM, WWHITM
Files Referenced: Unit 6

External References: CLGAMA (C306), WLGAMA (C306), CCLBES (C309), WCLBES (C309),

MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CWHITM(Z,KA,MU) or WWHITM(Z,KA,MU) has the value MKA;MU(Z);

where KA = � and MU = �. CWHITM is of type COMPLEX, WWHITM is of type COMPLEX*16, and Z, KA and MU

have the same type as the function name.

Method:

For � � � + 1
2 or � + � + 1

2 equal to a negative integer, M�;�(z) reduces to a polynomial in z. For other
values, a regular Coulomb wave function F0(�; �) is computed by using subprogram CCLBES (C309) in
conjunction with functional relations.

Restrictions:

� 6= �1
2 ;�3

2 ; : : : ; Re z � 0 if Im z = 0.

Accuracy:

CWHITM (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WWHITM (and CWHITM on CDC and Cray computers) has an accuracy of approximately two to
three decimal digits less than the machine precision.

Error handling:

Error C328.1: Z = X+ iY with X < 0 and Y = 0.
Error C328.2: 2 � MU =� n; (n = 1; 2; : : :).
In both cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called. An error message is also written on Unit 6 if the internal call to CCLBES

or WCLBES returns JFAIL 6= 0 (see Short write-up for CCLBES (C309)).
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References:

1. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).

2. L.J. Slater, Confluent hypergeometric functions, (University Press, Cambridge 1960)

�

C328 – 2 57



RASLGF CERN Program Library C330

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.05.1987

Language : Fortran Revised:01.12.1994

Legendre and Associated Legendre Functions

Subroutine subprograms RASLGF and DASLGF calculate, for a given real argument x; (�1 � x � 1), and a
given integer value of the order m, a sequence of either unnormalized or normalized Legendre (m = 0) or
Associated Legendre (m 6= 0) functions of degree n = 0; 1; 2; : : : ; N , defined by

Pm

n
(x) = (1� x2)m=2 dm

dxm
Pn(x) (m � 0) (1a)

Pm

n (x) =
(n+m)!

(n�m)!
P�mn (x) (m < 0) (1b)

Pm
n (x) =

s
2n+ 1

2

(n�m)!

(n+m)!
Pm

n (x); (2)

respectively, where

Pn(x) � P 0
n(x) =

1

2nn!

dn

dxn
(x2 � 1)n

is the Legendre polynominal of degree n. Note that some authors use an additional factor (�1)m in the
definition (1).

On CDC and Cray computers, the double-precision version DASLGF is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RASLGF, DASLGF
Obsolete User Entry Names: ASLGF � RASLGF

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tASLGF(MODE,X,M,NL,P)

MODE (INTEGER) = 1 : Unnormalized functions (1),
= 2 : Normalized functions (2).

X (type according to t) The argument x.

M (INTEGER) The orderm (upper index) of all functions in the computed sequence. It is permissible
for M to be negative.

NL (INTEGER) Specifies the degree N of the last function in the computed sequences.

P (type according to t) One-dimensional array of dimension (0:d) where d � NL.
On exit, P(n); (n= 0; 1; : : : ; NL), contains Pm

n (X) or Pm
n (X) as specified by MODE. (See Notes).

Method:

The functions Pm

n (x) are for m > 0 calculated by means of the standard recurrence relation.
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Restrictions:

1. �1 � X � 1.

2. MODE = 1 or 2.

3. If M = 0 : 0 � NL � 100:
if M 6= 0 : jMj � 27 and 0 � NL � 55� jMj; (0 � NL � 33� jMj on VAX/VMS).

Accuracy:

RASLGF (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DASLGF (and RASLGF on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Notes:

In accordance with the definitions, P(n) = 0 for n = 0; 1; � � � ; jMj � 1.

Error handling:

Error C330.1: jXj > 1.
Error C330.2: MODE 6= 1 and MODE 6= 2.
Error C330.3: M and NL incompatible.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called. The initial
contents of array P(n) is left unchanged.
�
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RFCONC CERN Program Library C331

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:01.12.1994

Conical Functions of the First Kind

Function subprograms RFCONC and DFCONC calculate the (real valued) conical function of the first kind

Pm

� 1

2
+i�

(x)

for real x > �1; � � 0, andm = 0; 1, where Pm

�
(x) is the Legendre (or spherical) function of the first kind

and i =
p�1.

On CDC and Cray computers, the double-precision version DFCONC is not available.

Structure:

FUNCTION subprograms
User Entry Names: RFCONC, DFCONC
Obsolete User Entry Names: FCONC � RFCONC

Files Referenced: Unit 6

External References: CGAMMA (C305), WGAMMA (C305), CLGAMA (C306), WLGAMA (C306),

BESJO (C312), DBESJ0 (C312), BESJ1 (C312), DBESJ1 (C312),

BESIO (C313), DBESI0 (C313), BESI1 (C313), DBESI1 (C313),

RELIKC (C347), DELIKC (C347), RELIEC (C347), DELIEC (C347),

MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tFCONC(X,TAU,M)}

has, in any arithmetic expression, the value P M
1

2
+i�TAU

(X).

X (type according to t) Variable x.

TAU (type according to t) The imaginary part of the index, � .

M (INTEGER) Order m. (M = 0 or M = 1).

Method:

Either (i) series expansions based on the Gaussian hypergeometric function and evaluated by direct summa-
tion or from rational approximations, or (ii) asymptotic expressions in terms of Bessel functions. For � = 0
the conical functions (for m = 0; 1) can be expressed in terms of complete elliptic integrals. For details see
Ref. 1.

Restrictions:

X � �1, TAU � 0, M = 0 or 1.
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Accuracy:

RFCONC (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DFCONC (and RFCONC on CDC and Cray computers), an accuracy of not less than 10 significant
digits is usually obtained. If x and � are not too large the accuracy increases to about 12-13 significant
digits.

Error handling:

Error C331.1: X < �1 or TAU < 0 or M 6= 0 and M 6= 1.
Error C331.2: Problems of convergence for a hypergeometric function.
In both cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

Notes:

This program is an (only formally) modified version of the CPC Program Library Package FCONIC (see
Ref. 1).

References:

1. K.S. Kölbig, A program for computing the conical functions of the first kind Pm

1=2+i�(x) for m = 0
and m = 1, Computer Phys. Comm. 23 (1981) 51–61.

2. M.I. Zhurina and L.N. Karmazina, Tables and formulae for the spherical functions Pm

1=2+i�
(z), (Perg-

amon Press, Oxford 1966).
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RDILOG CERN Program Library C332

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 19.10.1966

Language : Fortran Revised:01.12.1994

Dilogarithm Function

Function subprograms RDILOG and DDILOG calculate the dilogarithm function

Li2(x) = �
Z

x

0

ln j1� tj
t

dt

for real arguments x.

On CDC and Cray computers, the double-precision version DDILOG is not available.

Structure:

FUNCTION subprograms
User Entry Names: RDILOG, DDILOG
Obsolete User Entry Names: DILOG � RDILOG

Usage:

In any arithmetic expression,

RDILOG(X) or DDILOG(X) has the value Li2(X),

where RDILOG is of type REAL, DDILOG is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

Approximation by truncated Chebyshev series and functional relations.

Accuracy:

RDILOG (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DDILOG (and RDILOG on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975) 67.

�
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RGAPNC CERN Program Library C334

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.05.1990

Language : Fortran Revised:01.12.1994

Incomplete Gamma Functions

Function subprograms RGAPNC, DGAPNC and RGAGNC, DGAGNC calculate the incomplete gamma function

P (a; x) =

8>><>>:
1

�(a)

Z
x

0

e�t ta�1 dt (a > 0)

e�x xa
M(1; a+ 1; x)

�(a+ 1)
(a � 0);

and the complementary incomplete gamma function

G(a; x) =

8>><>>:
1

�(a)

Z 1

x

e�t ta�1 dt (a > 0)

ex x�a
Z 1

x

e�t ta�1 dt (a � 0);

respectively, for real arguments x � 0 and a. M(a; b; x) is Kummer’s function (see Ref. 3).

On CDC and Cray computers, the double-precision versions DGAPNC and DGAGNC are not available.

Structure:

FUNCTION subprograms
Uses Entry Names: RGAPNC, RGAGNC, DGAPNC, DGAGNC
Obsolete User Entry Names: GAPNC � RGAPNC, GAGNC � RGAGNC

Files Referenced: Unit 6

External References: ALGAMA (C304), DLGAMA (C304), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RGAPNC(A,X) or DGAPNC(A,X) has the value P (A; X),
RGAGNC(A,X) or DGAGNC(A,X) has the value G(A; X),

where RGAPNC and RGAGNC are of type REAL, DGAPNC and DGAGNC are of type DOUBLE PRECISION, A and
X have the same type as the function name.

Method:

The method is described in Ref. 1.

Accuracy:

RGAPNC and RGAGNC (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the arguments, DGAPNC, DGAGNC (and RGAPNC, RGAGNC on CDC and Cray computers) have an
accuracy of approximately two significant digits less than the machine precision.

Restrictions:

For P (a; x): Either (i) X > 0, or (ii) X = 0 and A � 0.
For G(a; x): Either (i) X > 0, or (ii) X = 0 and A 6= 0.
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Error handling:

Error C334.1: X < 0.
Error C334.2: For RGAPNC and DGAPNC: A < 0 and X = 0; for RGAGNC and DGAGNC: A = X = 0.
Error C334.3: Problems with convergence (unlikely).
In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

Notes:

When speed is more important than accuracy, e.g. for applications in statistics, use GAMDIS (G106) for
computing P (a; x). Note, however, that in this case the arguments A and X must be interchanged.

Source:

The subprograms are based on a Fortran program for the incomplete gamma functions published in Ref. 2.

References:

1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466–481.

2. W. Gautschi, Algorithm 542, Incomplete gamma functions, Collected Algorithms from CACM (1979).

3. M. Abramowitz and I.A. Stegun (Eds.), Handbook of Mathematical Functions, Chapter 13, Confluent
Hypergeometric Functions, 9th printing with corrections, (Dover, New York 1972).
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CWERF CERN Program Library C335

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:15.03.1993

Complex Error Function

Function subprograms CWERF and WWERF calculate the complex error function

w(z) = e�z
2

�
1 +

2ip
�

Z
z

0

et
2

dt

�
= e�z

2

[1� erf (�iz)] = e�z
2

erfc (�iz)

for complex arguments z, where i =
p�1.

The double-precision version WWERF is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CWERF, WWERF

Usage:

In any arithmetic expression,

CWERF(Z) or WWERF(Z) has the value w(Z),

where CWERF is of type COMPLEX, WWERF is of type COMPLEX*16, and Z has the same type as the function
name.

Method:

The method is described in Ref. 2.

Accuracy:

CWERF (except on CDC and Cray computers) has full single-precision accuracy. For most values of the argu-
ment Z, WWERF (and CWERF on CDC and Cray computers) has an accuracy of approximately two significant
digits less than the machine precision.

Notes:

This subprogram is a modified version of the algorithm presented in Ref. 1.

References:

1. W. Gautschi, Algorithm 363, Complex Error Function, Collected Algorithms from CACM (1969).

2. W. Gautschi, Efficient Computation of the Complex Error Function, SIAM J. Numer. Anal. 7 (1970)
187–198.

3. K.S. Kölbig, Certification of Algorithm 363 Complex Error Function, Comm. ACM 15 (1972) 465–
466.
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RSININ CERN Program Library C336

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:01.12.1994

Sine and Cosine Integrals

Function subprograms RSININ, RCOSIN and DSININ, DCOSIN calculate the sine and cosine integrals

Si(x) =

Z
x

0

sin t

t
dt

Ci(x) =  + ln jxj+
Z

x

0

cos t� 1

t
dt (x 6= 0)

for real arguments x, where  = 0:57721 : : : is Euler’s constant.

On CDC and Cray computers, the double-precision versions DSININ and DCOSIN are not available.

Structure:

FUNCTION subprograms
User Entry Names: RSININ, RCOSIN, DSININ, DCOSIN
Obsolete User Entry Names: SININT � RSININ, COSINT � RCOSIN

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RSININ(X) or DSININ(X) has the value Si(X),
RCOSIN(X) or DCOSIN(X) has the value Ci(X),

where RSININ and RCOSIN are of type REAL, DSININ and DCOSIN are of type DOUBLE PRECISION, and X

has the same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

RSININ and RCOSIN (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DSININ, DCOSIN (and RSININ, RCOSIN on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error C336.1: X = 0 for RCOSIN or DCOSIN. The function value is set equal to zero, and a message is
written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, The special functions and their approximations, v.II, (Academic Press, New York l969)
325–326

�

66 C336 – 1



REXPIN CERN Program Library C337

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:15.03.1993

Exponential Integral

Function subprograms REXPIN and DEXPIN calculate the exponential integral

E1(x) = �Ei(�x) =

Z 1

x

e�t

t
dt

for real arguments x. For x < 0, the real part of the principal value of the integral is taken.

On CDC and Cray computers, the double-precision versions DEXPIN and DEXPIE are not available.

Structure:

FUNCTION subprograms
User Entry Names: REXPIN, REXPIE, DEXPIN, DEXPIE
Obsolete User Entry Names: EXPINT � REXPIN

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

REXPIN(X) or DEXPIN(X) has the value E1(X),
REXPIE(X) or DEXPIE(X) has the value eXE1(X),

where REXPIN and REXPIE are of type REAL, DEXPIN and DEXPIE are of type DOUBLE PRECISION, and X

has the same type as the function name.

Method:

Polynomial and rational approximations.

Accuracy:

REXPIN and REXPIE (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DEXPIN, DEXPIE (and REXPIN, REXPIE on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

Error handling:

Error C337.1: X = 0. The function value is set equal to zero, and a message is written on Unit 6, unless
subroutine MTLSET (N002) has been called.

References:

1. W.J. Cody and H.C. Thatcher,Jr., Rational Chebyshev approximations for the exponential integral
E1(x), Math. Comp. 22 (1968) 641–649.

2. W.J. Cody and H.C. Thatcher,Jr., Chebyshev approximations for the exponential integral Ei(x), Math.
Comp. 23 (1969) 289–303.
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CEXPIN CERN Program Library C338

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.05.1990

Language : Fortran Revised:15.03.1993

Exponential Integral for Complex Argument

Function subprograms CEXPIN and WEXPIN calculate the the exponential integral

E(z) =

Z
z

0

t�1 (1� e�t) dt

for complex arguments z.
The double-precision version WEXPIN is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
Use Entry Names : CEXPIN, WEXPIN
Files referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CEXPIN(Z) or WEXPIN(Z) has the value E(Z),

where CEXPIN is of type COMPLEX, WEXPIN is of type COMPLEX*16, and Z has the same type as the function
name.

Method:

Padé approximants are used to compute E(z) = E(x+ iy) in the following (partly overlapping) regions of
the z-plane:

(i) (1
7
(x� 1))2 + (1

5
y)2 � 1 (x � �5),

(ii) ( 1
15(x+ 12))2+ ( 1

12y)
2 � 1 (x � �12),

(iii) ( 1
12y)

2 � 1 (x < �12).
In the remaining region, consisting mainly of a strip along the negative real axis, E(z) is computed by
numerical integration (which is very much slower than the evaluation of the Padé approximations).

Accuracy:

CEXPIN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument Z, WEXPIN (and CEXPIN on CDC and Cray computers) has an accuracy of approximately two
significant digits less than the machine precision.

Error handling:

Error C338.1: Numerical integration not successful (unlikely). The function value is set equal to zero, and
a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, the special functions and their approximations, v. II, (Academic Press, New York 1969)
198–199, 402–416.
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RDAWSN CERN Program Library C339

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:01.12.1994

Dawson’s Integral

Function subprograms RDAWSN and DDAWSN calculate the Dawson integral

F (x) = e�x
2

Z
x

0

et
2

dt

for real arguments x.

On CDC and Cray computers, the double-precision version DDAWSN is not available.

Structure:

FUNCTION subprograms
User Entry Names: RDAWSN, DDAWSN
Obsolete User Entry Names: DAWSON � RDAWSN

Usage:

In any arithmetic expression,

RDAWSN(X) or DDAWSN(X) has the value F (X),

where RDAWSN is of type REAL, DDAWSN is of type DOUBLE PRECISION, and X has the same type as the
function name.

Method:

Rational approximation.

Accuracy:

RDAWSN (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DDAWSN (and RDAWSN on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

References:

1. W.J. Cody, K.A. Paciorek and H.C. Thacher,Jr., Chebyshev approximations for Dawson’s integral,
Math. Comp. 24 (1970) 171–178.

�
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BSIR3 CERN Program Library C340

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.12.1970

Language : Fortran Revised:15.03.1993

Modified Bessel Functions I and K of Order 1/3 and 2/3

Function subprograms BSIR3, BSKR3 and DBSIR3, DBSKR3 calculate the modified Bessel functions

I�=3(x) and K�=3(x)

for real arguments x > 0 and � = �2;�1; 1; 2. The value x = 0 is permitted for the functions I if � > 0.
Note that the functionsK are even with respect to �.
On CDC and Cray computers, the double-precision versions DBSIR3 etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names: BSIR3, BSKR3, EBSIR3, EBSKR3, DBSIR3, DBSKR3, DEBIR3, DEBKR3
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

BSIR3(X,NU) or DBSIR3(X,NU) has the value INU=3(X),
BSKR3(X,NU) or DBSKR3(X,NU) has the value KNU=3(X),
EBSIR3(X,NU) or DEBIR3(X,NU) has the value exp(�X) � INU=3(X),
EBSKR3(X,NU) or DEBKR3(X,NU) has the value exp(X) �KNU=3(X),

where BSIR3 etc. are of the type REAL, DBSIR3 etc. are of the type DOUBLE PRECISION, and X has the
same type as the function name. NU (INTEGER) has one of the values -2,-1,1,2.

Method:

Approximation by rational functions (I for jxj < 8, K for 1 � x � 5), by an algorithm based on power
series (K for 0 < x < 1), or else by truncated Chebyshev series.

Accuracy:

BSIR3 etc. (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
argument X, DBSIR3 etc. (and BSIR3 etc. on CDC and Cray computers) has an accuracy of approximately
one significant digit less than the machine precision.

Error handling:

Error C340.1: X � 0 or X < 0, repectively, or NU 6= �2;�1; 1; 2.
The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET

(N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations (Academic Press, New York 1975) 352,
355, 363, 366.

2. N.M. Temme, On the numerical evaluation of the modified Bessel function of the third kind, J. Comp.
Phys. 19 (1975) 324–337.
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BSKA CERN Program Library C341

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Modified Bessel Functions K of Certain Order

Subroutine subprograms BSKA and DBSKA calculate the sequence of modified Bessel functions

Ka+n(x)

for real argument x > 0 and a chosen a 2 �0; 1
2
; 1
3
; 1
4
; 2
3
; 3
4

	
.

On CDC and Cray computers, the double-precision versions DBSKA and DEBKA are not available.

Structure:

SUBROUTINE subprograms
User Entry Names: BSKA, EBSKA, DBSKA,DEBKA
Files Referenced: Unit 6

External References: BESK0 (C313), BESK1 (C313), EBESK0 (C313), EBESK1 (C313),

DBESK0 (C313), DBESK1 (C313), DEBSK0 (C313), DEBSK1 (C313),

BSKR4 (C327), EBSKR4 (C327), DBSKR4 (C327), DEBKR4 (C327),

BSKR3 (C340), EBSKR3 (C340), DBSKR3 (C340), DEBKR3 (C340),

MTLMTR (N002), ABEND (Z035)

Usage:

Single-precision version:

CALL BSKA(X,IA,JA,NL,B) or CALL EBSKA(X,IA,JA,NL,B)

X (REAL) Argument x.

IA,JA (INTEGER) Numerator i and denominator j of a = i=j. Only the pairs

(IA,JA) = (0,1), (1,2), (1,3), (1,4), (2,3), (3,4)

are permitted. For example, IA = 2 and JA = 3 corresponds to a = 2=3.

NL (INTEGER) Specifies the order a+ NL of the last Bessel function in the computed sequence.

B (REAL) One-dimensional array with dimension (0:d) where d � NL.
On exit, B(n), (n = 0; 1; 2; : : : ; NL), contains Ka+n(X) for BSKA, exp(X)�Ka+n(X) for EBSKA,
respectively.

Double-precision version:

CALL DBSKA(X,IA,JA,NL,B) or CALL DEBKA(X,IA,JA,NL,B)

where X and B are of type DOUBLE PRECISION.

Method:

The well-known recurrence relation for modified Bessel functions is used.

Restrictions:

X > 0, NL � 100. Only the pairs (IA,JA) given above are permitted.
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Error handling:

Error C341.1: X � 0.
Error C341.2: Pair (IA,JA) not permitted.
Error C341.3: NL > 100.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called. The initial
contents of array B is left unchanged.
�
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RSTRH0 CERN Program Library C342

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.11.1971

Language : Fortran Revised:01.12.1994

Struve Functions of Orders Zero and One

Function subprograms RSTRH0, RSTRH1 and DSTRH0, DSTRH1 calculate the Struve functions

Hn(x) = (1
2
x)n+1

1X
k=0

(�1)k(1
2x)

2k

�(k + 3
2
)�(k + n+ 3

2
)

for real arguments x and n = 0; 1.

On CDC and Cray computers, the double-precision versions DSTRH0, DSTRH1 are not available.

Structure:

FUNCTION subprograms
User Entry Names: RSTRH0, RSTRH1, DSTRH0, DSTRH1
Obsolete User Entry Names: STRH0 � RSTRH0, STRH1 � RSTRH1

External References: BESJO (C312), DBESJ0 (C312), BESY0 (C312), DBESY0 (C312)

Usage:

In any arithmetic expression,

RSTRH0(X) or DSTRH0(X) has the value H0(X),
RSTRH1(X) or DSTRH1(X) has the value H1(X),

where RSTRH0, RSTRH1 are of type REAL, DSTRH0, DSTRH1 are of type DOUBLE PRECISION, and X has the
same type as the function name.

Method:

Approximation by truncated Chebyshev series.

Accuracy:

RSTRH0 and RSTRH1 (except on CDC and Cray computers) have full single-precision accuracy. For most
values of the argument X, DSTRH0, DSTRH1 (and RSTRH0, RSTRH1 on CDC and Cray computers) have an
accuracy of approximately one significant digit less than the machine precision.

References:

1. Y.L. Luke, The special functions and their approximations, v.II (Academic Press, New York 1969)
370–371.

�
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BSJA CERN Program Library C343

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 24.01.1986

Language : Fortran Revised:15.03.1993

Bessel Functions J and I with Positive Argument and Non-Integer Order

Subroutine subprograms BSJA, BSIA, DBSJA, DBSIA and QBSJA, QBSIA calculate the sequences of Bessel
functions

Ja+n(x); Ja�n(x); Ia+n(x) or Ia�n(x);

for real argument x > 0, 0 � a < 1, and n = 0; 1; 2; : : : ; N .

The quadruple-precision versions QBSJA and QBSIA are available only on computers which support a
REAL*16 Fortran data type.

Structure:

SUBROUTINE subprograms
User Entry Names: BSJA, BSIA, DBSJA, DBSIA, QBSJA, QBSIA
Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), QGAMMA (C302), MTLMTR (N002), ABEND (Z035)

Usage:

Single-precision version:

CALL BSJA(X,A,NL,ND,B) or CALL BSIA(X,A,NL,ND,B)

X (REAL) Argument x.

A (REAL) Order a of the first Bessel function in the computed sequence.

NL (INTEGER) Specifies the order a + NL of the last Bessel function in the computed sequence. It is
permissible for NL to be negative.

ND (INTEGER) Requested number of correct significant decimal digits.

B (REAL) One-dimensional array with dimension (0:d) where d � jNLj.
On exit, B(n), (n = 0; 1; 2; : : : ; jNLj), contains Ja+n(X), Ja�n(X), Ia+n(X) or Ia�n(X), the plus sign
of the subscript being taken if NL � 0, the minus sign if NL < 0.

Double-precision version:

CALL DBSJA(X,A,NL,ND,B) or CALL DBSIA(X,A,NL,ND,B)

where X, A and B are of type DOUBLE PRECISION.

Quadruple-precision version:

CALL QBSJA(X,A,NL,ND,B) or CALL QBSIA(X,A,NL,ND,B)

where X, A and B are of type REAL*16.

Method:

For NL � 0, the method of computation is a variant of Miller’s backwards recurrence algorithm (see Ref. 1).
The requested accuracy is obtained, when possible, by a judicious choice of the initial value of the recursion
index, together with at least one repetition of the recursion with this index increased by 5. For NL < 0, only
the first two functions in the sequence are computed in this way. The remaining functions are computed by
the standard Bessel function recurrence relation.
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Restrictions:

X > 0, 0 � A < 1, jNLj � 100.

Accuracy:

If X is close to a zero of one of the functions Ja+n(x), the accuracy of that particular function will be less
than ND significant digits. There may also be a loss of accuracy in any of the computed functions if A is close
to 0 or 1, and in other special situations.

Error handling:

Error C343.1: X � 0.
Error C343.2: A < 0 or A � 1.
Error C343.3: jNLj > 100.
Error C343.4: Difficulties of convergence. Try smaller jNDj.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called. If Error 1
to 3 occurs, the initial contents of array B is left unchanged. If the requested accuracy cannot be obtained
after the initial recursion index has been increased fifty times (Error 4), the contents of array B is undefined.

Source:

The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236, Bessel functions of the first kind, Collected Algorithms from CACM
(1972)
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CBSJA CERN Program Library C344

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 24.01.1986

Language : Fortran Revised:15.03.1993

Bessel Functions J with Complex Argument and Non-Integer Order

Subroutine subprograms CBSJA, WBSJA and WQBSJA calculate a sequence of Bessel functions

Ja+n(z);

for complex arguments z, 0 � a < 1, and n = 0; 1; 2; : : : ; N .
The quadruple-precision version WQBSJA is available only on computers which support a COMPLEX*32 For-
tran data type.

Structure:

SUBROUTINE subprograms
User Entry Names: CBSJA, WBSJA, WQBSJA
Files Referenced: Unit 6

External References: GAMMA (C302), DGAMMA (C302), QGAMMA (C302), MTLMTR (N002), ABEND (Z035)

Usage:

Single-precision version:

CALL CBSJA(Z,A,NL,ND,CB)

Z (COMPLEX) Argument z.

A (REAL) Order a of the first Bessel function in the computed sequence.

NL (INTEGER) Specifies the order a+ NL of the last Bessel function in the computed sequence.

ND (INTEGER) Requested number of correct significant decimal digits.

CB (COMPLEX) One-dimensional array with dimension (0:d) where d � NL.
On exit, CB(n), (n = 0; 1; 2; : : : ; NL), contains Ja+n(Z).

Double-precision version:

CALL WBSJA(Z,A,NL,ND,CB)

where A is of type DOUBLE PRECISION, Z and CB are of type COMPLEX*16.
On computers whose Fortran compiler does not support COMPLEX*16 arithmetic (e.g. CDC and Cray) the
storage conventions for Z and CB are as follows:

Z (DOUBLE PRECISION) Array of declared dimension (2) containing Re Z in Z(1) and Im Z in Z(2).

CB (DOUBLE PRECISION) Two-dimensional array with dimensions (2,0:d) where d � NL. On exit,
CB(1,n) contains Re Ja+n(Z) and CB(2,n) contains Im Ja+n(Z), (n = 0; 1; 2; : : : ; NL).

Quadruple-precision version:

CALL WQBSJA(Z,A,NL,ND,CB)

where A is of type REAL*16, Z and CB are of type COMPLEX*32.

Method:

The method is an extension to complex arguments of a variant of Miller’s backwards recurrence algorithm
(see Ref. 1). The requested accuracy is obtained, when possible, by a judicious choice of the initial value of
the recursion index, together with at least one repetition of the recursion with this index increased by 5.

Restrictions:

Im Z 6= 0 if Re Z < 0, 0 � A < 1, 0 � NL � 100.
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Accuracy:

If Z does not lie on the real axis, the requested accuracy is usually obtained. There may be a loss of accuracy
if A is close to 0 or 1, and in other special situations.

Error handling:

Error C344.1: Z = X+ iY with X � 0 and Y = 0.
Error C344.2: A < 0 or A � 1.
Error C344.3: NL < 0 or NL > 100.
Error C344.4: Difficulties of convergence. Try smaller jNDj.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called. If Error 1
to 3 occurs, the initial contents of array CB is left unchanged. If the requested accuracy cannot be obtained
after the initial recursion index has been increased fifty times (Error 4), the contents of array CB is undefined.

Source:

The subprogram is based on Algol procedures described in Ref. 1.

References:

1. W. Gautschi, Algorithm 236: Bessel functions of the first kind, Collected Algorithms from CACM
(1965)

�
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RBZEJY CERN Program Library C345

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.08.1989

Language : Fortran Revised:01.12.1994

Zeros of Bessel Functions J and Y

Subroutine subprograms RBZEJY and DBZEJY calculate, for real order a � 0, the first N > 0 zeros

ja;n; ya;n; j
0
a;n
; y0

a;n
(n = 1; 2; : : : ; N)

of the Bessel functions Ja(x); Ya(x); J 0a(x); Y
0
a
(x), respectively. The prime denotes the derivative of the

function with respect to x.

On CDC and Cray computers, the double-precision version DBZEJY is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RBZEJY, DBZEJY
Obsolete User Entry Names: BZEJY � RBZEJY

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tBZEJY(A,N,MODE,REL,X)

A (type according to t) Order a.

N (INTEGER) Number N of zeros wanted.

MODE (INTEGER) defines the function for which the zeros are to be calculated:

1 zeros of Ja(x),

2 zeros of Ya(x),

3 zeros of J 0a(x),

4 zeros of Y 0
a
(x).

REL (type according to t) The requested relative accuracy.

X (type according to t) One-dimensional array of length N at least. On exit, X(n), (n = 1; 2; : : : ; N)
contains the first N positive (in the case A = 0 and MODE = 3, non-negative) zeros of the function
defined by MODE.

Method:

Initial approximations to the zeros are computed from asymptotic expansions. These values are improved by
higher-order Newton iteration making use of the differential equation for the Bessel functions. (For details
see Ref. 1).

Error handling:

Error C345.1: A < 0: A message is written on Unit 6, unless subroutine MTLSET (N002) has been called.
The contents of X is left unchanged. N � 0 acts as do nothing.
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Source:

The subroutine is based on Algol procedures published in the References.

References:

1. N.M. Temme, An algorithm with Algol60 program for the computation of the zeros of ordinary Bessel
functions and those of their derivatives, J. Comput. Phys. 32 (1979) 270–279.

2. N.M. Temme, On the numerical evaluation of the ordinary Bessel function of the second kind, J.
Comput. Phys. 21 (1976) 343–350.
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RELI1 CERN Program Library C346

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Elliptic Integrals of First, Second, and Third Kind

Function subprograms RELI1, RELI2, RELI3 and DELI1, DELI2, DELI3 calculate, for real argument x, the
elliptic integrals of the first, second and third kind, respectively.

On CDC and Cray computers, the double-precision versions DELI1, DELI2 and DELI3 are not available.

Mainly for reasons of numerical stability, the algorithms are based on the following definitions:

First kind:

F1(x; k
0) =

Z
x

0

d�q
(1 + �2)(1 + k02�2)

(k0
2 � 0):

Second kind:

F2(x; k
0; a; b) =

Z
x

0

a+ b�2

(1 + �2)
q
(1 + �2)(1 + k02�2)

d� (k0
2 � 0):

Third kind:

F3(x; k
0; p) =

Z
x

0

1 + �2

(1 + p�2)
q
(1 + �2)(1 + k02�2)

d� (k0
2 � 0; px2 6= �1):

Note that F1(x; k
0) = F2(x; k

0; 1; 1) = F3(x; k
0; 1). For p < 0, the integral F3 is defined by its principal

value.

For the integral of the second kind, a special entry-mode argument is provided which allows F2(x; k
0; a; b)

to be calculated when k02 < 0, i.e. when k0 is imaginary.

Other common definitions of the elliptic integrals and their relations to F1, F2, F3 are listed here for
convenience (k2 + k02 = 1):

First kind:

F (k; �) =

Z
�

0

d p
1� k2 sin2  

= F1(tan�; k
0) (j�j � �=2; jkj < 1);

bF (y; k) =

Z
y

0

d�p
(1� �2)(1� k2�2) = F1

�
y=
p
1� y2; k0

�
(jyj < 1; jkj < 1):

Second kind:

E(k; �) =

Z
�

0

q
1� k2 sin2  d = F2(tan�; k

0; 1; k0
2
) (j�j � �=2; jkj � 1);

bE(y; k) =

Z
y

0

s
1� k2�2

1� �2 d� = F2

�
y=
p
1� y2; k0; 1; k02

�
(jyj < 1; jkj � 1):
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Third kind:

�(�; h; k) =

Z
�

0

d 

(1 + h sin2  )
p
1� k2 sin2  

= F3(tan�; k
0; h+ 1)

(j�j � �=2; jkj < 1);

b�(y; h; k) =

Z
y

0

d�

(1 + h�2)
p
(1� �2)(1� k2�2) = F3

�
y=
p
1� y2; k0; h+ 1

�
(jyj < 1; jkj < 1):

Structure:

FUNCTION subprograms
User Entry Names: RELI1, RELI2, RELI3, DELI1, DELI2, DELI3
Files Referenced: Unit 6

External References: ASINH (B102), DASINH (B102), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression, with AKP = k0,

RELI1(X,AKP) or DELI1(X,AKP) has the value F1(X; k0),

RELI2(X,AKP,A,B,MODE) or DELI2(X,AKP,A,B,MODE) has the value F2(X; k00; A; B),

RELI3(X,AKP,P) or DELI3(X,AKP,P) has the value F3(X; k
0; P),

where RELI1, RELI2, RELI3 are of type REAL, where DELI1, DELI2, DELI3 are of type DOUBLE PRECISION,
and X, AKP, A, B and P have the same type as the function name. MODE is of type INTEGER.

The notation k00 indicates that, when calling RELI2 or DELI2, the parameters AKP and MODE must be set as
follows:
If k02 > 0: MODE = +1 and AKP = k0,
if k02 < 0: MODE = �1 and AKP = Im k0 = �ik0 (real).

Method:

The evaluation of F1 andF2 is based on the Landen transformation, that ofF3 on the Bartky transformation.
F2 for k02 < 0 is calculated by using a transformation of the arguments. See Ref. 1 and 2 for details.

Accuracy:

The REAL functions (except on CDC and Cray computers) have full single-precision accuracy. The REAL

functions on CDC and Cray, and the DOUBLE PRECISION functions on all computers have an accuracy
approximately two significant digits less than the machine precision.

Restrictions:

1. RELI2 and DELI2: AKP*X**2 < 1 if MODE = �1.
2. RELI2 and DELI2: MODE = +1 or �1.
3. RELI3 and DELI3: P*X**2 6= �1.

Error handling:

Error C346.1: Restriction 1 is not satisfied.
Error C346.2: Restriction 2 is not satisfied.
Error C346.3: Restriction 3 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.
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Source:

The subprograms are based on the Algol60 procedures el1, el2in Ref. 1 and el3 in Ref. 2.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

2. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions III, Numer. Math. 13
(1969) 305–315.

�
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RELI1C CERN Program Library C347

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Complete Elliptic Integrals of First, Second, and Third Kind

Function subprograms RELI1C, RELI2C, RELI3C and DELI1C, DELI2C, DELI3C calculate the complete
elliptic integrals of the first, second and third kind, respectively.

Function subprograms RELIGC and DELIGC calculate a general complete elliptic integral.

Function subprograms RELIKC, RELIEC and DELIKC, DELIEC calculate the complete elliptic integrals K(k)
and E(k).

On CDC and Cray computers, the double-precision versions DELI1C etc. are not available.

Mainly for reasons of numerical stability, the algorithms are based on the following definitions:

First kind:

F�1(k
0) =

Z 1

0

d�q
(1 + �2)(1 + k02�2)

(k0
2
> 0):

Second kind:

F�2(k
0; a; b) =

Z 1

0

a+ b�2

(1 + �2)
q
(1 + �2)(1 + k02�2)

d� (k0
2
> 0):

Third kind:

F�3(k
0; p) =

Z 1

0

1 + �2

(1 + p�2)
q
(1 + �2)(1 + k02�2)

d� (k0
2
> 0; p 6= 0):

Note that F�1(k
0) = F�2(k

0; 1; 1) = F�3(k
0; 1). For p < 0, the integral F�3 is defined by its principal value.

The general integral:

G(k0; p; a; b) =

Z 1

0

a+ b�2

(1 + p�2)
q
(1 + �2)(1 + k02�2)

d�

=

Z
�=2

0

a cos2 � + b sin2 �

cos2 �+ p sin2 �

d�p
cos2 �+ k02 sin2 �

(k0
2
> 0):

For p < 0, this integral is defined by its principal value. See Notesfor special cases.

The functions K(k) and E(k):

K(k) =

Z
�=2

0

d p
1� k2 sin2  

(jkj < 1);

E(k) =

Z
�=2

0

q
1� k2 sin2  d (jkj � 1):
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Other common definitions of the complete elliptic integrals and their relations to F�
1, F�2, F�3 are listed here

for convenience (k2 + k0
2 = 1):

First kind:

F (k; �=2) = K(k) = F�1(k
0) (jkj < 1);

bF (1; k) =

Z 1

0

d�p
(1� �2)(1� k2�2) = F�1(k

0) (jkj < 1):

Second kind:

E(k; �=2) = E(k) = F�2(k
0; 1; k02) (jkj � 1);

bE(1; k) =

Z 1

0

s
1� k2�2
1� �2

d� = F�2(k
0; 1; k0

2
) (jkj � 1):

Third kind:

�(�=2; h; k) =

Z
�=2

0

d 

(1 + h sin2 )
p
1� k2 sin2 

= F�3(k
0; h+ 1) (jkj < 1);

b�(1; h; k) =

Z 1

0

d�

(1 + h�2)
p
(1� �2)(1� k2�2)

= F�3(k
0; h+ 1) (jkj < 1):

Structure:

FUNCTION subprograms
User Entry Names: RELI1C, RELI2C, RELI3C, RELIGC, RELIKC, RELIEC

DELI1C, DELI2C, DELI3C, DELIGC, DELIKC, DELIEC

Obsolete User Entry Names: ELLICK � RELIKC, ELLICE � RELIEC,

DELLIK � DELIKC, DELLIE � DELIEC

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression, with AK = k and AKP = k0,

RELI1C(AKP) or DELI1C(AKP) has the value F�1(k
0),

RELI2C(AKP,A,B) or DELI2C(AKP,A,B) has the value F�2(k
0; A; B),

RELI3C(AKP,AK2,P) or DELI3C(AKP,AK2,P) has the value F�3(k
0; P),

RELIGC(AKP,P,A,B) or DELIGC(AKP,P,A,B) has the value G(k0; P; A; B),

RELIKC(AK) or DELIKC(AK) has the value K(k),

RELIEC(AK) or DELIEC(AK) has the value E(k),

where RELI1C etc are of type REAL, DELI1C etc are of type DOUBLE PRECISION, and AKP, AK, AK2, A, B
and P have the same type as the function name.

The redundant parameter AK2 in RELI3C and DELI3C permits improved accuracy when k2 is small, i.e.
k0 � 1. In this case, AK2 = k2 should be calculated using higher-precision arithmetic and then truncated
before calling the subprogram.
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Method:

The evaluation of F�1, F�2, F�3 is based on the Landen transformation, that ofG on the Bartky transformation.
For details, see Ref. 1–3. For K(k) and E(k) Chebyshev approximations are used (see Ref. 4).

Accuracy:

The REAL functions (except on CDC and Cray computers) have full single-precision accuracy. The REAL

functions on CDC and Cray, and the DOUBLE PRECISION functions on all computers have an accuracy
approximately two significant digits less than the machine precision.

Restrictions:

1. RELI1C and DELI1C: AKP 6= 0.
2. RELI2C and DELI2C: AKP 6= 0 or AKP = 0 and B = 0.
3. RELI3C and DELI3C: AKP*P 6= 0.
4. RELIGC and DELIGC: AKP 6= 0.
5. RELIKC and DELIKC: jAKj � 1, RELIEC and DELIEC: jAKj < 1.

Error handling:

Error C347.1: Restriction 1 is not satisfied.
Error C347.2: Restriction 2 is not satisfied.
Error C347.3: Restriction 3 is not satisfied.
Error C347.4: Restriction 4 is not satisfied.
Error C347.5: Restriction 5 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

Notes:

Every linear combination of the three special complete elliptic integrals K(k), E(k), �(h; k) may be ex-
pressed in terms of G(k0; p; a; b):

�K(k) + �E(k) = G(k0; 1; �+ �; �+ �k0
2)

�K(k) + ��(h; k) = G(k0; h+ 1; �+ �; �(h+ 1) + �)

Special examples are
K(k) = G(k0; 1; 1; 1);

E(k) = G(k0; 1; 1; k02)

(K(k)� E(k))=k2 = G(k0; 1; 0; 1);

(K(k)� k02E(k))=k2 = G(k0; 1; 1; 0);

�(h; k) = G(k0; h+ 1; 1; 1);

(K(k)��(h; k))=h = G(k0; h+ 1; 0; 1);

If ab � 0 thenG will evaluate any linear combination of K(k), E(k), �(h; k) without cancellation (such as
would occur, for example, if (K(k)�E(k))=k2 were to be computed from values of K(k) and E(k) which
had been computed separately.
Other functions which can be represented by G are the Jacobian Zeta function Z(�; k) and the Heuman
Lambda function �0(�; k) (see Ref. 5):

Z(�; k) = k2
sin � cos�

K(k)
G(k0; q; 0;

p
q) (q = cos2�+ k0

2 sin2�)

�0(�; k) =
2

�

p
q sin �G(k0; q; 1; k0

2
) (q = 1 + k2 tan2�):

(Quoted from Ref. 3, slightly modified).
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Source:

The subprograms for F�1, F�2 are based on the Algol60 procedures cel1, cel2in Ref. 1, those for F�3 on cel3
in Ref. 2, and those for G on cel in Ref. 3.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

2. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions II, Numer. Math. 7
(1965) 353–354.

3. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions III, Numer. Math. 13
(1969) 305–315.

4. W.J. Cody, Chebyshev approximations for the complete elliptic integrals K and E, Math. Comp. 19
(1965) 105–112.

5. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed.,
Springer-Verlag Berlin (1971) 33–37.
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CELINT CERN Program Library C348

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Elliptic Integral for Complex Argument

Function subprograms CELINT and WELINT calculate, for complex argument z = x + iy and real comple-
mentary modulus k0 a general elliptic integral of the second kind:

F(z; k0; a; b) =

Z
z

0

a+ b�2

(1 + �2)
q
(1 + �2)(1 + k02�2)

d� (k0
2 � 0; Re(z) � 0);

which contains the elliptic integrals of the first and second kind as special cases:

F1(z; k
0) =

Z
z

0

d�q
(1 + �2)(1 + k02�2)

= F(z; k0; 1; 1);

F2(z; k0) =

Z
z

0

d�

(1 + �)2

s
1 + k02�2

1 + �2
= F(z; k0; 1; k02):

The double-precision version WELINT is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CELINT, WELINT
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression, with AKP = k0,

CELINT(Z,AKP,A,B) or WELINT(Z,AKP,A,B) has the value F(Z; k0; A; B),

where CELINT is of type COMPLEX, WELINT is of type COMPLEX*16, Z is of the same type as the function
name, and AKP, A, B are of type REAL for CELINT and of type DOUBLE PRECISION for WELINT.

Method:

The evaluation of F is based on the Gauss transformation. For details, in particular for the conformal
mapping provided by F, see Ref. 1.

Accuracy:

CELINT (except on CDC and Cray computers) has full single-precision accuracy. For most values of the
arguments, WELINT (and CELINT on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error C348.1: Re Z < 0. The function value is set equal to zero, and a message is written on Unit 6,
unless subroutine MTLSET (N002) has been called.
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Notes:

For other forms of the elliptic integrals see the write-up for RELI1 (C346).

Source:

The subprogram is based on the Algol60 procedure elco2given in Ref. 1.

References:

1. R. Bulirsch, Numerical calculation of elliptic integrals and elliptic functions, Numer. Math. 7 (1965)
78–90.

�
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RTHETA CERN Program Library C349

Author(s) : G.A. Erskine Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.06.1992

Language : Fortran Revised:

Jacobian Theta Functions

Function subprograms RTHETA and DTHETA calculate the Jacobian theta functions

#0(x; q) = 1 + 2
1X
n=1

(�1)nqn2 cos 2n�x;

#1(x; q) = 2
1X
n=0

(�1)nq(n+ 1

2
)
2

sin(2n+ 1)�x;

#2(x; q) = 2
1X
n=0

q(n+
1

2
)
2

cos(2n+ 1)�x;

#3(x; q) = 1 + 2
1X
n=1

qn
2

cos 2n�x;

#4(x; q) = #0(x; q);

for real arguments x and 0 � q < 1. #1(x+ 1
2
; 1) and #2(x; 1) are undefined if x is an integer; otherwise

#k(x; 1) = 0; k = 1; 2; 3; 4.

Note that several conflicting definitions of these functions occur in the literature. In particular, the argument
in the trigonometric terms is often defined to be x instead of �x.

On CDC and Cray computers, the double-precision version DTHETA is not available.

Structure:

FUNCTION subprogram
User Entry Names: RTHETA, DTHETA
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RTHETA(K,X,Q) or DTHETA(K,X,Q) has the value #K(X; Q),

where RTHETA is of type REAL, DTHETA is of type DOUBLE PRECISION, X and Q are of the same type as the
function name, and K is of type INTEGER.

Method:

If t (0 � t � 1
2
) differs from x or �x by an integer, it follows from the periodicity and symmetry properties

of the functions that #1(x; q) = �#1(t; q) and #3(x; q) = #3(t; q). In a region for which the approximation
is sufficiently accurate, #1 is set equal to the first (n = 0) term of the transformed series

#1(t; q) = 2(�=�)1=2e��t
2

1X
n=0

(�1)ne��(n+ 1

2
)2 sinh(2n+ 1)�t;
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and #3 is set equal to the first two (i.e. n � 1) terms of

#3(t; q) = (�=�)1=2e��t
2

 
1 + 2

1X
n=1

e��n
2

cosh 2n�t

!
;

where � = �2=j ln qj. Otherwise the trigonometric series for #1(t; q) and #3(t; q) are used.

For all x, #0 and #2 are computed from #0(x; q) = #3(
1
2
� jxj; q), #2(x; q) = #1(

1
2
� jxj; q).

Restrictions:

1. 0 � Q � 1.
2. K = 0; 1; 2; 3;4.
3. If Q = 1 and K = 1, X�1

2
must not be an integer.

If Q = 1 and K = 2, X must not be an integer.

Error handling:

Error C349.1: Restriction 1 is not satisfied.
Error C349.2: Restriction 2 is not satisfied.
Error C349.3: Restriction 3 is not satisfied.
In all cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

Accuracy:

For DTHETA (and for RTHETA on CDC and Cray computers), the error when Q is less than approximately 0.9
does not exceed two decimal digits in the last place. For larger values of Q (provided the computed result is
non-zero), the error is at worst comparable in magnitude to the mathematical error which would be caused
by one-bit rounding errors in the arguments X and Q.

On computers other than CDC and Cray, non-zero values of RTHETA have full machine accuracy.

Notes:

Successive references using the same value of Q are executed faster than those in which Q changes.

Many functional relations, including relations between the theta functions and the Jacobian elliptic func-
tions, are given in Refs. 1–4.

References:

1. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of math-
ematical physics, Springer-Verlag Berlin (1966) 371–377.

2. F. Tölke, Praktische Funktionenlehre, Bd. II, Springer-Verlag Berlin (1966) 1–38.

3. P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd Edition,
Springer-Verlag Berlin (1971) 315–320.

4. E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th Edition, Cambridge University
Press, Cambridge (1946) Chapter 21.
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SIMPS CERN Program Library D101

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.01.1988

Language : Fortran Revised:15.03.1993

Integration by Simpson’s Rule

Function subprograms SIMPS and DSIMPS use Simpson’s rule to compute an approximate value of the
integral

I =

Z
B

A

f(x)dx:

On CDC or Cray computers, the double-precision version DSIMPS is not available.

Structure:

FUNCTION subprograms
User Entry Names: SIMPS, DSIMPS
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

SIMPS(F,A,B,N) or DSIMPS(F,A,B,N)

has the approximate value of the integral I , where SIMPS is of type REAL and DSIMPS is of type DOUBLE

PRECISION, and F, A, B have the same type as the function name. N is of type INTEGER.

F One-dimensional array with dimension (0:d), where d � N, containing the value of f(x) at N+1
equally-spaced points xi; (i = 0; 1; : : : ; N), with x0 = A and xN = B.

A,B End-points of integration interval.

N As defined above. N must be positive and even.

Error handling:

Error D101.1: N � 0 or N odd. The function value is set equal to zero, and a message is written on Unit 6,
unless subroutine MTLSET (N002) has been called.
�
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RADAPT CERN Program Library D102

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Adaptive Gaussian Quadrature

Subroutine subprograms RADAPT and DADAPT calculate, to an attempted specified accuracy, the value of the
integral

I =

Z
b

a

f(x) dx

by adaptive subdivision of the interval (a; b), calculating the integrals over the subintervals using RGS56P

and DGS56P (D106).

On CDC and Cray computers, the double-precision version DADAPT is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RADAPT, DADAPT
External References: RGS56P (D106), DGS56P (D106), user-supplied FUNCTION subprogram.

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tADAPT(F,A,B,NSEG,RELTOL,ABSTOL,RES,ERR)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in
the calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-points of integration interval. Note that B may be less than A.

NSEG (INTEGER) Specifies how the adaptation is to be done:
= 0 : use the subdivisions as determined in the previous call to tADAPT,
= 1 : fully automatic, adapt until tolerance attained,
= n > 1 : first split interval into n equal segments, then adapt as necessary to attain tolerance.

RELTOL (type according to t) Specified relativetolerance.

ABSTOL (type according to t) Specified absolutetolerance.

The calculation comes to an end if either RELTOL or ABSTOL is satisfied, or the number of
segments exceeds 100. Either RELTOL or ABSTOL can be set to zero, in which case only the
other is used.

RES (type according to t) The calculated approximation for I .

ERR (type according to t) An estimated absolute uncertainty on this approximation.

Method:

The automatic adaption is done as follows: At each step, the total integral is estimated as the sum of the
integrals over the subdivisions, and the squared uncertainty is estimated as the sum of the squares of the
uncertainties over all subdivisions. If this uncertainty is too big (failing both the absolute and relative
tolerance criteria) then the subinterval with the largest absolute uncertainty is divided in half.
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Accuracy:

The true accuracy is usually very close to the uncertainty returned by the subroutine, sometimes it is much
better, but very seldom worse. Even on functions with (integrable) singularities, the results are usually
reliable, as long as the singularity is “wide enough” to be detected in the early stages, which can be controlled
by the value of NSEG.
�
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GAUSS CERN Program Library D103

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 02.05.1966

Language : Fortran Revised:15.03.1993

Adaptive Gaussian Quadrature

Function subprograms GAUSS, DGAUSS and QGAUSS compute, to an attempted specified accuracy, the value
of the integral

I =

Z
B

A

f(x)dx:

The quadruple-precision version QGAUSS is available only on computers which support a REAL*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: GAUSS, DGAUSS, QGAUSS
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

In any arithmetic expression,

GAUSS(F,A,B,EPS), DGAUSS(F,A,B,EPS) or QGAUSS(F,A,B,EPS)

has the approximate value of the integral I .

F Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must set F(X) = f(X).

A,B End-points of integration interval. Note that B may be less than A.

EPS Accuracy parameter (see Accuracy).

GAUSS is of type REAL, DGAUSS is of type DOUBLE PRECISION, QGAUSS is of type REAL*16, and the argu-
ments F, A, B, EPS and X (in F) have the same type as the function name.

Method:

For any interval [a; b] we define g8(a; b) and g16(a; b) to be the 8-point and 16-point Gaussian quadrature
approximations to Z

b

a

f(x)dx

and define

r(a; b) =
jg16(a; b)� g8(a; b)j

1 + jg16(a; b)j
:

Then, withG = GAUSS or DGAUSS,

G =
kX
i=1

g16(xi�1; xi);
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where, starting with x0 = A and finishing with xk = B, the subdivision points x i (i = 1; 2; : : :) are given
by

xi = xi�1 + �(B � xi�1);
with � equal to the first member of the sequence 1; 1

2
; 1
4
; : : : for which r(xi�1; xi) < EPS. If, at any stage

in the process of subdivision, the ratio

q =

����xi � xi�1

B �A

����
is so small that 1 + 0:005q is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of f(x) over the interval [A;B], the
argument EPS may be considered as specifying a bound on the relativeerror of I in the case jI j > 1, and
a bound on the absoluteerror in the case jI j < 1. More precisely, if k is the number of sub-intervals
contributing to the approximation (see Method), and if

Iabs =

Z
B

A

jf(x)jdx;

then the relation jG� I j
Iabs + k

< EPS

will nearly always be true, provided the routine terminates without printing an error message. For functions
f having no singularities in the closed interval [A;B] the accuracy will usually be much higher than this.

Error handling:

Error D103.1: The requested accuracy cannot be obtained (see Method). The function value is set equal
to zero, and a message is written on Unit 6 unless subroutine MTLSET (N002) has been called.

Notes:

Values of the function f(x) at the interval end-points A and B are not required. The subprogram may
therefore be used when these values are undefined.
�
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RCAUCH CERN Program Library D104

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 10.08.1967

Language : Fortran Revised:01.12.1994

Cauchy Principal Value Integration

Function subprograms RCAUCH and DCAUCH compute the Cauchy principal value integral

I = P

Z
B

A

f(x)dx

where f has a singularity inside or outside the interval [A;B] such that the Cauchy principal value exists.
On computers other than CDC or Cray, only the double-precision version DCAUCH is available. On CDC and
Cray computers, only the single-precision version RCAUCH is available.

Structure:

FUNCTION subprograms
User Entry Names: RCAUCH, DCAUCH
Obsolete User Entry Names: CAUCHY � RCAUCH

Files Referencend: Unit 6

External References: GAUSS (D103), DGAUSS (D103), MTLMTR (N002),
ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tCAUCH(F,A,B,S,EPS)

has, in any arithmetic expression, the approximate value of the integral I .

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-points of the integration interval. Note that B may be less than A.

S (type according to t) The absissa of the singularity.

EPS (type according to t) Accuracy parameter (see under Accuracy in the in short write-up for GAUSS
(D103)).

Method:

The method described in Ref. 1 is used for decomposition of the integral. The resulting integrals are
computed by GAUSS (D103).

Accuracy:

See short write-up for GAUSS (D103).

Error handling:

Error D104.1: S = A or S = B.
Error D104.2: The requested accuracy cannot be obtained (see short write-up for GAUSS (D103)).
The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET

(N002) has been called.

References:

1. I.M. Longman, On the numerical evaluation of Cauchy principal values of integrals, MTAC (later
renamed Math. Comp.) 12 (1958) 205–207.
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RTRINT CERN Program Library D105

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 02.05.1966

Language : Fortran Revised:01.12.1994

Integration over a Triangle

Function subprograms RTRINT and DTRINT compute an approximate value of the integral

I =

Z Z
f(x; y) dxdy;

evaluated over the interior of an arbitrary triangle� in the xy-plane. An attempted accuracy may, optionally,
be specified.

On computers other than CDC or Cray, only the double-precision version DTRINT is available. On CDC and
Cray computers, only the single-precision version RTRINT is available.

Structure:

FUNCTION subprograms
User Entry Names: RTRINT, DTRINT
Obsolete User Entry Names: TRIINT � RTRINT

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tTRINT(F,NSD,NPT,EPS,X1,Y1,X2,Y2,X3,Y3)

has, in any arithmetic expression, the approximate value of the integral I .

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X; Y) = f(X; Y).

NSD (INTEGER)
= 0 : No subdivision of the given triangle.
= 1 : Subdivision of the given triangle (see Method).

NPT (INTEGER)
= 7 : A 7-point integration formula is used.
= 25 : A 25-point integration formula is used.
= 64 : A 64-point integration formula is used.

EPS (type according to t) Accuracy parameter (see Accuracy).

X1,Y1 (type according to t) The coordinates of the vertices of �.

X2,Y2

X3,Y3
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Method:

NSD = 0 :
An approximation I0 to I is found by computing the NPT-point formula for the triangle �. The value of EPS
has no influence on the result.
NSD = 1 :
After computing I0, the triangle � is subdivided into two subtriangles � 0 and �00, the corresponding ap-
proximations I 0 and I 00 are computed, and a test is made to see whether

jI0 � (I 0 + I 00)j
1 + jI 0 + I 00j < EPS

If this test is satisfied, the routine terminates by setting the function value to I 0. If it fails, the process of
subdivision and testing continues according to a tree structure. The routine terminates either because the test
is passed successfully by all the subtriangles at some level, or because a maximum number of subdivisions
is reached (see Error Handling ).

Accuracy:

Unless there is severe cancellation of positive and negative values of f(x; y) over �,the argument EPS may,
if NCD = 1, be considered as specifying a bound on the relative error of I in the case jI j > 1, and a bound
on the absolute error in the case jI j < 1.

Restrictions:

”Mild” singularities are permitted if they coincide with the vertices of �. Any other singularity lying inside
� or on its boundaries will most likely lead to too many subdivisions (see Error Handling ), or cause a
wrong result.

Error handling:

Error D105.1: NPT 6= 7; 25; 64.
Error D105.2: The number of subdivisions has reached 35 without success.
In both cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

References:

1. K.S. Kölbig, A Fortran program and some numerical test results for the integration over a triangle,
CERN 64–32 (1964).
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RGS56P CERN Program Library D106

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Gaussian Quadrature with Five- and Six-Point Rules

Subroutine subprograms RGS56P and DGS56P calculate an approximation and uncertainty for the integral

I =

Z
b

a

f(x) dx

equal respectively to the mean value and the difference of the results I5 and I6 obtained by the five- and
six-point Gaussian integration rules.

On CDC and Cray computers, the double-precision version DGS56P is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RGS56P, DGS56P
External References: User-supplied FUNCTION subprogram.

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tGS56P(F,A,B,RES,ERR)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-points of integration interval. Note that B may be less than A.

RES (type according to t) The calculated approximation for I , i.e. 1
2
(I5 + I6),

ERR (type according to t) An estimated uncertainty on this approximation, i.e. jI5 � I6j.

�
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RGQUAD CERN Program Library D107

Author(s) : G.A. Erskine Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.06.1992

Language : Fortran Revised:

N-Point Gaussian Quadrature

Function subprograms RGQUAD and DGQUAD calculate the approximate value of the integralZ
b

a

f(t)dt

using theN -point Gauss-Legendre quadrature formula corresponding to the interval [a; b].

Subroutine subprograms RGSET and DGSET store, for subsequent use, the abscissae xi and the weightswi of
the N -point Gauss-Legendre quadrature formula corresponding to the interval [a; b].

The following values of N may be used: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.

RGQUAD, RGSET and DGQUAD, DGSET are independent subprograms: it is not necessary, for instance, to call
DGSET in order to use DGQUAD, or vice-versa.

On CDC and Cray computers, the double-precision versions DGQUAD and DGSET are not provided.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RGQUAD, RGSET, DGQUAD, DGSET
Internal Entry Names: D107R1, D107D1
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), User-supplied FUNCTION subprogram

Usage:

To calculate the integral:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

tGQUAD(F,A,B,N)

has, in any arithmetic expression, the value
NX
i=1

wif(xi) which is an approximation to the given integral.

To store the abscissaexi and the weightswi:

CALL tGSET(A,B,N,X,W)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

A,B (type according to t) End-points a and b of the integration interval.

N (INTEGER) Number N of quadrature points.

X,W (type according to t) One-dimensional arrays. On exit, X(i) and W(i) contain xi and wi; (i =
1; 2; : : : ; N), respectively.

Method:

The values of xi and wi are computed by linearly scaling values obtained from a stored table corresponding
to the interval [�1;+1].
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Accuracy:

The absolute error of RGQUAD and DGQUAD is proportional to the value of the (2N)th derivative of f at some
internal point of the interval [a; b] (see Ref. 1).

Error handling:

Error D107.1: The value N does not appear in the list given above. A message is written on Unit 6, unless
subroutineMTLSET (N002) has been called. If the subprogram referenced is RGQUAD or DGQUAD, the function
value is set equal to zero.

References:

1. A.H. Stroud and D. Secrest, Gaussian quadrature formulas, (Prentice-Hall, Englewood Cliffs 1966).
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TRAPER CERN Program Library D108

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.03.1968

Language : Fortran Revised:

Trapezoidal Rule Integration with an Estimated Error

Let a function f(x) be given by its values at certain discrete points x�(� = 1; 2; : : : ; n). Let the function
values y� be accompanied by an estimated standard deviation "� (square root of the variance). Subroutine
subprogram TRAPER then approximates the integral

I =

Z
B

A

f(x)dx '
X
�

w�y�

by a linear combination of the y� using the trapezoidal rule. It calculates the standard deviation � of I by

� =

sX
�

w2
�"

2
� :

The function values f(A) and f(B) are calculated by linear interpolation.

Structure:

SUBROUTINE subprogram
User Entry Names: TRAPER

Usage:

CALL TRAPER(X,Y,E,N,A,B,RE,SD)

X,Y,E (REAL) Arrays of length� n containing x� ; y� ; "� , respectively.

N (INTEGER) Number of function values

A,B (REAL) Limits of integration.

RE (REAL) On exit, RE contains an approximate value of the integral I .

SD (REAL) On exit, SD contains an approximate value of the standard deviation �.

If no "� are given, the array E should be filled with zeros.

Restrictions:

Although there are no restrictions on A and B (B may be less than A), care must be taken if one or both of
them is either smaller than X(1) or bigger than X(N). In these cases f(A) or f(B) are extrapolated linearly
from Y(1) and Y(2) or Y(N-1) and Y(N) respectively, which may lead to unreasonable results. If A = B or
N < 2, RE and SD will be set to zero. It is assumed that all the x� are distinct. No test is made for this.

Notes:

This program should only be used for the problem described above. For general-purpose numerical integra-
tion to a preassigned accuracy use GAUSS (D103).
�

102 D108 – 1



RGMLT CERN Program Library D110

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1988

Language : Fortran Revised:15.03.1993

Gaussian Quadrature for Multiple Integrals

Function subprogram packages RGMLT and DGMLT compute an approximate value of an n-dimensional inte-
gral of the form

In =

Z
bn

an

dxn�n(xn)

Z
bn�1(xn)

an�1(xn)

dxn�1�n�1(xn�1; xn) � � �

�2(x2; : : : ; xn)

Z
b1(x2;::: ;xn)

a1(x2;::: ;xn)

dx1�1(x1; : : : ; xn);

where 1 � n � 6.

Each subprogram integrates over only one variable. The integral In is computed by means of a set of n
nested calls to these subprograms.

On computers other than CDC or Cray, only the double-precision version DGMLT is available. On CDC and
Cray computers, only the single-precision version RGMLT is available.

Structure:

FUNCTION subprograms
User Entry Names: RGMLT1, RGMLT2, RGMLT3, RGMLT4, RGMLT5, RGMLT6,

DGMLT1, DGMLT2, DGMLT3, DGMLT4, DGMLT5, DGMLT6
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied SUBROUTINE subprograms

Usage:

1. Let k be one of the integers 1; 2; : : : ; 6. Then, in any arithmetic expression,

RGMLTk(FSUBk,Ak,Bk,NIk,NGk,X) or

DGMLTk(FSUBk,Ak,Bk,NIk,NGk,X)

has the approximate value of the integral with respect to xk of the function specified below.

RGMLTk is of type REAL, DGMLTk is of type DOUBLE PRECISION, and the arguments Ak, Bk, and X

have the same type as the function name. NIk and NGk are of type INTEGER.

FSUBk Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling
program.

Ak,Bk End points of the integration interval for variable xk.

NIk Number of equal subintervals into which the interval (Ak,Bk) is divided.

NGk Number of Gaussian quadrature points to be used in each of the NIk subintervals. (If
NGk has any value other than 6 or 8, the value 6 is assumed).

X 0ne-dimensional array of dimension� n.
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2. The subroutine FSUBk should be of the form

SUBROUTINE FSUBk (M,Uk,Fk,X)

where Uk, Fk and X are of type REAL for RGMLTk and of type DOUBLE PRECISION for DGMLTk, and
where M is of type INTEGER.

M An integer (� 64), whose value is set by RGMLTk (DGMLTk).

Uk One-dimensional array with declared dimension(*), whose contents is set by RGMLTk (DGMLTk).

Fk One-dimensional array with declared dimension (*), whose contents must be set by FSUBk

as described below.

X One-dimensional array which must be the same as the array X appearing as an actual argument
in all calls to RGMLT1, RGMLT2,: : : (DGMLT1, DGMLT2, : : : ).

The subprogram RGMLTk (DGMLTk) which calls subroutine FSUBk sets the value of M and places in array Uk

a set of M values of the variable xk. Then, if fk(xk; : : : ; xn) denotes the function which is to be integrated
with respect to xk, it is the job of subroutine FSUBk to set X(k) to the appropriate value of xk, to compute
fk for each of these values of xk (taking the remaining variables xk+1; : : : ; xn from X(k+1),: : : ,X(n)
respectively) and place the results in array Fk. (See Examples).

Method:

Integration with respect to each variable is performed by applying the 6- or 8-point Gaussian quadrature
formula to each of the equal sub-intervals.

Notes:

1. The time needed to compute an n-dimensional integral by means of these subprograms is approxi-
mately

(NG1 � NG2 � � � � � NGn) � (NI1 � NI2 � � � � � NIn):
This should be kept in mind when choosing the values of NIk.

2. The accuracy of a particular calculation can be estimated by repeating the integration with different
values of NGk (e.g., 8 instead of 6) or by changing NIk, the latter usually being less economical.

Error handling:

Error D110.1: NIk � 0. A message is written on Unit 6, unless subroutine MTLSET (N002) has been
called. Execution is halted on a STOP instruction.

Examples:

To calculate (in type REAL) the integral

Q2 =

Z 1

0

dx2
p
x2e

x2

Z p
x2

0

dx1x1

q
x21 + x2 =

1

3
(2
p
2� 1)(e� 2)

using 6-point Gaussian quadrature over each of n2 = 3; n1 = 4 subdivisions of the corresponding interval.
In the main program, write for instance
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...

EXTERNAL FSUB2

DIMENSION X(2)

Q2=RGMLT2(FSUB2,0.,1.,3,6,X)

...

For the SUBROUTINE subprograms FSUB2, FSUB1 write for instance

SUBROUTINE FSUB2(M,U2,F2,X)

EXTERNAL FSUB1

DIMENSION U2(*),F2(*),X(2)

DO 1 L = 1,M

X(2)=U2(L)

R=SQRT(X(2))

1 F2(L)=R*EXP(X(2))*RGMLT1(FSUB1,0.,R,4,6,X)

RETURN

END

SUBROUTINE FSUB1(M,U1,F1,X)

DIMENSION U1(*),F1(*),X(2)

DO 1 L = 1,M

X(1)=U1(L)

1 F1(L)=X(1)*SQRT(X(1)**2+X(2))

RETURN

END

�
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CGAUSS CERN Program Library D113

Author(s) : G.A. Erskine Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 07.12.1970

Language : Fortran Revised:15.03.1993

Adaptive Complex Integration Along a Line Segment

Function subprograms CGAUSS and WGAUSS compute, to an attempted specified accuracy, the value of the
complex integral

I =

Z
B

A

f(z)dz:

The path of integration is the directed line segment AB in the complex z-plane. The function f(z) must be
single-valued on this segment.

The double-precision version WGAUSS is available only on computers which support a COMPLEX*16 Fortran
data type.

Structure:

FUNCTION subprograms
User Entry Names: CGAUSS, WGAUSS
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

In any arithmetic expression,

CGAUSS(F,A,B,EPS) or WGAUSS(F,A,B,EPS)

has the approximate value of the integral I .

F Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subroutine must set F(Z) = f(Z).

A,B End-points of integration interval.

EPS Accuracy parameter (see Accuracy).

CGAUSS is of type COMPLEX, WGAUSS is of type COMPLEX*16, and the arguments F, A, B, and Z (in F) have
the same type as the function name. EPS is of type REAL for CGAUSS and of type DOUBLE PRECISION for
WGAUSS.

Method:

For any line segment [a; b] we define g8(a; b) and g16(a; b) to be the 8-point and 16-point Gaussian quadra-
ture approximations to Z

b

a

f(z)dz

and define

r(a; b) =
jg16(a; b)� g8(a; b)j

1 + jg16(a; b)j :
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Then, withG = CGAUSS or WGAUSS,

G =
kX
i=1

g16(zi�1; zi);

where, starting with z0 = A and finishing with zk = B, the subdivision points z i (i = 1; 2; : : :) are given
by

zi = zi�1 + �(B � zi�1);

with � equal to the first member of the sequence 1; 1=2; 1=4; : : : for which r(zi�1; zi) < EPS. If, at any
stage in the process of subdivision, the ratio

q =

����zi � zi�1

B �A

����
is so small that 1 + 0:005q is indistinguishable from 1 to machine accuracy, an error exit occurs with the
function value set equal to zero.

Accuracy:

Unless there is severe cancellation of positive and negative values of f(z) over the interval [A;B], the
argument EPS may be considered as specifying a bound on the relativeerror of I in the case jI j > 1, and
a bound on the absoluteerror in the case jI j < 1. More precisely, if k is the number of sub-intervals
contributing to the approximation (see Method), and if

Iabs =

Z
B

A

jf(z)jdz;

then the relation
jG� I j
Iabs + k

< EPS

will nearly always be true, provided the routine terminates without printing an error message. For functions
f having no singularities in the closed interval [A;B] the accuracy will usually be much higher than this.

Error handling:

Error D113.1: The requested accuracy (see Method) cannot be obtained. The function value is set equal to
zero, and a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

Notes:

Values of the function f(z) at the end-points of the line segment A andB are not required. The subprogram
may therefore be used when these values are undefined.
�
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RIWIAD CERN Program Library D114

Author(s) : B. Lautrup Library: MATHLIB

Submitter : Submitted: 23.07.1971

Language : Fortran Revised:10.01.1986

Adaptive Multidimensional Monte-Carlo Integration

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) RADMUL (D120)

RIWIAD is an adaptive multidimensional integration subroutine based on an original by G. Sheppey. It
permits numerical integration of a large class of functions, in particular those that are irregular at the border
of the integration region. The integral is always performed over the unit hypercube.

Structure:

SUBROUTINE subprogram
User Entry Names: RIWIAD
Files Referenced: Unit 6

External References: RNDM (V104) user-supplied FUNCTION subprogram
COMMON Block Names and Lengths: /ANSWER/ 2, /INTERN/ 7, /OPTION/ 3, /PARAMS/ 4,

/RANDOM/ 1, /STORE/ 77, /STORE1/ 10001

Usage:

See Long Write-up for a description of all features. Here only the standard use is described.

The COMMON block PARAMS must always be set by the user:

COMMON /PARAMS/ ACC,NDIM,NSUB,ITER

ACC (REAL) Relative accuracy desired.

NDIM (INTEGER) Number of dimension parameters.

NSUB (INTEGER) Number of subvolumes allowed.

ITER (INTEGER) Maximal number of iterations.

The integrand is defined by a user-supplied FUNCTION subprogram having the array Q(NDIM) as parameter,
for example

FUNCTION EXAMPLE(Q)

REAL EXAMPLE,Q

DIMENSION Q(7)

...

END
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This program defines EXAMPLE as a function of the 7 variables Q(1); Q(2); : : : ; Q(7). The sequence

EXTERNAL EXAMPLE

COMMON /PARAMS/ ACC,NDIM,NSUB,ITER

ACC=0.01

NDIM=7

NSUB=10000

ITER=5

CALL RIWIAD(EXAMPLE)

...

will then integrate EXAMPLE over the 7 variables Q(1); : : : ; Q(7), all in the interval from 0 to 1, i.e. over the
7-dimensional unit hypercube. The result will be printed in detail in a readily understandable form.

The program allows extensive user control via the COMMON blocks. See Long Write-up for details.

Method:

RIWIAD is iterative and in a given iteration it divides the unit hypercube into a certain number of subvolumes
by means of a given set of intervals on each axis. Within each subvolume it estimates the mean value and
variance of the integrand by random sampling, and then calculates the Riemann sum over the subvolumes.
Using the variances found projected onto each axis it calculates a set of new interval divisions to be used
in the next iteration. It returns when the desired accuracy is obtained or when the maximum number of
iterations has been performed.

Restrictions:

There is, in principle, no limitations on the number of dimensions, although the present version only allows
up to 9-dimensional integrals. The maximal dimensionality can easily be increased.

Notes:

1. The program is rather slow and should preferably be used only when other methods (for instance
Gaussian quadrature) fail due to the irregular behaviour of the integrand. The time consumption is
essentially proportional to the product of NSUB and ITER.

2. The non-CDC/Cray implementation of RIWIAD has IMPLICIT DOUBLE PRECISION(A-H,O-Z), i.e.
all non-INTEGER variables are DOUBLE PRECISION, including the user-supplied external function.

�
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RADMUL CERN Program Library D120

Author(s) : A.C. Genz, A.A. Malik Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 15.11.1995

Language : Fortran Revised:

Adaptive Quadrature for Multiple Integrals over N -Dimensional Rectangular Regions

Subroutine subprograms RADMUL and DADMUL compute, to an attempted specified accuracy, the value of the
integral

In =

Z
bn

an

Z
bn�1

an�1

� � �
Z

b1

a1

f(x1; x2; : : : ; xn) dx1 dx2 � � � dxn

over an n-dimensional rectangular region, where ai; bi, (i = 1; 2; : : : ; n) are constants.

On computers other than CDC and Cray, only the double-precision version DADMUL is available. On CDC
and Cray computers, only the single-precision version RADMUL is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RADMUL, DADMUL
External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tADMUL(F,N,A,B,MINPTS,MAXPTS,EPS,WK,IWK,RESULT,RELERR,NFNEVL,IFAIL)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

N (INTEGER) Number n of dimensions (2 � N � 15).

A,B (type according to t) One-dimensional arrays of length� N. On entry, A(i) and B(i),
(i = 1; : : : ; N), contain the lower and upper limits of integration, respectively. Note that ai; bi
correspond to xi.

MINPTS (INTEGER) Minimum number of function evaluations requested. Must not exceed MAXPTS.

MAXPTS (INTEGER) Maximum number (� 2**N+ 2N(N+ 1) + 1) of function evaluations to be allowed.

EPS (type according to t) Specified relativeaccuracy.

WK (type according to t) One-dimensional array of length IWK, used as working space.

IWK (INTEGER) Length (� (2N + 3) � (1 + MAXPTS=(2**N+ 2N(N + 1) + 1))=2) of WK.

RESULT (type according to t) Contains, on exit, an approximate value of the integral In.

RELERR (type according to t) Contains, on exit, an estimation of the relative accuray of RESULT.

NFNEVL (INTEGER) Contains, on exit, the number of function evaluations performed.
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IFAIL (INTEGER) On exit:

0 Normal exit. RELERR < EPS. At least MINPTS and at most MAXPTS calls to the function F

were performed.

1 MAXPTS is too small for the specified accuracy EPS. RESULT and RELERR contain the values
obtainable for the specified value of MAXPTS.

2 IWK is too small for the specified number MAXPTS of function evaluations.
RESULT and RELERR contain the values obtainable for the specified value of IRK.

3 N < 2, or N > 15, or MINPTS > MAXPTS, or MAXPTS < 2**N+ 2N(N + 1) + 1.
RESULT and RELERR are set equal to zero.

The user-supplied FUNCTION subprogram F should be of the form

FUNCTION F(N,X)

DIMENSION X(*)

...

F =f(X(1); :::; X(N)).

RETURN

END

where X and F are of type t.

Method:

An integration rule of degree seven is used together with a certain strategy of subdivision. For a more
detailed description of the method see References.

Error handling:

See description of argument IFAIL.

Notes:

1. Multi-dimensional integration is time-consuming. For each rectangular subregion, the routine requires
2n + 2n2 + 2n + 1 function evaluations. Careful programming of the integrand might result in
substantial saving of time.

2. Numerical integration usually works best for smooth functions. Some analysis or suitable transfor-
mations of the integral prior to numerical work may contribute to numerical efficiency.

Source:

This subroutine is an adapted version of Fortran program ADAPT published in Ref. 1.

References:

1. A.C. Genz and A.A. Malik, Remarks on algorithm 006: An adaptive algorithm for numerical integra-
tion over an N -dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295–302.

2. A. van Doren and L. de Ridder, An adaptive algorithm for numerical integration over ann-dimensional
cube, J. Comput. Appl. Math. 2 (1976) 207–217.

A copy of the text part of the References is available.
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DIVON4 CERN Program Library D151

Author(s) : J.H. Friedman, M.H. Wright (Stanford) Library: MATHLIB

Submitter : F. James Submitted: 01.12.1981

Language : Fortran Revised:14.08.1985

Multidimensional Integration or Random Number Generation

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: (in part) RADMUL (D120)

DIVON4 is designed for integration of scalar functions of several variables, especially functions not smooth
enough to be integrated reliably using Gaussian quadrature. It can also be used effectively to generate
random points in a multidimensional space, with point density given by any bounded function. The heart
of the package is an algorithm for recursive multi-dimensional partitioning of the space into subregions of
approximately constant function value (minimum range criterion).

Structure:

SUBROUTINE package
User Entry Names: BUKDMP, DIVON, DVNOPT, GENPNT, INTGRL, PARTN, RANGEN, TREDMP,

USRINT, USRTRM, DVNBKD, EXMBUC, SPLIT, QUASI, RECPAR, BOUNDS,

TREAUD, NODAUD, BUCMVE, QUAD, FEQN, NOCUT, TSTEXT, DELSLV,

FUN, BUFOPT, BNDOPT, SETTOL, BNDTST, DVCOPY, GRDCMP, DELETE,

BFGS, MODCHL, NMDCHL, DVDOT, LDLSOL, SHRNK, FEASMV, ADDBND,

MULCHK, DELBND, LOCSCH, ORTHVC, MXSTEP, NEWPTR, RLEN, RANUMS

Files Referenced: Printer and optional user-defined external file
External References: NRAN (V105), user-supplied FUNCTION subprogram DFUN

Usage:

The function (integrand) is defined by a user-supplied FUNCTION subprogram which must have the name
DFUN and must calculate the integrand in double-precision mode:

FUNCTION DFUN(ND,X)

DOUBLE PRECISION DFUN,X(ND)

...

DFUN = ...

...

RETURN

END

ND (INTEGER) Number of integration variables.

X (DOUBLE PRECISION) Array containing the coordinates of the point in the integration volume at
which DFUN is to be evaluated.

See Long Write-up for details.

References:

1. J.H. Friedman and M.H. Wright, A Nested Partitioning Procedure for Numerical Multiple Integration.
ACM Trans. Math. Software 7 (1981) 76–92.
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RRKSTP CERN Program Library D200

Author(s) : G.A. Erskine Library: MATHLIB

Submitter : Submitted: 01.09.1983

Language : Fortran Revised:01.03.1994

First-order Differential Equations (Runge–Kutta)

Subroutine subprograms RRKSTP and DRKSTP advance the solution of the system of n � 1 simultaneous
first-order differential equations

dyi

dx
= fi(x; y1; : : : ; yn); (i = 1; 2; : : : ; n)

by a single step of length h in the independent variable x.
On CDC and Cray computers, the double-precision version DRKSTP is not available.

Structure:

SUBROUTINE subprograms
User Entry Names : RKSTP, DRKSTP
Obsolete User Entry Names : RKSTP � RRKSTP

Files Referenced : Unit 6

External References: user-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tRKSTP(N,H,X,Y,SUB,W)

N (INTEGER) Number n of equations.

H (type according to t) The step-length h.

X (type according to t) On entry, X must be equal to the initial value of the independent variable x.
On exit, X is equal to x+ h.

Y (type according to t) One-dimensional array of length� N. On entry, Y(i); (i= 1; : : : ; N), must
contain yi(x). On exit, Y(i); (i= 1; : : : ; N), contains approximate values yi(x+ h).

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 3*N elements required as working-space.

The user-supplied subroutine SUB should be of the form

SUBROUTINE SUB(X,Y,F)

where the variable X and the one-dimensional arrays Y(*) and F(*) are of type t. This subroutine must set

F(I) = fI(X; Y(1); : : : ; Y(N)) (I = 1; 2; : : : ; N):

Method:

Using boldface quantities to denote vectors of length n, the computational sequence is as follows:

k1 = hf(x;y(x));

k2 = hf(x+ 1
2
h;y(x) + 1

2
k1);

k3 = hf(x+ 1
2
h;y(x) + 1

2
k2);

k4 = hf(x+ h;y(x) + k3); y(x+ h) = y(x) + 1
6
(k1 + 2k2 + 2k3 + k4)

The error per step is proportional to h5.
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Error handling:

N < 1 acts as do nothing.

References:

1. F.B. Hildebrand, Introduction to numerical analysis, (McGraw-Hill, New–York 1956) Sect. 6.16.
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RDEQBS CERN Program Library D201

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:01.12.1994

First-order Differential Equations (Gragg–Bulirsch–Stoer)

Subroutine subprograms RDEQBS and DDEQBS advance the solution of the system of n � 1 simultaneous
first-order differential equations

dyi

dx
= fi(x; y1; : : : ; yn); (i = 1; 2; : : : ; n);

from a specified value x1 to a specified value x2 of the independent variable x.

On computers other than CDC and Cray, only the double-precision version DDEQBS is available. On CDC
and Cray computers, only the single-precision version RDEQBS is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RDEQBS, DDEQBS
Obsolete User Entry Names: DEQBS � RDEQBS

Files Referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tDEQBS(N,X1,X2,Y,H0,EPS,SUB,W)

N (INTEGER) Number n of equations.

X1 (type according to t) Initial value x1 of the independent variable x.

X2 (type according to t) Final value x2 of the independent variable x.

Y (type according to t) One-dimensional array of length � N. On entry, Y(i); (i= 1; : : : ; N), must
contain yi(x1). On exit, Y(i); (i= 1; : : : ; N), contains approximate values yi(x2).

H0 (type according to t) On entry, H0 must contain the proposed initial step-length h 0. On exit, H0
contains the last computed step-length (See also Method and Notes).

EPS (type according to t) The requested absolute accuracy ". (EPS should not be smaller than approxi-
mately 103 times the machine precision).

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 36*N elements required as working-space.

The user-supplied subroutine SUB should be of the form

SUBROUTINE SUB(X,Y,F)

where the variable X and the one-dimensional arrays Y(*) and F(*) are of type t. This subroutine must set

F(I) = fI(X; Y(1); : : : ; Y(N)) (I = 1; 2; : : : ; N):
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Method:

For the first integration step, starting at x = x1, the step-length h is chosen to be the smallest of the numbers
h0; h0=2; h0=4; : : : for which not more than 9 stages of internal extrapolation yield an estimated error less
than ". This procedure is repeated until x = x2 is reached. (For details, see Ref. 1).

Error handling:

Error D201.1: If the requestec accuracy cannot obtained, a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.
For N < 1, or X1 = X2 or H0 = 0, control is returned to the calling program without any change in Y.

Notes:

For well-conditioned systems of equations any reasonable value of the initial step length h 0 may be chosen.
For ill-conditioned systems, the initial value of h0 may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong results in such cases.

Source:

This subroutines is based on an Algol60 procedure given in Ref. 1. The adaption for integration over a given
interval (not only over one step) is due to G. Janin.

References:

1. R. Bulirsch and J. Stoer, Numerical treatment of ordinary differential equations by extrapolation meth-
ods, Numer. Math. 8 (1966) 1–13.
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RDEQMR CERN Program Library D202

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:01.12.1994

First-order Differential Equations (Runge–Kutta–Merson)

Subroutine subprograms RDEQMR and DDEQMR advance the solution of the system of n � 1 simultaneous
first-order differential equations

dyi

dx
= fi(x; y1; : : : ; yn); (i = 1; 2; : : : ; n)

from a specified value x1 to a specified value x2 of the independent variable x. The integration step-length
is automatically adjusted to keep the estimated error per step less than a specified value.

On computers other than CDC and Cray, only the double-precision version DDEQBS is available. On CDC
and Cray computers, only the single-precision version RDEQBS is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RDEQMR, DDEQMR
Obsolete User Entry Names: DEQMR � RDEQMR

Files Referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035), User-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tDEQMR(N,X1,X2,Y,H0,EPS,SUB,W)

N (INTEGER) Number n of equations.

X1 (type according to t) Initial value x1 of the independent variable x.

X2 (type according to t) Final value x2 of the independent variable x.

Y (type according to t) One-dimensional array of length� N. On entry, Y(i); (i= 1; : : : ; N), must
contain yi(x1). On exit, Y(i); (i= 1; : : : ; N), contains approximate values yi(x2).

H0 (type according to t) On entry, H0 must contain the proposed initial step-length h 0. On exit, H0
contains the last computed step-length (See also Method and Notes).

EPS (type according to t) The requested absolute accuracy ". (EPS should not be smaller than approx-
imately 103 times the machine precision).

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 6*N elements required as working-space.

The user-supplied subroutine SUB should be of the form

SUBROUTINE SUB(X,Y,F)

where the variable X and the one-dimensional arrays Y(*) and F(*) are of type t. This subroutine must set

F(I) = fI(X; Y(1); : : : ; Y(N)) (I = 1; 2; : : : ; N):
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Method:

The method is a modification by Merson of the Runge–Kutta method. The initial value of the step-length h
is taken to be the first of the numbers h0; h0=2; h0=4; : : : for which the estimated relative error at the end of
the step is less than ". At each susequent step, an estimate of the integration error for that step (proportional
to h5) is computed. If the corresponding relative error exceeds ", the current step-length is halfed; if it is
less than "=32 the step-length is doubled. This process is continued until x 2 is reached. (For details, see
Ref. 1).

Error handling:

Error D202.1: If the requestec accuracy cannot obtained, a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.
For N < 1, or X1 = X2 or H0 = 0, control is returned to the calling program without any change in Y.

Notes:

For well-conditioned systems of equations any reasonable value of the initial step length h 0 may be chosen.
For ill-conditioned systems, the initial value of h0 may be important, and tests with different values are
advised. An inappropriate choice may lead to wrong results in such cases.

References:

1. G.N. Lance, Numerical methods for high-speed computers, (Iliffe & Sons, London 1960) 56
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RRKNYS CERN Program Library D203

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:01.12.1994

Second-order Differential Equations (Runge–Kutta–Nystr̈om)

Subroutine subprograms RRKNYS and DRKNYS advance the solution of the system of n � 1 simultaneous
second-order differential equations

d2yi

dx2
= fi(x; y1; : : : ; yn; y

0
1; : : : ; y

0
n
); (i = 1; 2; : : : ; n)

where y0
i
= dyi=dx, by a single step of length h in the independent variable x.

On computers other than CDC or Cray, only the double-precision version DRKNYS is available. On CDC and
Cray computers, only the single-precision version RRKNYS is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RRKNYS, DRKNYS
Obsolete User Entry Names: RKNYS � RRKNYS

External References: User-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tRKNYS(N,H,X,Y,YP,SUB,W)

N (INTEGER) Number n of equations.

H (type according to t) The step-length h.

X On entry, X must be equal to the initial value of the independent variable x. On exit, X is equal to
x+ h.

Y (type according to t) One-dimensional array of length � N. On entry, Y(i); (i = 1; : : : ; N), must
contain yi(x). On exit, Y(i); (i = 1; : : : ; N), contains approximate values yi(x+ h).

YP (type according to t) One-dimensional array of length � N. On entry, YP(i); (i= 1; : : : ; N), must
contain y0

i
(x). On exit, YP(i); (i = 1; : : : ; N), contains approximate values y0

i
(x+ h).

SUB Name of a user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.

W (type according to t) Array containing at least 6*N elements required as working-space.

The user-supplied subroutine SUB should be of the form

SUBROUTINE SUB(X,Y,YP,F)

where the variable X and the one-dimensional arrays Y(*), YP(*) and F(*) are of type t. This subroutine
must set

F(I) = fI(X; Y(1); : : : ; Y(N); YP(1); : : : ; YP(N)) (I = 1; 2; : : : ; N):
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Method:

Using boldface quantities to denote vectors of length n, the computational sequence is as follows:

k1 =
1

2
h2 f(x;y(x);y0(x))

k2 =
1

2
h2 f(x+

1

2
h;y(x) +

1

2
hy0(x) +

1

4
k1;y

0(x) +
1

h
k1)

k3 =
1

2
h2 f(x+

1

2
h;y(x) +

1

2
hy0(x) +

1

4
k1;y

0(x) +
1

h
k2)

k4 =
1

2
h2 f(x+ h;y(x) + hy0(x) + k3;y

0(x) +
2

h
k3)

y(x+ h) = y(x) + hy0(x) +
1

3
(k1 + k2 + k3)

y0(x+ h) = y0(x) +
1

3h
(k1 + 2k2 + 2k3 + k4)

The error per step is proportional to h5.

Error handling:

For N � 0 or H = 0, control is returned to the calling program without any change in Y or YP.

References:

1. L. Collatz, The numerical treatment of differential equations, (Springer-Verlag Berlin 1960) 537
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EPDE1 CERN Program Library D300

Author(s) : J. Hornsby Library: MATHLIB

Submitter : R. Keyser Submitted: 02.05.1966

Language : Fortran Revised:30.01.1980

Elliptic Partial Differential Equation

EPDE1 solves an elliptic partial differential equation of general form (Poisson’s equation being a special
case) over a two-dimensional region using a finite difference method. The region may be of any shape and
on its boundary either the dependent variable or a relation involving its derivative may be specified.

Structure:

SUBROUTINE subprograms
User Entry Names: EPDE1
Files Referenced: Reader, Printer, TAPE4, TAPE5
External References: User-supplied SUBROUTINES

Usage:

See Long Write-up .
�
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ELPAHY CERN Program Library D302

Author(s) : R.C. Le Bail Library: MATHLIB

Submitter : Submitted: 20.03.1972

Language : Fortran Revised:01.12.1981

Fast Partial Differential Equation Solver

ELPAHY uses fast Fourier transform techniques for the solution, over a rectangular domain, of the following
elliptic, parabolic or hyperbolic part differential equation:

d2�(x; y)

dx2
+ c1

d2�(x; y)

dy2
+ c2

d�(x; y)

dy
+ c3�(x; y) = �(x; y)

where �(x; y) is the unknown function, �(x; y) the known source term, and c1; c2; c3 given coefficients. A
large variety of boundary conditions can be specified on the sides of the rectangle.

Structure:

SUBROUTINE subprogram
User Entry Names: ELPAHY
Internal Entry Names: NEWRO, ELANAL, ESOLVE, SYNT, MFT
External References: RFT (D700)
COMMON Block Names and Lengths: /FW1/ 774, /FW2/ 100

Usage:

CALL ELPAHY(F,NX,NY,DX,DY,C,IBX,BWEST,BEAST,JBY,BSOUTH,BNORTH)

F (REAL) Two-dimensional array, dimensioned (NX,NY) in the calling program. On input it
contains the source term �(x; y) and on return it contains the unknown function �(x; y).

NX (INTEGER) Number of divisions along X. NX must be of the form 2n + 1.

NY (INTEGER) Number of divisions along Y.

DX (REAL) Mesh spacing along X.

DY (REAL) Mesh spacing along Y.

C (REAL) One-dimensional array of dimension 3, containing the coefficients c1; c2; c3.

IBX (INTEGER) Controls the type of boundary conditions on the left (BWEST) and right (BEAST)
sides of the rectangular domain:
IBX = 1 : Imposed periodicity along x; BWEST, BEAST not given.
IBX = 2 : Given derivative on either vertical side.
IBX = 3 : Given value on either vertical side.
IBX = 4 : Given value on the left side, given derivative on the right side.

BWEST (REAL) One-dimensional array of size NY containing values or derivatives for the left side; the
interpretation depends on IBX.

BEAST (REAL) One-dimensional array of size NY containing values or derivatives for the right side; the
interpretation depends on IBX.
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JBY (INTEGER) Controls the type of boundary conditions on the lower (BSOUTH) und upper (BNORTH)
sides of the rectangular domain:
Elliptic equation (c1 > 0):
JBY = 1 : Given value on both lower and upper sides.
JBY = 2 : Given derivative on both lower and upper sides.
JBY = 3 : Given value on lower side, given derivative on upper side.
JBY = 4 : Given derivative on lower side, given value on upper side.
Parabolic equation (c1 = 0):
Specify BSOUTH array only. (If y=time, BSOUTH are initial values and the future BNORTH cannot
be specified).
JBY = 1 : Given value on lower side.
JBY = 2 : Given derivative on lower side.
Hyperbolic equation (c1 < 0):
The BSOUTH array specifies the value, the BNORTH array the derivative.
JBY = 1.

BSOUTH (REAL) One-dimensional array of size NX containing values or derivatives for the lower side;
the interpretation depends on JBY.

BNORTH (REAL) One-dimensional array of size NX containing values or derivatives for the upper side;
the interpretation depends on JBY.

Notes:

If NX > 65, specify COMMON /FWORK/ of length 6*NX and COMMON /FW1/ of length 6*NX in the calling
program. If NY > 50, specify COMMON /FW2/ of length 2*NY. In either case, make sure your program is
loaded before ELPAHY (D302) (this is automatic unless you recompile D302 in the same job).

References:

1. R.C. Le Bail, Use of fast Fourier transforms for solving partial differential equations in physics, J.
Comput. Phys. 9 (1972) 440–465

A copy of Ref. 1 is available.
�

D302 – 2 123



RDERIV CERN Program Library D401

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:01.12.1994

Numerical Differentiation

Subroutine subprograms RDERIV and DDERIV compute an approximate numerical value of the derivative
f 0(x) of a function f(x) at a specified point x.

On computers other than CDC and Cray, only the double-precision version DDERIV is available. On CDC
and Cray computers, only the single-precision version RDERIV is available.

Structure:

SUBROUTINE subprograms
User Entry Names : RDERIV, DDERIV
Obsolete User Entry Names: DERIV � RDERIV

Files Referenced : Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tDERIV(F,X,DELTA,DFDX,RERR)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set F(X) = f(X).

X (type according to t) The specified point x for which the derivative is to be calculated.

DELTA (type according to t) On entry, DELTA must contain a scaling factor �, which can usually be set
equal to 1. On exit, it contains the last value of this factor (see Method).

DFDX (type according to t) On exit, DFDX contains an approximation to f 0(X).

RERR (type according to t) On exit, RERR contains an estimate of the relative error of DFDX.

Method:

The method is based on an extension to numerical differentiation of Romberg’s principle of sequence extrap-
olation, originally developed for numerical integration. The subroutine starts by computing the 10 numbers

T
(k)
0 = [f(x+ h)� f(x� h)]=(2h); (k = 0; 1; : : : ; 9);

with
h = � � 0:0256 � 2�k=2 (k even)

h = � � 0:0192 � 2�(k�1)=2 (k odd);

where the scaling factor � is initially set to DELTA. This procedure is repeated up to 9 times, with � replaced
by �=10 each time, until the sequence T (k)

0 is found to be monotone. A Romberg-like triangular table

T (k)
m = umT

(k+1)
m�1 � wmT

(k)
m�1:

with appropriate weights um; wm is then computed for m = 1; 2; : : : ; 9; k = 0; 1; : : : ; 9�m; and DFDX is
set equal to T (0)

9 .
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Restrictions:

The function f(x) must be differentiable at x = X and in a neighbourhood of X. Misleading results will be
obtained if this is not true.

Error handling:

Error D401.1: If the function f(x) is such that, after 9 successive reductions of � by a factor 1/10, the

sequence T (k)
0 is not monotone, an error message is written Unit 6, unless subroutine MTLSET (N002) has

been called. DFDX is set equal to zero, RERR is set equal to one in this case.

References:

1. H. Rutishauser, Ausdehnung des Rombergschen Prinzips, Numer. Math. 5 (1963) 48–54.

�
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LEAMAX CERN Program Library D501

Author(s) : W. Mönch, B. Schorr Library: MATHLIB

Submitter : W. Mönch Submitted: 15.03.1993

Language : Fortran Revised:

Constrained Non-Linear Least Squares and Maximum Likelihood Estimation

LEAMAX is a portable collection of subprograms for solving general non-linear least squares problems, non-
linear data fitting problems, and maximum likelihood estimations.

Subroutine subprograms RSUMSQ, RFUNFT, RMAXLK and DSUMSQ, DFUNFT, DMAXLK calculate an approxima-
tion to a minimum of an objective function ' , with respect to n unknown parameters a = (a1; :::; an)

T 2
Rn :

(S) The general non-linear least squares problem

'S(a) =
1

2

mX
i=1

[fi(a)]
2;

(F) The least squares data fitting problem

'F (a) =
1

2

mX
i=1

�
yi � f(xi; a)

�i

�2
;

(M) The maximum likelihood estimation

'M(a) = �
mX
i=1

ln(f(xi; a));

subject to bounds on the variables of the form

aj � aj � aj (j = 1; 2; : : : ; n):

The functions fi : Rn ! R1 (i = 1; :::; m) and f : Rk�Rn ! R1 are arbitrary non-linear functions with
respect to the argument a. In the case of the data fitting problem (F), a set of observation data f(xi; yi)jxi 2
Rk; yi 2 R1; i = 1; :::; mgwith their corresponding weights �i (i = 1; :::; m) has to be provided, whereas
for the maximum likelihood estimation (M) , the set of data points f(xi)jxi 2 Rk; i = 1; :::; mg belongs to
the input of the problem.

These subprograms are based on the algorithm described by Moré (Ref. 1) for finding the solution of
a general non-linear least squares problem by using the Levenberg-Marquardt algorithm. The method is
completed by an active set strategy for handling simple box constraints to the unknown parameters (see
Long Write-up for details). The necessary derivatives can either be supplied by the user (subprogram SUB)
or are approximated numerically. In the case of a non-linear data fitting problem, approximations to the
covariance matrix and the standard deviations of the model parameter estimators are also provided.

On computers other than CDC or Cray, only the double-precision versions DSUMSQ, DFUNFT, DMAXLK are
available. On CDC and Cray computers, only the single-precision versions RSUMSQ, RFUNFT, RMAXLK are
available.
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Structure:

SUBROUTINE subprograms
User Entry Names: RSUMSQ, RFUNFT, RMAXLK, DSUMSQ, DFUNFT, DMAXLK
Internal Entry Names: D501L1, D501L2, D501SF, D501P1, D501P2, D501N1, D501N2
External References: RGEQPF (F001), RORMQR (F001), RTRTRS (F001), DGEQPF (F001),

DORMQR (F001), DTRTRS (F001), RVSET (F002), RVSCL (F002),

RVSUB (F002), RVCPY (F002), RVMPY (F002), DVSET (F002),

DVSCL (F002), DVSUB (F002), DVCPY (F002), DVMPY (F002),

RMSET (F003), RMSCL (F003), RMCPY (F003), RMMPY (F003),

RMBIL (F003), DMMLT (F003), DMSET (F003), DMSCL (F003),

DMCPY (F003), DMMPY (F003), DMBIL (F003),

RMMLT (F004), DMMLT (F004), RSINV (F012), DSINV (F012)

User-supplied SUBROUTINE subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION):

(S) General non-linear least squares problem

CALL tSUMSQ(SUB,M,N,NC,A,AL,AU,MODE,EPS,MAXIT,IPRT,

+ MFR,IAFR,PHI,DPHI,COV,STD,W,NERROR)

(F) Least squares data fitting problem

CALL tFUNFT(SUB,K,M,N,NX,NC,X,Y,SY,A,AL,AU,MODE,EPS,MAXIT,IPRT,

+ MFR,IAFR,PHI,DPHI,COV,STD,W,NERROR)

(M) Maximum likelihood estimation

CALL tMAXLK(SUB,K,M,N,NX,X,A,AL,AU,MODE,EPS,MAXIT,IPRT,

+ MFR,IAFR,PHI,DPHI,W,NERROR)

SUB Name of user-supplied SUBROUTINE subprogram, declared EXTERNAL in the calling program.
This subprogram must provide the values of the functions f i(a) (i = 1; : : : ; m), f(�; a), and,
if MODE = 1, the values of the derivatives @fi(a)=@aj and @f(�; a)=@aj (i = 1; : : : ; m; j =
1; : : : ; n) (see Examples).

K (INTEGER) Cases (F) and (M) : dimension k of a data point (observation) xi 2 Rk.

M (INTEGER) Case (S): number of non-linear functions fi; cases (F) and (M) : number of data points
(observations).

N (INTEGER) Number of unknown parameters a.

NX (INTEGER) Cases (F) and (M) : declared first dimension of array X in the calling program, NX � K.

NC (INTEGER) Cases (S) and (F): declared first dimension of array COV in the calling program,
NC � N.

X (Type according to t) Cases (F) and (M) : two-dimensional array of dimension (NX;� M). On
entry, X must contain the data set f xi g (the i-th column of X belongs to the data point xi 2 Rk ,
i = 1; :::; m).

Y (type according to t) Case (F): one-dimensional array of length � M, contains, on entry, the data
set f yi g.

SY (type according to t) Case (F): one-dimensional array of length � M, contains, on entry, the
weights f �i g of the data points.
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A (Type according to t) One-dimensional array of length � N. On entry, A(J) must contain the
starting value of aj for the Levenberg-Marquardt algorithm. On exit, A(J) contains an approxi-
mation to aj of a minimum point (if the algorithm was successful).

AL (Type according to t) One-dimensional array of length � N. On entry, AL(J) must contain the
lower bound a

j
of aj .

AU (Type according to t) One-dimensional array of length � N. On entry, AU(J) must contain the
upper bound aj of aj .

MODE (INTEGER)

= 0 : The derivatives are approximated by divided differences.

= 1 : The derivatives are to be supplied by subprogram SUB.

Other values for MODE are treated as MODE = 0.

EPS (Type according to t) User-supplied tolerance used to control the termination criterion. EPS

should be chosen according to the accuracy required by the problem and the machine accuracy t

(recommended value on entry: between 10�6 for t = R , and 10�12 for t = D, respectively).

MAXIT (INTEGER) Maximum permitted number of iterations.

IPRT (INTEGER) Printing control.

= 0 : no printing of intermediate results,

= �L : printing of intermediate results at every jLj-th iteration; if IPRT < 0, printing of all input
parameters of tSUMSQ, tFUNFT, tMAXLK, respectively, in addition.

MFR (INTEGER) On exit, MFR contains the number of free variables at the solution point.

IAFR (INTEGER) One-dimensional array of length � 2 � N for cases (S) and (F), and of length� N for
case (M) , used as working space. On exit, the first MFR elements of IAFR contain the indices of
the free variables at the solution point.

PHI (Type according to t) On exit, PHI contains the value of the objective function ' at the solution
point.

DPHI (Type according to t) One-dimensional array of length � N. On exit, DPHI(J) contains the
derivative @'=@aj of ' with respect to aj (j-th component of the gradient of ') at the solution
point.

COV (Type according to t) Cases (S) and (F): two-dimensional array of dimension (NC;� N). On exit,
COV contains an approximation to the covariance matrix.

STD (Type according to t) Cases (S) and (F): one-dimensional array of length � N. On exit, STD(J)
contains an approximation to the standard deviation of the estimator of the model parameter aj .

W (Type according to t) One-dimensional array of length � 9 � N+ 4 � M+ 2 � M � N+ 3 � N � N
for cases (S) and (F), and of length� 7 � N+ 2 � N � N for case (M) , used as working space.

NERROR (INTEGER) Error indicator. On exit:

= 0 : No error or warning detected.

= 1 : At least one of the constants K, M, N, NX, NC, MAXIT is illegal or at least for one j the relation
aj � aj is not true.

= 2 : The maximum number MAXIT of iterations has been reached.

= 3 : The objective function' or its derivative is not defined for the current values of the param-
eter vector a.

= 4 : Cases (S) and (F): The routines tGEQPF, tORMQR, tTRTRS in the Linear Algebra package
LAPACK (F001) were unable to solve the linear least squares problem or the subprogram
tSINV (F012) was unable to compute the covariance matrix.
Case (M) : the routine tSINV (F012) was unable to solve the normal equations.
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Examples:

For the user-supplied SUBROUTINE subprogram SUB write for instance in the case t = D:

(S) Objective function (Brown badly-scaled function, n = 2; m = 3):

'S(a) =
1

2

�
(a1 � 106)2 + (a2 � 2 � 10�6)2 + (a1a2 � 2)2

�
.

SUBROUTINE SUB(N,A,M,F,DF,MODE,NERROR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (Z0 = 0)

DIMENSION A(*),F(*),DF(M,*)

NERROR=0

F(1)=A(1)-1D6

F(2)=A(2)-2D-6

F(3)=A(1)*A(2)-2

IF(MODE .NE. 1) RETURN

CALL DMSET(M,N,Z0,DF(1,1),DF(1,2),DF(2,1))

DF(1,1)=1

DF(2,2)=1

DF(3,1)=A(2)

DF(3,2)=A(1)

RETURN

END

(F) Objective function (Bard function, n = 3; m = 15; k = 3):

'F (a) =
1

2

mX
i=1

�
yi �

�
a1 +

x1;i

x2;i a2 + x3;i a3

��2
.

SUBROUTINE SUB(K,X,N,A,F,DF,MODE,NERROR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A(*),X(*),DF(*)

T=X(2)*A(2)+X(3)*A(3)

IF (T .EQ. 0) THEN

NERROR=3

ELSE

NERROR=0

F=A(1)+X(1)/T

IF(MODE .NE. 1) RETURN

DF(1)=1

DF(2)=-X(1)*X(2)/T**2

DF(3)=-X(1)*X(3)/T**2

ENDIF

RETURN

END
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(M) Objective function (n = 1; m = 100; k = 1):

'M(a) = �
mX
i=1

ln

(
1

a1
p
�
exp

"
� 1

2

�
x1;i � 1

a1

�2
#)

.

SUBROUTINE SUB(K,X,N,A,F,DF,MODE,NERROR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION A(*),X(*),DF(*)

PARAMETER (PIR = 0.56418 95835 47756 287D0)

NERROR=3

IF(A(1) .LE. 0) RETURN

T=0.5D0*((X(1)-1)/A(1))**2

F=PIR*EXP(-T)/A(1)

NERROR=0

IF(MODE .EQ. 1) DF(1)=-F*(1-2*T)/A(1)**2

RETURN

END

In all three cases the parameters K , N , A , M , MODE , NERROR are as declared above. The other parameters
are the following:

F (Type according to t) Case (S): one-dimensional array of length� M. F(I)must contain the function
value fi(a) at a (i = 1; : : : ; m), on exit.
Cases (F) and (M) : F must contain the function value f(x; a) at (x; a), on exit.

DF (Type according to t) If MODE = 1 values of DF are supplied by SUB. For other values of MODE the
parameter DF is not referenced.
Case (S): two-dimensional array of dimension (M;� N). DF(I,J) must contain the value of the
partial derivative @fi(a)=@aj at a, (i = 1; : : : ; m; j = 1; : : : ; n), on exit.
Cases (F) and (M) : one-dimensional array of length� N. DF(J) must contain the value of the partial
derivative @f(x; a)=@aj, (j = 1; : : : ; n), on exit.

X (Type according to t) Cases (F) and (M) : one-dimensional array of length � K for one data point
xi 2 Rk (in contrast to above declaration).

References:

1. J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, In: Numerical Analysis,
G.A. Watson (Ed.), Lecture Notes in Mathematics 630, Springer-Verlag, New York (1977) 105-116.

2. Å.Björck: Solution of Equations inRn (Part 1: Least Squares Methods). In: Handbook of Numerical
Analysis, P.G.Ciarlet, J.L.Lions (Eds.), North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990,
467-636.

3. R.Fletcher: Practical Methods of Optimization. John Wiley and Sons, Chichester, 2nd Edition, 1987.

�
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RMINFC CERN Program Library D503

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.11.1993

Language : Fortran Revised:

Minimum of a Function of One Variable

Subroutine subprograms RMINFC and DMINFC calculate, to a limited specified accuracy, the abscissa of
a single local minimum of a real-valued function f(x) lying in a given interval (a; b), together with the
function value at the minimum. Although this subprogram may find a minimum under other conditions (see
Notes), the search interval should contain exactly one local minimum point x with a < x < b.

On CDC and Cray computers, the double-precision version DMINFC is not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RMINFC, DMINFC
External References: User-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tMINFC(F,A,B,EPS,DELTA,X,Y,LLM)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program. This function must set F(X) = f(X).

A,B (type according to t) On entry, A and B must specify the end-points a; b of the search interval.

EPS (type according to t) On entry, EPS must be equal to the accuracy parameter " (see Accuracy).

DELTA (type according to t) On entry, DELTA must be equal to the parameter � specifying a tolerance
interval near A and B (see Accuracy).

X (type according to t) On exit, X is the computed approximation to the abscissa of a minimum of
the function f(x).

Y (type according to t) Contains, on exit, the value of f(X).

LLM (LOGICAL) On exit, LLM is .TRUE. if the relations jX� Aj > � and jX� Bj > � are both true (i.e.
if X is the abscissa of a local minimum lying inside the interval [A; B]), and .FALSE. otherwise
(see Notes).

Method:

The so-called golden section searchis applied (see References). This method uses a fixed number n of
function evaluations, where n = [ 2:08� ln (ja� bj=") + 1

2
] + 1.

Accuracy:

The accuracy depends on the behaviour of the function and is difficult to measure. For example, a flat
minimum results in poor accuracy. This implies that the subprograms are not intended to replace the usual
procedures when a minimum of a function is needed in the exact mathematical sense. In any case, a choice
of " > 10�8 in double-precision and of " > 10�4 in single-precision mode usually results in a relative error
of X which is smaller than or in the order of ". A suggested value of � is � = 10".
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Notes:

1. As a rule, the specified interval (a; b) should contain strictly one local minimum.

2. If this is not the case, and if f(x) is monotonous in (a; b), the subprograms find the minimum at the
correct endpoint a or b. LLM is set to .FALSE. in this case.

3. In all other possible cases, the behaviour of the subprograms is not easy to predict. In particular, in
the case of several minimal points inside (a; b), one of them is found, but not necessarily the one with
the smallest value of the function.

References:

1. R. Fletcher, Practical methods of optimization (John Wiley & Sons, Chichester 1987) 39–40.

2. W. Krabs, Einführung in die lineare und nichtlineare Optimierung für Ingenieure (BSB B.G. Teubner,
Leipzig 1983) 84–86

�
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MINUIT CERN Program Library D506

Author(s) : F. James, M. Roos Library: PACKLIB

Submitter : F. James Submitted: 03.05.1967

Language : Fortran Revised:15.01.1994

Function Minimization and Error Analysis

The MINUIT package performs minimization and analysis of the shape of a multi-parameter function. It is
intended to be used on Chisquare or likelihood functions for fitting data and finding parameter errors and
correlations. The more important options offered are:

� Variable metric (Fletcher) minimization

� Monte Carlo minimization

� Simplex (Nelder and Mead) minimization

� Parabolic error analysis (error matrix)

� MINOS (non-linear) error analysis

� Contour plotting

� Fixing and restoring parameters

� Global minimization

Structure:

SUBROUTINE subprograms
User Entry Names: MINTIO, MINUIT, MNCOMD, MNCONT, MNERRS, MNEXCM, MNINPU, MNINTR,

MNPARS, MNREAD

Internal Entry Names: MNAMIN, MNBINS, MNCALF, MNCLER, MNCNTR, MNCRCK, MNCROS, MNCUVE,

MNDERI, MNDXDI, MNEIG, MNEMAT, MNEVAL, MNEXIN, MNFIXP, MNFREE,

MNGRAD, MNHELP, MNHESS, MNHES1, MNIMPR, MNINEX, MNINIT, MNLIMS,

MNLINE, MNMATU, MNMIGR, MNMNOS, MNMNOT, MNPARM, MNPFIT, MNPINT,

MNPLOT, MNPOUT, MNPRIN, MNPSDF, MNRAZZ, MNRN15, MNRSET, MNSAVE,

MNSCAN, MNSEEK, MNSET, MNSETI, MNSIMP, MNSTAT, MNSTIN, MNTINY,

MNUNPT, MNWARN, MNWERR, MNVERT, STAND

Usage:

MINUIT can be used either

as a “master” batch program which reads and executes commands appearing in the input data stream;

or

as a “master” interactive program which reads and executes commands given from the terminal;

or

as a Fortran callable “slave” package, called from the user program or from an intermediate package
such as PAW or HBOOK;

or

any combination of the above.

See Long Write-up for details.
�
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FUMILI CERN Program Library D510

Author(s) : I. Silin Library: MATHLIB

Submitter : A. Kobine Submitted: 05.04.1971

Language : Fortran Revised:18.11.1985

Fitting Chisquare and Likelihood Functions

OBSOLETE
Please note that this routine has been obsoleted in CNL 211. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: LEAMAX (D501)

FUMILI minimizes the objective functions �2=2 and ML defined by:

1

2
�2 =

1

2

NX
j=1

"
Y �
j
� Y (X(1)

j
; : : : ; X

(L)

j
;A1; : : : ; AM)

�Y �
j

#2

and

ML =
NX
j=1

� ln[Y (X
(1)
j
; : : : ; X

(L)
j

;A1; : : : ; AM)]

with respect to the M parameters A where, for each j, 1 � j � N; Y �
j

is a data-point with user estimated
error, ��Yj , the Xj are L co-ordinates of that point and Y is a theoretical function predicting Y �

j
for a

given set of Xj and A.

The method makes use of a particular property concerning the dependence of the objective function (�2=2
or ML) on the theoretical function (Y ) for faster convergence.

Structure:

SUBROUTINE subprograms
User Entry Names: FUMILI, LIKELM, ERRORF
Internal Entry Names: ARITHM, D510BD, FUNCT, MCONV, MONITO, SCAL, SGZ
Files Referenced: Printer
External References: User-supplied FUNCTION and (optional) SUBROUTINE subprograms
COMMON Block Names and Lengths: /A/ 100, /AL/ 100, /AU/ 100, /DA/ 100, /DF/ 100,

/ENDFLG/ 7, /ERROR/ 500, /EXDA/ 1500, /G/ 100,
/NED/ 2, /PL/ 100, /PLU/ 100, /R/ 100,
/SIGMA/ 100, /X/ 10, /Z/ 2485, /Z0/ 2485

Usage:

See Long Write-up .

References:

1. Preprint YINDR-810, 1961 (Dubna) (CERN Library, preprint P. 810).

�
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RFRDH1 CERN Program Library D601

Author(s) : G.A. Erskine and K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Solution of a Linear Fredholm Integral Equation of Second Kind

Subroutine subprograms RFRDH1, DFRDH1 and function subprograms RFRDH2, DFRDH2 calculate an approx-
imation to the solution y of the Fredholm integral equation

y(x) = F (x) +

Z
b

a

G(x; t) y(t) dt (1)

over the interval [a; b]. The function F must not be identically zero. The interval [a; b] may be divided into
m subintervals [ti�1; ti]; (i = 1; 2; : : : ; m), with a = t0 < t1 < � � � < tm = b.

The order Ni (number of abscissae) of the Gaussian quadrature formula used for integrating over [ti�1; ti]
is specified separately for each subinterval.

Function subprograms RFRDH3 and DFRDH3 evaluate numerically integrals of the form
Z

b

a

H(t) y(t) dt

where H is an arbitrary function and y is the solution of (1).

The following values of Ni may be used: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 40, 48,
64, 80, 96.

On computers other than CDC and Cray, only the double-precision versions DFRDH1 etc. are available. On
CDC and Cray computers, only the single-precision versions RFRDH1 etc. are available.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RFRDH1, RFRDH2, RFRDH3, DFRDH1, DFRDH2, DFRDH3
Files Referenced: Unit 6

External References: RGSET (D107), DGSET (D107), REQN (F010), DEQN (F010), MTLMTR (N002),
ABEND (Z035), user-supplied FUNCTION subprograms.

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), the first step in the solution of (1) must be the
execution of a statement of the form:

CALL tFRDH1(F,G,M,T,NG,WS,IDIM,N)

F,G (type according to t) Names of user-supplied FUNCTION subprograms, declared EXTERNAL in the
calling program. Subprogram F must set F(X) = F (X), subprogram G must set G(X; T) = G(X; T).

M (INTEGER) Number m � 1 of subintervals in [a; b].

T (type according to t) One-dimensional array of dimension (0:d) where d � M. On entry, T must
contain the m+ 1 ordered points of subdivision t i; (i = 0; 1; : : : ; m), with t0 = a and tm = b.

NG (INTEGER) One-dimensional array of length � M. On entry, NG must contain the order (number of
absissae) Ni of the Gaussian quadrature formula to be used in the interval ti�1 � t � ti; (i =
1; 2; : : : ; m).

WS (type according to t) Two-dimensional array of dimensions (IDIM;� IDIM+ 4). Used as working
space and for communication between the subprograms.

IDIM (INTEGER) A number �Pm

i=1Ni.

N (INTEGER) On exit, N =
P

m

i=1Ni.
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Once tFRDH1 has been called, the function subprograms tFRDH2 and tFRDH3may be referenced any number
of times without any further call to tFRDH1.

In any arithmetic expression,

tFRDH2(F,G,X,WS,IDIM,N)

has the value y(X), where y is the approximate solution of (1).

In any arithmetic expression,

tFRDH3(H,WS,IDIM,N)

has the approximate value of
Z

b

a

H(t) y(t) dt where y is the approximate solution of (1).

H (type according to t) is the name of a user-defined FUNCTION subprogram, declared EXTERNAL in the
calling program. This subprogram must set H(X) = H(X).

Method:

Let the sets fwkg and fzkg be defined by

fwkg = fw(1)
1 ; : : : ; w

(1)

N1
; : : : ; w

(m)
1 ; : : : ; w

(m)

Nm
g;

fzkg = fz(1)1 ; : : : ; z
(1)

N1
; : : : ; z

(m)
1 ; : : : ; z

(m)

Nm
g:

w
(i)

j
and z(i)

j
are respectively the weights and abscissae of theNi-point Gaussian quadrature formulae corre-

sponding to the interval [ti�1; ti]. Subprograms RFRDH1 or DFRDH1 sets up and solves the following system
of simultaneous linear equations with unknowns y(zk):

y(zk) = F (zk) +
NX
j=1

wjG(zk; zj)y(zk) (k = 1; 2; : : : ; N)

where N =
P

m

i=1Ni.

Function subprogram tFRDH2 calculates y(X) =
NX
k=1

wkG(X; zk) y(zk).

Function subprogram tFRDH3 calculates I =
NX
k=1

wkH(zk) y(zk).

Accuracy:

The accuracy depends upon the extend to which the productG(x; t)y(t) can be represented by a polynomial
of degree 2Ni � 1 for all x in the interval [ti�1; ti]; (i = 1; 2; : : : ; m).

Error handling:

Error D601.1: In tFRDH1, the system of linear equations is singular. A message is written on Unit 6,
unless subroutine MTLSET (N002) has been called.
If any of the valuesNi does not appear in the list given above, a message is written on Unit 6 by RGSET or
DGSET (D107) unless subroutine MTLSET (N002) has been called.
�

D601 – 2 136



RFT CERN Program Library D700

Author(s) : C. Iselin Library: MATHLIB

Submitter : Submitted: 04.09.1972

Language : Fortran Revised:15.01.1977

Real Fast Fourier Transform

Let the discrete Fourier transform be defined by

yj =
1p
N

N�1X
k=0

exp

�
2�ijk

N

�
xk; (j = 0; 1; : : : ; N):

The subroutines of package RFT compute this transform or its inverse

xk =
1p
N

N�1X
j=0

exp

��2�ijk
N

�
yj ; (k = 0; 1; : : : ; N)

for real functions, with the restriction that N is a power of 2.

Structure:

SUBROUTINE subprograms
User Entry Names: RFT, RCA, RPA, RPS, RSA
Internal Entry Names: D700SU
Files Referenced: Printer
COMMMON Block Names and Lengths: /D700DT/ 6, /FWORK/ 321

Usage:

CALL RFT(M,X,IX,Y,IY,MODE) or

CALL RCA(M,X,IX,Y,IY) or

CALL RPA(M,X,IX,Y,IY) or

CALL RPS(M,X,IX,Y,IY) or

CALL RSA(M,X,IX,Y,IY)

M (INTEGER) Number m (such that n = 2m) of input values (full period or half period).

X (REAL) Input array. The input values are taken from X(k�IX+ 1) for k = 0; 1; : : : ; n.

Y (REAL) Output array. The results are stored in Y(k�IY+ 1) for j = 0; 1; : : : ; n.

MODE (INTEGER) Selects the mode of operation for RFT as follows:

MODE = 1: Analysis of a general real function.

CALL RFT(M,X,IX,Y,IY,1) or

CALL RPA(M,X,IX,Y,IY)

assumes xk = X(k�IX+ 1) (k = 0; 1; : : : ; n� 1); n = 2m = N to define a full period of the function to
be analysed. The value xn is ignored. The results are returned in the following order:

y0 = yn = Y(1)

yj = yn�j = Y(j�IY+ 1) + iY((j + n=2)�IY+ 1); (j = 1; 2; : : : ; n=2).

The other values in Y are not changed.
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MODE = 4: Synthesis of a general real function.

CALL RFT(M,X,IX,Y,IY,4) or

CALL RPS(M,X,IX,Y,IY)

is exactly the inverse of MODE=1 as described above. The value xn is set equal to x0.

MODE=2/5: Analysis/Synthesis of a real even function.
For an even function, the transform is identical to its inverse.

CALL RFT(M,X,IX,Y,IY,2) or

CALL RFT(M,X,IX,Y,IY,5) or

CALL RCA(M,X,IX,Y,IY)

all assume that xk = X(k�IX+ 1); (k = 0; 1; : : : ; n); n = 2m = N=2 define a half-periodof the function
to be analysed and that the other half period is generated by evencontinuation. The results returned are the
cosine terms

yj = y2n�j = Y(j�IY+ 1); (j = 0; 1; : : : ; n):

Note that the full period has 2n = N points.

MODE = 3/6: Analysis/Synthesis of a real odd function.
For an odd function the transform is also identical to its inverse. All assume that xk = X(k�IX+ 1); (k =
1; 2; : : : ; n);

CALL RFT(M,X,IX,Y,IY,3) or

CALL RFT(M,X,IX,Y,IY,6) or

CALL RSA(M,X,IX,Y,IY)

n = 2m = N=2 define a half-periodof the function to be analysed and that the other half period is generated
by oddcontinuation. The results returned are the sine terms

yj = �y2n�j = Y(j�IY+ 1); (j = 1; 2; : : : ; n).

Note that y0 = yn = 0 and that the values returned are Y(1) = X(1) and Y(n�IY+1) = X(n�IX+1). Again
the full period has 2n = N points.

Restrictions:

These subroutines work for any input such that the full periodhas at least four points, i.e., m � 2 for general
functions, orm � 1 for odd or even functions. If the number of data points exceeds 129 (m � 7), the calling
program must provide sufficient working storage by using the statement

COMMON /FWORK/ W(nnn)

where nnn = 5 � 2m.

References:

1. C. Iselin, An approach to fast Fourier transform, CERN 71-19.

A copy of Ref. 1 is available.
�
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CFT CERN Program Library D702

Author(s) : R.C. Singeton (Stanford) Library: MATHLIB

Submitter : B. Fornberg Submitted: 03.05.1968

Language : Fortran Revised:01.10.1974

Complex Fast Fourier Transform

A discrete Fourier transform is defined by:

Y (n) =
N�1X
j=0

X(j) exp

��2�ijn
N

�
; (n = 0; 1; : : : ; N � 1):

and the inverse

Z(j) =
N�1X
n=0

Y (n) exp

�
2�ijn

N

�
; (j = 0; 1; : : : ; N � 1)

satisfying Z(j) = NX(j); (j = 0; 1; : : : ; N � 1). CFT evaluates these sums using fast Fourier technique.
It is not required thatN is a power of 2. One-, two- and three-dimensional transforms can be performed.

Structure:

SUBROUTINE subprogram
User Entry Names: CFT
Files Referenced: Printer

Usage:

CALL CFT(A,B,NTOT,N,NSPAN,ISN)

Arrays A and B originally hold the real and imaginary components of the data, and return the real and
imaginary components of the resulting Fourier coefficients.

Multivariate data is indexed according to the Fortran array element successor function, without limit on
the number of implied multiple subscripts. The SUBROUTINE is called once for each variate. The calls for
a multivariate transform may be in any order. NTOT is the total number of complex data values. N is the
dimension of the current variable. NSPAN/N is the spacing of consecutive data values while indexing the
current variable. The sign of ISN determines the sign of the complex exponential, and the magnitude of ISN
is normally one.

For a single-variate transform, NTOT = N = NSPAN = (number of complex data values), e.g.

CALL CFT(A,B,N,N,N,1)

A tri-variate transform with A(N1,N2,N3), B(N1,N2,N3) is computed by

CALL CFT(A,B,N1*N2*N3,N1,N1,1)

CALL CFT(A,B,N1*N2*N3,N2,N1*N2,1) and

CALL CFT(A,B,N1*N2*N3,N3,N1*N2*N3,1)

The data may alternatively be stored in a single COMPLEX array A, then the magnitude of ISN changed to
two to give the correct indexing increment and the second parameter used to pass the initial address for the
sequence of imaginary values, for example:
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REAL

EQUIVALENCE (A,S)

...

CALL CFT (A,S(2),NTOT,N,NSPAN,2)

Arrays AT(MAXF), CK(MAXF), BT(MAXF), SK(MAXF), and NP(MAXP) are used for temporary storage. If the
available storage is insufficient the program is terminated by a STOP.

MAXF must be � the maximum prime factor of N. MAXP must be > the number of prime factors of N. In
addition, if the square-free portion K of N has two or more prime factors, then MAXP must be � K � 1.
Storage in NFAC allows for a maximum of 11 factors of N. If N has more than one square-free factor, the
product of the square-free factors must be � 210.

Notes:

CFT is very general since the number of points is not restricted to powers of two, as is the case for RFT
(D700) and FFTRC (D701). For N = 16; 32; 64; 128 the routines in FFTRC (D701) are considerably faster.

References:

1. R.C. Singleton, An Algorithm for Computing the Mixed Radix F.F.T., IEEE Trans. Audio Electroa-
coust., AU–1(1969) 93–107.

2. Reprinted in: L.R. Rabiner and C.M. Rader: Digital Signal Processing, IEEE Press New York (1972)
294.
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RFSTFT CERN Program Library D705

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB

Submitter : Submitted: 22.04.1996

Language : Fortran Revised:

Real Fast Fourier Transform

Subroutine RFSTFT calculates the finite Fourier transform of a real periodic sequence y0; y1; : : : ; yn�1,
whose period n must be a power of two. Either the direct transform

Cj =
1

n

n�1X
k=0

yk exp

��i2�jk
n

�
; (j = 0; 1; : : : ; n=2); (1)

or the inverse transform

yk =
n�1X
j=0

Cj exp

�
i2�jk

n

�
; (k = 0; 1; : : : ; n� 1); (2)

where yk are real and Cj are complex numbers, may be calculated. Note that Cj = Cn�j ; (j = n=2 +
1; : : : ; n� 1), where � denotes the complex conjugate of �. Thus, only the numbers Cj for which 0 � j �
n=2 are calculated.

Structure:

SUBROUTINE subprogram
User Entry Names: RFSTFT
External References: CFSTFT (D706)

Usage:

COMPLEX C(0:..)

REAL Y(0:..)

EQUIVALENCE (C,Y)

...

CALL RFSTFT(M,C)

...

M (INTEGER) On entry, n is determined by the absolute value of M via n = 2jMj.
M < 0 : The direct transform (1) is calculated.
M � 0 : The inverse transform (2) is calculated.
Unchanged on exit.

C (COMPLEX) One dimensional array of dimension (0:d), where d � n=2.

Y (REAL) One dimensional array of dimension (0:d), where d � n+ 1.
M < 0 :
On entry, Y(k) = yk; (k = 0; 1; : : : ; n� 1).
On exit, C(j) = Cj ; (j = 0; 1; : : : ; n=2), as defined by (1).
M � 0 :
On entry, C(j) = Cj ; (j = 0; 1; : : : ; n=2).
On exit, Y(k) = yk ; (k = 0; 1; : : : ; n� 1), as defined by (2).
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Method:

The subroutine uses CFSTFT (D705) with sequences reduced to half of their length as explaind in Ref. 1.

References:

1. E.O. Brigham, The fast Fourier transform, (Prentice-Hall, Englewood Cliffs, 1974) Ch. 10, Sect. 10,
Fig. 10-10.
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CFSTFT CERN Program Library D706

Author(s) : K.S. Kölbig, H.-H. Umstätter Library: MATHLIB

Submitter : Submitted: 22.04.1996

Language : Fortran Revised:

Complex Fast Fourier Transform

Subroutine CFSTFT calculates the finite Fourier transform of a complex periodic sequence a0; a1; : : : ; an�1,
whose period n must be a power of two. Either the direct transform

Aj =
n�1X
k=0

ak exp

��i2�jk
n

�
; (j = 0; 1; : : : ; n� 1); (1)

or the unscaled inverse transform

�k =
n�1X
j=0

Aj exp

�
i2�jk

n

�
; (k = 0; 1; : : : ; n� 1); (2)

where ak; �k and Aj are complex numbers, may be calculated.

If the Aj in (2) have the values defined by (1), then ak = �k=n; (k = 0; 1; : : : ; n� 1). To ensure optimum
use of storage, the same array is used for input and output, and all intermediate calculations are carried out
in this array.

Structure:

SUBROUTINE subprogram
User Entry Names: CFSTFT

Usage:

CALL CFSTFT(M,A)

M (INTEGER) On entry, n is determined by the absolute value of M via n = 2jMj.
M < 0 : The direct transform (1) is calculated.
M � 0 : The inverse transform (2) is calculated.
Unchanged on exit.

A (COMPLEX) One dimensional array of dimension (0:d), where d � n� 1.
M < 0 :
On entry, A(k) = ak; (k = 0; 1; : : : ; n� 1).
On exit, A(j) = Aj ; (j = 0; 1; : : : ; n� 1), as defined by (1).
M � 0 :
On entry, A(j) = Aj ; (j = 0; 1; : : : ; n� 1).
On exit, A(k) = ak; (k = 0; 1; : : : ; n� 1), as defined by (2).

Method:

The method is based on an algorithm of Cooley, Lewis and Welch (see References), with the following
modifications which increase speed for small values of M: multiplications by exp(ip�) are replaced by
addition or subtraction, and terms of the form exp(i2�=q); (q = 2; 4; : : : ; n) are calculated recursively
using only square roots and divisions.
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References:

1. G. Dahlquist and Å. Björck, Numerical methods (Prentice-Hall, Englewood Cliffs, 1974) 416.

2. L.R. Rabiner and B. Gold, Theory and application of digital signal processing (Prentice-Hall, Engle-
wood Cliffs, 1975) 332.
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POLINT CERN Program Library E100

Author(s) : F. James Library: KERNLIB

Submitter : Submitted: 05.09.1966

Language : Fortran Revised:18.11.1985

Polynomial Interpolation

Subroutine POLINT interpolates in a table of arguments aj and function values fj = f(aj), using an inter-
polating polynomial of specified degree K� 1 which passes throughK successive tabular points. The table
arguments aj need not be equidistant. Meaningful results can usually be obtained only for small values of
K (typically less than 10).

Structure:

SUBROUTINE subprogram
User Entry Names: POLINT
Files Referenced: Printer
External References: KERMTR (N001), ABEND (Z035)

Usage:

CALL POLINT(F,A,K,X,R)

F (REAL) One-dimensional array. F(j) must be equal to the value at A(j) of the function to be
interpolated, (j = 1; 2; : : : ; K).

A (REAL) One-dimensional array. A(j) must be equal to the table argument aj ; (j = 1; 2; : : : ; K).

K (INTEGER) K-1 is the degree of the interpolating polynomial.

X (REAL) Argument at which the interpolating polynomial is to be evaluated.

R (REAL) On exit, R is set equal to the value at X of the polynomial passing through the points
(aj ; fj); (j = 1; 2; : : : ; K).

If X lies outside the range of the points A(1); : : : ; A(K), the interpolation becomes an extrapolation, with
consequent loss of accuracy.

Method:

Newton’s divided difference formula is used.

Restrictions:

2 � K � 20. If K > 20, the interpolation is performed as if K had the value 20. The original value of K is
unchanged on exit.

Error handling:

Error E100.1: K < 1. A message is printed unless subroutine KERSET (N001) has been called.

Notes:

POLINT is intended for interpolation using all the tabulated points in the array A. To use only the tabulated
points around the value of the argument X, use DIVDIF (E105).
�
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MAXIZE CERN Program Library E102

Author(s) : K.S. Kölbig, H. Lipps Library: MATHLIB

Submitter : Submitted: 29.08.1968

Language : Fortran Revised:01.12.1994

Maximum and Minimum Elements of Arrays

Function subprograms MAXIZE, MAXRZE, MAXDFZ and MINIZE, MINRZE, MINDFZ give give the positions of
the maximum and minimum elements of a one-dimensional array.

On CDC and Cray computers, the double-precision versions MAXDZE and MINDZE are not available.

Structure:

FUNCTION subprograms
User Entry Names: MAXIZE, MAXRZE, MAXDZE, MINIZE, MINRZE, MINDZE
Obsolete User Entry Names: MAXFZE � MAXRZE, MINFZE � MINRZE

Usage:

In any arithmetic expression, for t = I (type INTEGER), t = R (type REAL), t = D (type DOUBLE PRECISION),

MAXtZE(A(J),N) and MINtZE(A(J),N)

has the INTEGER value of the location of, respectively, the maximum and minimum elements of the N

successive elements of the array A, relative to the elementA(J), where A is of type t.

Notes:

1. If there is more than one location at which the maximum or minimum is attained, the first location is
returned as the function value in each case.

2. If N < 1 the function value is 1.

3. Clearly, N+J should not exceed the dimension of the array A.

4. The obsolete older entries MAXFZE (for MAXRZE) and MINFZE (for MINRZE) are kept for a transitional
period. They will eventually disappear.

�

146 E102 – 1



AMAXMU CERN Program Library E103

Author(s) : J. Zoll Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran Revised:

Largest Absolute Number in Scattered Vector

AMAXMU looks for the largest absolute value in a scattered vector of real numbers.

Structure:

FUNCTION subprogram
User Entry Names: AMAXMU

Usage:

In any arithmetic expression,

AMAXMU(A,IDO,IW,NA)

is set to the largest absolute value of numbers in any of the subsets of A as specified by IDO, IW and NA.

A (REAL) One-dimensional array, containing a number of subsets of real numbers.

IDO (INTEGER) Number of subsets to be examined.

IW (INTEGER) Number of words in each subset.

NA (INTEGER) Specifies the distance between the first elements of consecutive subsets.

Notes:

To find the largest element in a continuous vector, VMAXA (F121) is faster than AMAXMU.

Examples:

X=AMAXMU(A,4,1,2)

sets X equal to the largest absolute value of A(1), A(3), A(5) and A(7).

�
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FINT CERN Program Library E104

Author(s) : C. Letertre Library: KERNLIB

Submitter : B. Schorr Submitted: 17.05.1971

Language : Fortran Revised:27.11.1984

Multidimensional Linear Interpolation

Function subprogram FINT uses repeated linear interpolation to evaluate a function f(x1; x2; : : : ; xn) of n
variables which has been tabulated at the nodes of an n-dimensional rectangular grid. It is not necessary
that the table arguments corresponding to any coordinate xi be equally spaced.

Structure:

FUNCTION subprogram
User Entry Names: FINT
Files Refernced: Printer
External References: KERMTR (N001), ABEND (Z035)

Usage:

In any arithmetic expression,

FINT(N,X,NA,A,F)

has an approximate value of f(X1; X2; : : : ; Xn).

N (INTEGER) Number of coordinates n required to define the function f .

X (REAL) One-dimensional array. X(j); (j = 1; 2; : : : ; N), must contain the coordinates of the point at
which the interpolation is to be performed.

NA (INTEGER) One-dimensional array. For j = 1; 2; : : : ; N; NA(j) must be equal to the number of
numerical values of variable xj which are stored in array A.

A (REAL) One-dimensional array of length not less than the sum of NA(1); : : : ; NA(N). The first NA(1)
elements of A must contain numerical values a11; a12; : : : of the first variable x1 in strictly increas-
ing order, the next NA(2) elements of A must contain numerical values a21; a22; : : : of the second
variable x2 in strictly increasing order, and so on.

F (REAL) Multidimensional array with dimensions NA(1), NA(2), : : : ,NA(N), containing values of
the function f at the nodes of the rectangular grid defined by A:
F(i; j; : : : ; m) = f(a1i; a2j; : : : ; anm); (i= 1; 2; : : : ; NA(1); : : : ;m = 1; 2; : : : ; NA(N)).

If any coordinate xi of the given point X lies outside the range of the corresponding table arguments, the
interpolation for this coordinate is replaced by an extrapolation based on the two nearest table arguments,
with consequent loss of accuracy.

Method:

Repeated linear interpolation with respect to variables x1; x2; : : : within the grid cell which contains the
given point X . For n = 2, with (x1; x2) replaced by (x; y) for clarity, the procedure is equivalent to the
following:

Let a1; a2; : : : be the tabulated values of x. Let b1; b2; : : : be the tabulated values of y.
Let i and j be the subscripts for which ai � x < ai+1; bj � y < bj+1.
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Then compute:

t = (x� a)=(ai+1 � a);
gj = (1� t)f(ai; bj) + tf(ai+1; bj);

gj+1 = (1� t)f(ai; bj+1 + tf(ai+1; bj+1);

u = (y � b)=(bj+1 � b);
fappr = (1� u)gj + ugj+1

Restrictions:

1. 1 � N � 5. FINT is set equal to zero if N is not in this range.

2. NA(j) � 1; (j = 1; 2; : : : ; N):

3. The table arguments for each variable must be in strictly increasing order.

There is no test for conditions 2 or 3.

Error handling:

E104.1: N < 1 or N > 5. FINT is set equal to zero, and a message is printed unless subroutine KERSET
(N001) has been called.

Examples:

Given a function of two variables g(x; y) defined by a FUNCTION subprogram G, to construct a table of values
of fkm = g(

p
k; logm) for k = 1; 2; : : : ; 10; m = 1; 2; : : : ; 15, and to interpolate in this table to set GINT

equal to an approximate value of g(1:7; 2:9). The program is written in a form which allows generalization
to functions of more than two variables.

PARAMETER (NA1=10,NA2=15)

DIMENSION X(2),NA(2),A(NA1+NA2),F(NA1,NA2)

DATA NA/NA1,NA2/

C STORE ARGUMENT ARRAY

K1=0

K2=K1+NA1

DO 1 J = 1,MAX(NA1,NA2)

IF (J .LE. NA1) A(J+K1)=SQRT(FLOAT(J))

IF (J .LE. NA2) A(J+K2)=LOG(FLOAT(J))

1 CONTINUE

C STORE FUNCTION ARRAY

DO 3 J1 = 1,NA1

DO 2 J2 = 1,NA2

F(J1,J2)=G(A(J1+K1),A(J2+K2))

2 CONTINUE

3 CONTINUE

C INTERPOLATE IN TABLE

X(1)=1.7

X(2)=2.9

GINT=FINT(2,X,NA,A,F)

...

�
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DIVDIF CERN Program Library E105

Author(s) : F. James Library: KERNLIB

Submitter : G.A. Erskine Submitted: 19.07.1973

Language : Fortran Revised:27.11.1984

Function Interpolation

Function subprogram DIVDIF interpolates in a table of arguments aj and function values fj = f(aj), using
an interpolating polynomial of specified degree which passes through tabular points which are symmetrically-
positioned around the interpolation argument. The table arguments aj need not be equidistant.

Structure:

FUNCTION subprogram
User Entry Names: DIVDIF
Files Referenced: Printer
External References: KERMTR (N001), ABEND (Z035)

Usage:

In any arithmetic expression,

DIVDIF(F,A,N,X,M)

has an approximate value of f(X).

F (REAL) One-dimensional array. F(j) must be equal to the value at A(j) of the function to be
interpolated, (j = 1; 2; : : : ; N).

A (REAL) One-dimensional array. A(j) must be equal to the table argument aj ; (j = 1; 2; : : : ; N).

N (INTEGER) Number of values in arrays F and A.

X (REAL) Argument at which the interpolating polynomial is to be evaluated.

M (INTEGER) Requested degree of the interpolating polynomial. If M exceeds Mmax = min(10; N� 1)
the interpolation is carried out using a polynomial of degree Mmax instead of M. The original value
of M is unchanged on exit.

Method:

Newton’s divided difference formula is used. Except when X lies near one end of the table (in which case
unsymmetrically-situated interpolation points are used), the interpolation procedure is as follows:
M odd:
An interpolating polynomial passing through M + 1 successive points (a j ; fj) symmetrically placed with
respect to X is used.
M even:
The mean of two interpolating polynomials is used, each passing through M + 1 successive points (a j ; fj),
one polynomial having an extra point to the left of X, the other having an extra point to the right of X.
If X lies too close to either end of the table for symmetrically-positioned tabular values to be used, the M+ 1
values at the end of the table are used. If X lies outside the range of the table, the interpolation becomes an
extrapolation, with corresponding loss of accuracy.

Restrictions:

The argument values A(1); A(2); : : : must be in either strictly increasing order or strictly decreasing order.
No error message is printed if this is not true.
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Error handling:

Error E105.1: N < 2 or M < 1. DIVDIF is set equal to zero and a message is printed unless subroutine
KERSET (N001) has been called.

Notes:

See also the write-up for POLINT (E100).
�
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LOCATR CERN Program Library E106

Author(s) : F. James, K.S. Kölbig Library: KERNLIB

Submitter : Submitted: 18.10.1974

Language : Fortran Revised:15.11.1995

Binary Search for Element in Ordered Array

Integer function subprograms LOCATI and LOCATR perform a binary search in an array of non-decreasing
integer or real numbers a1 � a2 � : : : � an to locate a specified value t.

Structure:

FUNCTION subprograms
User Entry Names: LOCATI, LOCATR
Obsolete User Entry Names: LOCATF � LOCATR

On CDC or Cray computers, the double-precision version LOCATD is not available.

Usage:

In any arithmetic expression, for t = I (type INTEGER), t = R (type REAL), t = D (type DOUBLE PRECISION),

LOCATt(tA,N,tT)

has the INTEGER value according to the description below.

tA (type according to t) One-dimensional array. The numbers tA(j) must form a non-decreasing
sequence for j = 1; 2; : : : ; N.

N (INTEGER) Number n of elements in array tA.

tT (type according to t) Search value t.

Depending on four possible outcomes of the search, each subprogram returns the following value L (a = tA,
t = tT):

aj = t for some j with 1 � j � N L = j

t < a1 L = 0

ak < t < ak+1 for some k with 1 � k � N� 1 L = �k
an < t L = �N

If the value t occurs more than once in the array a, the result L may correspond to any of the occurrences.

Method:

Repeated bisection of the subscript range.

Notes:

1. The number of comparisons performed is approximately proportional to ln N. Therefore, for large N

the binary search is considerably faster than a sequential search using a DO loop. However, for N less
than about 40 a DO loop is faster.

2. The obsolete older entry LOCATF is kept for a transitional period. It will eventually disappear.

�
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RLSQPM CERN Program Library E201

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Least Squares Polynomial Fit

Subroutine subprograms RLSQPM and DLSQPM fit a polynomial

pm(x) =
mX
j=0

ajx
j

of degree m to n equally-weighted data points (xi; yi). The calculated coefficients aj are such that

S2
m =

nX
i=1

�
yi � pm(xi)

�2
= min :

Subroutine subprograms RLSQP1 and DLSQP1 fit a straight line p1(x) = a0 + a1x to n such points.
Subroutine subprograms RLSQP2 and DLSQP2 fit a parabola p2(x) = a0 + a1x+ a2x

2 to n such points.
An estimate s =

p
S2
m
=(n�m� 1) of the standard deviation � is calculated.

On CDC and Cray computers, the double-precision versions DLSQPM, DLSQP1 and DLSQP2 are not available.

Structure:

SUBROUTINE subprograms
User Entry Names: RLSQPM, RLSQP1, RLSQP2, DLSQPM, DLSQP1, DLSQP2
External References: RVSET (F002), DVSET (F002), DVSUM (F002), DVMPY (F002), DSEQN (F012)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tLSQPM(N,X,Y,M,A,SD,IFAIL)

CALL tLSQP1(N,X,Y,A0,A1,SD,IFAIL)

CALL tLSQP2(N,X,Y,A0,A1,A2,SD,IFAIL)

N (INTEGER) Number n of data points.

X (type according to t) One-dimensional array of length � N. On entry, X(i) contains the ab-
scissas xi; (i = 1; 2; : : : ; n).

Y (type according to t) One-dimensional array of length � N. On entry, Y(i) contains the ordi-
nates yi; (i = 1; 2; : : : ; n).

M (INTEGER) Degree m of the polynomial to be fitted.

A (type according to t) One-dimensional array of dimension (0:d), where d � M. Contains, on
exit, in A(j) the coefficients aj ; (j = 0; 1; : : : ; m).

A0,A1,A2 (type according to t) Contain, on exit, the coefficients a0, a1 for p1(x) = a0+a1x or a0; a1; a2
for p2(x) = a0 + a1x+ a2x

2, respectively.

SD (type according to t) Contains, on exit, the estimate s.

IFAIL (INTEGER) Error flag.
= 0 : Normal case,
= 1 : N � 1 or M < 0 or M � N or M > 20,
= �1 : The matrix of normal equations is numerically singular.

In the case IFAIL 6= 0: M = 0, A(j) = 0 and A0 = A1 = A2 = 0 on exit.

153 E201 – 1



Method:

The normal equations are solved. On computers other than CDC or Cray, double-precision mode arithmetic
is used internally for RLSQPM, RLSQP1 and RLSQP2.

Notes:

Meaningful results can usually be obtained only for small values of m (typically< 10).

References:

1. D.H. Menzel, Fundamental formulas of physics, v. 1, (Dover, New York 1960) 116–122.

�
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LSQ CERN Program Library E208

Author(s) : E. Keil Library: KERNLIB

Submitter : B. Schorr Submitted: 01.12.1969

Language : Fortran Revised:27.11.1984

Least Squares Polynomial Fit

OBSOLETE
Please note that this routine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RLSQPM (E201)

Subroutine LSQ fits a polynomial of degree m� 1 to n equally-weighted data points (x i; yi). The computed
coefficients aj of the fitted polynomial have values which minimize

nX
i=1

0@yi � mX
j=1

ajx
j�1
i

1A2

:

For the case m = 2 (straight line fit), subroutine LLSQ is faster and easier to use than LSQ.

Meaningful results can usually be obtained only for small values of m (typically less than 10).

Structure:

SUBROUTINE subprograms
User Entry Names: LSQ, LLSQ
Files Referenced: Printer
External References: RVSUM (F002), RSEQN (F012), DSEQN (F012), KERMTR (N001), ABEND (Z035)

Usage:

CALL LSQ(N,X,Y,M,A)

CALL LLSQ(N,X,Y,A1,A2,IFAIL)

N (INTEGER) Number n of data points.

X (REAL) One-dimensional array. X(i) must be equal to the data coordinate xi,
(i = 1; 2; : : : ; N).

Y (REAL) One-dimensional array. Y(i) must be equal to the observed value yi,
(i = 1; 2; : : : ; N).

M (INTEGER) On entry, M must be equal to the number m of coefficients of the polynomial to be
fitted. On exit, the value of M may differ from this (see Error Handling ).

A (REAL) One-dimensional array. On exit from LSQ, A(j) is equal to the coefficient of xj�1 in
the fitted polynomial, (j = 1; 2; : : : ; M).

A1,A2 (REAL) On exit from LLSQ, A1 and A2 are equal to the coefficients of the fitted straight line
a1 + a2x.

IFAIL (INTEGER) On exit from LLSQ, IFAIL is equal to -2 if N < 2, to -1 if the matrix of normal
equations is numerically singular, and to zero otherwise.
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Method:

Normal equations.

Error handling:

Error E208.1: M < 1 or M > N or M > 20 (subroutine LSQ). M is replaced by zero.
Error E208.2: The normal equations matrix is numerically singular (subroutine LSQ).
For each error, a message is printed unless subroutine KERSET (N001) has been called.

Notes:

On computers other than Cray and CDC double-precision arithmetic is used internally.
�
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NORBAS CERN Program Library E210

Author(s) : W. Mönch, B. Schorr Library: MATHLIB

Submitter : W. Mönch Submitted: 15.03.1993

Language : Fortran Revised:

Polynomial Splines / Normalized B-Splines

NORBAS (NORmalized BAsis Splines) is a portable collection of subprograms for various calculations with
polynomial splines in one dimension (1D) and in two dimensions (2D). The polynomial splines are repre-
sented as linear combinations of normalized basis splines (B-splines).

On computers other than CDC or Cray, only the double-precision versions DSPKN1, etc. are available. On
CDC and Cray computers, only the single-precision versions RSPKN1, etc. are available.

The following outline provides the background material and the notations needed for describing the subpro-
grams and their parameters. For further information about splines and their applications see References, in
particular Ref. 7.

Case (1D):

k Degree (order �1) of the B-spline (0 � k � 25).

m Number of spline-knots (m � 2 k+ 2).

i Index of the B-spline (1 � i � m� k � 1).

� Set of m spline-knots � = ft1; t2; : : : ; tmg, in non-decreasing order, with multiplicity � k + 1
(i.e. no more than k + 1 knots coincide).

[a; b] Interval, defined by a = tk+1 , b = tm�k .

Bi(x) Normalized B-spline of degree k over � with index i. The value of Bi(x) is identically zero
outside the interval ti � x � ti+k+1 , and the normalization of Bi(x) is such thatZ +1

�1
Bi(x) dx =

ti+k+1 � ti
k + 1

(i = 1; : : : ; m� k � 1):

s(x) Polynomial spline at x 2 [a; b] in B-spline representation

y = s(x) =
m�k�1X
i=1

ciBi(x) :

Spline interpolation to a data set:

Given a data set fxl; ylgl=1;::: ;n ; determine coefficients fcigi=1;::: ;n of a polynomial interpolation spline
y = s(x) in B-spline representation with degree k over a set � of m = n + k + 1 knots, such that the
following relations (interpolation conditions) hold:

s(xl) = yl (l = 1; : : : ; n):

The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots (Ref. 7, Theorem XIII.1 (Schoenberg-Whitney)).

Least squares spline approximationto a data set:

Given a data set fxl; ylgl=1;::: ;n ; determine coefficients fcigi=1;::: ;m�k�1 of a polynomial approximation
spline y = s(x) in B-spline representation with degree k over a set � of m � n + k + 1 knots, such that
following least squares problem is solved:

�(c1; : : : ; cm�k�1) =
nX
l=1

(yl � s(xl))
2 = min !
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Variation diminishing spline approximation to a function (Schoenberg):
For a given function y = f(x) on [a; b] this spline approximation is defined by y = s(x), with
(Ref. 7, p. 158-162)

ci = f(xi); xi = (ti+1 + � � �+ ti+k)=k (i = 1; : : : ; m� k � 1; k � 1):

Case (2D):

kx Degree of one-dimensional B-splines in x-direction (0 � kx � 25).

ky Degree of one-dimensional B-splines in y-direction (0 � ky � 25).

mx Number of spline-knots in x-direction (mx � 2 kx+ 2).

my Number of spline-knots in y-direction (my � 2 ky + 2).

i Index of B-spline (1 � i � mx� kx � 1) in x-direction.

j Index of B-spline (1 � j � my � ky � 1) in y-direction.

�x Set of mx spline-knots �x = ftx;1; tx;2; : : : ; tx;mxg in x-direction, in non-decreasing order,
with multiplicity� kx+ 1 (i.e. no more than kx + 1 knots coincide).

�y Set of my spline-knots �y = fty;1; ty;2; : : : ; ty;myg in y-direction, in non-decreasing order,
with multiplicity� ky + 1 (i.e. no more than ky + 1 knots coincide).

[ax; bx] Interval in x-direction, defined by ax = tx;kx+1 , bx = tx;mx�kx.

[ay; by] Interval in y-direction, defined by ay = ty;ky+1 , by = ty;my�ky .

Bi(x) B-spline of degree kx over �x with index i.

Bj(y) B-spline of degree ky over �y with index j.

Bi;j(x; y) Product Bi;j(x; y) = Bi(x)Bj(y) of two one-dimensional B-splines.

s(x; y) Two-dimensional polynomial spline at (x; y) 2 [ax; bx]� [ay; by] in B-spline representation

z = s(x; y) =
mx�kx�1X

i=1

my�ky�1X
j=1

ci;j Bi;j(x; y):

Spline interpolation to a data set:
Given a data set fxlx; yly; zlx;lyglx=1;::: ;nx;ly=1;::: ;ny ; determine coefficients fci;jgi=1;::: ;nx;j=1;::: ;ny of a
two-dimensional polynomial interpolation spline z = s(x; y) in B-spline representation with degrees kx ,
ky over the sets �x of mx = nx + kx + 1 knots in x-direction and �y of my = ny + ky + 1 knots in
y-direction, such that following relations (interpolation conditions) hold:

s(xlx; yly) = zlx;ly (lx = 1; : : : ; nx ; ly = 1; : : : ; ny):

The existence of a solution of this interpolation problem depends on an appropriate choice of the spline-
knots �x , �y in the two-dimensional interpolation area [ax; bx]� [ay; by] .
Least squares spline approximationto a data set:
Given a data set fxlx; yly; zlx;lyglx=1;::: ;nx;ly=1;::: ;ny ; determine coefficients fci;jgi=1;::: ;nx;j=1;::: ;ny of a
two-dimensional polynomial approximation spline z = s(x; y) in B-spline representation with degrees kx,
ky over the sets �x of mx � nx + kx + 1 knots in x-direction and �y of my � ny + ky + 1 knots in
y-direction, such that following least squares problem is solved:

�(c1;1; : : : ; cmx�kx�1;my�ky�1) =
nxX
lx=1

nyX
ly=1

(zlx;ly � s(xlx; yly))2 = min !

Variation diminishing spline approximation to a function:
For a given function z = f(x; y) on [ax; by]� [ay; by] this two-dimensional spline approximation is defined
by z = s(x; y) on [ax; bx]� [ay; by], with

ci;j = f(xi; yj); xi = (tx;i+1 + � � �+ tx;i+kx)=kx (i = 1; : : : ; mx� kx � 1; kx � 1);

yj = (ty;j+1 + � � �+ ty;j+ky )=ky (j = 1; : : : ; my � ky � 1; ky � 1):
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The package NORBAS containsFUNCTION and SUBROUTINE subprograms for solving the following problems.
To calculate:

(K) A set � of m spline-knots in the interval [a; b] for normalized B-splines Bi(x) of degree k, use sub-
program tSPKN1 (1D). The knots are in non-decreasing order and determined in such a way that the
first k+1 knots coincide with a, the last k+1 knots coincide with b, and the remaining (m�2 k�2)
knots are equidistant in (a; b).
Two sets �x , �y of spline-knots in [ax; bx] and [ay; by] for B-splines Bi;j(x; y) of degrees kx and ky
in x- and y-direction, use subprogram tSPKN2 (2D). �x and �y , are calculated by the same formulae
in x-, and y-direction, as in case (1D).

(B) The functionBi(x),

the n-th derivative
dnBi(x)

dxn
, or the integral

Z
x

�1
Bi(�) d�

of a normalized B-spline Bi(x), with fixed degree k and index i over a set � of spline-knots, use
subprogram: tSPNB1 (1D).
The functionBi;j(x; y),

the partial derivative
@nx @ny Bi;j(x; y)

@xnx @yny
, or the integral

Z
x

�1

Z
y

�1
Bi;j(�; �) d�d�

of a two-dimensional B-spline Bi;j(x; y), with fixed degrees kx, ky and indices i, j over the sets �x,
�y of spline-knots, use subprogram tSPNB2 (2D).

(P) The function s(x),

the n-th derivative
dns(x)

dxn
, or the integral

Z
x

�1
s(�) d�

of a polynomial spline y = s(x) in B-spline representation with given coefficients c i, use subprogram
tSPPS1 (1D).
The function s(x; y),

the partial derivative
@nx @ny s(x; y)

@xnx @yny
, or the integral

Z
x

�1

Z
y

�1
s(�; �) d�d�

of a two-dimensional polynomial spline z = s(x; y) in B-spline representation with given coefficients
ci;j , use subprogram tSPPS2 (2D).

(I) The coefficients ci of a one-dimensional polynomial interpolation spline y = s(x) in B-spline repre-
sentation to a user-supplied data set fxl; ylg, use subprogram tSPIN1 (1D).
The coefficients ci;j of a two-dimensional polynomial interpolation spline z = s(x; y) in B-spline
representation to a user-supplied data set fxlx; yly; zlx;lyg, use subprogram tSPIN2 (2D).

(A) The coefficients ci of a one-dimensional polynomial least squares approximation spline y = s(x) in
B-spline representation to a user-supplied data set fxl; ylg, use subprogram tSPAP1 (1D).
The coefficients ci;j of a two-dimensional polynomial least squares approximation spline z = s(x; y)
in B-spline representation to a user-supplied data set fxlx; yly; zlx;lyg , use subprogram tSPAP2 (2D).

(V) The coefficients ci of a one-dimensional polynomial variation diminishing spline approximation y =
s(x) in B-spline representation to a user-supplied function y = f(x), use subprogram tSPVD1 (1D).
The coefficients ci;j of a two-dimensional polynomial variation diminishing spline approximation
z = s(x; y) in B-spline representation to a user-supplied function z = f(x; y), use subprogram
tSPVD2 (2D).

(D) From given coefficients ci of a one-dimensional polynomial spline y = s(x) in B-spline representa-
tion, the corresponding coefficients di of its n-th derivative dns(x)=dxn in B-spline representation,
use subprogram tSPCD1 (1D).
From given coefficients ci;j of a two-dimensional polynomial spline z = s(x; y) in B-spline repre-
sentation, the corresponding coefficients di;j of its partial derivative @nx @ny s(x; y)=f@xnx @ynyg in
B-spline representation, use subprogram tSPCD2 (2D).
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Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RSPKN1, RSPKN2, RSPNB1, RSPNB2, RSPPS1, RSPPS2, RSPIN1, RSPIN2,

RSPAP1, RSPAP2, RSPVD1, RSPVD2, RSPCD1, RSPCD2,

DSPKN1, DSPKN2, DSPNB1, DSPNB2, DSPPS1, DSPPS2, DSPIN1, DSPIN2,

DSPAP1, DSPAP2, DSPVD1, DSPVD2, DSPCD1, DSPCD2,

Internal Entry Names: RSPAS1, RSPAS2, RSPLKK, DSPAS1 DSPAS2, DSPLKK
Files Referenced: Unit 6

External References: RGBTRF (F001), RGBTRS (F001), RGESVD (F001),

DGBTRF (F001), DGBTRS (F001), DGESVD (F001),

RVSET (F002), RVSUM (F002), RVCPY (F002), RVMPY (F002),

DVSET (F002), DVSUM (F002), DVCPY (F002), DVMPY (F002),

RMCPY (F003), RMMPY (F003), DMCPY (F003), DMMPY (F003),

MTLMTR (N002), ABEND (Z035).

User-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION):

(K) Knots

CALL tSPKN1(K,M,A,B,T,NERR)

CALL tSPKN2(KX,KY,MX,MY,AX,BX,AY,BY,TX,TY,NERR)

(B) Normalized B-splines

tSPNB1(K,M,I,NDER,X,T,NERR)

tSPNB2(KX,KY,MX,MY,I,J,NDERX,NDERY,X,Y,TX,TY,NERR)

(P) Polynomial spline

tSPPS1(K,M,NDER,X,T,C,NERR)

tSPPS2(KX,KY,MX,MY,NDERX,NDERY,X,Y,TX,TY,C,NDIMC,W,NERR)

(I) Spline interpolation

CALL tSPIN1(K,N,XI,YI,KNOT,T,C,W,IW,NERR)

CALL tSPIN2(KX,KY,NX,NY,XI,YI,ZI,NDIMZ,KNOT,TX,TY,C,NDIMC,W,IW,NERR)

(A) Least squares spline approximation

CALL tSPAP1(K,M,N,XI,YI,KNOT,T,C,W,NW,NERR)

CALL tSPAP2(KX,KY,MX,MY,NX,NY,XI,YI,ZI,NDIMZ,KNOT,TX,TY,C,NDIMC,W,NW,NERR)

(V) Variation diminishing spline approximation

CALL tSPVD1(F,K,M,T,C,NERR)

CALL tSPVD2(F,KX,KY,MX,MY,TX,TY,C,NDIMC,NERR)

(D) Coefficients of derivatives

CALL tSPCD1(K,M,NDER,T,C,D,NERR)

CALL tSPCD2(KX,KY,MX,MY,NDERX,NDERY,TX,TY,C,NDIMC,D,NERR)
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Case (1D):

F Name of a user-upplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must provide the value of the function y = f(x) for variation diminishing spline ap-
proximation.

K (INTEGER) Degree of B-splines (1 � K � 25 for tSPVD1, 0 � K � 25 otherwise).

M (INTEGER) Number of knots (� 2 � K+ 2).

I (INTEGER) Index of B-splines (1 � I � M� K� 1).

N (INTEGER) Number of data points fxl; ylg (� K+ 1 for spline interpolation (tSPIN1);� M� K� 1

for spline approximation (tSPAP1)).

NDER (INTEGER) Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.
(�1 � NDER � K for tSPNB1 and tSPPS1; 1 � NDER � K for tSPCD1).

= �1 : Calculation of the integral of Bi(x) (tSPNB1), or the integral of s(x) (tSPPS1).

= 0 : Calculation of the function value Bi(x) (tSPNB1), or the function value s(x) (tSPPS1).

� 1 : Calculation of the NDER-th derivative of Bi(x) (tSPNB1), or the NDER-th derivative of s(x)
(tSPPS1).

X (Type according to t) Independent variable x of polynomial spline s(x) or B-splineBi(x).

XI (Type according to t) One-dimensional array of length � N. On entry, XI(L) must contain the l-th
data point xl for spline interpolation (tSPIN1) or spline approximation (tSPAP1). The data points
must be in ascending order.

YI (Type according to t) One-dimensional array of length � N. On entry, YI(L) must contain the l-th
data point yl for spline interpolation (tSPIN1) or spline approximation (tSPAP1).

KNOT (INTEGER) Controls the mode of supplying the knots for spline interpolation or approximation.

= 1; 2 : The knots are computed by the subprograms tSPIN1 and tSPAP1. At the left and right
end-point of the interpolation (approximation) interval [x1; xn] arise multiple knots. The
remaining knots are either equidistant (KNOT = 1) or are computed by using the data points
fxlg of interpolation (approximation) (KNOT = 2).

6= 1; 2 : The knots must be supplied by the user.

A,B (Type according to t) On entry, A and B must contain the left (right) end-point of the interval [a; b]
for the calculation of a set of spline knots (tSPKN1).

T (Type according to t) One-dimensional array of length� M .
For tSPKN1 and for tSPINT1, tSPAP1 if KNOT = 1; 2 : On exit, T(J) contains the j-th knot. In the
other cases, on entry, T(J) must contain the j-th knot. The knots must be in non-decreasing order
with multiplicity� K+ 1.

C (Type according to t) One-dimensional array of length� M� K� 1.
For tSPPS1 and tSPCD1: On entry, C(I) must contain the i-th coefficient ci of the polynomial
spline s(x) in B-spline representation.
For tSPIN1, tSPAP1 and tSPVD1: On exit, C(I) contains the i-th coefficient ci of the polynomial
interpolation or approximation spline s(x) in B-spline representation.

D (Type according to t) One-dimensional array of length� M� K� 1.
On exit, D(I) contains the coefficient di of the NDER-th derivative of a polynomial spline s(x) in
B-spline representation.

W (Type according to t) One-dimensional array of length � (3 � K+ 1) � N (tSPIN1), and of length
� NW (tSPAP1); used as working space.

NW (INTEGER) Length of working array W, (NW � N � (n0+5)+n0�(n0+1); n0= M� K� 1).

IW (INTEGER) One-dimensional array of length� N, used as working space.
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NERR (INTEGER) Error indicator. On exit:

= 0 : No error or warning detected.

= 1 : At least one of the parameters I, K, M, N, NDER is not in range or A � B is not true.

= 2 : The subprograms tGEQPF, tORMQR, tTRTRS in the Linear Algebra package LAPACK (F001)
were unable to solve the linear system of equations for calculating the coefficients of the
spline interpolation to a given data set.

Case (2D):

F Name of a user-upplied FUNCTION subprogram, declared EXTERNAL in the calling program. This
subprogram must provide the value of the function z = f(x; y) for variation diminishing spline
approximation.

KX,KY (INTEGER) Degree of one-dimensional B-splines in x- (y-)direction (1 � KX � 25; 1 � KY � 25

for tSPVD2; 0 � KX � 25; 0 � KY � 25 otherwise).

MX,MY (INTEGER) Number of knots in x- (y-)direction (MX � 2 � KX+ 2; MY � 2 � KY+ 2).

I,J (INTEGER) Indices of B-splines (1 � I � MX� KX� 1; 1 � J � MY� KY� 1).

NX,NY (INTEGER) Number of data points xlx (yly) in x- (y-)direction (NX � KX+ 1; NY � KY+ 1 for
spline interpolationtSPIN2; NX � MX� KX� 1; NY � MY� KY� 1 for spline approximationtSPAP2).

NDERX, (INTEGER) Selects one out of three cases: (i) integral, (ii) function value, or (iii) derivative.

NDERY (�1 � NDERX � KX; �1 � NDERY � KY for tSPNB2 and tSPPS2;
1 � NDERX � KX, 1 � NDERY � KY for tSPCD2).

= �1 : Calculation of the integral of Bi;j(x; y) (tSPNB2), or the integral of s(x; y) (tSPPS2).

= 0 : Calculation of the function valueBi:j(x; y) (tSPNB2), or the function value s(x; y) (tSPPS2).

� 1 : Calculation of the NDERX-th partial derivative with respect to x and the NDERY-th partial
derivative with respect to y of Bi;j(x; y) (tSPNB2), or the calcultion of these derivatives of
s(x; y) (tSPPS2).

Note that in the first two cases NDERX = NDERY = �1; NDERX = NDERY = 0, respectively.

X,Y (Type according to t) Independent variables x; y of polynomial spline s(x; y) or B-splineB i;j(x; y).

XI,YI (Type according to t) One-dimensional arrays of length � NX and � NY, respectively. On entry,
XI(LX) and YI(LY) must contain the lx-th data point xlx and the ly-th data point yly for spline
interpolation (tSPIN2) or spline approximation (tSPAP2). The data points must be in ascending
order.

ZI (Type according to t) Two-dimensional array of dimension (NDIMZ;� NY). On entry, ZI(LX; LY)
must contain the (lx; ly)-th data point zlx;ly for spline interpolation (tSPIN2) or spline approxima-
tion (tSPAP2).

NDIMZ (INTEGER) Declared first dimension of a two-dimensional array ZI in the calling program (� NX).

KNOT (INTEGER) Controls the mode of supplying the knots for spline interpolation or approximation.

= 1; 2 : The set of knots are computed by subprograms tSPIN2 and tSPAP2. At the left and right
end-points of the interpolation (approximation) intervals [x1; xnx]; [y1; yny] arise multiple
knots. The remaining knots are either equidistant (KNOT = 1) or are computed by using
the data points fxlx; ylyg of interpolation (approximation) (KNOT = 2).

6= 1; 2 : The knots must be supplied by the user.

AX,BX; (Type according to t) On entry, AX, BX; AY, BY must contain the left (right) end-points of the

AY,BY intervals [ax; bx]; [ay; by] for the calculation of a set of spline knots in x- (y-)direction, respectively,
by tSPKN2.
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TX,TY (Type according to t) One-dimensional arrays of length� MX and � MY, repectively.
For tSPKN2 and for tSPIN2, tSPAP2 if KNOT = 1; 2 : On exit, TX(J) and TY(J) contain the j-th
knot in x- (y-)direction. In the other cases, on entry, TX(J) and TY(J) must contain the j-th knot
in x- (y-)direction. The knots must be in non-decreasing order with multiplicity � KX+ 1 and
� KY+ 1, respectively.

C (Type according to t) Two-dimensional array of dimension (NDIMC;� MY� KY� 1).
For tSPPS2, tSPCD2: On entry, C(I,J)must contain the (i; j)-th coefficient ci;j of the polynomial
spline s(x; y) in B-spline representation.
For tSPIN2, tSPAP2, tSPVD2: On exit, C(I,J) contains the (i; j)-th coefficient ci;j of the poly-
nomial interpolation or approximation spline s(x; y) in B-spline representation.

NDIMC (INTEGER) Declared first dimension of a two-dimensional array C in the calling program
(� MX� KX� 1).

D (Type according to t) Two-dimensional array of dimension (NDIMC;� MY� KY� 1).
On exit, D(I,J) contains the coefficient di;j of the partial derivative of order nx; ny with respect
to x and y of a polynomial spline s(x; y) in B-spline representation.

W (Type according to t) One-dimensional array of length� MY� KY� 1 (tSPPS2),
� (3 � KX � NY+ 2) � NX � NY (tSPIN2), and of length� NW (tSPAP2), used as working space.

NW (INTEGER) Length of a one-dimensional array W, used as working space
(� NX � NY � (n0+6)+n0�(n0+1); n0= (MX� KX� 1) � (MY� KY� 1)).

IW (INTEGER) One-dimensional array of length� NX � NY, used as working space.

NERR (INTEGER) Error indicator. On exit:

= 0 : No error or warning detected.

= 1 : At least one of the parameters I, J, KX, KY, MX, MY, NX, NY, NDERX, NDERY is not in range or
at least one of the relations AX � BX, AY � BY is not true.

= 2 : The routines tGEQPF, tORMQR, tTRTRS in the Linear Algebra package LAPACK (F001) were
unable to solve the linear system of equations for calculation coefficients of spline interpo-
lation to a given data set.

Examples:

Calculate

1. The coefficients ci of a polynomial interpolation spline y = s(x) of degree k = 2 in B-spline repre-
sentation to a given data set f(xl; yl)gl=1;::: ;6;

2. The corresponding coefficients di of the first derivative y0 =
ds(x)

dx
;

3. The values of s(x);
ds(x)

dx
and

Z
x

0

s(�)d� for x = 0(0:1)1.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION XI(6),YI(6),T(9),C(6),D(6),W(42),IW(6)

DATA K,N,NDER,KNOT / 2,6,1,1 /

DATA XI / 0D0,0.20D0,0.40D0,0.60D0,0.80D0,1.00D0 /

DATA YI / 1D0,0.66D0,0.47D0,0.38D0,0.35D0,0.34D0 /

M=N+K+1

CALL DSPIN1(K,N,XI,YI,KNOT,T,C,W,IW,NERR)

CALL DSPCD1(K,M,NDER,T,C,D,NERR)
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WRITE(6,1000) K,N,(T(I),I=1,M)

DO 20 J=0,10

X=J/1D1

SPL0=DSPPS1(K,M, 0,X,T,C,NERR)

SPL1=DSPPS1(K,M, 1,X,T,D,NERR)

SPLI=DSPPS1(K,M,-1,X,T,C,NERR)

20 WRITE(6,1010) J,X,SPL0,SPL1,SPLI

1000 FORMAT(...)

1010 FORMAT(...)

END

DEGREE OF POLYNOMIAL SPLINE: 2 NUMBER OF DATA POINTS: 6

KNOTS T : 0.00 0.00 0.00 0.25 0.50 0.75 1.00 1.00 1.00

J X S(X) DS(X) IN(X)

0 0.00 1.000000 -2.119921 0.000000

1 0.10 0.809004 -1.700000 0.090100

2 0.20 0.660000 -1.280079 0.163201

3 0.30 0.550992 -0.940017 0.223467

4 0.40 0.470000 -0.679816 0.274299

5 0.50 0.415028 -0.419615 0.318334

6 0.60 0.380000 -0.280953 0.357970

7 0.70 0.358838 -0.142290 0.394796

8 0.80 0.350000 -0.065306 0.430174

9 0.90 0.344235 -0.050000 0.464873

10 1.00 0.340000 -0.034694 0.499072

Error handling:

Error E210.1: K|KX,KY not in range, Error E210.5: NDER|NDERX,NDERY not in range,

Error E210.2: M|MX,MY not in range, Error E210.6: A,B|AX,BX;AY,BY inconsistent,

Error E210.3: I|I,J not in range, Error E210.7: NDERX|NDERY inconsistent.

Error E210.4: N|NX,NY not in range,

In all cases, NERR is set = 1 (see above). A message is written on Unit 6, unless subroutineMTLSET (N002)
has been called.
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RCSPLN CERN Program Library E211

Author(s) : K.S. Kölbig, H. Lipps Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 01.05.1990

Language : Fortran Revised:

Cubic Splines and their Integrals

Subroutines RCSPLN and DCSPLN compute a (vector-valued) cubic spline function F (x) which interpolates
between a given set of points. Entries RCSPNT and DCSPNT compute the first and second integral over F (x).

On computers other than CDC or Cray, only the double-precision versions DCSPLN and DCSPNT are available.
On CDC and Cray computers, only the single-precision versions RCSPLN and RCSPNT are available.

Given an interval [a; b], a subdivision of this interval into n � 2 subintervals

a = x0 < x1 < ::: < xn�1 < xn = b;

and n+1 function values Yk = fyk1; : : : ; ykmg on the n+1 abscissae (called ‘knots’) xk (k = 0; 1; : : : ; n),
RCSPLN and DCSPLN compute a function F (x) of class C2, defined on [a; b], which assumes the given value
Yk at the knot xk (i.e. F (xk) = Yk), and which, when restricted to the ith sub-interval [xi�1; xi] is identical
with a set of m polynomials fpi1; :::; pimg, each of degree at most 3. Any function F (x) which satisfies
the above two conditions is called a ‘cubic spline’ through the n + 1 points (x k; Yk). To define the spline
function F (x) uniquely the subroutines impose an additional boundary condition, specified by their MODE
parameter:

MODE = 0: F 00(x0) = F 00(xn) = 0 (the so-called natural spline).

MODE = 1: F 00(x0) = F 00(x1) and F 00(xn�1) = F 00(xn).

Structure:

SUBROUTINE subprograms
User Entry Names: RCSPLN, RCSPNT, DCSPLN, DCSPNT
Files referenced: Unit 6

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

Spline: CALL tCSPLN(N,X,M,Y,NDIM,MODE,A,B,C,D)

Integrals: CALL tCSPNT(N,X,M,Y,NDIM,MODE,A,B,C,D)

N (INTEGER) Number n of subintervals [xi�1; xi]. Must contain a value of at least 2 on entry.
Unchanged on return.

X (type according to t) One-dimensional array of dimension (0:d) of at least n+1 elements. On
entry, X(k) must contain the abscissa xk, (k = 0; 1; : : : ; n). Unchanged on return.

M (INTEGER) Number m of components of the vector-valued spline function F (x). Must contain
a value of at least 1 on entry. Unchanged on return.

Y (type according to t) Two-dimensional array of dimension (0:NDIM,d) where d is a value not
less than m. On entry, Y(k,j) must contain the value ykj of the jth component of the vector
Yk , (k = 0; 1; : : : ; n; j = 1; : : : ; m). Unchanged on return.

NDIM (INTEGER) Upper bound of the first dimension of arrays A, B, C, D and Y. Must contain a value
of at least n on entry. Unchanged on return.

MODE (INTEGER) Type of boundary condition (see description above). Must contain the value 0 or 1
on entry. Unchanged on return.
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A,B,C,D (type according to t) Two-dimensional arrays of dimension (NDIM,d), where d � m.
On return from RCSPLN, A(i,j), B(i,j), C(i,j) and D(i,j)will contain the four coefficients
aij ; bij; cij; and dij of the polynomial

pij = aij + bij(x� xi�1) + cij(x� xi�1)
2 + dij(x� xi�1)

3

that determines the jth component fj(x) of the spline in the ith subinterval [x i�1; xi], i =
l; : : : ; n, j = 1; : : : ; m.
On return from RCSPNT,

A(i,j) =

Z
xi

a

fj(t) dt and B(i,j) =

Z
xi

a

Z
x

a

fj(t) dt dx,

with i = 1; : : : ; n; j = 1; : : : ; m.
Arrays C and D have been used as working space.

Restrictions:

N � 2, M � 1, NDIM � N, MODE = 0 or 1.

Error handling:

Error E211.1: N < 2.
Error E211.2: M < 1.
Error E211.3: NDIM < N.
Error E211.4: MODE 6= 0 and MODE 6= 1.
A message is written on Unit 6, unless subroutine MTLSET (N002) has been called.
�
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RCHEBN CERN Program Library E222

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Solution of Overdetermined Linear System in the Chebychev Norm

Subroutine subprograms RCHEBN and DCHEBN find the Chebyshev or minimax solution to a set of overdeter-
mined linear equationsAx = b, i.e. the vector x which minimizes

c = max
1�i�m

ci = max
1�i�m

������bi �
nX

j=1

aijxj

������ :
On computers other than CDC or Cray, only the double-precision version DCHEBN is available. On CDC and
Cray computers, only the single-precision version RCHEBN is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RCHEBN, DCHEBN
External References: RVSCA (F002), RVSCL (F002), RVSCS (F002), RVSET (F002), RVXCH (F002),

DVSCA (F002), DVSCL (F002), DVSCS (F002), DVSET (F002), DVXCH (F002)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tCHEBN(M,N,A,MDIM,B,TOL,RELERR,X,RESMAX,IRANK,ITER,ICODE)

M (INTEGER) Number m of equations.

N (INTEGER) Number n (� m) of unknowns.

A (type according to t) Two-dimensional array of dimension (MDIM,d), where d � n + 3. On
entry, A(I,J) must contain the coefficients aij (i = 1; : : : ; m; j = 1; : : : ; n) of matrix A.
The contents of A is destroyed during execution.

MDIM (INTEGER) Declared first dimension of array A, where MDIM � m+ 1.

B (type according to t) One-dimensional array of length� m+1. On entry, the first m elements
of B must contain the vector b. On exit, these elements contain the residuals ci.

TOL Tolerance parameter which should be set to a value somewhat greater than the machine preci-
sion.

RELERR (type according to t) On entry, RELERR should be set to zero if the true minimax solution is
required. (For RELERR non-zero see Notes).

X (type according to t) One-dimensional array of length � n + 3. On exit, the first n elements
of X contain the solution vector x.

RESMAX (type according to t) On exit, RESMAX contains the value c of the maximum residual.

IRANK (INTEGER) On exit, IRANK contains an estimate of the rank of the matrix A. (This estimate may
depend on TOL).

ITER (INTEGER) On exit, ITER contains the number of simplex iterations performed.

ICODE (INTEGER) On exit, ICODE contains one of the following:
= 0 : Solution x is not unique,
= 1 : Solution x is unique,
= 2 : Calculation terminated prematurely because of rounding error.
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Method:

Modified simplex method of linear programming applied to the dual of the stated minimax problem.

Notes:

1. If RELERR on entry contains a non-zero positive value r, RELERR on exit contains a value r 0 < r, and
the computed solution x0 in X and the maximum residual c0 in RESMAX are such that (c0 � c)=c < r0,
where c is the maximum residual corresponding to the true minimax solution x. By setting RELERR

non-zero (e.g. RELERR = 0.1), the number of simplex iterations is usually reduced.

2. If RESMAX is within one or two orders of magnitude of TOL, the computed residuals in B on exit may
contain few significant digits, and may have been set to zero if RESMAX < TOL.

Source:

The subprograms are based on a Fortran algorithm given in Ref. 1.

References:

1. I. Barrodale and C. Phillips, Algorithm 495: Solution of an overdetermined system of linear equations
in the Chebyshev norm, ACM Trans. Math. Software 1 (1975) 264–270.

�
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TL CERN Program Library E230

Author(s) : W. Hart, W. Matt Library: KERNLIB

Submitter : Submitted: 01.01.1975

Language : Fortran Revised:04.02.1986

Constrained and Unconstrained Linear Least Squares Fitting

The TL package finds the least squares solution to a set of unweighted linear equations, possibly subject to
a set of equality constraints. The solution is found by Householder triangularisation (see Ref. 1 for details)
with parameter elimination if constraints are present. This write-up ends with a few words on generalised
least squares fitting (unequal weighting) which is a simple application of the TL package.

All matrices are assumed to be stored row-wise and without gaps, contrary to the Fortran convention, i.e.,
if the Fortran statement DIMENSION A(NJ,NI) reserves memory for the matrix A the element Aij is found
in word A(J,I).

Structure:

SUBROUTINE subprograms
User Entry Names: TLSC, TLS, TLERR, TLRES
Internal Entry Names: TLSMSQ, TLSWOP, TLUK, TLSTEP, TLPIV

Usage:

General Description

Consider the set of M linear equations

NX
j=1

Aijxj = bi (i = 1; 2; : : : ;M withN �M)

to be solved such that the Euclidian norm jjAx� bjj2 = S2 is minimised. Instead of determining x from
the Normal Equation x = (A0A)�1A0b it is found by applying successive Householder transformations
(Q) which reduce A to upper triangular form without changing the norm of the columns of A or the vector
b. This is beneficial from the point of view of stability and flexibility of application. Writing

QA = R =

�
R1

O

� gN rows

gM �N rows
and Qb = y =

�
y1

y2

� gN rows

gM �N rows

we have that jjRx� yjj2 = jjAx� bjj2 and the vector x is obtained by backward substitution inR1x = y1.
As a byproduct, the sum of squares of residuals is directly calculated as S 2 = jjy2jj2.

Now consider A and b to be composed of M1 constraints to be satisfied exactly, followed by M � M1

equations to be minimised. Writing

A =

�
A1

A2

� gM1 rows

gM �M1 rows
, b =

�
b1

b2

� gM1 rows

gM �M1 rows

then jjA2x� b2jj2 = S2 has to be minimized subject toA1x� b1 = 0.
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This problem is solved by eliminatingM1 parameters and then evaluating the reduced set of parameters (see
Ref. 2 for details).

An attractive feature of the unitary Householder transformations is that when each parameter is eliminated
(”solved for”) column pivoting allows the selection of that parameter which gives the maximum reduction in
the current value of S2. Thus it is possible to terminate the calculation whenever S 2 or its current reduction
become acceptably small. This can be exploited when iterating. If there is more than one RHS vector, then
x and b become N � L and M � L matrices with the pivoting strategy applied to the first column of b.

The triangular form of R1 allows the error matrix, E, of the fitted parameters to be derived directly from
R1 itself without inverting. The equation is

E = R�1
1

(R�1
1

)0:

Moreover, the vector of fitted residuals is most easily computed by applying the inverse Householder trans-
formation to y2, i.e.

Ax� b = Q�1
�
O

y2

�
:

Note that these residuals do not have to be calculatedto find the fitted S 2 which is output from the fitting
routines.

In all routines described below, the dimensionality of the problem is transmitted via the common block

COMMON /TLSDIM/ M1,M,N,L,IER

The parameter IER returns the number of parameters solved for, or else -1001 if either M1 > N, N > M or A
has rank less than N.

Constrained Least Squares Fitting

CALL TLSC(A,B,AUX,IPIV,EPS,X)

A (REAL) The combined constraint / derivative matrix of dimension M� N, the upper M1 rows being
the constraints.

B (REAL) The combined constraint / measurement matrix of dimension M� L, the upper M1 rows
being the constraints.

X (REAL) The matrix of dimension N� L returning the L least squares solutions.

AUX (REAL) Working array of length N+max(N; L). On output AUX(J),(J=1,L) contain the min-
imised sum of squares.

IPIV (INTEGER) Working array of length N which holds the exchange information (column pivoting is
employed if necessary).

EPS (REAL) Parameter specifying a pivoting criterium. There is no exchange of columns I and 1 unless
EPS � PIVOT(I) > PIVOT(1). Typically EPS ' 0:1.

Subroutines called: TLSMSQ, TLSWOP, TLUK, TLSTEP.

When constraint equations are present, the full pivoting strategy cannot be adopted and so all parameters
are solved for, i.e., IER returns the value N or -1001. Under these circumstances EPS is used to reduce the
amount of pivoting to those cases where it is felt to be absolutely necessary.
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Unconstrained Least Squares Fitting

CALL TLS(A,B,AUX,IPIV,EPS,X)

A (REAL) M� N derivative matrix.

B (REAL) M� L matrix of measurements.

X (REAL) N� L parameter solution matrix.

AUX (REAL) Working array as for TLSC.

IPIV (INTEGER) Working array as for TLSC.

EPS (REAL) Input parameter used for prematurely terminating the calculation:
> 0 : Termination when r.m.s. residual< jEPSj,
< 0 : Termination when the reduction in the residual < jEPSj,
= 0 : Unconditionally solve for all Xj :

Subroutines called: TLSMSQ, TLSWOP, TLUK, TLSTEP, TLPIV.

As previously indicated, full pivoting is possible without constraints, hence the allowance for premature
exit.

Fitted Error Matrix

CALL TLERR(A,E,AUX,IPIV)

The parameter and subroutine arguments defined previously in COMMON /TLSDIM/ require the output values
from a call to TLS or TLSC. E is an N � N matrix which, upon return, will contain the unnormalised
covariance matrix of the fitted parameters, (A0A)�1. A may be overwritten by E and the routine may be
called independently from TLS/TLSC by setting IER to zero.

Subroutines called: TLUK, TLSTEP.

Fitted Residuals

CALL TLRES(A,B,AUX)

All the arguments and common variables require the output values from a call to TLS or TLSC. Upon return,
B will give the matrix of residuals, i.e., for each set of least squares equations the column vectorAx� b.

Subroutine called: TLSTEP.

Notes:

1. The pivoting and exit criteria of TLS are calculated using the first vector of measurements; therefore
it is wise to have EPS = 0 if L > 1.

2. TLERR and/or TLRES may be called in any order after TLS or TLSC.

3. TLS or TLSC may be used for solving simultaneous linear equations by setting M = N or M1 = N.

4. Useful examples in the application of these routines can be found in the HYDRAGeometry / Kinematics
processors.

172 E230 – 3



Generalized Least Squares Fitting

The problem is to minimise (Ax� b)0G(Ax� b) where G, the weight matrix, is the inverse of the error
matrix of the measurement vector b. Once again Householder triangularisation offers an attractive alter-
native to the Normal Equation solution x = (A 0GA)�1A0Gb. The first step is to perform the Choleski
decomposition of G, which is positive semi-definite (see TR (F112)), such that G = U0U, U being upper
triangular. The problem is then reduced to minimising jjA1x� b1jj2, where A1 = UA and b1 = Ub,
which is just the unweighted case previously described. This has the feature that if A has already been
triangularised then the product UA remains triangular and only back substitution is necessary to find the
weighted least squares solution.

References:

1. G. Golub, Numerical methods for solving linear least squares problems, Numer. Math. 7 (1965)
206–216.

2. Å. Björck and G. Golub, Iterative refinement of linear least square solutions by Householder transfor-
mation, BIT 7 (1967) 322–337.

�
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LFIT CERN Program Library E250

Author(s) : M. Metcalf Library: MATHLIB

Submitter : Submitted: 01.05.1977

Language : Fortran Revised:27.11.1984

Least-Squares Fit to Straight Line

Given a vector of values Y measured at the points X , LFIT and LFITW find the best least-squares fit to the
linear relationshipY = aX+b. LFIT performs an unweighted fit and LFITW takes account of a given vector
of weights. Both subroutines have an option for skipping missing points without shifting the points of the
vector X .

Structure:

SUBROUTINE subprogram
User Entry Names: LFIT, LFITW

Usage:

CALL LFIT(X,Y,L,KEY,A,B,VAR) or

CALL LFITW(X,Y,W,L,KEY,A,B,VAR)

X (REAL) Vector of abscissae.

Y (REAL) Vector of values corresponding to points X.

W (REAL) Vector of weights (for LFITW only).

L (INTEGER) Length of vectors X, Y and W.

KEY (INTEGER)
= 0 : indicates that any points where Y = 0 are to be skipped,
= 1 : indicates that all L points are to be used.

A (REAL) Fitted slope a.

B (REAL) Fitted constant term b.

VAR (REAL) Residual sum of squares divided by (L� 2) indicating the badness of fit.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 116.

�
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PARLSQ CERN Program Library E255

Author(s) : H. Grote Library: MATHLIB

Submitter : M. Metcalf Submitted: 01.05.77

Language : Fortran Revised:

Least-Squares Fit to Parabola

OBSOLETE
Please note that this routine has been obsoleted in CNL 218. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RLSQP2 (E201)

Given a vector of values Y measured at the pointsX , PARLSQ finds the best least-squares fit to the parabola
Y = c1 + c2x+ c3x

2.

Structure:

SUBROUTINE subprogram
User Entry Names: PARLSQ

Usage:

CALL PARLSQ(X,Y,L,C,VAR)

X (REAL) Vector of abscissae.

Y (REAL) Vector of values corresponding to points X.

L (INTEGER) Length of vectors X and Y.

C (REAL) Array of dimension 3 in the calling program. On exit, it contains the coefficients c1; c2; c3.

VAR (REAL) Residual sum of squares divided by L� 3.

Notes:

If L < 3, C and VAR are set to zero.

References:

1. D.H. Menzel, Fundamental Formulas of Physics, Dover Publ., New York (1960) 122

�
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RCHECF CERN Program Library E406

Author(s) : T. Håvie Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 24.01.1986

Language : Fortran Revised:01.12.1994

Chebyshev Series Coefficients of a Function

Subroutine subprograms RCHECF, DCHECF and QCHECF calculate coefficients for a finite sum of Chebyshev
polynomials approximating a function f(x) over an interval a � x � b to accuracy ". It returns an integer
n and coefficients c0; c1; : : : ; cn such that the sum

f�(x) =
nX

j=0

cjTj(t) (1)

where t = (2x� a� b)=(b� a) and Tj(t) is the Chebyshev polynomial of degree j, satisfies for a � x � b

the relation

jf�(x)� f(x)j < ": (2)

Subsequent evaluation of the approximation (1) can be done by calling CHSUM (E407) with the appropriate
value of its argument MODE.

On computers other than CDC and Cray, only the double- and quadruple-precision versions DCHECF and
QCHECF are available. On CDC and Cray computers, only the single- and double-precision versions RCHECF
and DCHECF are available.

Structure:

SUBROUTINE subprogram
User Entry Names: RCHECF, DCHECF, QCHECF
Obsolete User Entry Names: CHECF � RCHECF

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035), user-supplied FUNCTION subprogram

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = Q (type REAL*16),

CALL tCHECF(F,A,B,EPS,C,N,DELTA)

F (type according to t) Name of a user-supplied FUNCTION subprogram, declared EXTERNAL in the
calling program.

A,B (type according to t) End-points a; b of the approximation interval.

EPS (type according to t) Requested accuracy.

C (type according to t) One-dimensional array with dimension (0:d), d � 128. On exit, C(j) =
cj; (j = 0; 1; : : : ; N).

N (INTEGER) On exit, N is equal to the subscript of the last computed coefficient.

DELTA (type according to t) On exit, DELTA is such that the relation jf �(x)� f(x)j < DELTA is almost
certainly true for x 2 [a; b]. (See Error Handling.)

Method:
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The interval [a; b] is subdivided successively into sets of subintervals of length 2�k(b�a); (k = 0; 1; 2 : : :).
After each subdivisionthe orthogonalityproperties of the Chebyshev polynomials with respect to summation
over equally-spaced points are used to compute two sets of approximate values of the coefficients cj : one
set computed using the end-points of the subintervals, and one set using the mid-points. The mean of these
two values is taken as the best estimate of the cj , which are then tested to see (a) whether certain rate-of-
convergence criteria are satisfied, (b) whether there is some n for which the sum for j > n of the available
cj is less than ". If both conditions are satisfied the subroutine terminates.

Error handling:

Error E406.1: If the requested accuracy cannot be obtained with 65 coefficients (i.e., N = 64) a message is
written on Unit 6, unless subroutine MTLSET (N002) has been called. In this case, values of f � computed
from (1) with N = 64 should still be in error by less than DELTA.

Notes:

1. This subroutine is intended for use with functions f(x) which can be computed to full machine ac-
curacy, and which are sufficiently smooth to ensure fairly rapid decrease of the cj with increasing j.
Functions defined by experimental data can usually be approximated better by least-squares methods,
using ordinary polynomials.

2. Note that some authors use a different definition for the constant term in (1), i.e. c0=2 instead of c0.
Here, the definition of Ref. 1 is used.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

�
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RCHSUM CERN Program Library E407

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 24.01.1986

Language : Fortran Revised:15.11.1995

Summation of Chebyshev Series

Function subprograms RCHSUM and DCHSUM compute, for real arguments x in the specified intervals, one of
the following four sums:

S(x) =
NX
n=0

cnTn(x) (�1 � x � 1) (1)

S(x) =
NX
n=0

cnT2n(x) (�1 � x � 1) (2)

S(x) =
NX
n=0

cnT2n+1(x) (�1 � x � 1) (3)

S(x) =
NX
n=0

cnT
�
n
(x) (0 � x � 1) (4)

where Tn(x) is the Chebyshev polynomial of degree n and T �
n
(x) = Tn(2x� 1).

On CDC and Cray computers, the double-precision version DCHSUM is not available.

Structure:

FUNCTION subprograms
User Entry Names: RCHSUM, DCHSUM
Obsolete User Entry Names: CHSUM � RCHSUM

Usage:

In any arithmetic expression,

RCHSUM(MODE,C,N,X) or DCHSUM(MODE,C,N,X)

has the value of the sum selected by MODE. RCHSUM is of type REAL, and DCHSUM is of type DOUBLE

PRECISION. C and X have the same type as the function name. MODE and N are of type INTEGER.

MODE Type of sum to be evaluated (MODE = 1; 2; 3; 4).

C One-dimensional array with dimension (0:d), d � N, containing the coefficients
c0; c1; : : : ; cN .

N LimitN of summation.

X Argument x.

Notes:

Note that some authors use a different definition for the constant term in (1), (2) and (4), i.e. c0=2 instead of
c0. Here, the definition of Ref. 1 is used.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)

2. C.W. Clenshaw, Chebyshev series for mathematical functions, Mathematical Tables, Vol.5 (National
Physical Laboratory, London, 1962).

�
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RCHPWS CERN Program Library E408

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1994

Language : Fortran Revised:

Conversion of Chebyshev to Power and Power to Chebyshev Series

Subroutine subprograms RCHPWS, RPWCHS and DCHPWS, DPWCHS perform the conversion of a finite Cheby-
shev series to a finite power series (i.e. a polynomial) and vice versa.

Thus, given the coefficients cj, (j = 0; 1; : : : ; n) of a finite Chebyshev series, RCHPWS and DCHWPS calculate
the coefficients aj , (j = 0; 1; : : : ; n) of the equivalent polynomial:

c0 + c1T1(x) + � � �+ cnTn(x) = a0 + a1x+ � � �+ anx
n:

Conversely, given the coefficients aj , (j = 0; 1; : : : ; n) of a power series, RPWCHS and DPWCHS calculate the
coefficients cj , (j = 0; 1; : : : ; n) of the equivalent finite Chebyshev series:

a0 + a1x+ � � �+ anx
n = c0 + c1T1(x) + � � �+ cnTn(x):

In both cases, Tj(x) is the Chebyshev polynomial of degree j.

Note that sometimes the constant term in the Chebyshev series is defined differently, i.e. c0=2 instead of c0.
Here, the definition of Ref. 1 is used.

On computers other than CDC or Cray, only the double-precision versions DCHPWS and DPWCHS are available.
On CDC and Cray computers, only the single-precision versions RCHPWS and RPWCHS are available.

Structure:

SUBROUTINE subprograms
User Entry Names: RCHPWS, RPWCHS, DCHPWS, DPWCHS
Files referenced: Unit 6

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tCHPWS(N,C,A)

N (INTEGER) Degree n of last Chebyshev polynomial in the expansion.

C (type according to t) One-dimensional array of dimension (0:d), where d � N. On entry, C must
contain the coefficients cj , (j = 0; 1; : : : ; n) of the Chebyshev expansion.

A (type according to t) One-dimensional array of dimension (0:d), where d � N. On exit, A contains
the coefficients aj , (j = 0; 1; : : : ; n) of the power series expansion.

CALL tPWCHS(N,A,C)

N (INTEGER) Degree n of the polynomial.

A (type according to t) One-dimensional array of dimension (0:d), where 0 � N. On entry, A must
contain the coefficients aj , (j = 0; 1; : : : ; n) of the polynomial.

C (type according to t) One-dimensional array of dimension (0:d), where 0 � N. On exit, C contains
the coefficients cj, (j = 0; 1; : : : ; n) of the Chebyshev expansion.

179 E408 – 1



Error handling:

Error E408.1: N < 0 or N > 100.
A message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. Y.L. Luke, Mathematical functions and their approximations, (Academic Press, New York 1975)
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RTRGSM CERN Program Library E409

Author(s) : T. Håvie, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1994

Language : Fortran Revised:

Summation of Trigonometric Series

Function subprograms RTRGSM and DTRGSM compute the sum of the trigonometric series

f(x) = a0 +
nX

k=1

ak cos kx+
mX
k=1

bk sin kx

for a given argument x in the range �� � x � � and given coefficients ak; bk.
On CDC and Cray computers, the double-precision version DTRGSM is not available.

Structure:

FUNCTION subprogram
User Entry Names: RTRGSM, DTRGSM

Usage:

In any arithmetic expression, for t = R (type REAL), t = D (type DOUBLE PRECISION),

tTRGSM(X,A,N,B,M,IOP)

has the value f(x).

X (Type according to t) Argument x.

A (Type according to t) One-dimensional array of dimension (0:d) where d � N, containing the
constant coefficient a0 in A(0) and the cosine coefficients ak (k = 1; : : : ; n) in A(k).

N (INTEGER) The number n of cosine coefficients.

B (Type according to t) One-dimensional array of length� M, containing the sine coefficients bk (k =
1; : : : ; n) in B(k).

M (INTEGER) The number m of sine coefficients.

IOP (INTEGER) An option number:
= 1 : the general case,
= 2 : all bk are zero, i.e. f(x) = f(�x),
= 3 : all ak are zero, i.e. f(x) = �f(�x).

Method:

Standard recurrence relations are used for calculating the sum (see Ref. 1).

Notes:

For a function f(z) given in the range a � z � b, use the transformation

x =
2�

b� a

�
z � b+ a

2

�
for IOP = 1;

x = �
z � a
b� a

for IOP = 2 or IOP = 3:

References:

1. W. Clenshaw, A note on the summation of Chebyshev series, MTAC (later renamed Math. Comp.) 9
(1955) 118–120.

�
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LAPACK CERN Program Library F001

Author(s) : see below Library: MATHLIB

Submitter : B. Damgaard Submitted: 07.06.1992

Language : Fortran Revised:

Linear Algebra Package

Authors: E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen.

LAPACK is a package of subroutines written in Fortran for solving the most common problems in numerical
linear algebra: systems of linear equations, linear least squares problems, eigenvalue problems, and singular
value problems. LAPACK is intended to supersede LINPACK and EISPACK. It extends the functionality of
these packages by including equilibration, iterative refinement, error bounds, and driver routines for linear
systems, routines for computing and re-ordering the Schur factorization, and condition estimation routines
for eigenvalue problems. LAPACK improves on the accuracy of the standard algorithms in EISPACK by in-
cluding high accuracy algorithms for finding singular values and eigenvalues of bidiagonal and tridiagonal
matrices respectively that arise in SVD and symmetric eigenvalue problems. The algorithms and software
are structured to achieve high efficiency on vector processors, high-performance “superscalar” workstations,
and shared-memory multi-processors.

Structure:

SUBROUTINE subprograms

Usage:

It is highly recommended to obtain a copy of the LAPACK Users’ Guide published by SIAM. This Users’
Guide gives a detailed description of the philosophy behind LAPACK as well as an explanation of its usage.
European users must order from the distributors of SIAM books in Europe:

STM Distribution Ltd.
Sunbury International Business Centre
Middlesex TW16 7DX, England
Tel. +44 932 765119, FAX +44 932 765429

or from booksellers. Other users should contact SIAM directly in order to find out the address of the local
retailer:

SIAM
3600 University City Science Center
Philadelphia, PA 19104-2688
Tel. +1 215 382 9800, FAX +1 215 386 7999 .

Availability

CERN is distributing the package only in compiled form, suited for the CERN-supported platforms. Source
code is directly available via netlib (use find netlib for details). Alternatively, NAG offers the distri-
bution via magnetic tapes for a nominal handling charge. NAG can be contacted at

NAG Response Centre
Tel. +44 865 311744, FAX +44 865 311755

�
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RVADD CERN Program Library F002

Author(s) : H. Lipps Library: KERNLIB

Submitter : Submitted: 18.12.1979

Language : Fortran or Assembler or COMPASS Revised:27.05.1987

Elementary Vector Processing

These subprograms perform elementary vector operations.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RVADD, RVCPY, RVDIV, RVMPA, RVMPY, RVMUL, RVMULA, RVMUNA,

RVRAN, RVSCA, RVSCL, RVSCS, RVSET, RVSUB, RVSUM, RVXCH,

DVADD, DVCPY, DVDIV, DVMPA, DVMPY, DVMUL, DVMULA, DVMUNA,

DVRAN, DVSCA, DVSCL, DVSCS, DVSET, DVSUB, DVSUM, DVXCH,

CVADD, CVCPY, CVDIV, CVMPA, CVMPY, CVMUL, CVMULA, CVMUNA,

CVRAN, CVSCA, CVSCL, CVSCS, CVSET, CVSUB, CVSUM, CVXCH,

CVMPYC, CVMPAC
External References: LOCF (N100), RANF (G900), DRANF (G900) (some Fortran versions only).

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = C (type COMPLEX):

CALL tVSET (N,S,Z1,Z2) zj = s

CALL tVRAN (N,A,B,Z1,Z2) zj = random (see Note2)

CALL tVCPY (N,X1,X2,Z1,Z2) zj = xj

CALL tVXCH (N,X1,X2,Y1,Y2) interchanges xj with yj
CALL tVADD (N,X1,X2,Y1,Y2,Z1,Z2) zj = xj + yj

CALL tVSUB (N,X1,X2,Y1,Y2,Z1,Z2) zj = xj � yj

CALL tVMUL (N,X1,X2,Y1,Y2,Z1,Z2) zj = xjyj

CALL tVMULA(N,X1,X2,Y1,Y2,Z1,Z2) zj = xjyj + zj

CALL tVMUNA(N,X1,X2,Y1,Y2,Z1,Z2) zj = �xjyj + zj

CALL tVDIV (N,X1,X2,Y1,Y2,Z1,Z2,IFAIL) zj = xj=yj (see Note 3)

CALL tVSCL (N,S,X1,X2,Z1,Z2) zj = sxj

CALL tVSCA (N,S,X1,X2,Y1,Y2,Z1,Z2) zj = sxj + yj

CALL tVSCS (N,S,X1,X2,Y1,Y2,Z1,Z2) zj = sxj � yj
F = tVSUM (N,X1,X2) f = x1 + � � �+ xn

F = tVMPY (N,X1,X2,Y1,Y2) f = x1y1 + � � �+ xnyn

F = tVMPA (N,X1,X2,Y1,Y2,S) f = x1y1 + � � �+ xnyn + s

F = CVMPYC(N,X1,X2,Y1,Y2) f = x1�y1 + � � �+ xn�yn

F = CVMPAC(N,X1,X2,Y1,Y2,S) f = x1�y1 + � � �+ xn�yn + s

where �yj is the complex conjugate of yj .
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N (INTEGER) The mathematical dimension of the vectors (j = 1; 2; : : : ; N).

S,A,B (Type according to t) The scalar values s, a, and b, respectively.

X1,X2 (Type according to t) Array elements. They must contain the elements x1; x2 of the vector
(xj).

Y1,Y2 (Type according to t) Array elements. They must contain the elements y1; y2 of the vector
(yj).

Z1,Z2 (Type according to t) Array elements. On exit, they will contain the elements z1; z2 of the
result vector (zj).

IFAIL (INTEGER) On exit, IFAIL is set to zero if all elements yj are non-zero. Otherwise IFAIL is
set to the smallest index k for which yk = 0.

For N < 1 all subroutines return control without action; functions tVSUM, tVMPY and CVMPYC assume the
value zero, and tVMPA and CVMPAC assume the value S.

Restrictions:

If vector (zj) overlaps with vector (xj) or (yj), results will be correct provided each element zj coincides
with an element xk or yk , where k < j.

Accuracy:

On computers with IBM 370 architecture, RVMPY, RVMPA, CVMPY and CVMPA accumulate the inner product
using double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

1. The vectors (xj) etc. need not be packed: any equidistant spacing of their elements is permitted. The
subprograms determine the location of the vector element xj from the actual arguments X1 and X2.

2. tVRAN sets zj to a random value of type t that is uniformly distributed in the interval (A,B). For
CVRAN, the real and imaginary parts of zj are distributed uniformly and independently in (REAL(A),REAL(B))
and in (AIMAG(A),AIMAG(B)).

3. If yk = 0 and y1; : : : ; yk�1 are non-zero, tVDIV computes only z1; : : : ; zk�1 and sets IFAIL = k.

4. The use of an in-line DO loop will be more efficient than calling the equivalent vector processing
subprogram when the vector length is sufficiently small, due to the overhead of the subprogram call.

�
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RMADD CERN Program Library F003

Author(s) : H. Lipps Library: KERNLIB

Submitter : Submitted: 18.12.1979

Language : Fortran or Assembler or COMPASS Revised:15.11.1995

Elementary Matrix Processing

These subprograms perform elementary matrix operations.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RMADD, RMBIL, RMCPY, RMDMP, RMMNA, RMMNS, RMMPA, RMMPS,

RMMPY, RMRAN, RMSCL, RMSET, RMSUB, RMUTL, RUMNA, RUMNS,

RUMPA, RUMPS, RUMPY,

DMADD, DMBIL, DMCPY, DMDMP, DMMNA, DMMNS, DMMPA, DMMPS,

DMMPY, DMRAN, DMSCL, DMSET, DMSUB, DMUTL, DUMNA, DUMNS,

DUMPA, DUMPS, DUMPY,

CMADD, CMBIL, CMCPY, CMDMP, CMMNA, CMMNS, CMMPA, CMMPS,

CMMPY, CMRAN, CMSCL, CMSET, CMSUB, CMUTL, CUMNA, CUMNS,

CUMPA, CUMPS, CUMPY, CMMPYC, CCMMPY, CUMPYC, CCUMPY
External References: LOCF (N100), RANF (G900), DRANF (G900) (some Fortran versions only).

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = C (type COMPLEX):

CALL tMSET (M,N,S,Z11,Z12,Z21) zij = s

CALL tMRAN (M,N,A,B,Z11,Z12,Z21) zij = random (see Note 2)

CALL tMCPY (M,N,X11,X12,X21,Z11,Z12,Z21) zij = xij

CALL tMUTL (N,X11,X12,X21) xjk = xkj (j > k) (see Note3)

CALL tMSCL (M,N,S,X11,X12,X21,Z11,Z12,Z21) zij = sxij

CALL tMDMP (M,N,D1,D2,X11,X12,X21,Z11,Z12,Z21) zij = dixij

CALL tMADD (M,N,X11,X12,X21,Y11,Y12,Y21,Z11,Z12) zij = xij + yij

CALL tMSUB (M,N,X11,X12,X21,Y11,Y12,Y21,Z11,Z12) zij = xij � yij

CALL tMMPY (M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = xi1y1 + � � �+ xinyn

CALL tMMPA (M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = xi1y1 + � � �+ xinyn + zi

CALL tMMPS (M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = xi1y1 + � � �+ xinyn � zi
CALL tMMNA (M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = �xi1y1 � � � � � xinyn + zi

CALL tMMNS (M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = �xi1y1 � � � � � xinyn � zi

CALL tUMPY (N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = ujjyj + � � �+ ujnyn

CALL tUMPA (N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = ujjyj + � � �+ ujnyn + zj

CALL tUMPS (N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = ujjyj + � � �+ ujnyn � zj

CALL tUMNA (N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = �ujjyj � � � � � ujnyn + zj

CALL tUMNS (N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = �ujjyj � � � � � ujnyn � zj
F = tMBIL (N,V1,V2,X11,X12,X21,Y1,Y2) f =

P
n

k;j=1 vkxkjyj

CALL CMMPYC(M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = xi1�yi + � � �+ xin�yn
CALL CCMMPY(M,N,X11,X12,X21,Y1,Y2,Z1,Z2) zi = �xi1yi + � � �+ �xinyn

CALL CUMPYC(N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = ujj �yj + � � �+ ujn�yn

CALL CCUMPY(N,U11,U12,U22,Y1,Y2,Z1,Z2) zj = �ujjyj + � � �+ �ujnyn
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where �xij ; �ujk; �yj are the complex conjugates of xij ; ujk; yj , respectively.

M,N (INTEGER) The mathematical dimensions of the matrices and vectors (i = 1; 2; : : : ; M;
j; k = 1; 2; : : : ; N).

S,A,B (Type according to t) The scalar values s, a, and b, respectively.

X11,X12,X21 (Type according to t) Array elements. They must contain the elements x11; x12; x21 of
the matrix (xij).

Y11,Y12,Y21 (Type according to t) Array elements. They must contain the elements y11; y12; y21 of
the matrix (yij).

Y1,Y2 (Type according to t) Array elements. They must contain the elements y1; y2 of the vector
(yj).

D1,D2 (Type according to t) Array elements. They must contain the elements d1; d2 of the vector
(di).

V1,V2 (Type according to t) Array elements. They must contain the elements v1; v2 of the vector
(vk).

U11,U12,U22 (Type according to t) Array elements. They must contain the elements u11; u12; u22 of
the upper-triangular matrix (ujk).

Z11,Z12,Z21 (Type according to t) Array elements. On exit, they will contain the elements z11; z12; z21
of the result matrix (zij).

Z1,Z2 (Type according to t) Array elements. On exit, they will contain the elements z1; z2 of
the result vector (zj).

For M < 1 or N < 1 all subroutines return control without action and all functions assume the value zero.

Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type REAL or
COMPLEX use double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

1. The vectors (yj) etc. need not be packed: any equidistant spacing of their elements is permitted. The
subprograms determine the location of the vector element yj from the actual arguments Y1 and Y2.
Similarly, the matrices (xij) etc. need not be stored according to the Fortran convention; any equidis-
tant spacing of their rows and columns is permitted. In particular, matrices may be stored row-wise.
The subprograms determine the location of the matrix element xij from the actual arguments X11,
X12, and X21.

2. tMRAN sets zij to a random value of type t that is uniformly distributed in the interval (A,B). For
CMRAN, the real and imaginary parts of zij are distributed uniformly and independently in (REAL(A),REAL(B))
and in (AIMAG(A),AIMAG(B)).

3. tMUTL copies the upper triangle of the square matrix (xjk) of order N to the lower triangle of this
matrix, thus creating a symmetric matrix.

4. The use of in-line DO loops will be more efficient than calling the equivalent matrix processing sub-
program when the matrix dimensions are sufficiently small, due to the overhead of the subprogram
call.
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RMMLT CERN Program Library F004

Author(s) : H. Lipps Library: KERNLIB

Submitter : Submitted: 18.12.1979

Language : Fortran or Assembler or COMPASS Revised:27.05.1987

Matrix Multiplication

These subprograms calculate the matrix product

Z = XY or Z = XY;

where Y denotes the conjugate of the complex matrix Y, or one of the matrix expressions

Z = XY+ Z; Z = XY� Z; Z = �XY + Z; Z = �XY � Z:

Structure:

SUBROUTINE subprograms
User Entry Names: RMMLA, RMMLS, RMMLT, RMNMA, RMNMS,

DMMLA, DMMLS, DMMLT, DMNMA, DMNMS,

CMMLA, CMMLS, CMMLT, CMNMA, CMNMS, CMMLTC
External References: LOCF (N100) (some Fortran versions only).

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = C (type COMPLEX):

CALL tMMLT (M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21,W) Z = XY

CALL tMMLA (M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21) Z = XY + Z

CALL tMMLS (M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21) Z = XY � Z
CALL tMNMA (M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21) Z = �XY + Z

CALL tMNMS (M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21) Z = �XY � Z
CALL CMMLTC(M,N,K,X11,X12,X21,Y11,Y12,Y21,Z11,Z12,Z21,W) Z = XY

M,N,K (INTEGER) The mathematical dimensions of the matrices: X has M rows and N columns,
Y has N rows and K columns, Z has M rows and K columns.

X11,X12,X21 (Type according to t) Array elements. They must contain the elements x11; x12; x21 of
the matrix X.

Y11,Y12,Y21 (Type according to t) Array elements. They must contain the elements y11; y12; y21 of
the matrix Y.

Z11,Z12,Z21 (Type according to t) Array elements. On exit, they will contain the elements z11; z12; z21
of the matrix Z.

W (Type according to t) Working space array as specified below, required only if Z overlaps
X or Y. Otherwise a dummy variable.

For M < 1 or N < 1 or K < 1, all subroutines return control without action.

The matrices X, Y and Z need not to be stored according to the Fortran conventions: any equidistant spacing
of their rows and columns is permitted. In particular, matrices may be stored row-wise. Each subroutine can
work with the transpose of a matrix. To make this possible, each matrix is specified in the calling sequence
by three arguments. For example, the called subroutine will operate on the matrix A = (aij) if the actual
arguments which replace X11, X12, X21 in the calling sequence are a11; a12; a21, and will operate on the
transposeA0 of A if the actual arguments are a11; a21; a12.

The only cases in which the result matrix Z is permitted to overlap X or Y are the following:
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tMMLT: X =XY or Y = Y0Y, provided W is an array of at least K elements.

Y = XY or X = XX0, provided W is an array of at least M elements.

CMMLTC: X =XY or Y = Y0Y, provided W is an array of at least K elements.

Y = XY or X = XX
0
, provided W is an array of at least M elements.

Accuracy:

On computers with IBM 370 architecture, all routines that accumulate the inner product of type REAL or
COMPLEX use double-precision arithmetic internally; the final result is then rounded to single precision.

Notes:

The product of a matrix and its transpose (or Hermitian conjugate) is recognized by tMMLT (or CMMLTC) and
the computation is shortened accordingly.

Examples:

Assume that the two-dimensional arrays A, B, C, D, E, the one-dimensional array W, and the dummy variable
V are declared by

COMPLEX A(9,9),B(9,9),C(9,9),D(9,9),E(9,9),V,W(99)

and that a 4� 5 matrix A, a 5� 7 matrix B, and a 7� 3 matrix C have been stored according to the Fortran
conventions in arrays of corresponding name.

1. To computeD = AB:

CALL CMMLT (4,5,7,A,A(1,2),A(2,1),B,B(1,2),B(2,1),D,D(1,2),D(2,1),V).

To pack the 4� 7 product matrix AB row-wise into array W:

CALL CMMLT (4,5,7,A,A(1,2),A(2,1),B,B(2,1),B(1,2),W,W(2),W(8),V).

(Note that z11 goes into W(1), z12 into W(2), and z21 into W(8)).

For the purpose of abbreviation we shall denote
A,A(1,2),A(2,1) by a, A,A(2,1),A(1,2) by a',
and similarly for arrays B, C, D, E. The first example above then becomes

CALL CMMLT(4,5,7,a,b,d,V).

2. To computeD = B0A0 = (AB)0:

CALL CMMLT(7,5,4,b',a',d,V) or CMMLT(4,5,7,a,b,d',V).

3. To computeD = AA0 and E = A0A:

CALL CMMLT(4,5,4,a,a',d,V)

CALL CMMLT(5,4,5,a',a,e,V).

4. To replace A by AB or byAA0:

CALL CMMLT(4,5,7,a,b,a,W) or CALL CMMLT(4,5,4,a,a',a,W).

These two calls require a working vector W containing 7 or 4 complex elements, respectively.

5. To computeD = AB and E = BC = (C0B
0
)0:

CALL CMMLTC(4,5,7,a,b,d,V)

CALL CMMLTC(3,7,5,c',b',e',V).
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RINV CERN Program Library F010

Author(s) : G.A. Erskine Library: KERNLIB

Submitter : Submitted: 18.12.1979

Language : Fortran Revised:27.11.1984

Linear Equations, Matrix Inversion

Subroutine tEQN (where t = R, D or C as described below) solves the matrix equation

AX = B; (*)

which represents a system of N simultaneous linear equations withK right-hand sides:

NX
j=1

aijxjk = bik; (i = 1; 2; : : : ; N; k = 1; 2; : : : ; K):

Subroutine tINV computes the inverse of a square matrix A. Subroutine tEQINV solves the system (*) and
also computes the inverse of A, but is appreciably slower than tEQN.

If the determinant of A is also required, or if several systems of the form (*) are to be solved sequentially
with the same coefficient matrix A but differing right-hand sides B, the subroutines in RFACT (F011) should
be used.

Structure:

SUBROUTINE subprograms
User Entry Names: RINV, REQN, REQINV, DINV, DEQN, DEQINV, CINV, CEQN, CEQINV
Internal Entry Names: F010PR
Files Refeenced: Printer
External References: RFACT (F011), RFEQN (F011), RFINV (F011),

DFACT (F011), DFEQN (F011), DFINV (F011),

CFACT (F011), CFEQN (F011), CFINV (F011),

TMPRNT (F011), KERMTR (N001), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = C (type COMPLEX):

CALL tEQN (N,A,IDIM,IR,IFAIL,K,B)

CALL tINV (N,A,IDIM,IR,IFAIL)

CALL tEQINV(N,A,IDIM,IR,IFAIL,K,B)

N (INTEGER) Order of the square matrix A.

A (Type according to t) Two-dimensional array whose first dimension has the value IDIM.

IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IR (INTEGER) Array of at least N elements, required as working space.

IFAIL (INTEGER) On exit, IFAIL will be set to �1 if A is found to be singular, and to 0 otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)

K (INTEGER) Number of columns of the matrices B and X.

B (Type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.
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These subroutines must be called with matrix A in array A and matrix B in array B. Then, provided the
matrix A is non-singular, IFAIL will be set to 0 and arrays A and B will be set as follows:

tEQN The solution X replaces B. The matrix A is destroyed.

tINV The inverseA�1 of A replaces A.

tEQINV The solution X replaces B, and the inverseA�1 of A replaces A.

If the matrix A is singular, IFAIL will be set to �1. In this case the contents of A is unpredictable and the
contents of B is unchanged.

Method:

Triangular factorization with row interchanges, implemented by in-line code if N � 3 and by calls to library
program RFACT (F011) if N > 3. If N < 1 or IDIM < N or K < 1, a message is printed and program execution
is terminated by calling ABEND (Z035).

Examples:

Assume that the 10� 10 matrix A and the 10 � 3 matrix B are stored according to the Fortran convention
in arrays A and B respectively of a program containing declarations

DIMENSION IR(25)

DOUBLE PRECISION A(25,30),B(25,10)

To replace B by the 10�3 solution matrix X of the system of equationsAX = B and to replace A byA�1,
with a jump to label 100 if A is singular:

CALL DEQINV (10,A,25,IR,IFAIL,3,B)

IF(IFAIL .NE. 0) GO TO 100
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RFACT CERN Program Library F011

Author(s) : G.A. Erskine, H. Lipps Library: KERNLIB

Submitter : Submitted: 18.12.1979

Language : Fortran or Assembler or COMPASS Revised:27.11.1984

Repeated Solution of Linear Equations, Matrix Inversion, Determinant

These subroutines provide a two-step procedure for solving sets of linear equations

AX = B (*)

which is faster than the library programs RINV (F010) when (*) must be solved repeatedly for the same
matrix A with different sets of right-hand sides. The inverse matrix A�1 and the determinant det(A) may
also be calculated.

Structure:

SUBROUTINE subprograms
User Entry Names: RFACT, RFEQN, RFINV, DFACT, DFEQN, DFINV, CFACT, CFEQN, CFINV
Internal Entry Names: TMPRNT
Files Referenced: Printer
External References: KERMTR (N001), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION), t = C (type COMPLEX):

CALL tFACT(N,A,IDIM,IR,IFAIL,DET,JFAIL)

CALL tFEQN(N,A,IDIM,IR,K,B)

CALL tFINV(N,A,IDIM,IR)

N (INTEGER) Order of the square matrix A.

A (Type according to t) Two-dimensional array whose first dimension has the value IDIM.

IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IR (INTEGER) Array of at least N elements, required as working space.

IFAIL (INTEGER) On exit, IFAIL will be set to �1 if A is found to be singular, and to 0 otherwise.
(Singularity will often go undetected because of rounding errors during factorization even if the
elements of A have integral values.)

DET (Type according to t) On exit, DET will be set to the value det(A) unless JFAIL returns a non-zero
value.

JFAIL (INTEGER) On exit, JFAIL will be set to zero if det(A) can be safely evaluated. Otherwise JFAIL
is set as follows:
= �1 if det(A) is probably too small,
= +1 if det(A) is probably too large.

K (INTEGER) Number of columns of the matrices B and X.

B (Type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.
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Subroutine tFACT must be called with matrix A in array A prior to any calls to tFEQN and tFINV. On return
the situation is as follows:

1. Provided A is non-singular, IFAIL will be set to 0, and A and R will be set in preparation for calls to
tFEQN and tFINV.

If A is singular, IFAIL will be set to �1, in which case any subsequent call to tFEQN or tFINV will
give unpredictable results.

2. Provided det(A) can be safely evaluated within the range of the computer, JFAIL will be set to 0 and
and DET will be set to det(A). In particular, if A is singular, both JFAIL and DET will be set to zero.

If the evaluation of det(A) would probably cause underflow, JFAIL will be set to �1 and DET will be
set to zero.

If the evaluation of det(A) would probably cause overflow, JFAIL will be set to +1 and DET will be
incorrect.

Execution continues, and subsequent calls to tFEQN and tFINV will give correct results.

Subroutine tFEQN may be called only after tFACT has been called, with the contents of A and R unchanged,
and with matrix B in array B. On return, B will contain the solution X, with A and R unchanged. Therefore a
single call to tFACT may be followed by several calls to tFEQN with differing B.

Subroutine tFINV may be called only after tFACT has been called, with the contents of A and R unchanged.
On return, A will contain the inverse A�1 of A. Therefore, once tFINV has been called, it is no longer
meaningful to call tFEQN with A as parameter.

Method:

Triangular factorization with row interchanges. The inverse matrix A�1 is the product, in reverse order, of
the in-place inverses of the triangular factors. The array R holds information specifying the row interchanges.

Accuracy:

On computers with IBM 370 architecture, inner products are accumulated using double-precision arithmetic
internally for arrays of type REAL and COMPLEX.

Error handling:

If N < 1 or IDIM < N or K < 1, a message is printed and program execution is terminated by calling ABEND
(Z035).

Examples:

Assume that the 10� 10 matrix A, the 10� 3 matrix B, and the 10-element vector z are stored according to
the Fortran convention in arrays A, B and Z respectively of a program containing the declarations

DIMENSION IR(25)

COMPLEX A(25,30),B(25,10),Z(25),DET

Then, unless A is singular (which is to cause a jump to statement 100), the following statements will set
DET = det(A), replace B byA�1B, replace z byA�1z, and replace A byA�1:

CALL CFACT (10,A,25,IR,IFAIL,DET,JFAIL)

IF(IFAIL .NE. 0) GO TO 100

CALL CFEQN(10,A,25,IR,3,B)

CALL CFEQN(10,A,25,IR,1,Z)

CALL CFINV(10,A,25,IR)
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RSINV CERN Program Library F012

Author(s) : H. Lipps Library: KERNLIB

Submitter : Submitted: 01.09.1983

Language : Fortran or Assembler or COMPASS Revised:

Symmetric Positive-Definite Linear Systems

Subroutine tSINV (where t = R or D as described below) computes the inverse of a symmetric positive-
definite matrix A.

Subroutine tSEQN solves a set of linear equations

AX = B (*)

whose coefficient matrix A is symmetric and positive-definite. The determinant det(A) of A may be calcu-
lated by subroutine tSFACT described below.

If several systems of the form (*) are to be solved with the same A but differing B, a procedure which is
appreciably faster than calling subroutine tSEQN repeatedly is to execute a single call to subroutine tSEQN
(or subroutine tSFACT if the determinant is required), and then to call subroutine tSFEQN as many times as
required. When the last system (*) has been solved, the inverse matrixA�1, if required, may be computed
by calling tSFINV.

Subroutine tSEQN and tSFACT both replace the matrix A by a lower triangular matrix L and an upper
triangular matrix U such that LU = A. This LU decomposition is referred to below as lu(A) .

Given lu(A) and some matrix B, subroutine tSFEQN replaces B by the solution X of equation (*) without
changing lu(A) . Subroutine tSFEQN may therefore be called repeatedly with differing B.

Given lu(A) , subroutine tSFINV replaces lu(A) by the inverseA�1 of A.

Structure:

SUBROUTINE subprograms
User Entry Names: RSFACT, RSEQN, RSFEQN, RSINV, RSFINV

DSFACT, DSEQN, DSFEQN, DSINV, DSFINV
Files Referenced: Printer
External References: TMPRNT (F011), KERMTR (N001), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION):

CALL tSINV (N,A,IDIM,IFAIL)

CALL tSEQN (N,A,IDIM,IFAIL,K,B)

CALL tSFACT(N,A,IDIM,IFAIL,DET,JFAIL)

CALL tSFEQN(N,A,IDIM,K,B)

CALL tSFINV(N,A,IDIM)

N (INTEGER) Order of the matrix A.

A (Type according to t) Two-dimensional array whose first dimension has the value IDIM.

IDIM (INTEGER) First dimension of array A (and of array B if K > 1).

IFAIL (INTEGER) On exit, IFAIL will be set to 0 if A is positive-definite, and to -1 otherwise.

DET (Type according to t) On exit, DET will be set to the value det(A) unless JFAIL returns a
non-zero value.

193 F012 – 1



JFAIL (INTEGER) On exit, JFAIL will be set to zero if det(A) can be safely evaluated. Otherwise
JFAIL is set as follows:
= �2 if A is not positive-definite,
= �1 if det(A) is probably too small,
= +1 if det(A) is probably too large.

K (INTEGER) Number of columns of the matrices B and X.

B (Type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1. tSEQN accepts a dummy argument B if K = 0.

The contents of arrays A and B on entry and exit are as follows:

tSINV On entry, A must be stored in A. On exit, A containsA�1 if IFAIL = 0, or else is undefined.

tSEQN On entry, A must be stored in A and B in B. On exit, A contains lu(A) and B contains X if
IFAIL = 0, or else A is undefined and B is unchanged.

tSFACT On entry, A must be stored in A. On exit, A contains lu(A) if IFAIL = 0, or else is undefined.
DET contains det(A) if JFAIL = 0, contains zero if JFAIL = �1, and is undefined otherwise.

tSFEQN On entry, lu(A) must be stored in A, and B in B. On exit, A is unchanged and B contains X.

tSFINV On entry, lu(A) must be stored in A. On exit, A containsA�1.

Method:

Modified Cholesky factorization (without square roots). See Ref. 1.

Accuracy:

On computers with IBM 370 architecture, inner products are accumulated using double precision arithmetic
internally for arrays of type REAL.

Notes:

Only those elements aij of the original matrix A for which i � j are required on entry to tSINV, tSEQN and
tSFACT.

Error handling:

If N < 1 or IDIM < N or K < 0 (tSEQN) or K < 1 (tSFEQN), a message is printed and program execution
is terminated by calling ABEND (Z035).

Examples:

Assume that the 10� 10 matrix A and the 10 � 3 matrix B are stored according to the Fortran convention
in arrays A and B respectively of a program containing the declarations

REAL A(25,30),B(25,10)

To replace B by the 10� 3 solution matrix X of the system of equationsAX = B, with a jump to label 100
if A is not positive definite:

CALL RSEQN(10,A,25,IFAIL,3,B)

IF(IFAIL .NE. 0) GO TO 100

References:

1. J.H. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971), Chapter 2.
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POLROT CERN Program Library F105

Author(s) : M. Regler Library: MATHLIB

Submitter : Submitted: 01.03.1968

Language : Fortran Revised:27.11.1984

Rotate a Three-Dimensional Polar Coordinate System

POLROT calculates the values of �0 and �0 of the coordinate system S 0(�0; �0; r), obtained by rotation of the
3-dimensional polar coordinate system S(�; �; r) about any axis (0 � � � �; 0 � � � 2�).

Structure:

SUBROUTINE subprogram
User Entry Names: POLROT

Usage:

CALL POLROT(THETA,PHI,THPRIM,PHPRIM,THAX,PHAX,ROTANG)

THETA (REAL) Angle � in the old system S(�; �; r).

PHI (REAL) Angle � in the old system S(�; �; r).

THPRIM (REAL) Angle �0 in the new system S 0(�0; �0; r).

PHPRIM (REAL) Angle �0 in the new system S 0(�0; �0; r).

THAX,PHAX (REAL) Angles defining the axis of rotation in the old system S(�; �; r).

ROTANG (REAL) Angle in the old system through which the system is rotated.

The subroutine calculates from THETA and PHI the new values THPRIM and PHPRIM in a coordinate system
obtained by rotating the old system through an angle ROTANG about an axis defined by THAX and PHAX in the
old system.

Method:

THETA and PHI are converted to a unit vector in Cartesian coordinates; THAX, PHAX and ROTANG are converted
to a tensor, which is used to obtain a vector in the new system of axes giving THPRIM and PHPRIM.

Notes:

If THPRIM is very small, PHPRIM is badly defined.
�
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MXPACK CERN Program Library F110

Author(s) : TC Library: KERNLIB

Submitter : C. Letertre Submitted: 01.08.1969

Language : Fortran Revised:07.03.1989

TC Matrix Manipulation Package

OBSOLETE
Please note that this routine has been obsoleted in CNL 194. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RVADD (F002), RMADD (F003), RMMLT (F004)

The routines of MXPACK compute the product of two matrices or the product of their transposed matrices
and may add or subtract to the resultant matrix a third one, add or subtract one matrix from another, or
transfer a matrix, its negative, or a multiple of it, transpose a given matrix, build up a unit matrix, multiply
a matrix by a diagonal (from left or from right) and may add the result to another matrix, add to square
matrix the multiple of a diagonal matrix, compute the products X = ABA0 (A0 denotes the transpose of
A) andX = A0BA. It is assumed that matrices are stored row-wise without gaps, contrary to the Fortran
convention.

Structure:

SUBROUTINE subprograms
User Entry Names: MXMAD, MXMAD1, MXMAD2, MXMAD3, MXMPY, MXMPY1, MXMPY2, MXMPY3,

MXMUB, MXMUB1, MXMUB2, MXMUB3, MXTRP, MXUTY, MXMLRT, MXMLTR

Usage:

Matrix Multiplication

CALL MXMPY(A,B,C,NI,NJ,NK) (Aij)(Bjk)! (Cik)

CALL MXMPY1(A,Q,C,NI,NJ,NK) AQ0 ! C (Q is NK� NJ)

CALL MXMPY2(P,B,C,NI,NJ,NK) P0B! C (P is NJ� NI)

CALL MXMPY3(P,Q,C,NI,NJ,NK) P0Q0 ! C

If NJ = 0, C will be filled with zeros.

Matrix Multiplication and Addition

CALL MXMAD(A,B,C,NI,NJ,NK) (Aij)(Bjk) + (Cik)! (Cik)

CALL MXMAD1(A,Q,C,NI,NJ,NK) AQ0 +C! C

CALL MXMAD2(P,B,C,NI,NJ,NK) P0B +C! C

CALL MXMAD3(P,Q,C,NI,NJ,NK) P0Q0 +C! C

If NJ = 0, C will not be changed.
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Matrix Multiplication and Subtraction

CALL MXMUB(A,B,C,NI,NJ,NK) (Aij)(Bjk)� (Cik)! (Cik)

CALL MXMUB1(A,Q,C,NI,NJ,NK) AQ0 �C! C

CALL MXMUB2(P,B,C,NI,NJ,NK) P0B �C! C

CALL MXMUB3(P,Q,C,NI,NJ,NK) P0Q0 �C! C

If NJ = 0, C will be replaced by �C.

Matrix Transposition

CALL MXTRP(A,B,NI,NJ) (Aij)! (Bji)

Unity Matrix

CALL MXUTY(A,NI) (Aii) = 1; (Aij) = 0; (i 6= j)

Matrix Multiplication

CALL MXMLRT(A,B,X,M,N) A[m� n]B[n� n]A0[n�m]! X[m�m]

CALL MXMLTR(A,B,X,N,M) A0[n�m]B[m�m]A[m� n]! X[n� n]
Notes:

In the formulae above, (Aij) etcdenotes the ensemble of elements of the matrix A etcwith the row index
i and the column index j. The Fortran variables NI, NJ and NK specify the dimensions associated with
the indices i; j and k. If DIMENSION A(NJ,NI) reserves space for the matrix A, then the element Aij is
contained in A(J,I).
�
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TR CERN Program Library F112

Author(s) : W. Hart Library: KERNLIB

Submitter : Submitted: 01.01.1975

Language : Fortran Revised:12.12.1986

Manipulation of Triangular and Symmetric Matrices

At CERN, matrices are often stored row-wise (TC-convention); furthermore, symmetric matrices are stored
packed as the lower left triangular part only, i.e., the I th diagonal element is found in position I(I + 1)=2.
The TR-package performs many of the frequently required operations associated with such matrices without
resorting to expanding into the unpacked square form. In all the following routines an M �M symmetric
matrix is taken to be stored in the packed form withM(M + 1)=2 elements.

Some of these operations produce and require the manipulation of lower triangularmatrices which have
all elements zero above the leading diagonal. These are also stored in the packed form with all the zeros
dropped; therefore, care has to be taken in the interpretation of a packed matrix as to whether it represents a
symmetric or lower triangular array. To facilitate this distinction in the Write-up, the following nomenclature
has been adopted:

A,B,C unpacked rectangular matrices (row-wise storage)

Q,R,S,T packed symmetric matrices

V,W packed lower triangular matrices

On 32-bit machines the calculations are performed internally in double-precision mode.

Structure:

SUBROUTINE subprograms
User Entry Names: TRCHUL, TRCHLU, TRSMUL, TRSMLU, TRINV, TRSINV, TRLA, TRLTA,

TRAL, TRALT, TRSA, TRAS, TRSAT, TRATS, TRAAT, TRATA,

TRASAT, TRATSA, TRQSQ, TRPCK, TRUPCK

Usage:

Choleski Decomposition

CALL TRCHUL(S,W,M) S =W0W

CALL TRCHLU(S,V,M) S = VV0

S is an M� M positive semi-definitesymmetric matrix (e.g., error or weight matrix) and the routines calculate
the complementary lower triangular Choleski factors. It is allowed to overwrite S by W or V.

Symmetric Multiplication of Lower Triangular Matrices

CALL TRSMUL(W,S,M) W0W! S
CALL TRSMLU(W,R,M) WW0 ! R

W is an M� M lower triangular matrix and S, R the two symmetric products of the multiplication of W by its
transpose. It is allowed to overwrite W by either S or R.
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Lower Triangular Matrix Inversion

CALL TRINV(W,V,M) W�1 ! V

W is an M� M lower triangular matrix which is inverted into V (the inverse of a lower triangular matrix is
lower triangular). W may have rows and columns of zerosas produced by the Choleski decomposition of a
weight matrix with unmeasured variables. It is allowed to overwrite W by V.

Symmetric Matrix Inversion

CALL TRSINV(S,R,M) S�1 ! R

S is an M� M positive semi-definitesymmetric matrix which is inverted into R (also stored packed). It is
permissible to overwrite S by R.

Triangular – Rectangular Multiplication

CALL TRLA (W,A,B,M,N) WA ! B
CALL TRLTA(W,A,B,M,N) W0A! B
CALL TRAL (A,V,B,M,N) AV ! B
CALL TRALT(A,V,B,M,N) AV0 ! B

A and B are M� N rectangular matrices, W is an M� M lower triangular matrix, and V is an N� N lower
triangular matrix. In each call it is allowed to overwrite A by B.

Symmetric - Rectangular Multiplication

CALL TRSA (S,A,C,M,N) SA ! C
CALL TRAS (A,R,C,M,N) AR ! C
CALL TRSAT(S,B,C,M,N) SB0 ! C
CALL TRATS(B,R,C,M,N) B0R! C

A and C are M� N rectangular matrices, B is an N� M matrix, S is an M� M symmetrix matrix, and R is an
N� N symmetric matrix. It is notallowed to overwrite A or B by the product matrix C.

Symmetric Multiplication of Rectangular Matrices

CALL TRAAT(A,S,M,N) AA0! S
CALL TRATA(B,R,M,N) B0B ! R

A is an M� N matrix, B is an N� M matrix, S is an M� M symmetric matrix, and R is an M� M symmetric
matrix. No overwriting is allowed.

Transformation of Symmetric Matrix

CALL TRASAT(A,S,R,M,N) ASA0! R
CALL TRATSA(B,S,R,M,N) B0SB ! R
CALL TRQSQ (Q,T,R,M) QTQ ! R

A is an M� N matrix, B is an N� M matrix, S is an N� N symmetric matrix, and R, Q, T are M� M symmetric
matrices. No overwriting is allowed.

Packing and Unpacking a Symmetric Matrix

CALL TRPCK (A,S,M) A ! S
CALL TRUPCK(S,A,M) S ! A

A is an M� M unpacked symmetric matrix (all M2 elements) and S is the same matrix stored packed. Over-
writing is allowed for both TRPCK and TRUPCK.
�
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DOTI CERN Program Library F116

Author(s) : CERN TC Division Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran Revised:27.11.1984

Scalar Product of Two Space-Time Vectors

Function subprogram DOTI computes the scalar product a:b of two space-time vectors
(a1; a2; a3; ia4), (b1; b2; b3; ib4), where i =

p�1, i.e.

a:b = a1b1 + a2b2 + a3b3 � a4b4:

Structure:

FUNCTION subprogram
User Entry Names: DOTI

Usage:

In any arithmetic expression,

DOTI(A,B)

has the value a:b.

A,B (REAL) One-dimensional arrays of length 4, containing aj ; bj; (j = 1; 2; 3; 4), respectively.

�
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CROSS CERN Program Library F117

Author(s) : CERN TC Division Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran Revised:

Vector Product of Two 3-Vectors

Subroutine subprogram CROSS computes the vector (or cross) product

c = a� b

of two 3-vectors a;b.

Structure:

SUBROUTINE subprogram
User Entry Names: CROSS
COMMON Block Names and Lengths: /SLATE/ 40

Usage:

CALL CROSS(A,B,C)

A,B (REAL) One-dimensional arrays of length 3, containing the components (a1; a2; a3),
(b1; b2; b3), respectively.

C (REAL) On exit, C contains the components (c1; c2; c3) of a� b, i.e.

c1 = a2b3 � a3b2
c2 = a3b1 � a1b3
c3 = a1b2 � a2b1.

C may overlap either A or B.
�
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ROT CERN Program Library F118

Author(s) : CERN TC Division Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran Revised:

Rotating a 3-Vector

Subroutine subprogram ROT rotates a 3-vector (a1; a2; a3) by a given angle � around the z�axis.

Structure:

SUBROUTINE subprogram
User Entry Names: ROT
COMMON Block Names and Lengths: /SLATE/ 40

Usage:

CALL ROT(A,TH,B)

A (REAL) One-dimensional array of length 3, containing (a1; a2; a3).

TH (REAL) Angle � given in radians.

B (REAL) One-dimensional array of length 3. On exit, B contains the components (b1; b2; b3) of the
rotated vector, i.e.

b1 = a1 cos � � a2 sin �

b2 = a1 sin � + a2 cos �

b3 = a3.

B may overlap A.
�
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VECMAN CERN Program Library F121

Author(s) : M. Aderholz, P.M. Nicholson Library: KERNLIB

Submitter : M. Aderholz Submitted: 01.06.1973

Language : Fortran or Assembler Revised:16.09.1991

Vector Algebra

Performs various vector manipulations, such as addition of two vectors, multiplication of a vector by a
scalar, scalar product, pre- and post-multiplication of a vector by a matrix.

Structure:

SUBROUTINE, and FUNCTION subprograms
User Entry Names: VADD, VSUB, VMUL, VBIAS, VSCALE, VLINCO, VUNIT, VMATR,

VMATL, VCOPYN, VFIX, VFLOAT, VFILL, VZERO, VBLANK, VEXCUM,

VDIST, VDIST2, VDOT, VDOTN, VDOTN2, VMOD, VASUM, VSUM,

VMAXA, VMAX, VMINA, VMIN, LVMAXA, LVMAX, LVMINA, LVMIN,

LVSMI, LVSMX, LVSDMI, LVSDMX, LVSIMI, LVSIMX

Notes:

VLINE is the original and obsolete name for the linear combination routine VLINCO; it was changed because
it clashed with an entry point in some system library.

Usage:

The arguments in the calling sequences below are defined as follows:

A,B,X (REAL) One-dimensional arrays of length N.

DA (DOUBLE PRECISION) One-dimensional array of length N.

IA,IX (INTEGER) One-dimensional arrays of length N.

C,V (REAL) One-dimensional arrays of length M.

EX (REAL) One-dimensional array of length 3.

G (REAL) Two-dimensional array of dimension (M,N).

ALPHA (REAL) Variable.

F1,F2 (REAL) Variables.

Y (REAL) Variable.

N,M (INTEGER) Variables.

Matrix G is assumed to be stored row-wise, contrary to the Fortran convention, i.e. element Gij is found in
word G(J,I) of the memory allocated with DIMENSION G(M,N).

Any summation
P

is taken over the index I from 1 to N or over the index J from 1 to M.
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Subroutines

CALL VADD(A,B,X,N) X(I) = A(I) + B(I) (I = 1; 2; : : : ; N)

CALL VSUB(A,B,X,N) X(I) = A(I)� B(I) (I = 1; 2; : : : ; N)

CALL VMUL(A,B,X,N) X(I) = A(I) � B(I) (I = 1; 2; : : : ; N)

CALL VBIAS(A,ALPHA,X,N) X(I) = A(I) + ALPHA (I = 1; 2; : : : ; N)

CALL VSCALE(A,ALPHA,X,N) X(I) = A(I) � ALPHA (I = 1; 2; : : : ; N)

CALL VLINCO(A,F1,B,F2,X,N) X(I) = A(I) � F1+ B(I) � F2 (I = 1; 2; : : : ; N)

CALL VUNIT(A,X,N) x = a=jaj
X(I) = A(I)=VMOD(A; N) (I = 1; 2; : : : ; N)

CALL VMATR(A,G,V,N,M) v = aG

V(J) =
P

A(I) � G(J; I) (J = 1; 2; : : : ; M)

CALL VMATL(G,C,X,N,M) x = Gc

X(I) =
P

G(J; I) � C(J) (I = 1; 2; : : : ; N)

CALL VCOPYN(A,X,N) X(I) = �A(I) (I = 1; 2; : : : ; N)

CALL VFIX(A,IX,N) IX(I) = A(I) (I = 1; 2; : : : ; N)

CALL VFLOAT(IA,X,N) X(I) = IA(I) (I = 1; 2; : : : ; N)

CALL VFILL(X,N,ALPHA) X(I) = ALPHA (I = 1; 2; : : : ; N)

CALL VZERO(IX,N) IX(I) = 0 (I = 1; 2; : : : ; N)

CALL VBLANK(IX,N) IX(I) = blank (I = 1; 2; : : : ; N)

CALL VEXCUM(A,EX,N) EX(1) = min(EX(1); A(1); : : : ; A(N))

EX(2) = max(EX(2); A(1); : : : ; A(N))

EX(3) = EX(3) +
P

A(I)

REAL functions

VDIST2(A,B,N) (a� b)2 =P(A(I)� B(I))2

VDIST(A,B,N) ja� bj =
p
(a� b)2

VDOT(A,B,N) ab =
P

A(I) � B(I)
VDOTN2(A,B,N) (ab)2=(a2b2)

VDOTN(A,B,N) ab=jajjbj
VMOD (A,N) jaj =

p
a2

VASUM(A,N)
P jA(I)j

VSUM (A,N)
P

A(I)

VMAXA(A,N) max (jA(1)j; jA(2)j; : : : ; jA(N)j)
VMAX (A,N) max (A(1); A(2); : : : ; A(N))

VMINA(A,N) min (jA(1)j; jA(2)j; : : : ; jA(N)j)
VMIN (A,N) min (A(1); A(2); : : : ; A(N))
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INTEGER functions

LVMAXA(A,N) Location of max jA(I)j
LVMAX (A,N) Location of maxA(I)

LVMINA(A,N) Location of min jA(I)j
LVMIN (A,N) Location of min A(I)

LVSMI(A,N,INC) Location of min A(k)

LVSMX(A,N,INC) Location of maxA(k)

LVSDMI(DA,N,INC) Location of min DA(k)

LVSDMX(DA,N,INC) Location of maxDA(k)

LVSIMI(IA,N,INC) Location of min IA(k)

LVSIMX(IA,N,INC) Location of maxIA(k)

where k = 1; 1+ INC; 1+ 2 � INC; : : : ; 1+ (N� 1) � INC
�
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SCATTER CERN Program Library F122

Author(s) : F. Antonelli Library: MATHLIB

Submitter : F. Carminati Submitted: 29.05.1989

Language : Fortran (IBM: Assembler) Revised:

Search Operations on Sparse Vectors

Performs logical search and data movement operations on sparse vectors. On Cray systems these routines
are part of the default libraries (scilib). An optimized Assembler version is provided for IBM 3090 with
Vector Facilities. Fortran code is used on the other systems.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: IILZ, ILSUM, SCATTER, GATHER, WHENEQ, WHENNE, WHENFLT,

WHENFGT, WHENFLE, WHENFGE, WHENILT, WHENIGT, WHENILE, WHENIGE

Usage:

The arguments in the calling sequences below are defined as follows:

A,B (REAL) One-dimensional arrays.

IA,INDX (INTEGER) One-dimensional arrays.

LA (LOGICAL) One-dimensional array.

NW,INC (INTEGER) Variables or expressions.

TARG (REAL) Variable or expression.

ITARG,NFOUND (INTEGER) Variables.

In any arithmetic expression,

IILZ(NW,A,INC)

represents the INTEGER number of leading zero elements in
LA(1); LA(INC+ 1); LA(2 � INC+ 1); : : : ; LA((NW� 1) � INC+ 1);

ILSUM(NW,LA,INC)

represents the INTEGER number of .TRUE. elements in
LA(1); LA(INC+ 1); LA(2 � INC+ 1); : : : ; LA((NW� 1) � INC+ 1).

CALL SCATTER(NW,A,INDX,B)

CALL GATHER(NW,A,B,INDX)

set A(INDX(I)) = B(I); (I= 1; 2; : : : ; NW) and A(I) = B(INDX(I)); (I= 1; 2; : : : ; NW), respectively.

CALL WHENFxx(NW,A,INC,TARG,INDX,NFOUND)

searches A(1); A(INC+ 1); A(2 � INC+ 1); : : : ; A((NW� 1) � INC+ 1) for elements which satisfy the re-
lation A(.).xx.TARG where xx = LT; LE; GT;GE. On exit, INDX(1); : : : ; INDX(NFOUND) will contain the
indices of the NFOUND elements which satisfy the relation specified.
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CALL WHENIxx(NW,IA,INC,ITARG,INDX,NFOUND)

performes the same task as WHENFxx but for INTEGER draw and target.

CALL WHENEQ(NW,a,INC,targ,INDX,NFOUND)

CALL WHENNE(NW,a,INC,targ,INDX,NFOUND)

performs the same task as WHENFxx or WHENIxx, but for xx = EQ; NE, and REAL draw a and REAL target
targ, or INTEGER draw a and INTEGER target targ, respectively.
�
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BVSL CERN Program Library F123

Author(s) : F. Antonelli Library: MATHLIB

Submitter : F. Carminati Submitted: 27.11.1989

Language : Fortran, IBM Assembler Revised:16.08.1994

Bit Vector Manipulation Package

This package contains high performance procedures to operate with sparse arrays using Bit Vectors instead
of ordinary Index Vectors to address the elements of an arrays. The routines are, at present, available only
on IBM 3090 VF machines.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names:

YLOSB, IYLOSB, YLOXB, IYLOXB,

GTHRB, SCTTB, ANDB, XORB, NOTB, NANDB, NORB, ORB, BINVEC, ZEROB,

ONEB, CNTOB, CNTZB, RANGB, INTGB, RJCTB, SXPYB, VXPYB, SXYB, XPWZB,

DOTB, SCALB, VSETB, COPYB

Usage:

The arguments in the calling sequences below are defined as follows:

NW (INTEGER) Number of elements to process. The index i below runs from 1 to NW.

Y,X,V,W (REAL) Arrays of length NW at least.

IX,IY (INTEGER) Arrays of length NW at least.

S,T (REAL) Variables or expressions.

IS,IT (INTEGER) Variables or expressions.

BV,BV1,BV2 Arrays of length (NW� 1)=32+ 1 at least, used to contain the bit vectors.

IFOUND (INTEGER) Number of elements which satisfy the condition, or set-bit count, for BV.

The expression X(BV) indicates all these elements of the vector X for which the corresponding bit is set
in the bit array BV. BV(i) indicates the i-th bit of the array BV, counted across words boundaries. The
expression BV(i) = 1 means that the i-th bit of the array BV is set.

Vector to scalar comparison:

Two SUBROUTINE subprograms are provided for REAL and INTEGER comparison. The subprogram YLOSB

is for vectors with REAL elements and the subprogram IYLOSB for vectors with INTEGER elements.

CALL YLOSB(NW,Y,S,BV,IFOUND,'EQ') BV(i) = 1 if Y(i) = S

CALL YLOSB(NW,Y,S,BV,IFOUND,'NE') BV(i) = 1 if Y(i) 6= S

CALL YLOSB(NW,Y,S,BV,IFOUND,'GT') BV(i) = 1 if Y(i) > S

CALL YLOSB(NW,Y,S,BV,IFOUND,'LT') BV(i) = 1 if Y(i) < S

CALL YLOSB(NW,Y,S,BV,IFOUND,'GE') BV(i) = 1 if Y(i) � S

CALL YLOSB(NW,Y,S,BV,IFOUND,'LE') BV(i) = 1 if Y(i) � S

CALL IYLOSB(NW,Y,S,BV,IFOUND,'EQ') BV(i) = 1 if IY(i) = IS

CALL IYLOSB(NW,Y,S,BV,IFOUND,'NE') BV(i) = 1 if IY(i) 6= IS

CALL IYLOSB(NW,IY,IS,BV,IFOUND,'GT') BV(i) = 1 if IY(i) > IS

CALL IYLOSB(NW,IY,IS,BV,IFOUND,'LT') BV(i) = 1 if IY(i) < IS

CALL IYLOSB(NW,IY,IS,BV,IFOUND,'GE') BV(i) = 1 if IY(i) � IS

CALL IYLOSB(NW,IY,IS,BV,IFOUND,'LE') BV(i) = 1 if IY(i) � IS
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Vector to vector comparison:

Two SUBROUTINE subprograms are provided for REAL and INTEGER comparison. The subprogram YLOXB

is for vectors with REAL elements and the subprogram IYLOXB for vectors with INTEGER elements.

CALL YLOXB(NW,Y,X,BV,IFOUND,'EQ') BV(i) = 1 if Y(i) = X(i)

CALL YLOXB(NW,Y,X,BV,IFOUND,'NE') BV(i) = 1 if Y(i) 6= X(i)

CALL YLOXB(NW,Y,X,BV,IFOUND,'GT') BV(i) = 1 if Y(i) > X(i)

CALL YLOXB(NW,Y,X,BV,IFOUND,'LT') BV(i) = 1 if Y(i) < X(i)

CALL YLOXB(NW,Y,X,BV,IFOUND,'GE') BV(i) = 1 if Y(i) � X(i)

CALL YLOXB(NW,Y,X,BV,IFOUND,'LE') BV(i) = 1 if Y(i) � X(i)

CALL IYLOXB(NW,Y,X,BV,IFOUND,'EQ') BV(i) = 1 if IY(i) = IX(i)

CALL IYLOXB(NW,Y,X,BV,IFOUND,'NE') BV(i) = 1 if IY(i) 6= IX(i)

CALL IYLOXB(NW,IY,IX,BV,IFOUND,'GT') BV(i) = 1 if IY(i) > IX(i)

CALL IYLOXB(NW,IY,IX,BV,IFOUND,'LT') BV(i) = 1 if IY(i) < IX(i)

CALL IYLOXB(NW,IY,IX,BV,IFOUND,'GE') BV(i) = 1 if IY(i) � IX(i)

CALL IYLOXB(NW,IY,IX,BV,IFOUND,'LE') BV(i) = 1 if IY(i) � IX(i)

Scatter/gather operations:

CALL GTHRB(NW,X,BV,Y) Y=X(BV)

CALL SCTTB(NW,Y,BV,X) Y(BV)=X

Elements are gathered or scattered from vector X into vector Y according to the bit mask contained in BV.
Only words for which the corresponding bit is set are moved.

Logical operations:

CALL ANDB(NW,BV1,BV2,BV,IFOUND) BV(i) = 1 if BV1(i) = 1 ^ BV2(i) = 1

CALL ORB(NW,BV1,BV2,BV,IFOUND) BV(i) = 1 if BV1(i) = 1 _ BV2(i) = 1

CALL XORB(NW,BV1,BV2,BV,IFOUND) BV(i) = 1 if
(BV1(i) = 1 _ BV2(i) = 1)^
:(BV1(i) = 1 ^ BV2(i) = 1)

CALL NANDB(NW,BV1,BV2,BV,IFOUND) BV(i) = 1 if BV1(i) = 0 _ BV2(i) = 0

CALL NORB(NW,BV1,BV2,BV,IFOUND) BV(i) = 1 if
(BV1(i) = 1 ^ BV2(i) = 1)_
(BV1(i) = 0 ^ BV2(i) = 0)

CALL NOTB(NW,BV1,BV,IFOUND) BV(i) = 1 if BV(i) = 1� BV1(i)

Miscellaneous operations:

CALL BINVEC(NW,BV,IVEC)

is equivalent to

DO J = 1,NW

IF bit J of BV is set THEN

IVEC(IFOUND)=J

ENDIF

ENDDO
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CALL ZEROB(NW,BV) BV(i) = 0

CALL ONEB (NW,BV) BV(i) = 1

CALL CNTOB(NW,BV,IFOUND) IFOUND = Number of set bits

CALL CNTZB(NW,BV,IFOUND) IFOUND = Number of clear bits

CALL RANGB(NW,Y,S,T,BV,IFOUND) BV(i) = 1 if S � Y(i) � T

CALL INTGB(NW,Y,V,W,BV,IFOUND) BV(i) = 1 if V(i) � Y(i) � W(i)

CALL RJCTB(RAN,X,FREJ,Y,BV,NW,NWOUT,ISWTCH)

RAN Array of random numbers uniformly distributed between zero and the maximum of the rejection
function.

X Array of points where the rejection function is computed.

FREJ Array of values of the rejection function.

Y Array of accepted values of X.

BV Bit vectors of length (NW� 1)=32+ 1 at least.

NW Initial number of values to extract.

NWOUT Current number of values left to extract.

ISWTCH Switch to be set to 1 for the first call.

Linear algebra operations:

Let H be an NW� NC matrix. The FUNCTION subrogram DOTB is of type REAL.

CALL SXPYB(NW,BV,Y,X,S) Y(BV) = Y(BV) + S � X(BV)
CALL VXPYB(NW,BV,X,Y,V) Y(BV) = Y(BV) + V(BV) � X(BV)
CALL SXYB(NW,BV,X,Y,S) Y(BV) = Y(BV) � V(BV) � S
CALL XYPWZB(NW,BV,S,X,Y,T,W,Z) Y(BV) = S � X(BV) � Y(BV) + T � W(BV) � Z(BV)
RES = DOTB(NW,BV,X,Y) DOTB =

P
X(BV) � Y(BV)

CALL SCALB(NW,BV,Y,S) Y(BV) = Y(BV) � S
CALL VSETB(NW,BV,Y,S) Y(BV) = S

CALL COPYB(NW,BV,Y,X) Y(BV) = X(BV)
�
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MXDIPR CERN Program Library F150

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.09.1978

Language : Fortran Revised:

Direct or Tensor Matrix Product

Subroutine subprogram MXDIPR computes the direct (sometimes called tensor, or Kronecker) productC = A�B
of two matrices A and B. LetA = (aik); (i= 1; 2; : : : ; I ; k = 1; 2; : : :K);B = (bjl); (j = 1; 2; : : : ; J ; l =
1; 2; : : : ; L); thenC = (cij;kl) with cij;kl = aikbjl. C has I � J rows andK �L columns. If, in particular,
A and B are square matrices, C is also square.

Structure:

SUBROUTINE subprogram
User Entry Names: MXDIPR

Usage:

CALL MXDIPR(A,B,C,IAD,JBD,IJD,IA,KA,JB,LB)

A,B (REAL) Matrices A and B.

C (REAL) On exit, C contains the direct productA�B.

IAD (INTEGER) First dimension of A.

JBD (INTEGER) First dimension of B.

IJD (INTEGER) First dimension of C.

IA,KA (INTEGER) Number of rows, columns of A.

JB,LB (INTEGER) Number of rows, columns of B.

Restrictions:

A, B, C must not overlap.

Error handling:

If IA or KA or JB or LB are equal to zero, the subprogram acts as do-nothing.

Examples:

DIMENSION A(2,2),B(2,2),C(4,4)

...

CALL MXDIPR(A,B,C,2,2,4,2,2,2,2)

assuming

A =

 
a11 a12

a21 a22

!
B =

 
b11 b12

b21 b22

!
;

would set

C =

0BBB@
a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

1CCCA =

0BBB@
c11;11 c11;12 c11;21 c11;22

c12;11 c12;12 c12;21 c12;22

c21;11 c21;12 c21;21 c21;22

c22;11 c22;12 c22;21 c22;22

1CCCA :
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References:

1. E.P. Wigner, Group Theory, (Academic Press, New York 1959) 17

2. W.I. Smirnow, Lehrgang der höheren Mathematik, Vol. III.1, (Deutscher Verlag der Wissenschaften,
Berlin 1954) 221

�
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RBEQN CERN Program Library F406

Author(s) : G.A. Erskine Library: KERNLIB

Submitter : Submitted: 01.09.1983

Language : Fortran Revised:27.11.1984

Banded Linear Equations

Subroutine subprograms RBEQN and DBEQN solve a system ofN simultaneous linear equations withK right-
hand sides, the coefficient matrix being a band matrix with bandwidth 2M + 1:

NX
j=1

aijxjk = bik; (i = 1; 2; : : : ; N; k = 1; 2; : : : ; K); (aij = 0 for ji� jj > M):

Only those coefficients aij for which ji� jj �M need be supplied on entry (see Usage).

Structure:

SUBROUTINE subprograms
User Entry Names: RBEQN, DBEQN
Files Referenced: Printer
External References: KERMTR (N001), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tBEQN(N,M,ABAND,IDIM,IFAIL,K,B)

N (INTEGER) Number of equations.

M (INTEGER) Band parameter M .

ABAND (type according to t) Two-dimensional array whose first dimension has the value IDIM.

IDIM (INTEGER) First dimension of array ABAND (and of array B if K > 1).

IFAIL (INTEGER) On exit, IFAILwill be set to -1 if the coefficient matrix is singular, and to 0 otherwise.

K (INTEGER) Number of right-hand sides in array B.

B (type according to t) In general, a two-dimensional array whose first dimension has the value
IDIM. B may be one-dimensional if K = 1.

On entry, ABANDmust contain the packed form of the coefficient matrix as described below, and array B must
contain the matrix of right-hand sides bik. Then, provided the coefficient matrix is non-singular, IFAIL will
be set to 0 and the solution xik will replace bik in B. The contents of ABAND are destroyed. If the coefficient
matrix is singular, IFAIL will be set to -1. In this case the contents of ABAND and B are unpredictable.

The storage convention for ABAND is that it must contain, on entry, those coefficients a ij for which ji�jj � M,
stored ”left-justified” as an array of N rows and at most 2M+ 1 columns. For example, if N = 4 and M = 1,
the coefficient matrix0BBB@

a11 a12 0 0

a21 a22 a23 0

0 a32 a33 a34

0 0 a43 a44

1CCCA is stored as

0BBB@
a11 a12 X

a21 a22 a23

a32 a33 a34

a43 a44 X

1CCCA
where X denotes elements whose value need not to be set.
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If ALPHA(I,J) is a function subprogram or statement function which computes aij , the following Fortran
statements will set ABAND correctly:

DO 2 I =1,N

L = 1

DO 1 J = MAX(I-M,1),MIN(I+M,N)

ABAND(I,L) = ALPHA(I,J)

L = L+1

1 CONTINUE

2 CONTINUE

Method:

Gaussian elimination with row interchanges. The storage organization is as described in the reference.

Error handling:

If the integer arguments do not satisfy the conditions 1 � M+ 1 � N � IDIM; K � 0, a message is printed
and program execution is terminated by calling ABEND (Z035).

References:

1. J.H. Wilkinson and C. Reinsch (eds.), Handbook for automatic computation, Vol.2: Linear algebra
(Springer-Verlag, New York 1971) 54.

�
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RLHOIN CERN Program Library F500

Author(s) : K.S. Kölbig, F. Schwarz Library: MATHLIB

Submitter : Submitted: 01.07.1979

Language : Fortran Revised:01.12.1994

Linear Homogeneous Inequalities

Subroutine subprograms RLHOIN and DLHOIN find the basis vj ; (j = 1; 2; : : : ; J), of the convex polyhedral
cone defining the solution of a system of homogeneous linear inequalities Ax � 0. A = amn is a given
M �N matrix, M � N , and rank(A) = N . x = (x1; x2; : : : ; xn) is a column vector. Any solution x of
Ax � 0 can be expressed as

x =
JX

j=1

�jvj :

where all �j � 0. The number J of vectors vj depends on the matrix A in an unknown way, except when
M = N , where J = N .

On CDC and Cray computers, the double-precision version DLHOIN is not available.

Structure:

SUBROUTINE subprogram
User Entry Names: RLHOIN, DLHOIN
Obsolete User Entry Names: LIHOIN � RLHOIN

Files Referenced: Unit 6

External References: RVCPY (F002), RVMPY (F002), RVSCL (F002),

DVCPY (F002), DVMPY (F002), DVSCL (F002),

RMCPY (F003), RMSET (F003), DMCPY (F003), DMSET (F003),

RINV (F010), DINV (F010), MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tLHOIN(A,MA,M,N,MAXV,V,NV,JVEC,EPS,IOUT,W,IW)

A (type according to t) Two-dimensional array, dimensioned (MA;� N), whose rows contain the
coefficients of the inequalities, arranged in such a way that the upper left N� N corner has a non-
vanishing determinant. Usually it is advisable to normalise the rows of A to unity before calling
this subprogram.

MA (INTEGER) First dimension parameter of A.

M (INTEGER) Number M of inequalities.

N (INTEGER) Number N of variables.

MAXV (INTEGER) Maximum number of basis vectors which may occur at any intermediate step, to be
chosen sufficiently large and in any case � N.

V (type according to t) Two-dimensional array, dimensioned (NV;� MAXV), whose columns con-
tain, on return, the basis vectors vj of the solution cone.

NV (INTEGER) First dimension parameter of V(� N).

JVEC (INTEGER) Number J of basis vectors of the final cone.

EPS (type according to t) A small parameter which discriminates small quantities against zero, chosen
to take into account the accuracy of the machine used.
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IOUT (INTEGER)
= 0 : Gives no intermediate printout,
= 1 : Gives, for each iteration, the basis vectors of the respective cone, the matrix of scalar
products and the index of the inequality taken into account in the next step.

W (type according to t) Two-dimensional array, dimensioned (MAXV;� M+ 1), used as working
space.

IW (INTEGER) Two-dimensional array, dimensioned (MA; 5) whose columns serve as book-keepers
for certain properties of the system during the iteration procedure.

Method:

The Motzkin-Burger procedure is used to obtain the solution iteratively. Ref. 1 should be consulted before
using this subprogram.

Restrictions:

The routine may fail if the matrix A is ”ill-conditioned” in a certain sense.

Notes:

A given system of linear homogenous inequalities may have no solution.

Error handling:

Error F500.1: MAXV too small.
Error F500.2: Upper left N� N corner of A is singular.
Error F500.3: Inequality k is inconsistent.
In all cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. K.S. Kölbig and F. Schwarz, A program for solving systems of homogeneous linear inequalities.
Computer Phys. Comm. 17 (1979) 375–382.

�
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PROB CERN Program Library G100

Author(s) : G. Folger, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 21.08.1971

Language : Fortran Revised:15.01.1994

Upper Tail Probability of Chi-Squared Distribution

Function subprogram PROB computes the probability that a random variable having a �2-distribution with
N � 1 degrees of freedom assumes a value which is larger than a given value X � 0, i.e.

Q(X jN) =
1p

2N �(1
2
N)

Z 1

X

e�
1

2
t t

1

2
N�1 dt:

Structure:

FUNCTION subprogram
User Entry Names: PROB
External References: ERFC (C300), DERFC (C300), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

PROB(X,N) has the value Q(X; N).

PROB and X are of type REAL and N is of type INTEGER.

Method:

See Ref. 1, formulae Nr. 26.4.4, 26.4.5 and, for N > 300, No. 26.4.14.

Accuracy:

For N � 300, PROB has an accuracy of about six digits. For N > 300, the accuracy decreases for X > N with
increasing X.

Error handling:

Error G100.1: N < 1.
Error G100.2: X < 0.
In both cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

References:

1. M. Abramowitz and I.A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs,
and mathematcal tables, 9th printing with corrections, (Dover, New York 1972).

�
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CHISIN CERN Program Library G101

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1976

Language : Fortran Revised:15.03.1993

Inverse of Chi-Square Distribution

Function subprogram CHISIN calculates �2(P;N) for a given probability P (�2) and a given degree of
freedom N , where

P (�2jN) =
1p

2N�(1
2
N)

Z
�
2(P;N)

0

e�
1

2
tt

1

2
N�1 dt

and N � 1 and 0 � P (�2) < 1.

Structure:

FUNCTION subprogram
User Entry Name: CHISIN
Files Referenced: Unit 6

External References: GAUSIN (G105), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

CHISIN(P,N) has the value �2(P; N),

where CHISIN and P are of type REAL, and N is of type INTEGER.

Method:

The method is described in Ref. 1. Note that there the complementary integral is taken.

Accuracy:

Approximately three to six digits are correct. The case N = 3 is the least accurate.

Error handling:

Error G101.1: P < 0 or P � 1.
Error G101.2: N < 1.
In both cases, the function value is set equal to zero, and a message is written on Unit 6, unless subroutine
MTLSET (N002) has been called.

Source:

This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. R.B. Goldstein, Algorithm 451, Chi-Square Quantiles, Collected Algorithms from CACM (1972)

�
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PROBKL CERN Program Library G102

Author(s) : F. James, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1976

Language : Fortran Revised:15.03.1993

Kolmogorov Distribution

Function subprogram PROBKL calculates the Kolmogorov distribution function

P (X) = �2
1X
j=1

(�1)j exp(�2j2X2)

for real argumentsX .

Structure:

FUNCTION subprogram
User Entry Name: PROBKL

Usage:

In any arithmetic expression,

PROBKL(X) has the value P (X),

where PROBKL and X are of type REAL.

Method:

Direct evaluation or using functional relations.

Accuracy:

Approximately seven digits are correct. Results smaller than 10�40 (corresponding to X > 6:8116) are set
to zero. Note that the above formula has a statistical meaning only for ”large” N(> 10).

Notes:

1. For an experimental distribution with N events and a maximum deviation �N from a hypothetical
distribution, P (X) with X = �N

p
N gives the confidence level for the null hypothesis.

2. To compare two experimental distributions with M and N events, respectively, one may use X =p
MN=(M +N)�N .

�
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TKOLMO CERN Program Library G103

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.02.1991

Language : Fortran Revised:

Kolmogorov Test

Subroutine subprogram TKOLMO tests whether two one-dimensional sets of points are compatible with com-
ing from the same parent distribution, using the Kolmogorov test. That is, it is used to compare two experi-
mental distributions of unbinned data.

Structure:

SUBROUTINE subprogram
User Entry Name: TKOLMO
External routine referenced: PROBKL (G102)

Usage:

CALL TKOLMO(A,NA,B,NB,PROB)

A,B (REAL) One-dimensional arrays of length NA, NB, respectively. The elements of A and B must be
given in ascending order. (This can be accomplished, for example, by using FLPSOR (M103)).

NA,NB (INTEGER) The number of points in A and B, respectively.

PROB (REAL) A calculated confidence level which gives a statistical test for compatibility of A and B.

Values of PROB close to zero are taken as indicating a small probability of compatibility. For two point
sets drawn randomly from the same parent distribution, the value of PROB should be uniformly distributed
between zero and one.

Method:

The Kolmogorov test is used. The test statistic is the maximum deviation between the two integrated distri-
bution functions, multiplied by the normalizing factor

p
MN=(M +N), where M and N are the numbers

of points in the two samples.

Accuracy:

Approximately seven digits are correct.

Notes:

Probabilities smaller than 10�40 are set to zero. However, the method has a statistical meaning only for
”large” M and N(> 10).

References:

1. W.T. Eadie, D. Drijard, F.E. James, M. Roos and B. Sadoulet, Statistical Methods in Experimental
Physics, (North-Holland, Amsterdam 1971) 269-271.

�
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STUDIS CERN Program Library G104

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1994

Language : Fortran Revised:

Student’s t-Distribution and Its Inverse

Function subprogram STUDIS calculates the value of the Student t-distribution function

F (t; n) =
�(1

2
(n+ 1))p

�n �(1
2
n)

Z
t

�1

�
1 +

x2

n

�� 1

2
(n+1)

dx

for a given degrees of freedom n � 1.

Function subprogram STUDIN calculates the inverse t(F; n).

Structure:

FUNCTION subprogram
User Entry Names: STUDIS, STUDIN
Files Referenced: Printer
External References: GAUSIN (G105), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

STUDIS(T,N) or STUDIN(F,N) has the value F (T; N) or t(F; N),

respectively. STUDIS, STUDIN, F and T are of type REAL, N is of type INTEGER.

Error handling:

Error G104.1: N � 0.
Error G104.2: F < 0 or F > 1.
In both cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

Accuracy:

About six decimal places are usually correct. Accuracy is lost for STUDIS when T << 0 and N > 4.

Notes:

The subprograms are based on algorithms given in the references.

References:

1. B.E. Cooper, Algorithm AS3 - Applied Statistics 17 (1968) 189.

2. G.W. Hill, Algorithm 396, Student’s t-quantiles, Collected algorithms from CACM (1970).

�
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GAUSIN CERN Program Library G105

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.12.1988

Language : Fortran Revised:15.03.1993

Inverse of Normal Frequency Function

Function subprograms GAUSIN and DGAUSN calculate the inverse X(P ) of the normal frequency function
(Gaussian distribution)

P (X) =
1p
2�

Z
X(P )

�1
e�

1

2
t
2

dt

for real arguments P , where 0 < P < 1.

Structure:

FUNCTION subprogram
User Entry Name: GAUSIN, DGAUSN
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

GAUSIN(P) has the value X(P),

where GAUSIN and P are of type REAL.

Method:

The method is described in Ref. 1.

Accuracy:

Accuracy:

GAUSIN (except on CDC and Cray computers) has an accuracy of about six digits. For most values of the
argument P, DGAUSN (and GAUSIN on CDC and Cray computers) has an accuracy of approximately one
significant digit less than the machine precision.

Error handling:

Error G105.1: P � 0 or P � 1.
The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET

(N002) has been called.

Source:

This subprogram is based on an Algol60 procedure published in Ref. 1.

References:

1. G.W. Hill and A.W. Davis, Algorithm 442, Normal Deviate, Collected Algorithms from CACM
(1973)

�
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GAMDIS CERN Program Library G106

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 01.05.1990

Language : Fortran Revised:15.03.1993

Gamma Distribution

Function subprogram GAMDIS calculates the gamma distribution function (incomplete gamma function)

P (x; a) =
1

�(a)

Z
x

0

e�t ta�1 dt

for real arguments x � 0 and a > 0.

Structure:

FUNCTION subprogram
User Entry Name: GAMDIS
Files Referenced: Unit 6

External References: GAMMA (C302), ALGAMA (C304), MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

GAMDIS(X,A) has the value P (X; A),

where GAMDIS, X and A are of type REAL.

Method:

The method is described in Ref. 1.

Accuracy:

Approximately six digits are correct.

Error handling:

Error G106.1: X < 0 or A � 0.
Error G106.2: Difficulties of convergence (unlikely).
The function value is set equal to zero, and a message is written on Unit 6, unless subroutine MTLSET

(N002) has been called.

Notes:

1. For greater accuracy, or for the case a � 0, use GAPNC (C334). Note, however, that in this case the
arguments X and A must be interchanged.

2. Note that, for integer N � 1, GAMDIS(X; N=2:) = 1� PROB(2 � X; N), where PROB (G100) is the upper
tail probability of the chi-squared distribution function. PROB (G100) is faster than GAMDIS (G106) in
this case.

Source:

This subprogram is based on a Fortran program for the incomplete gamma functions published in Ref. 2.

References:

1. W. Gautschi, A computational procedure for incomplete gamma functions, ACM Trans. Math. Soft-
ware 5 (1979) 466–481.

2. W. Gautschi,Algorithm 542, Incomplete gamma functions, Collected Algorithms from CACM (1979).

�
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LANDAU CERN Program Library G110

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 30.08.1985

Language : Fortran Revised:15.03.1993

Landau Distribution

The LANDAU function subprogram package contains six independent subprograms for the calculation of the
following functions related to the Landau distribution:

The density �(�) =
1

2�i

Z
c+i1

c�i1
exp(�s+ s ln s)ds;

the distribution �(�) =

Z
�

�1
�(�)d�;

the derivative �0(�) =
d�(�)

d�
;

the first moment �1(x) =
1

�(x)

Z
x

�1
��(�)d�;

the second moment �2(x) =
1

�(x)

Z
x

�1
�2�(�)d�;

the inverse of �(x) 	(x) = ��1(x):

The function 	(x) can be used to generate Landau random numbers (see Usage).

Structure:

FUNCTION subprograms
User Entry Names: DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN
Obsolete User Entry Names: DSTLAN � DISLAN

Usage:

In any arithmetic expression,

DENLAN(X) has the value �(X),

DISLAN(X) has the value �(X),

DIFLAN(X) has the value �0(X),

XM1LAN(X) has the value �1(X),

XM2LAN(X) has the value �2(X),

RANLAN(X) has the value 	(X),

where DENLAN, DISLAN, DIFLAN, XM1LAN, XM2LAN, RANLAN and X are of type REAL.

To generate a set of Landau random numbers, RANLAN should be referenced repeatedly, using as argument a
random number from a uniform distribution over the interval (0,1).

Method:

Approximation by rational functions. For reason of speed, RANLAN proceeds mainly by table look-up and
quadratic interpolation.

Accuracy:

At least six significant digits (five for RANLAN) are correct.
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Restrictions:

1. Underflow may occur for DENLAN, DISLAN and DIFLAN if X is negative and (moderately) large.

2. No test is made whether X for RANLAN lies outside the interval (0,1), and hence no error message is
printed.

Notes:

This program package is a version of the CPC Program Librarypackage LANDAU (Ref. 1).

References:

1. K.S. Kölbig and B. Schorr, A program package for the Landau distribution, Computer Phys. Comm.
31 (1984) 97–111.
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VAVLOV CERN Program Library G115

Author(s) : A. Rotondi, P. Montagna, K.S. Kölbig Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 10.12.1993

Language : Fortran Revised:

Approximate Vavilov Distribution and its Inverse

The VAVLOV package contains subprograms for fast approximate calculation of functions related to the
Vavilov distribution.

For � > 0 and 0 � �2 � 1, the Vavilov density function is mathematicallydefined by

�V (�; �; �
2) =

1

2�i

Z
c+i1

c�i1
e�s f(s; �; �2) ds;

where c is an arbitrary real constant and

f(s; �; �2) = C(�; �2) exp
n
s ln � + (s+ ��2)

h
ln
� s
�

�
+E1

� s
�

�i
� � exp

�
� s
�

�o
:

E1(x) =
R
x

0
t�1 (1�e�t) dt is the exponential integral,C(�; �2) = expf�(1+�2)g, and  = 0:57721 : : :

is Euler’s constant.

The Vavilov distribution function is defined by

�V (�; �; �
2) =

Z
�

�1
�V (�; �; �

2) d�

and its inverse by 	V (x; �; �
2) = ��1

V
(x; �; �2).

The function 	V (x; �; �2) can be used to generate Vavilov random numbers (see Usage).

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: VAVSET, VAVDEN, VAVDIS, VAVRND, VAVRAN
External References: LOCATR (E106), DENLAN (G110), DISLAN (G110)
COMMON Block Names and Lenghts: /G115C1/ 226

Usage:

CALL VAVSET(RKAPPA,BETA2,MODE)

sets auxiliary quantities used in VAVDEN, VAVDIS and VAVRND; this call has to precede a reference to any of
these entries.

RKAPPA The variable � (the straggling parameter); (0:01 � � � 12).

BETA2 The variable �2 (the square of velocity in unit c); (0 � �2 � 1).

MODE = 1;
= 0 in the particular case that VAVDEN only is referenced after the call to VAVSET.

In any arithmetic expression,

VAVDEN(X) has an approximate value of �V (X; RKAPPA; BETA2),

VAVDIS(X) has an approximate value of �V (X; RKAPPA; BETA2),

VAVRND(X) has an approximate value of 	V (X; RKAPPA; BETA2),
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RKAPPA and BETA2 are defined by the last call to VAVSET prior to a reference to VAVDEN, VAVDIS, or VAVRND.

To generate a setof Vavilov random numbers with identical � and �2, VAVSET should be called once and
then VAVRND be referenced repeatedly, using as argument X a random number from a uniform distribution
over the interval (0,1).

In any arithmetic expression,

VAVRAN(RKAPPA,BETA2,X) has an approximate value of 	V (X; RKAPPA; BETA2).

To generate oneVavilov random number for given values of � and �2, VAVRAN should be used, using as
argument X a random number from a uniform distribution over the interval (0,1).

VAVDEN, VAVDIS, VAVRND, VAVRAN and X, RKAPPA, BETA2 are of type REAL, and MODE is of type INTEGER.

Method:

The method is discribed in Ref. 1.

Accuracy:

The accuracy depends on the parameters. Although often rather poor from a mathematical point of view, it
is usually sufficient for the intended application in physics (see Notes).

Restrictions:

No test is made whether the parameters � and �2 are in the specified ranges.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. In view of the requirements in physics, speed is much more important than accuracy. This is
taken into account for the present routines.

2. For a more accurate, but much slower, calculation of the Vavilov density and distribution functions,
use VVILOV (G116).

3. For � � 0:01, the Vavilov distribution can be replaced by the Landau distribution (LANDAU (G110)),
taking into account that �V = (�L � ln �)=�.

4. For � � 10, the Vavilov distribution can be replaced by the Gaussian distribution with mean
� =  � 1� �2 � ln � and variance �2 = (2� �2)=(2�).

References:

1. A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, Nucl. Instr. and Meth. B47
(1990) 215–224.
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VVILOV CERN Program Library G116

Author(s) : B. Schorr, K.S. Kölbig Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 10.12.1993

Language : Fortran Revised:

Vavilov Density and Distribution Functions

The VVILOV package contains subprograms for the calculation of the Vavilov density and distribution func-
tions. Though generally more accurate, these routines are considerably slower than those in VAVLOV (G115).

For � > 0 and 0 � �2 � 1, the Vavilov density function is mathematicallydefined by

�V (�; �; �
2) =

1

2�i

Z
c+i1

c�i1
e�s f(s; �; �2) ds;

where c is an arbitrary real constant and

f(s; �; �2) = C(�; �2) exp
n
s ln � + (s+ ��2)

h
ln
� s
�

�
+E1

� s
�

�i
� � exp

�
� s
�

�o
:

E1(x) =
R
x

0
t�1 (1�e�t) dt is the exponential integral,C(�; �2) = expf�(1+�2)g, and  = 0:57721 : : :

is Euler’s constant.

The Vavilov distribution function is defined by

�V (�; �; �
2) =

Z
�

�1
�V (�; �; �

2) d�:

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: VVISET, VVIDEN, VVIDIS
Internal Entry Names: G116F1, G116F2
External References: RZERO (C205), RSININ (C336), RCOSIN (C336), REXPIN (C337)
COMMON Block Names and Lenghts: /G116C1/ 322

Usage:

CALL VVISET(RKAPPA,BETA2,MODE,XL,XU)

sets auxiliary quantities used in VVIDEN and VVIDIS; this call has to precede a reference to either of these
entries.

RKAPPA The variable � (the straggling parameter); (0:01 � � � 12).

BETA2 The variable �2 (the square of velocity in unit c); (0 � �2 � 1).

MODE = 0 if VVIDEN is referenced after the call to VVISET;
= 1 if VVIDIS is referenced after the call to VVISET.

XL,XU On exit, XL and XU contain a lower and upper limit as defined below.

In any arithmetic expression,

VVIDEN(X) has the value �V (X; RKAPPA; BETA2),

VVIDIS(X) has the value �V (X; RKAPPA; BETA2),
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By definition

VVIDEN(X) = 0 if X < XL; VVIDIS(X) = 0 if X < XL;

VVIDEN(X) = 0 if X > XU; VVIDIS(X) = 1 if X > XU.

RKAPPA, BETA2, XL and XU are defined by the last call to VVISET (with MODE = 0) prior to a reference to
VVIDEN, or (with MODE = 1) prior to a reference to VVIDIS.

VVIDEN, VVIDIS and X, RKAPPA, BETA2, XL, XU are of type REAL, and MODE is of type INTEGER.

Method:

The method, based on Fourier expansions, is described in Ref. 1.

Accuracy:

About five significant digits are usually accurate.

Error handling:

Error G116.1: � < 0:01 or � > 10.
Error G116.2: �2 > 1.
These errors can occur when calling VVISET. In both cases, a message is written on Unit 6, unless subrou-
tine MTLSET (N002) has been called.

Notes:

1. Representing the Vavilov functions by approximations which are both fast and accurate is a difficult
task. These routines, though rather accurate, are slow. If speed is of higher importance than accuracy,
and for calculating Vavilov random numbers, use VAVLOV (G115).

2. For � � 0:01, the Vavilov distribution can be replaced by the Landau distribution (LANDAU (G110)),
taking into account that �V = (�L � ln �)=�.

3. For � � 10, the Vavilov distribution can be replaced by the Gaussian distribution with mean
� =  � 1� �2 � ln � and variance �2 = (2� �2)=(2�).

References:

1. B. Schorr, Programs for the Landau and the Vavilov distributions and the corresponding random
numbers, Computer Phys. Comm. 7 (1974) 215–224.
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RANF CERN Program Library G900

Author(s) : CDC Library: KERNLIB or Fortran intrinsic

Submitter : H. Lipps (not CDC or Cray) Submitted: 02.06.1980

Language : Fortran or Assembler Revised:24.06.1985

Random Number Generator

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

Function subprograms RANF and DRANF return pseudo-random values uniformly distributed in the interval
(0,1), the end points excluded. The multiplicative congruential method is used.

Subroutine subprogram RANGET makes the current seed value of RANF and DRANF available to the user, and
subroutine RANSET restores a seed value for further use by RANF and DRANF.

On CDC computers, the subprograms other than DRANF are part of Control Data’s Fortran execution-time
library.

The non-CDC versions of RANF and DRANF use the same multiplier (2875 A2E7 B175), the same initial
seed value (2BC6 8CFE 166D), and the same modulus (2**48). They thus generate, within the limitations
of machine accuracy, the same random sequence as the CDC versions.

DRANF is identical to RANF except that it returns a function value of type DOUBLE PRECISION.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: RANF, DRANF, RANGET, RANSET

Usage:

In any arithmetic expression,

RANF() or DRANF()

is set to a value greater than zero and less than one. RANF is of type REAL, DRANF is of type DOUBLE

PRECISION.

CALL RANGET(SEED)

CALL RANSET(SEED)

SEED (REAL for CDC, DOUBLE PRECISION otherwise). On exit from RANGET,SEED will be set to a
value that determines the current position in the sequence of random numbers. This value may
be used later as an actual argument in a call to RANSET in order to restart the random sequence at
this point.

References:

1. Fortran Version 5 Reference Manual (Control Data Corporation, 1981).

�
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RSMPLX CERN Program Library H101

Author(s) : M. Gyr Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 15.02.1994

Language : Fortran Revised:

Linear Optimization Using the Simplex Algorithm

Subroutine subprograms RSMPLX and DSMPLX calculate the quantities x1; x2; : : : ; xm for which the linear
form, or objective function,

z = z0 �
mX
i=1

bixi

assumes a maximumvalue subject to the n1 inequality constraints

mX
i=1

aikxi � ck (k = 1; 2; : : : ; n1)

and the n� n1 equality constraints

mX
i=1

aikxi = ck (k = n1 + 1; n1 + 2; : : : ; n):

A numberm1 � m of the variables xi; (i = 1; 2; : : : ; m1) can be restricted to non-negative values (xi � 0).
The remaining m �m1 variables xi; (i = m1 + 1; : : : ; m) are then unrestricted (�1 < xi < 1). In the
case m1 = 0, all variables xi are unrestricted. These subprograms can also be used for the so-called
degenerate case.

On computers other than CDC or Cray, only the double-precision version DSMPLX is available. On CDC and
Cray computers, only the single precision version RSMPLX is available.

Structure:

SUBROUTINE subprograms
User Entry Names: RSMPLX, DSMPLX
Internal Entry Names: H101S1, H101S2
Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tSMPLX(A,B,C,Z0,IDA,M,M1,N,N1,LW,IDW,W,X,Z,ITYPE)

A (type according to t) Two-dimensional array of dimension (IDA;� N). Contains, on entry, the
coefficients ai;k ; (i = 1; 2; : : : ; m; k = 1; 2; : : : ; n). Destroyed during execution.

B (type according to t) One-dimensional array of dimension� M. Contains, on entry, the coefficients
bi; (i = 1; 2; : : : ; m). Destroyed during execution.

C (type according to t) One-dimensional array of dimension� N. Contains, on entry, the coefficients
ck; (k = 1; 2; : : : ; n). Destroyed during execution.

Z0 (type according to t) Contains, on entry, the initial value of the objective function.

IDA (INTEGER) Declared first dimension of A in the calling program (IDA � M).

M (INTEGER) The total number m of variables xi (M � 0).
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M1 (INTEGER) The number m1 of restricted variables xi � 0 (0 � M1 � M).

N (INTEGER) The total number n of constraints (N � 0).

N1 (INTEGER) The number n1 of inequality constraints (0 � N1 � N).

LW (INTEGER) Two-dimensional array of dimension (IDW;� 5). Used as working space.

IDW (INTEGER) Declared first dimension of LW in the calling program (IDW � M+ 2 � N).

W (type according to t) One-dimensional array of dimension� M+ N. Used as working space.

X (type according to t) One-dimensional array of dimension� M+ N. If ITYPE = 1 or ITYPE = 2,
its first m elements X(1), : : : ,X(M) contain, on exit, the or a solution x1; : : : ; xm, respectively.
The next n elements X(M+1), : : : ,X(M+N) contain the values of the so-called slack variables
xm+1; : : : ; xm+n. If ITYPE = 3 or ITYPE = 4, the elements X(1); : : : ; X(M+ N) are undefined.

Z (type according to t) If ITYPE = 1 or ITYPE = 2, Z contains, on exit, the result z of the objective
function. Undefined for ITYPE = 3 and ITYPE = 4.

ITYPE (INTEGER) Defines, on exit, the type of the result:

= 1 : There is exactly one finite solution.

= 2 : There is more than one solution.

= 3 : There is no finite solution.

= 4 : There is no feasable initial solution.

Method:

The method is described in Ref. 1 and Ref. 2.

Error handling:

Error H101.1: M � 0 or N � 0.
Error H101.2: M1 < 0 or M1 > M or N1 < 0 or N1 > N.
In both cases, a message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. H.P. Künzi, H.G. Tzschach and C.A. Zehnder, Numerical methods of mathematical optimization,
(Academic Press, New York 1968)

2. E. Stiefel, Einführung in die Numerische Mathematik, (B.G. Teubner, Stuttgart 1965)
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ASSNDX CERN Program Library H301

Author(s) : F. Bourgeois Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 15.02.1994

Language : Fortran Revised:

Assignment Problem

Subroutine subprogram ASSNDX solves the so-called Assignment problem: Given an n�m matrix A of real
numbers a(i; j), find either

1. a set fk(1); k(2); : : : ; k(n)g 2 f1; 2; : : : ; m; 0; : : : ; 0g, where 0; : : : ; 0 indicates max(n � m; 0)
zeros, and where for non-zero elements k(p) 6= k(q) for p 6= q, which minimizes

S =
nX
i=1

a(i; k(i))

assuming that a(i; 0) = 0, or

2. a set fk(1); k(2); : : : ; k(m)g 2 f1; 2; : : : ; n; 0; : : : ; 0g, where 0; : : : ; 0 indicates max(m � n; 0)
zeros, and where for non-zero elements k(p) 6= k(q) for p 6= q, which minimizes

S =
mX
j=1

a(k(j); j)

assuming that a(0; j) = 0.

Structure:

SUBROUTINE subprogram
User Entry Names: ASSNDX
Files Referenced: Unit 6

Usage:

CALL ASSNDX(MODE,A,N,M,IDA,K,SMIN,IW,IDW)

MODE (INTEGER) Must be set either 1 (for case (1)), or 2 (for case (2)).

A (REAL) Two-dimensional array of dimension (IDA;� M). Must contain, on entry, the matrix A.
Destroyed during execution.

N (INTEGER) Number n of rows of A.

M (INTEGER) Number m of columns of A.

IDA (INTEGER) Declared first dimension of A in the calling program (IDA � N).

K (INTEGER) One-dimensional array of length � max(N; M). Contains, on exit, the assigned set of
integers fk(1); : : : ; k(n)g or fk(1); : : : ; k(m)g, respectively.

SMIN (REAL) The calculated minimum value of S.

IW (INTEGER) Two-dimensional array of dimension (IDW;� 6). Used as working space.

IDW (INTEGER) Declared first dimension of IW in the calling program (IDW � max(N; M)).

Method:

The subprogram is based on the Algol procedure given in Ref. 3.
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Error handling:

Error H301.1: N < 1 or M < 1.
A message is written on Unit 6, unless subroutine MTLSET (N002) has been called.

Examples:

The following example illustrates a possible use of the subprogram. A workshop has to carry out N jobs,
each of which can be performed on any of M(> N) available machines. The cost of performing job I on
machine J is A(I; J). It is required to assign jobs to machines in such a way as to minimize the total cost.
The solution is obtained by calling the subprogram with MODE = 1 and then assigning job I to machine
K(I); (I = 1; 2; : : : ; N).

References:

1. J. Munkres, Algorithms for the assignment and transportation problems, J. SIAM 5 (1957) 32–38.

2. R. Silver, An algorithm for the assignment problem, Comm. ACM 3 (1960) 605–606.

3. R. Silver, Algorithm 27 ASSIGNMENT, Collected Algorithms from CACM (1960).
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EPIO CERN Program Library I101

Author(s) : H. Grote, I. McLaren Library: PACKLIB

Submitter : Submitted: 01.12.1981

Language : Fortran, Assembler Revised:01.02.1982

EP Standard Format Input/Output Package

The EP format off-line package is intended to be used for all data (at least on tape) in an experiment, in such
a way that from the raw data tape to the DST, the tape (or file) format is identical. This makes the transport
of data between computers easier, and simplifies the task of passing the files or tapes at different stages of
the production chain through any other part of the production chain. EPIO is designed to make almost all
features of the very flexible EP format available to the user.

Structure:

SUBROUTINE package
User Entry Names: EPINIT, EPREAD, EPOUTS, EPOUTL, EPCLOS, EPRWND, EPDROP, EPEND,

EPUREF, EPGETW, EPGETA, EPGETC, EPSETW, EPSETA, EPSETC, EPADDH,

EPUPDH, EPSTAT
Files Referenced: User defined
External References: UZERO (V300), UCOPY (V301), IOPACK (Z300) (IBM only)
COMMON Block Names and Lengths: /EPCOMM/ 136

Usage:

See Long Write-up .
�
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KUIP CERN Program Library I202

Author(s) : R. Brun, P. Zanarini Library: PACKLIB

Submitter : Submitted: 10.02.1988

Language : Fortran Revised:17.12.1991

KUIP - Kit for a User Interface Package

The KUIP package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
KUIP is an interface program for any application based on interactive input of commands. From the appli-
cation it is seen as a slave which supplies the next command with its associated parameters. It takes care of
program input in various (e.g., graphics or menu) forms and performs preliminary checking on command
syntax and parameters.

Structure:

SUBROUTINE subprograms

Usage:

See Long Write-up .
�
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FFREAD CERN Program Library I302

Author(s) : See below Library: PACKLIB

Submitter : J.C. Lassalle Submitted: 30.01.1980

Language : Fortran Revised:17.12.1991

Format-Free Input Processing

Authors: R. Brun, R. Hagelberg, M. Hansroul, I. Ivanchenko, J.C. Lassalle, G. Misuri, J. Vorbrueggen

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: KUIP (I202)

FFREAD provides the user with a facility for free-format data input, providing a suitable tool to transmit
and/or modify variables at run-time without recompilation.

Structure:

SUBROUTINE subprograms
User Entry Names: FFREAD, FFINIT, FFSET, FFKEY, FFGO, FFGET
Internal Entry Names: FFCARD, FFFIND, FFGOR, FFSKIP, FFUPCA
Files Referenced: Input, Output (both default or user defined)
External References: UCOPY (V301), UCTOH (M409), UHTOC (M409), FFUSER (()optionally user-supplied)

Usage:

See Long Write-up .
�
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VIZPRI CERN Program Library J200

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 19.09.1991

Language : Fortran Revised:

Print Large Characters

VIZPRI prints one line of large characters to make banner pages. A large line occupies 12 text lines; each
large character is 12 columns wide with 2 blank columns to separate.

Structure:

SUBROUTINE subprogram
User Entry Names: VIZPRI
Files Referenced: Parameter

Usage:

CALL VIZPRI(LUN,CHTEXT)

with:

LUN Fortran logical unit number for printing, if zero: use ’standard output’.

CHTEXT (CHARACTER) text to be printed.

Examples:

CALL VIZPRI(0,'e=mc2')

gives:

eeeeeeeeeeee mm mm cccccccccc 2222222222

eeeeeeeeeeee mmm mmm cccccccccccc 222222222222

ee mmmm mmmm cc cc 22 22

ee ========== mm mm mm mm cc 22

ee ========== mm mmmm mm cc 22

eeeeeeee mm mm mm cc 22

eeeeeeee mm mm cc 22

ee ========== mm mm cc 22

ee ========== mm mm cc 22

ee mm mm cc cc 22

eeeeeeeeeeee mm mm cccccccccccc 222222222222

eeeeeeeeeeee mm mm cccccccccc 222222222222

�
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XBANNER CERN Program Library J403

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 19.09.1991

Language : Fortran Revised:

Print Banner Text

XBANNER can be used to create either a banner page or to print simple banner text. For a banner page printing
may be repeated to make a recto-verso page; for simple text printing is done only once without page eject.
The current date and time is always printed.

Structure:

Complete program, executable module normally on /cern/pro/bin

User Entry Names: XBANNER
External References: VIZPRI (J200), DATIME (Z007)
Files Referenced: User controlled

Usage:

The command line

xbanner where arg1 arg2 arg3 ...

prints the text strings ’argi’ as large characters, normally on one line each, onto the file selected by ’where’.

’where’ specifies the output file, pre–fixed by zero, one, or two control characters. If no file name is given,
standard output is assumed, in which case exactly one control character, 1 or 0, must be given.

The pre-fix control characters select the following actions:

2 create a recto-verso banner page;

1 create a single banner page; page-eject is Fortran style with ’1’ in column 1.

0 print banner text only, default.

+ append to existing file.

= overwrite file if existing.

If a file-name is given without ’+’ or ’=’ a new file (cycle) is created on the VAX, and on Unix machines ’=’
is assumed.

The parameters ’argi’ specify the text to be printed, each ’argi’ giving rise to one or more lines: Normally
a parameter gives just one line. But if its first character is not alphabetic andequal to its last character each
such character, except the first, indicates a line break.

Typing xbanner without parameters causes a display of the help information.
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Examples:

xbanner 1 KERN UPDATE /// 1.18 APOLLO

xbanner 1=y.lis '/KERN/UPDATE/oct 89//1.18/APOLLO/'

xbanner 1+y.lis KERN UPDATE "oct 89" // 1.18 APOLLO

all create a single banner page of 6 large lines; the first example prints to standard output, the other two
onto file y.lis, either overwriting or appending. In these examples // causes one blank line and /// gives
2 blank lines. Note that a blank within a parameter has to be protected so as not to break it into 2 parameters.

The next example adds one large line to y.lis:

xbanner +y.lis /fzcopy

giving:

19/09/91 16.06 19/09/91 16.06

ffffffffffff zzzzzzzzzzzz cccccccccc oooooooooooo ppppppppp

// ffffffffffff zzzzzzzzzzzz cccccccccccc oooooooooooo ppppppppp

// ff zz cc cc oo oo pp

// ff zz cc oo oo pp

// ff zz cc oo oo pp

// ffffffff zz cc oo oo ppppppppp

// ffffffff zz cc oo oo ppppppppp

// ff zz cc oo oo pp

// ff zz cc oo oo pp

// ff zz cc cc oo oo pp

// ff zzzzzzzzzzz cccccccccccc oooooooooooo pp

ff zzzzzzzzzzzz cccccccccc oooooooooooo pp

�
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BINSIZ CERN Program Library J530

Author(s) : F. James Library: KERNLIB

Submitter : Submitted: 01.10.1974

Language : Fortran Revised:

Reasonable Intervals for Histogram Binning

BINSIZ determines reasonable lower and upper limits and bin width for a histogram, given the lower and
upper limits of the data and the desired maximum number of bins. The output bin width is always an integral
power of 10� 1; 2; 2:5 or 5, and the output lower and upper limits are the nearest multiples of the bin width
containing the specified range. Another option allows the bin width to be imposed and determines only the
new limits.

Structure:

SUBROUTINE subprogram
User Entry Names: BINSIZ

Usage:

CALL BINSIZ(AL,AH,NA,BL,BH,NB,BWID)

AL (REAL) Lower limit of data to be histogrammed.

AH (REAL) Upper limit of data to be histogrammed.

NA (INTEGER) Maximum number of bins desired.

BL (REAL) Lower limit determined by BINSIZ (BL � AL).

BH (REAL) Upper limit determined by BINSIZ (BH � AH).

NB (INTEGER) Number of bins determined by BINSIZ (NA=2 < NB � NA).

BWID (REAL) Bin width (BH� BL)=NB.

If NA = 0 or NA = �1, BINSIZ always makes exactly one bin.

If NA = 1, BINSIZ takes BWID as inputand determines only BL, BH, and NB. This is especially useful when
it is desired to have the same bin width for several histograms (or for the two axes of a scatter-plot).

If AL > AH, BINSIZ takes AL to be the upper limit and AH to be the lower limit, so that in fact AL and AH

may appear in any order. They are not changed by BINSIZ. If AL = AH, BINSIZ takes the lower limit as AL,
and the upper limit is set to AL+ 1.
�
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COMIS CERN Program Library L210

Author(s) : V. Berezhnoi, R. Brun, S. Nikitin, Y. Petrovykh, V. Sikolenko Library: PACKLIB

Submitter : R. Brun Submitted: 10.02.1988

Language : Fortran Revised:

COMIS - Compilation and Interpretation System

The COMIS package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
It is a Fortran interpreter with which the user can interactively define, edit and execute any Fortran routines
without recompiling and relinking. A small user interface system is part of COMIS and an interface with the
local editor is also provided.

Structure:

SUBROUTINE subprograms

Usage:

See Long Write-up .
�
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PATCHY CERN Program Library L400

Author(s) : J. Zoll Library: none

Submitter : Submitted: 31.01.1972

Language : Fortran Revised:15.01.1977

Source Code Maintenance

PATCHY and the associated auxiliary programs serve in development, maintenance, and inter-computer trans-
port of source programs. Suitably structured source files containing several versions of a given program
permit code selection and code modification (down to single-statement-level) by simple control cards to
YPATCHY. Compacting and structuring of card files for efficiency (YTOBIN), maintenance of compacted
files at the deck level (YEDIT), creation of machine-independent, transportable files (YTOCETA) and listing
of compacted files (YLIST) and others are simple auxiliary operations in this environment.

Structure:

Complete programs; executable modules exist on all machines at CERN where the CERN Program Library
is installed, normally in the directory /cern/pro/bin.
User Entry Names: YPATCHY, YEDIT, YTOBIN, YTOBCD, YLIST, YTOCETA, YFRCETA, YCOMPAR,

YSEARCH, YSHIFT

Usage:

See Long Write-up (PATCHY Reference Manual).
�
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SORTZV CERN Program Library M101

Author(s) : H. von Eicken Library: KERNLIB

Submitter : Submitted: 14.08.1985

Language : CDC: Compass, IBM: Fortran Revised:

Sort One-Dimensional Array

SORTZV will sort a one-dimensional array containing Hollerith or numerical integer or real information. The
user may specify his own collating sequence for characters; otherwise that of the display code will be used.
The array to be sorted is not changed. The output of SORTZV is an integer array containing the ordered
indices indicating the order of the original array (see Examples).

Structure:

SUBROUTINE subprogram
User Entry Names: SORTZV

Usage:

CDC:

CALL SORTZV(A,INDEX,N,MODE,NWAY,NSORT,M,CARSET)

Others:

CALL SORTZV(A,INDEX,N,MODE,NWAY,NSORT)

A One-dimensional array of elements to be sorted.

INDEX One-dimensional array of indices. After execution it contains the indices denoting the desired
order of A. On input it may contain (depending on NSORT) indices denoting which elements of
A are to be sorted (see Examples).

N Number of words to be sorted.

MODE Type of sort required:
< 0 : Integer,
= 0 : Hollerith,
> 0 : Real.

NWAY Order of sort:
= 0 : Ascending order,
6= 0 : Descending order.

NSORT Elements to be sorted:
= 0 : Sort the first N elements of A,
6= 0 : Sort N words of A as indicated by array INDEX.

M Character set to be used: (CDC only)
= 0 : Use display code (only applicable to Hollerith sort),
= K : Use collating sequence specified in CARSET (K � 64).

CARSET Defines the collating sequence for a Hollerith sort. This array must be at least 64 elements in
length. On entering SORTZV the K characters for which the user wishes to specify the order,
must be in the first K words of CARSET (one character/word, left-adjusted and blank-filled).
Any characters found during the sort which have not been defined in CARSET will be added to
CARSET.

Restrictions:

The input order of equal elements is not necessarily retained. The parameters M and CARSET are only used
in the CDC version.
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Examples:

1. Assume the array I contains 0,1,-1,4,-2,0,4,5,7,8. Then the statement

CALL SORTZV(I,INDEX,5,-1,0,0)

(M and CARSET omitted) sets the array INDEX to 5,3,1,2,4.

2. With the same array I and the array INDEX containing 1,3,5,6,7,8,

CALL SORTZV(I,INDEX,6,-1,0,1)

sets the array INDEX to 5,3,1,6,7,8.

For more details, see Long Write-up .

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

�
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FLPSOR CERN Program Library M103

Author(s) : H. von Eicken Library: KERNLIB

Submitter : Submitted: 15.09.1978

Language : Fortran Revised:

Sort One-Dimensional Array into Itself

The FLPSOR package contains two entry points for sorting a one-dimensional array, containing either floating
point number or integers, into itself. The sort is done in ascending order.

Structure:

SUBROUTINE subprogram
User Entry Names: FLPSOR, INTSOR

Usage:

CALL FLPSOR(A,N)

sorts the first N elements of the REAL array A in ascending order into itself.

CALL INTSOR(IA,N)

sorts the first N elements of the INTEGER array IA in ascending order into itself.

For more details, see Long Write-up for SORTZV (M101).

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

�
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SORCHA CERN Program Library M104

Author(s) : H. Renshall Library: KERNLIB

Submitter : Submitted: 27.11.1984

Language : Fortran Revised:

Sort One-Dimensional Character Array into Itself

SORCHA does a slow linear sort of a type CHARACTER array into itself in either ascending or descending order.
The sort is done on any user specified substring of the elements in a CHARACTER array.

Structure:

SUBROUTINE subprogram
User Entry Names: SORCHA

Usage:

CALL SORCHA(A,ICH1,ICH2,NPOINT,ITYPE)

A (CHARACTER) One-dimensional array of dimension NPOINT to be sorted into itself. The maxi-
mum length of the elements in A is 256 characters.

ICH1 (INTEGER) Variable or constant giving the first character position in each element of A of the
substring upon which the array shall be sorted. ICH1 should be 1 if the whole length of the
elements of A is to be used.

ICH2 (INTEGER) Variable or constant giving the last character position analogously to ICH1 above.
ICH2 should be equal to the length of the elements of A if the sort should be on the entire length
of the elements of A.

NPOINT (INTEGER) Variable or constant. The first NPOINT elements of A will be sorted.

ITYPE (INTEGER) Variable or constant controlling the type of the sort. It is possible to sort in ascend-
ing or descending order; in addition it is possible to use either the Fortran collation sequence
ordering via the LLE and LGE functions, or the machine internal relational sequence ordering
via the LE and GE relations (see Notes).
= 1 : Ascending sort, i.e. A(1) will be lower than A(2), using collation sequence.
= 2 : Descending sort, i.e. A(2) will be lower than A(1), using collation sequence.
= 3 : Ascending sort, i.e. A(1) will be lower than A(2), using relational sequence.
= 4 : Descending sort, i.e. A(2) will be lower than A(1), using relational sequence.

Notes:

On the machines and compilers tested (CDC with FTN5, VAX VMS with Fortran, ND500 with FORT-5,
IBM with VS-Fortran and Siemens compilers) the collating sequence orders are the same and give blank
less than numbers and numbers less than letters (this matches the ASCII internal representations).

On IBM with both compilers the relational sorts give blank less than letters and letters less than numbers
(the EBCDIC sequence).

On CDC, VAX and ND500 collation and relational orders are the same.

On all machines the relational sort is faster than the collation sequence sort.
�
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SORTR CERN Program Library M107

Author(s) : F. Carminati Library: KERNLIB

Submitter : Submitted: 09.02.1989

Language : Fortran Revised:

Sort Rows of a Matrix

SORTR re-arranges the row order of a matrix in such a way that the elements of a selected column are either
in increasing or decreasing order as described. When these elements are equal, the rows are kept in their
original order.

Structure:

SUBROUTINE subprogram
User Entry Names: SORTR, SORTI, SORTD
External References: VECMAN (F121), USWOP (V301) (not on all machines)

Usage:

For t = I (type INTEGER), t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL SORTt(MX,NC,NR,NCS)

performs an ordering operation on the matrix MX of type t, dimensioned (NC,NR), using the NCS-th element
of each row as ordering criterion.

The matrix MX is stored by rows, the first element of a row following immediately after the last element of
the preceding row.

Obviously, 1 � jNCSj � NC is a condition. If this is not met or if NR � 1, SORTX will do nothing.

If NCS > 0, the subroutine re-orders the rows of MX in such a way that the NCS-th element of each row is
greater than or equal to the NCS-th element of the preceding row. If NCS < 0, the rows of MX are re-ordered
in such a way that the NCS-th element of each row is smaller than or equal to the NCS-th element of the
preceding row.
�
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SORTRQ CERN Program Library M109

Author(s) : T. Lindelöf Library: MATHLIB

Submitter : F. Carminati Submitted: 15.09.1978

Language : Fortran Revised:09.02.1989

Sort Rows of a Matrix

SORTRQ rearranges the row order of a matrix in such a way that the elements of a selected column are either
in increasing or decreasing order, as desired. Row orders are not necessarily preserved in case these elements
are equal. Otherwise, SORTRQ does the same job as SORTR (M107), but SORTRQ is sometimes faster.

Structure:

SUBROUTINE subprogram
User Entry Names: SORTIQ, SORTRQ, SORTDQ
External References: USWOP (V301) (not on all machines)

Usage:

For t = I (type INTEGER), t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL SORTtQ(MX,NC,NR,NCS)

performs an ordering operation on the matrix MX of type t, dimensioned(NC,NR), using the NCS-th elements
of each row as ordering criterion.

The matrix MX is stored by rows, the first element of a row following immediatly after the last element of
the preceding row.

Obviously, 1 � jNCSj � NC is a condition. If this is not met, or if NR � 1, SORTtQ will do nothing.

If NCS > 0, SORTRQ reorders the rows of MX in such a way that the NCS-th element of each row is � the
NCS-th element of the preceding row. If NCS < 0, the rows of MX are reordered in the strict reverse order to
that for NCS > 0.

Source:

Based on an Algol procedure described in Ref. 1.

References:

1. R.S. Scowen, Algorithm 271 QUICKERSORT, Collected Algorithms from CACM (1965).

�
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PSCALE CERN Program Library M215

Author(s) : J. Zoll Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran Revised:15.09.1978

Find Power-of-Ten Scale for Printing

PSCALE gives the power of ten by which it is necessary to multiply a REAL number A for the purpose of
obtaining a new REAL number B having a fixed number of digits on the left of the decimal point.

Structure:

FUNCTION subprogram
User Entry Names: PSCALE

Usage:

FACT=PSCALE(N,NMAX,A,IDIG)

returns the largest N and its power FACT = 10.0**N, such that FACT*A has at most IDIG digits to the left
of the decimal point. N is limited to � NMAX, however.

Examples:

Suppose we have an array B(100), which we want to print with a FORMAT(10F10.3). Using VMAXA (F121)
we find the smallest number BMAX, such that BMAX � jB(I)j for all I. Then

FACT=PSCALE(N,9,BMAX,4)

allows us to print the vector FACT*B(I) with the above FORMAT. The following sample values of BMAX give
values for FACT as indicated below:

BMAX FACT

1234567800. 10.0**(-6)

1234567.8 10.0**(-3)

1234.5678 1

1.2345678 10.0**3

0.0012345678 10.0**6

1234.5678*10.0**(-9) 10.0**9

1234.5678*10.0**(-12) 10.0**9

0.0 10.0**9

All FACT*BMAX but the two last ones, will be printed as 1234.567.
�
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IE3CONV CERN Program Library M220

Author(s) : J. Zoll, M. Jonker, M. Roethlisberger Library: KERNLIB

Submitter : Submitted: 30.11.1986

Language : Fortran or Assembler Revised:01.04.1994

Conversion To and From IEEE Number Format

These routines convert vectors of single- or double- precision numbers between the internal and the standard
IEEE representations.

Structure:

SUBROUTINE subprograms
User Entry Names: IE3FOS, IE3FOD, IE3TOS, IE3TOD

Usage:

IEEE for/to internal, single precision:

CALL IE3FOS(VSINGL,VIEEES,NV,JCODE)

CALL IE3TOS(VIEEES,VSINGL,NV,JCODE)

VSINGL Vector of NV words with floating point numbers in internal representation.

VIEEES Vector of NV words with the same floating point number in IEEE representation.

NV Size of the vectors.

JCODE Error code returned, normally zero,otherwise VSINGL(JCODE) is the last number which had
conversion problems, such as overflow and not-a-number.

IEEE for/to internal, double precision:

CALL IE3FOD(VDOUBL,VIEEED,NV,JCODE)

CALL IE3TOD(VIEEED,VDOUBL,NV,JCODE)

VDOUBL Vector of 2*NV words with NV double-precision floating point numbers in internal representa-
tion.

VIEED Vector of 2*NV words with the same floating point numbers in IEEE representation.

NV Size of the vectors.

JCODE Error code returned, normally zero, otherwise VDOUBL(JCODE) is the last number which had
conversion problems, assuming the declaration DOUBLE PRECISION VDOUBL(NV).

Notes:

The IEEE format provides for representing exceptions, both for single and for double precision:

a) Not-a-number: single 7F8nnnnn,

double 7FFnnnnn... .

b) Positive infinity: single 7F800000,

double 7FF00000... .

c) Negative infinity: single FF800000,

double FFF00000... .
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Depending on the machine, mapping is done either naturally or artificially:

CDC Indefinite maps to not-a-number, overflow to infinity.

CRAY Overflow maps to infinity, not-a-number gives overflow.

IBM Positive infinity maps to internal 7FFFFFF0,

not-a-number maps to internal 7FFFFFFF.

NORD Positive infinity maps to internal 177...70,

not-a-number maps to internal 177...77.

VAX Positive infinity maps to internal 00007F81,

not-a-number maps to internal 00008001.

Underflow gives exact zero in all cases.

On the VAX: if a file has been imported from a big-endian machine, byte-inversion (see VXINV (M434)) has
to be done before calling IE3TOx; similarly byte-inversion has to be done after calling IE3FOx and before
exporting the file.

On machines where the internal representation is IEEE (Apollo, Sun, Silicon Graphics, etc) these routines
are simple copy operations.
�
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CHTOI CERN Program Library M400

Author(s) : H. Renshall Library: KERNLIB

Submitter : M. Metcalf Submitted: 27.11.1984

Language : Fortran Revised:12.03.1985

Portable Conversion Between Type CHARACTER and Type INTEGER

CHTOI converts between a CHARACTER*1 value in a 95–character set and INTEGER values in the range 32–
126 via a look-up table.

Structure:

SUBROUTINE subprogram
User Entry Names: CHTOI, ITOCH

Usage:

CALL CHTOI(CHAR,INTGR,*label)

CHAR (CHARACTER*1) Variable or constant (may be a substring of a longer string) containing on
input the character for which the integer equivalent is required.

INTGR (INTEGER) Variable which will contain on output the integer equivalent from a look-up table
of the input character argument. A zero will be returned if the character was not found in the
table.

label (INTEGER) Label of an executable statement within the calling program to which control will
be transferred should the input character not be found in the table.

CALL ITOCH(INTGR,CHAR,*label)

CHAR (CHARACTER*1) variable which will contain on output the character equivalent from a look-up
table of the input integer argument. A question mark will be returned if the integer is outside
the range 32� 126 inclusive.

INTGR (INTEGER) variable or constant containing on input an integer in the range 32� 126 for which
the character equivalent is required.

label (INTEGER) Label of an executable statement in the calling program to which control will be
transferred should the input integer be outside the range 32� 126.

Method:

A look-up table containing 95 entries is mapped consecutively into integers 32� 126. The table is as
follows:

32- 47: ! " # $ % & ' ( ) * + , - . / (32 is a blank)

48- 57: 0 ... 9

58- 64: : ; < = > ? @

65- 90: A ... Z

91- 96: [ \ ] ^ _ `

97-122: a ... z

123-126: { | } ~
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Restrictions:

This routine is typed in Fortran on a system which includes all the above characters. Systems with fewer
characters available usually make some local translation when they read the source for example on CDC
NOS/BE the lower case letters are translated to upper case. Exact reproducibility of other than the subset of
characters is not guaranteed.

Notes:

These integer values are the same as for the 8-bit ASCII set.
�
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UBUNCH CERN Program Library M409

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 01.03.1968

Language : Fortran or Assembler Revised:09.09.1991

Concentrate and Disperse Character Strings

PARTIALLY OBSOLETE
Please note that this routine has been partially obsoleted in CNL 219. Users
are advised not to use the entries refering to Hollerith any longer and to replace
them in older programs. No maintenance for this part will take place and it will
eventually disappear.

Suggested replacement: CHPACK (M432)

The concept string of n Hollerith charactersis machine independent, but its usual representation in Am

format (with m = character capacity of a machine word: A10, A8, A6, A4) is not.
Supposing any computer to have a character capacity of at least A4, string representations in A4, A3, A2 or
A1 are transportable. Representations A1 and A4 are particularly interesting.
Fortran 77 defines a new data type CHARACTER though most compilers also support Hollerith strings (without
a clear definition of the differences). A set of routines has been added to this package in its Fortran 77
implementation to convert between CHARACTER strings and Hollerith strings.

The routines UBLOW, UBUNCH and UTRANS work on Hollerith only and so should be considered obsolete,
while UCTOH, UCTOH1 and UHTOC and UH1TOC copy between CHARACTER and Hollerith. Unpredictable
results will be obtained if wrong data types are passed to these routines. On most machines text strings
passed in quotes are implicitly of type CHARACTER while a string preceeded by nH is not.
The routines of this package perform transformations between different representations.

Structure:

SUBROUTINE subprograms
User Entry Names: UBUNCH, UBLOW, UTRANS, UCTOH, UCTOH1, UHTOC, UH1TOC
COMMON Block Names and Lengths: /SLATE/ NI,NJ,DUMMY(38)

Usage:

CALL UBLOW(IVM,IV1,NCH)

disperses the string of NCH Hollerith characters from IVM into IV1.

IVM Input vector, continuous string of NCH Hollerith characters in Am form (i.e. A10, A8 or A4 depend-
ing on the machine).

IV1 Output vector, NCH words in A1 form, i.e. a single Hollerith character per word with blank-fill.

NCH Number of Hollerith characters to be copied.

CALL UBUNCH(IV1,IVM,NCH)

concentrates the string of NCH Hollerith characters from IV1 into IVM.

IV1 Input vector, NCH words in A1 form (one Hollerith character per word).

IVM Output vector, continuous string of NCH Hollerith characters in Am form (i.e. A10, A8 or A4

depending on the machine), with blank-fill of trailing characters in the last word, if any.

NCH Number of Hollerith characters to be copied.
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CALL UTRANS(IVI,IVJ,NCH,I,J)

copies the string of NCH Hollerith characters from IVI into IVJ.

IVI Input vector of NCH Hollerith characters with I characters per machine word in Ai form. The
variable NI in /SLATE/ is set to the number of machine words used from IVI.

IVJ Output vector of NCH Hollerith characters with J characters per machine word in Aj form, with
blank-fill. The variable NJ in /SLATE/ is set to the number of machine words built in IVJ.

NCH Number of Hollerith characters to be copied.

I,J Number of Hollerith characters per word in IVI and IVJ. If either I or J is greater than the
maximum possible number of characters storable in a machine word then this maximum is used
instead.

CALL UCTOH(MCH,IVJ,J,NCH)

copies the CHARACTER-type string in MCH into Hollerith characters in IVJ in Aj form.

MCH Input vector of NCH characters, either of type CHARACTER or of type INTEGER holding Hollerith
in Am form.

IVJ Output vector of NCH Hollerith characters with J characters per machine word in Aj form, with
blank-fill.

J Number of Hollerith characters to put in each word of IVJ. If J is larger than the maximum
possible number of Hollerith characters per word this maximum will be used instead.

NCH Number of characters to copy.

CALL UCTOH1(MCH,IV1,NCH)

disperses the CHARACTER–type string in MCH into Hollerith characters in IV1 in A1 form.

MCH Input vector of NCH characters, either of type CHARACTER or of type INTEGER holding Hollerith
in Am form.

IV1 Output vector, NCH words in A1 form, i.e. a single Hollerith character per word with blank-fill.

NCH Total number of characters to copy.

CALL UHTOC(IVI,I,CHV,NCH)

copies the Hollerith characters in IVI into the CHARACTER variable CHV.

IVI Input vector of NCH Hollerith characters with I characters stored per word in Ai form.

I Number of Hollerith characters to take from each word of IVI. If I is larger than the maximum
possible number of Hollerith characters per word this maximum will be used instead.

CHV Output variable of type CHARACTER to receive NCH characters.

NCH Number of characters to copy. If the CHARACTER variable CHV is of length greater than NCH trailing
characters will not be changed.

CALL UH1TOC(IV1,CHV,NCH)

concentrates a Hollerith string in A1 form into the CHARACTER variable CHV.

IV1 Input vector of NCH words containing one Hollerith character each in A1 form.
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CHV Output variable of type CHARACTER to receive NCH characters.

NCH Total number of characters to copy. If the variable CHV is of length greater than NCH trailing
characters will not be changed.

Error handling:

NCH � 0 acts as do-nothing.

Examples:

(b = blank).

1) CALL UBLOW(11HABCDEFGHIJK,V,11)

fills V: V(1) = 1HA; : : : ; V(11) = 1HK, with blank padding of each word.

2) CALL UBUNCH(V,X,11)

gives the inverse transformation, thus on the CDC 7600 (m = 10):

X(1) = 10ABCDEFGHIJ, X(2) = 10HKbbbbbbbb

3) CALL UTRANS(X,Y,11,99,4)

copies the continuous X string to A4 representation in Y:

Y(1) = 4HABCD, Y(2) = 4HEFGH, Y(3) = 4HIJKb

with blank padding if m > 4.

4) CALL UTRANS(Y,X,11,4,99)

gives the inverse of example 3).

5) CALL UTRANS(V,X,11,1,99)

gives the same result as example 2), but is much slower.

6) DIMENSION V(4)

CHARACTER*14 C/'THIS IS A TEST'/

CALL UCTOH(C,V,4,14)

copies the CHARACTER string in C into V such that

V(1) = 4HTHIS, V(2) = 4HbISb, V(3) = 4HAbTE, V(4) = 4HSTbb

7) DIMENSION V(4)

CHARACTER*14 C

DATA V /14HTHIS IS A TEST/ or DATA V /4HTHIS,4H IS ,4HA TE,2HST/

CALL UHTOC(V,4,C,14)

copies the Hollerith strings in V into C such that C='THIS IS A TEST'.

8) DIMENSION V(4)

CHARACTER*4 C/'TEST'/

CALL UCTOH1(C,V,4)

copies the CHARACTER–string in C into V such that

V(1) = 4HTbbb, V(2) = 4HEbbb, V(3) = 4HSbbb, V(4) = 4HTbbb

9) DIMENSION V(4)

CHARACTER*4 C

DATA V/1HT,1HE,1HS,1HT/

CALL UH1TOC(V,C,4)

copies the Hollerith characters in V into the CHARACTER string C such that C='TEST'.
�
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BITBYT CERN Program Library M421

Author(s) : C. Letertre, J. Zoll Library: KERNLIB

Submitter : Submitted: 28.01.1971

Language : Fortran or Assembler Revised:12.06.1987

Package for Handling Bits and Bytes

This package manipulates individual bits and bytes in a word.

A bit in a word is specified by giving its position J (= 1; 2; : : : ; 32[; : : : ; 64]) in the word, bit 1 being the
least significant bit.

A bytein a word is a group of NBITS consecutive bits. The byte is specified by giving NBITS and the bit
position J of the least significant bit of the byte.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: JBIT, SBIT0, SBIT1, SBIT, MSBIT0, MSBIT1, MSBIT,

JBYT, SBYT, MSBYT, CBYT, MCBYT, JBYTET, JBYTOR,

SBYTOR, MBYTOR, MBYTET, JRSBYT

Usage:

IX = JBIT(IW,J) returns IX = 0 or 1, the value of bit J in IW.

CALL SBIT0(IX,J) sets 0 into bit J of IX.

CALL SBIT1(IX,J) sets 1 into bit J of IX.

CALL SBIT(IA,IX,J) copies bit 1 of IA into bit J of IX.

IX = MSBIT0(IW,J) returns IW in IX with bit J set to 0.

IX = MSBIT1(IW,J) returns IW in IX with bit J set to 1.

IX = MSBIT(IA,IW,J) returns IW in IX with bit J set to the value of bit 1 in IA.

IX = JBYT(IW,J,NBITS) returns in IX right-justified the byte at J in IW.

CALL SBYT(IA,IX,J,NBITS) copies the byte at 1 of IA into the byte at J of IX.

IX = MSBYT(IA,IW,J,NBITS) returns IW in IX with the byte at J replaced by the byte at

1 of IA.

CALL CBYT(IA,JA,IX,J,NBITS) copies the byte at JA of IA into the byte at J of IX.

IX = MCBYT(IA,JA,IW,J,NBITS) returns IW in IX with the byte at J replaced by the byte at

JA of IA.

IX = JBYTET(IA,IW,J,NBITS) returns in IX the logical AND of IA and the byte at J of IW

right-justified.

IX = JBYTOR(IA,IW,J,NBITS) returns in IX the logical OR of IA and the byte at J of IW

right-justified.

CALL SBYTOR(IA,IX,J,NBITS) replaces the byte at J in IX by the logical OR of this byte

and the byte at 1 of IA.

IX = MBYTOR(IA,IW,J,NBITS returns IW in IX with the byte at J replaced by the logical

OR of this byte and the byte at 1 of IA.

IX = MBYTET(IA,IW,J,NBITS) returns IW in IX with the byte at J replaced by the logical

AND of this byte and the byte at 1 of IA.

IY = JRSBYT(IA,IX,J,NBITS) read and reset byte; equivalent to

IY = JBYT(IX,J,NBITS)

CALL SBYT(IA,IX,J,NBITS).
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Notes:

The subroutines

SBIT0 SBIT1 SBIT SBYT CBYT SBYTOR

are duplicated by the functions

MSBIT0 MSBIT1 MSBIT MSBYT MCBYT MBYTOR

to allow implementation by statement functions. Such implementations can be picked up from the ZEBRA
CDE Pam-file for different machines as sequence definitions

Q$JBIT : JBIT, JBYT

Q$SBIT : MSBIT0, MSBIT1, MSBIT

Q$SBYT : MSBYT

Q$CBYT : MCBYT

Q$JBYTET : JBYTET, JBYTOR, MBYTET, MBYTOR

�
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PACBYT CERN Program Library M422

Author(s) : J. Zoll, C. Letertre Library: KERNLIB

Submitter : Submitted: 28.01.1971

Language : Fortran or Assembler Revised:16.09.1991

Handling Packed Vectors of Bytes

PACBYT allows handling of packed vectors of bytes. Any such vector consists of a string of bytes, all of
NBITS bits, INWORD of them packed into one computer word, stored from right to left.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: PKBYT, UPKBYT, JBYTPK, SBYTPK
External References: JBYT (M421), SBYT (M421) (Fortran version)

Usage:

The 2–word vector MPACK specifies the packing parameters:

MPACK(1) = NBITS

MPACK(2) = INWORD

MPACK(1) = 0 is accepted as specifying both NBITS = 1 and INWORD equal to the number of bits per word
on the given computer.

CALL PKBYT(IB,MX,JX,N,MPACK)

packs the N–word vector IB of small integers into the bytes JX,JX+1, : : : ,JX+N-1 of the byte-vector MX.

CALL UPKBYT(MA,JA,IY,N,MPACK)

unpacks the N bytes JA,JA+1, : : : ,JA+N-1 of the packed byte-vector MA into the vector IY of small inte-
gers.

IX = JBYTPK(MA,JA,MPACK)

fetches the JA-th byte from the packed byte-vector MA.

CALL SBYTPK(IT,MX,JX,MPACK)

sets the first byte from IT into the JX’th byte of the packed byte vector MX.

Notes:

1. These routines, and the manner of packing byte-vectors, is compatible with the routines JBYT and
SBYT (M421), except that there the location of a byte in the word is specified, whereas here the
ordinal numberof a byte in the vector has to be given. The conversion is as follows:

The byte with ordinal number J is found in word JW = (J� 1)=INWORD+ 1,
on byte JB = J� (JW� 1) � INWORD starting at bit L = (JB� 1) � NBITS+ 1.

2. Bits and bytes are numbered from right to left within one and the same computer word; across a word
boundary there is a jump from the most significant part of the current word to the least significant part
of the next word.

�
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INCBYT CERN Program Library M423

Author(s) : J. Zoll, P. Rastl Library: KERNLIB

Submitter : Submitted: 28.01.1971

Language : Fortran or Assembler Revised:16.09.1991

Increment a Byte of a Packed Vector

INCBYT allows incrementing a specified byte of a packed byte vector (cf. PACBYT (M422)).

Structure:

FUNCTION subprogram
User Entry Names: INCBYT

Usage:

LOST = INCBYT(INC,MX,JX,MPACK)

The 3-word vector MPACK specifies the packing parameters (much like for PACBYT (M422), but NBITS = 0

is not allowed):

MPACK(1) � NBITS, number of bits per byte.

MPACK(2) � INWORD, number of bytes per word.

MPACK(3) � MAXCAP, the maximum capacity of any byte, � 2**NBITS�1.

INCBYT adds the increment INC into the JX’th byte of the packed byte-vector MX and returns any byte
overflow, i.e. the part of INC which cannot be added into the byte, because it now contains MPACK(3).
�
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BLOW CERN Program Library M426

Author(s) : CDC: J. Blake, G. Beltz, IBM: A. Berglund Library: KERNLIB

Submitter : Submitted: 12.06.1972

Language : Fortran or Assembler Revised:01.02.1982

Unpack Full Words into Bytes

BLOW converts a source array containing a record consisting of a continuous string of NBYTES bytes of NBITS
bits per byte into a target array of NBYTES full words, right-adjusted with zero-fill. BLOW is the inverse of
BUNCH (M436).

Structure:

SUBROUTINE subprogram
User Entry Names: BLOW
External References: UPKCH (M427)

Usage:

CALL BLOW(SOURCE,TARGET,NBYTES,NBITS)

SOURCE Source array containing the string of NBYTES bytes.

TARGET Target array, which must be at least NBYTES full words long.

NBYTES Number of bytes in the source record (0 < NBYTES).

NBITS Number of bits per byte (0 < NBITS � nbpw, where nbpw = 60 on CDC and = 32 on IBM).

Restrictions:

The two arrays SOURCE and TARGET must not overlap in any way.

Error handling:

BLOW ignores calls with erroneous parameter values.

Examples:

CDC:

CALL BLOW(SOURCE,TARGET,200,18)

The array SOURCE contains a record of 200 18-bit bytes, stored contiguously in 60 60-bit words, i.e., a string
of 3600 bits. After the completion of the call to BLOW, the array TARGET will contain 200 60-bit words, each
containing one 18-bit byte, right-justified with zero-fill.
�
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PKCHAR CERN Program Library M427

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 01.06.1973

Language : Fortran or Assembler Revised:16.09.1991

Pack/Unpack Continuous Byte-strings

PKCHAR allows packing of integers into continuous byte-stringson zoned memory across word boundaries.
The term continuous byte-stringis used here to designate n-bit bytes, stored from left to right, as opposed
to the objects handled by PKBYT (M422), which are stored right to left within each word. The inverse
unpacking is performed by UPKCH. Leading and trailing bits of each zone can be ignored.

Structure:

SUBROUTINE subprograms
User Entry Names: PKCHAR, UPKCH
External References: JBYT (M421), SBYT (M421), CBYT (M421)
COMMON Block Names and Lengths: /SLATE/ NWU,DUMMY(39)

Usage:

CALL PKCHAR(INT,MPK,N,IPAR)

CALL UPKCH (MPK,INT,N,IPAR)

PKCHAR packs the N–word vector INT of integers into the continuous byte-string supported by the vector
MPK according to the packing specifications given in IPAR.

UPKCH is the exact inverse of PKCHAR.

The packing parameters are given in the 5-element vector IPAR:

IPAR(1) Number of bits per byte, must be � 1.

IPAR(2) Number of bytes to be used in each zone (starting with the left-most);
if IPAR(2) = 0, the maximum possible number is used.

IPAR(3) Number of bits per zone. If IPAR(3) = 0, a zone equals 1 word.

IPAR(4) Number of leading bits of each zone to be ignored.

IPAR(5) Each new word handled by PKCHAR is preloaded with IPAR(5).

MPK is seen as a continuous string of bits, starting with the most significant bit of MPK(1), ignoring word
boundaries. This string is divided into a number of consecutive and contiguous zones, each of IPAR(3)
bits; the first zone starts with the most significant bit of MPK(1). Each zone contains IPAR(4) leading bits,
a number of bytes (each of IPAR(1) bits), and trailing bits, if any.

On return from either routine, NWU in COMMON block /SLATE/ indicates the number of words in MPK actually
used. PKCHAR sets to IPAR(5) each word of MPK before filling it, but it does not clear any trailing unused
words which logically belong to the last zone.
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Examples:

1. To convert, on the CDC 7600, 6-bit Hollerith text to 7-bit ASCII–code, to be held in 36-bit words on
the PDP10, with 5 characters per word.

DATA IPACK6 /6,0,0,0,0/

DATA IPACK7 /7,0,36,0,0/

CALL UPKCH(HOLL,INT,N,IPACK6)

unpacks the Hollerith string HOLL into INT, where INT(I) is a small integer giving the display-code
value of the I-th character. After conversion to ASCII, one may pack:

CALL PKCHAR(INT,MPK,N,IPACK7)

giving the vector MPK ready to be written out. If for some reason one required the first and the last
(5th) character in each 36-bit PDP10 word to be zero, one could use:

DATA IPACK7 /7,3,36,7,0/

2. To unpack 8-character bytes read with the CDC 7600 from 9-track tapes:

DATA IPACK /8,0,120,0,0/

CALL UPKCH(A,INT,N,IPACK)

3. To unpack on the CRAY 32-bit integers, read one each into one 64-bit machine word, into 16-bit
integers, one each in one machine word, right-justified with zero-fill:

DATA IPACK /16,2,0,32,0/

CALL UPKCH(I32,I16,N,IPACK)

The same operation on the Apollo, which has 32-bit words, could be done with

DATA IPACK /16,0,0,0,0/

4. The Fortran implementaion of BLOW (M426) executes:

IPACK(1) = NBITS

IPACK(2) = 0

IPACK(3) = NBYTES*NBITS + 127

IPACK(4) = 0

IPACK(5) = 0

CALL UPKCH(SOURCE,TARGET,NBYTES,IPACK)

�
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LOCBYT CERN Program Library M428

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 01.06.1973

Language : Fortran or Assembler Revised:15.09.1978

Search for Byte-Content

LOCBYT searches through a vector in steps of 1 or more words looking for the first word which has a certain
bit configuration in a certain part of the word.

Structure:

FUNCTION subprogram
User Entry Names: LOCBYT

Usage:

J = LOCBYT(IT,VECT,N,INC,L,NBITS)

searches through the N element vector VECT, but only looking every INC words for the first word which
containsIT in the byte (L,NBITS), and returns its address in J which may be 1, INC+1, 2*INC+1, 3*INC+1,
etc.

IT must contain the desired byte value right-justified with zero-fill.

J = 0 is returned if such a word is not found, or if N = 0.

The byte (L,NBITS) is a byte of NBITS bits, occupying the bits L,L+1, : : : ,L+NBITS-1. The bits are
numbered as with the routines of BITBYT (M421) / PACBYT (M422): L = 1; 2; 3; : : :; bit 1 is the least
significant bit of the word.
�
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NUMBIT CERN Program Library M429

Author(s) : M. Metcalf Library: KERNLIB

Submitter : Submitted: 01.06.1973

Language : Assembler Revised:15.09.1978

Number of One-Bits in a Word

NUMBIT counts the one-bits in a word.

Structure:

FUNCTION subprogram
User Entry Names: NUMBIT

Usage:

In an arithmetic expression,

NUMBIT(X)

has the INTEGER value giving the number of one-bits in X.

Examples:

J=NUMBIT(5)

sets J to 2 as the binary representation of 5 has 2 one-bits.
�
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IFROMC CERN Program Library M431

Author(s) : M. Metcalf Library: KERNLIB

Submitter : Submitted: 15.01.1986

Language : Fortran Revised:16.05.1986

Convert Between Character String and Packed ASCII Form

IFROMC and CFROMI provide a simple, portable facility for storing character strings of 1–4 characters packed
into integers.

Structure:

FUNCTION subprograms
User Entry Names: IFROMC, FROMI
External References: CHTOI (M400), ITOCH (M400)

Usage:

I=IFROMC('string')

stores in I a packed ASCII representation of the 4 leftmost characters of 'string'. If there are fewer than
4 characters, blanks are stored in the empty positions.

CHARACTER*4 STRING

...

STRING=CFROMI(I)

stores in STRING the four characters stored packed in I in their ASCII representation.

References:

1. CERN Computer Newsletter 179(April–May 1985) 11–14.

�
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CHPACK CERN Program Library M432

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 02.06.1989

Language : Fortran Revised:01.04.1994

Utility Routines for Character String Parsing and Construction

The routines of this package analyse and manipulate Fortran CHARACTER strings.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: CKRACK, CCOPYL, CCOPYR, CCOPIV, CCOSUB, CENVIR, CFILL, CLEFT,

CRIGHT, CSQMBL, CSQMCH, CLTOU, CUTOL, CSETDI, CSETHI, CSETOI,

CSETVI, CSETVM, CTRANS, ICDECI, ICHEXI, ICOCTI, ICEQU, ICFIND,

ICFILA, ICFMUL, ICFNBL, ICLOC, ICLOCL, ICLOCU, ICLUNS, ICNEXT,

ICNTH, ICNTHL, ICNTHU, ICINQ, ICINQL, ICINQU, ICNUM, ICNUMA,

ICNUMU, ICTYPE, LNBLNK, NCDECI, NCHEXI, NCOCTI
COMMON Block Names and Lengths: /SLATE/ 40

Summary: CALL CKRACK Read integer or real number from character

CALL CCOPYL Copy string, left shift allowed if overlap

CALL CCOPYR Copy string, right shift allowed if overlap

CALL CCOPIV Copy string, with characters front-to-back

CALL CCOSUB Copy string, replacing a token by text

CALL CENVIR Copy string, replacing environment variables

CALL CFILL Fill

CALL CLEFT Left justify

CALL CRIGHT Right justify

CALL CSQMBL Squeeze multiple blanks

CALL CSQMCH Squeeze multiple character

CALL CLTOU Convert low to up

CALL CUTOL Convert up to low

CALL CSETDI Set decimal integer to character

CALL CSETHI Set hexadecimal integer to character

CALL CSETOI Set octal integer to character

CALL CSETVI Set a vector of integers to character

CALL CSETVM Set a series of generated integers to character

CALL CTRANS Character translation

IX = ICDECI Read decimal integer from character

IX = ICHEXI Read hexadecimal integer from character

IX = ICOCTI Read octal integer from character

IX = ICEQU Compare two strings for equality

JX = ICFIND Find first occurrence, single

JX = ICFILA Find last occurrence, single

JX = ICFMUL Find first occurrence, multiple

JX = ICFNBL Find first non-blank
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continue: JX = ICLOC Locate case sensitive

JX = ICLOCL Locate case insensitive, up to low

JX = ICLOCU Locate case insensitive, low to up

JX = ICLUNS Locate unseen characters

JX = ICNEXT Delimit next word

JX = ICNTH Identify choice case sensitive

JX = ICNTHL Identify choice case insensitive, up to low

JX = ICNTHU Identify choice case insensitive, low to up

JX = ICINQ Inquire presence in a list, case sensitive

JX = ICINQL Inquire presence in a list, case insensitive, up to low

JX = ICINQU Inquire presence in a list, case insensitive, low to up

JX = ICNUM Verify numeric

JX = ICNUMA Verify alpha-numeric

JX = ICNUMU Verify alpha-numeric or underscore

JX = ICTYPE Identify type

NX = LNBLNK Find last non-blank character

IX = NCDECI Read decimal integer from character

IX = NCHEXI Read hexadecimal integer from character

IX = NCOCTI Read octal integer from character

Usage:

General Remarks:

For what follows, let the CHARACTER variable LINE contain a string of n characters assuming the following
declaration:

CHARACTER LINE*(n),COL(n)*1

EQUIVALENCE(LINE,COL)

thus COL(j) is the j-th character LINE(j:j). A sub-string of LINE is specified by JL and JR, where
COL(JL) is the first or left-most, and COL(JR) is the last or right-most character.

COMMON /SLATE/ ND,NE,NF,NG,NUM(2),DUMMY(34)

returns certain search parameters, which are set by some of the routines.

The types of all variables and functions follow from the Fortran default typing convention, except that LINE,
COL, and variables starting with the letters CH are of type CHARACTER.

Convention

Typing rules for data to be interpreted by CKRACK:

Binary: String of zeros or ones prefixed by #B or #b.

Octal: String of octal digits prefixed by #0 or #O or #o.

Hex: String of hexadecimal digits prefixed by #X or #x.

Integer: String of decimal digits optionally prefixed by + or -.

Real: [+|-] [int] [.] [fract] [E] [+|-] [exp]

int, fract, exp are strings of decimal digits, either the decimal dot or the letter E (or e)
must be present.

Double: [+|-] [int] [.] [fract] D [+|-] [exp]

the letter D (or d) must be present.
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Read integer or real number from character:

CALL CKRACK(LINE,JL,JR,IFLD)

reads the number whose character representation starts with the first non-blank character at or after COL(JL)
and ends at COL(JR) or at the first blank after the number (normal termination), or at the first character after
the number which cannot be part of it (special termination).

CKRACK detects the type of the number (bit-pattern, integer, real single, real double) from its representation.
The typing rules for data to be interpreted by CKRACK are given in the note on the previous page.

The number read is returned in /SLATE/ in NUM(1) or ANUM(1) or DNUM, for which one will need:

REAL ANUM(2)

DOUBLE PRECISION DNUM

EQUIVALENCE (ANUM(1),NUM(1)),(DNUM,NUM(1))

The flag in the last parameter is normally given as zero; IFLD > 0 demands that single-precision real num-
bers be handled and returned as double precision numbers; IFLD < 0 demands that double-precision num-
bers be returned in single precision.

Apart from NUM, the following parameters are returned in /SLATE/:

ND Number of numeric digits seen.

COL(NE) Terminating character in the field; NE = JR+ 1 if terminated by end-of-field.

NF Type of the number read:
< 0 : error code for bad data;
= 0 : the whole field is blank;
= 1 : bit pattern (binary, octal, or hexadecimal);
= 2 : integer
= 3 : single precision real;
= 4 : double precision real.

NG = 0 for normal termination; special termination otherwise.

Copy string, left shift allowed if overlap:

CALL CCOPYL (CHFROM,CHTO,NCH)

copies NCH characters from CHFROM(1:NCH) to CHTO(1:NCH); the characters are copied in order, thus the
end of the target may overlap the beginning of the source.

Copy string, right shift allowed if overlap:

CALL CCOPYR (CHFROM,CHTO,NCH)

copies NCH characters from CHFROM(1:NCH) to CHTO(1:NCH); the characters are copied in reverse order,
thus the beginning of the target may overlap the end of the source. These two routines are useful to copy
strings from or into a very large array of type CHARACTER*1.

Copy string, with characters front-to-back:

CALL CCOPIV(CHFROM,CHTO,NCH)

copies NCH characters from CHFROM(1:NCH) to CHTO(1:NCH) inverting the order of the characters such that
the last becomes the first, etc.
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Copy string, replacing a token by text:

CALL CCOSUB(CHFROM,NFR,LINE,JL,JR,CHTOKEN,CHSUB)

copies CHFROM(1:NFR) to LINE starting at COL(JL) and not going beyond COL(JR), substituting each
occurrence of CHTOKEN by CHSUB.

The following parameters are returned in /SLATE/:

ND Number of characters stored;

COL(NE) is the first character after the last stored;

NF Non-zero if LINE(JL:JR) too small to receive the complete copy;

NG Zero if no substitution was done, i.e. CHTOKEN did not occur.

Copy string, replacing environment variables:

CALL CENVIR(CHFROM,NFR,LINE,JL,JR,IFLAG)

copies CHFROM(1:NFR) to LINE starting at COL(JL) and not going beyond COL(JR), substituting each
occurrence of $fnameg by the value of the environment variable "name" obtained by calling GETENVF

(Z 265); on machines running UNIX the form "$name" is also recognized. The handling of undefined
environment variables is defined by IFLAG: if zero the string $fnameg is skipped from the copy; if non-zero
the string is copied through as is.

The following parameters are returned in /SLATE/:

ND Number of characters stored;

COL(NE) is the first character after the last stored;

NF Bit 1 is set if undefined env/v have been encountered;

Bit 2 is set if syntax error (missing closing bracket);

Bit 3 is set if LINE(JL:JR) is too small to receive the copy;

NG Zero if no substitution was done.

Fill:

CALL CFILL(CHI,LINE,JL,JR)

fills LINE(JL:JR) with as many copies of CHI as possible; if JL+ 1� JR is not a multiple of LEN(CHI)
as many characters of CHI as necessary to fill up to JR will be taken for the last copy.

Left justify:

CALL CLEFT(LINE,JL,JR)

left-justifies LINE(JL:JR) squeezing blanks to the right.

ND Number of non-blank characters in the field.

COL(NE) First blank character after left-justifying (or NE = JR+ 1 if there are no blanks).

Right justify:

CALL CRIGHT(LINE,JL,JR)

right-justifies LINE(JL:JR) squeezing blanks to the left.

ND Number of non-blank characters in the field.

COL(NE) Last blank character after right-justifying (or NE = JL� 1 if there are no blanks).
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Squeeze multiple blanks:

CALL CSQMBL(LINE,JL,JR)

left-justifies LINE(JL:JR) replacing any string of several consecutive blanks by a single blank.

ND Number of characters retained (vacated trailing characters, if any, are blanked).

COL(NE) First blank character after (or NE = JR+ 1 if there are no multiple blanks).

Squeeze multiple characters:

CALL CSQMCH(CHIS,LINE,JL,JR)

left-justifies LINE(JL:JR) reducing any multiple occurrence of the character CHIS to this character just
once. CHIS is of type CHARACTER*1.

ND Number of characters retained (vacated trailing characters, if any, are blanked).

COL(NE) First character after the squeezed string (or NE = JR+ 1 if there are no multiple occurrences).

Convert low to up:

CALL CLTOU(LINE(JL:JR))

converts lower case letters in LINE(JL:JR) to upper case.

Convert up to low:

CALL CUTOL(LINE(JL:JR))

converts upper case letters in LINE(JL:JR) to lower case.

Set decimal integer to character:

CALL CSETDI(INT,LINE,JL,JR)

writes the integer INT into LINE(JL:JR) right-justified. If INT is too large, the most significant characters
are lost. Unused positions are not cleared to blank, so that they may be pre-loaded with default characters,
such as leading zeros. (One normally clears the whole of LINE initially with LINE =' ', one could clear
the substring with LINE(JL:JR)=' ' or preset it before calling CSETDI).

ND Number of digits which have been set.

COL(NE+1) Most significant digit set.

COL(NF+1) Most significant character set. NF = NE if INT is positive, NF = NE� 1 if INT is negative
and no overflow.

NG = 0 normally, non-zero if field too small.

Set hexadecimal integer to character:

CALL CSETHI(INT,LINE,JL,JR)

acts like CSETDI, except that the hexadecimal rather than the decimal representation of INT is stored.

Set octal integer to character:

CALL CSETOI(INT,LINE,JL,JR)

acts like CSETDI, except that the octal rather than the decimal representation of INT is stored.
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Set a vector of integers to character:

CALL CSETVI(NI,INTV,NBIAS,LINE,JL,JR,NCOL,IFLSQ)

sets the NI integers INTV(J) + NBIAS into LINE(JL:JR) in decimal representation, every NCOL columns,
each right-justified within its field of NCOL� 1 columns; squeeze multiple blanks to single blanks in the
resulting LINE(JL:JR) if IFLSQ non-zero. Like the other CSETxx routines, this routine does not clear
unused positions to blank.

COL(NE) Last character of the last integer stored.

NG = 0 normally, = N > 0 if there is not enough room to store INTV(N).

Set a series of generated integers to character:

CALL CSETVM(NI,INC,IGO,LINE,JL,JR,NCOL,IFLSQ)

acts like CSETVI, but the NI integers are IGO+ n � INC, n = 0; 1; : : : ; NI� 1.

Character translation:

CALL CTRANS(CHO,CHN,LINE,JL,JR)

replaces each occurrence in LINE(JL:JR) of the character CHO by the character CHN. CHO and CHN are of
type CHARACTER*1.

Read decimal integer from character:

IX = ICDECI(LINE,JL,JR)

reads the decimal integer whose character representation starts at COL(JL) and stops on the first non-
numeric character or at COL(JR+1), returning its value in IX. Leading blanks are ignored, a leading minus
or plus sign is recognized. Note that a blank after the number, or after '+' or '-', is taken as terminator.

ND Number of digits read ('-' or '+' do not count).

COL(NE) Terminating character in the field; NE = JR+ 1 if pure numeric or if the whole field is blank
(in which case ND = 0).

NG = 0 if the number is terminated by ’blank’ or by end-of-field, non-zero otherwise.

Read hexadecimal integer from character:

IX = ICHEXI(LINE,JL,JR)

acts like ICDECI, but reads a hexadecimal rather than a decimal representation.

Read octal integer from character:

IX = ICOCTI(LINE,JL,JR)

acts like ICDECI, but reads an octal rather than a decimal representation.

Compare two strings for equality:

IX = ICEQU(CHA,CHB,N)

checks that CHA(1:N) and CHB(1:N) are identical and returns zero if so, otherwise the ordinal number of
the first non-matching character is returned.

Note: this and many other routines of this package are handy when manipulating text stored in an area
declared with CHARACTER TEXT(big)*1, which will explain some of the maybe unexpected calling se-
quences.
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Find first occurrence, single:

JX = ICFIND(CHIS,LINE,JL,JR)

returns in JX the position in LINE of the first occurrence of the single character CHIS in LINE(JL:JR).

JX = JR+ 1 if CHIS is not contained in LINE(JL:JR), or if JL > JR.

NG = 0 if not found, = JX otherwise.

Find last occurrence, single:

JX = ICFILA(CHIS,LINE,JL,JR)

returns in JX the position in LINE of the last occurrence of the single character CHIS in LINE(JL:JR).

JX = JR+ 1 if CHIS is not contained in LINE(JL:JR), or if JL > JR.

NG = 0 if not found, = JX otherwise.

Find first occurrence, multiple:

JX = ICFMUL(CHI,LINE,JL,JR)

returns in JX the position in LINE of the first occurrence in LINE(JL:JR) of any one of the characters
CHI(j:j), where j = 1; 2; : : : ; n = LEN(CHI).

JX = JR+ 1 if none of CHI is found in LINE(JL:JR), or if JL > JR.

ND = j, i.e. COL(JX) is CHI(j:j) if found.

NG = 0 if not found, = JX otherwise.

Find first non-blank:

JX = ICFNBL(LINE,JL,JR)

returns in JX the position in LINE of the first non-blank character in LINE(JL:JR).

JX = JR+ 1 if LINE(JL:JR) is all blank, or if JL > JR.

NG = 0 if all blank, = JX otherwise.

Locate, case sensitive:

JX = ICLOC(CHI,NI,LINE,JL,JR)

locates the first occurrence of the complete string CHI(1:NI) within LINE(JL:JR), it returns in JX the
position in LINE of the first character of the string found. JX = 0 if CHI is not contained in LINE(JL:JR).

Locate, case insensitive, up to low:

JX = ICLOCL(CHI,NI,LINE,JL,JR)

acts like ICLOC, but upper case characters from LINE are converted to lower case for the comparison.

Locate, case insensitive, low to up:

JX = ICLOCU(CHI,NI,LINE,JL,JR)

acts like ICLOC, but lower case characters from LINE are converted to upper case for the comparison.

Locate unseen characters:

JX = ICLUNS(LINE,JL,JR)

returns in JX the position in LINE of the first ’unseen’ character in LINE(JL:JR), i.e. any character which
will not show on the terminal, except ’blank’. JX = 0 if LINE(JL:JR) does not contain unseen characters.
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Delimit next word:

JX = ICNEXT(LINE,JL,JR)

returns in JX the position in LINE of the first non-blank character in LINE(JL:JR) and in NE the position of
the first blank character after COL(JX), if any.

JX Position of the first character of the ’word’.

NE Position of the first ’blank’ after the ’word’ or NE = JR+ 1.

ND Number of characters in the ’word’.
JX = NE = JR+ 1, ND = 0 if LINE(JL:JR) is all blank.

Identify choice, case sensitive:

JX = ICNTH(CHACT,CHPOSS,NPOSS)

compares the character string CHACT against the strings stored in the character array CHPOSS(NPOSS), and
returns in JX the ordinal number of the first match found, or JX = 0 if no match. Neither the strings of
CHPOSS nor of CHACT may contain embedded blanks: the first blank, if any, is the string terminator.
To allow matching a shortened key-word given in CHACT one may insert (à la VAX) a '*' in the text of
CHPOSS(J) to mark the separation between the obligatory and further possible characters; a second '*'

may be given to signal that CHACT may have any other characters beyond this point, this is implied if the
string in CHPOSS(J) is not blank terminated.
For example:

PARAMETER (NPOSS=6)

CHARACTER*8 CHPOSS(NPOSS)

DATA CHPOSS /'del*ete ', 'add ', 'adb*efor',

+ 'rep*lace', 'ch*ange ', 'c*ol* '/

Calling the above with the following strings will give these results:

CHACT = 'add' JX = 2 exact match

'delete' 1 exact match

'del' 1 short match

'del ' 1

'delphi' 0 wrong optional characters

'deleted' 0 CHPOSS(1) is terminated

'replaced' 4 CHPOSS(4) is not terminated

'chan' 5 short match

'channel' 0 wrong optional characters

'c' 6 short match

'columns' 6 abritrary trailing characters allowed

'cols' 6

Identify choice, case insensitive, up to low:

JX = ICNTHL(CHACT,CHPOSS,NPOSS)

acts like ICNTH converting upper case characters from CHACT to lower case for the comparison, hence the
CHPOSS array must be given in lower case.

Identify choice, case insensitive, low to up:

JX = ICNTHU(CHACT,CHPOSS,NPOSS)

acts like ICNTH converting lower case characters from CHACT to upper case for the comparison, hence the
CHPOSS array must be given in upper case.
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Inquire presence in a list, case sensitive:

JX = ICINQ(CHLOOK,CHHAVE,NHAVE)

like ICNTH this compares the character string CHLOOK against the strings stored in the character array
CHHAVE(NHAVE), and returns in JX the ordinal number of the first match found, or JX = 0 if no match.
Again, neither the strings of CHHAVE nor of CHLOOK may contain embedded blanks: the first blank, if any, is
the string terminator.

As opposed to ICNTH, a '*' may be given in CHLOOK, but not in CHHAVE(J), to allow wild-card checking on
the presence of a string in the list of CHHAVE(J). The '*' divides the string into the characters which must
be present in the looked-for object of CHHAVE(J), and additional restricting characters which can be absent,
but if present they must be right. Again a second '*' can be given in CHLOOK, but this is not useful, since
any characters beyond the string terminator both in CHLOOK and in CHHAVE(J) are assumed to be allowed
anyway, unlike as with ICNTH.

For example:

PARAMETER (NHAVE=7)

CHARACTER*8 CHHAVE(NHAVE)

DATA CHHAVE /'apo ', 'apol ', 'apollo ', 'irs6000 ',

+ 'decra1 ', 'decra2 ', 'decra3 '/

Calling the above with the following strings will give these results:

CHLOOK = 'apo' JX = 1

'apo*' 1

'ap*ollo' 1

'ap*' 1

'ap' 0

'apol' 2

'apoll' 0

'apoll*' 3

'ir*s60' 4

'ir*s70' 0

'dec*' 5

'dec*ra' 5

'dec*ra*' 5

'dec*ra3' 7

In spite of the similarity, the operations of ICINQ and ICNTH serve really very different functions:

With ICNTH we have a key word CHACT which we try to identify; CHPOSS(N) is most likely a fixed table
built into the program which gives the possible key words and allowed abbreviations à la VAX. The return
value from ICNTH tells us which key word we have.

With ICINQ we inspect a table CHHAVE(N), which most likely has been built up at execution time, to see
whether it contains an object according to the specifications given in CHLOOK. The interesting thing about
the return value from ICINQ is mainly whether it is zero or not, the position of the found object in the table
is of secondary importance.

Inquire presence in a list, case insensitive, up to low:

JX = ICINQL(CHLOOK,CHHAVE,NHAVE)

acts like ICINQ converting upper case characters from CHLOOK to lower case for the comparison, hence
CHHAVE must be held in lower case.
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Inquire presence in a list, case insensitive, low to up:

JX = ICINQU(CHLOOK,CHHAVE,NHAVE)

acts like ICINQ converting lower case characters from CHLOOK to upper case for the comparison, hence
CHHAVE must be held in upper case.

Verify numeric:

JX = ICNUM(LINE,JL,JR)

returns in JX the position in LINE of the first non-numeric character in LINE(JL:JR); blanks are ignored.
Note that '+', '-' or '.' are not considered numeric.

JX = JR+ 1 if LINE(JL:JR) is all numeric.

ND Number of digits seen in LINE(JL:JX-1).

NG = 0 if all numeric, = JX otherwise.

Verify alpha-numeric:

JX = ICNUMA(LINE,JL,JR)

returns in JX the position in LINE of the first non-alphanumeric character in LINE(JL:JR); blanks are
ignored. Note that '+', '-' or '.' are not considered alpha-numeric.

JX = JR+ 1 if LINE(JL:JR) is all alpha-numeric.

ND Number of alpha-numeric characters seen in LINE(JL:JX-1).

NE Position of the first numeric character, = 0 if none.

NF Position of the first alphabetic character, = 0 if none.

NG = 0 if all alpha-numeric, = JX otherwise.

Verify alpha-numeric or underscore:

JX = ICNUMU(LINE,JL,JR)

acts like ICNUMA, but the character ”underscore” is considered alphabetic.

Identify type:

JX = ICTYPE(CHIS)

returns in JX the type of the single character CHIS:

JX = 0 : Unseen, i.e. a character not showing on an ASCII terminal.
= 1 : Anything else.
= 2 : Numeric character.
= 3 : Lower case character.
= 4 : Upper case character.

Find last non-blank character:

NX = LNBLNK(CHV)

returns the non-blank length of the string in CHV(1:LEN(CHV)), i.e. the characters NX+1 to LEN(CHV) are
all blank. (Note that this is an intrinsic function of several compilers.) If there are many trailing blanks the
routine LENOCC of M507 is faster; depending on the machine the break-even point with LENOCC is around 25
trailing blanks.
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Read decimal integer from character:

IX = NCDECI(CHTEXT)

acts like ICDECI, with JL = 1 and JR = LEN(CHTEXT).

Read hexadecimal integer from character:

IX = NCHEXI(CHTEXT)

acts like ICHEXI, with JL = 1 and JR = LEN(CHTEXT).

Read octal integer from character:

IX = NCOCTI(CHTEXT)

acts like ICOCTI, with JL = 1 and JR = LEN(CHTEXT).

�
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INDEXX CERN Program Library M433

Author(s) : M. Goossens, A. Petrilli, M. Marquina Library: KERNLIB

Submitter : Submitted: 11.02.1986

Language : Fortran Revised:28.09.94

Utility Package for Character Manipulation

M433 is a comprehensive package for the manipulation of type CHARACTER strings.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: INDEXA, INDEXB, INDEXC, INDEXN, INDEXS, INDXAC, INDXBC, INDXNC,

ISCAN, REPEAT, SPACES, STRIP, SUBWORD, VERIFY, WORD, WORDS,

WORDSEP

Usage:

In what follows, the parameters STR, SSTR, SET, the functions REPEAT, SPACES and the variables CHD,
CHOPT and H are of type CHARACTER. The function VERIFY is of type INTEGER.

I = INDEXA(STR)

sets I equal to the position of the first alphabetic character (upper or lower case) in STR. I = 0 if no such
character is present.

I = INDEXB(STR,SSTR)

sets I equal to the position of the first occurrence of string SSTR in string STR scanning backwards. I = 0 if
no such string is present.

I = INDEXC(STR,SSTR)

sets I equal to the leftmost position where string SSTR does not match a substring in STR. I = 0 if there is
no such mismatch.

I = INDEXN(STR)

sets I equal to the position of the first numeric character in STR. I = 0 if no such character is present.

I = INDEXS(STR)

sets I to the position of the first special (i.e. non-alphanumeric) character in STR. I = 0 if no such character
is present.

I = INDXAC(STR)

sets I equal to the position of the first non-alphabetic character (upper or lower case) in STR. I = 0 if no
such character is present.
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I = INDXBC(STR,SSTR)

sets I equal to the position of the first mismatch of string SSTR with respect to string STR scanning back-
wards. I = 0 if there is no such mismatch.

I = INDXNC(STR)

sets I equal to the position of the first non-numeric character in STR. I = 0 if no such character is present.

I = ISCAN(STR,SET)

sets I to the leftmost position where any of the characters in SET matches a character in STR. I = 0 if there
is no such match.

H = REPEAT(STR,NTIMES)

sets H equal to NTIMES concatenated copies of the string STR.

H = SPACES(STR,NSPACE)

sets H equal to a character string equivalent to STR with leading blanks removed and each occurence of one
or more blanks inside STR replaced by NSPACE blanks.

H = STRIP(STR,CHOPT,CHD)

sets H to a character string equivalent to STR with leading and trailing occurances of the character CHD

removed. If CHOPT is equal to 'L', only leading characters will be removed. If CHOPT is equal to 'T', only
trailing characters will be removed.

H = SUBWORD(STR,IW,NW)

sets H equal to the character string starting with word IW of STR and containing NW words.

I = VERIFY(STR,SET)

sets I to the leftmost position of any character in STR which is not part of SET.

H = WORD(STR,IW)

sets H equal to the word IW of STR.

I = WORDS(STR)

sets I to the number of words in STR.

CALL WORDSEP(STR)

sets the word separator for SUBWORD, WORD and WORDS to the first character of the string STR.

Examples:

Assume the following declarations:

CHARACTER STR*41,REP10*10,REP17*17

CHARACTER REPEAT*16,SPAC17*17,SPAC30*30,SPACES*20

INTEGER VERIFY

and a string STR defined as:

DATA STR /'A B C 1 2 3 A B C 1 2 3 A B C 1 2 3 A B C'/

The following results are obtained:

Statement/ Expression Yields the value

REP10 = REPEAT('ABC',5) 'ABCABCABCA'

REP17 = REPEAT('ABC',5) 'ABCABCABCABCABC '

REP17 = REPEAT('ABC',6) 'ABCABCABCABCABCAB'
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INDEXB(STR,' ') 40

INDEXC(STR,' ') 1

INDXBC(STR,' ') 41

INDEXA(STR) 1

INDXAC(STR) 2

INDEXN(STR) 7

INDXNC(STR) 1

INDEXS(STR) 2

ISCAN(STR,' ') 2

VERIFY(STR,' ') 1

INDEXB(STR,'1 2 3') 31

INDEXC(STR,'1 2 3') 1

INDXBC(STR,'1 2 3') 37

ISCAN(STR,'123') 7

VERIFY(STR,'123') 1

INDEXB(STR,'A B C') 31

INDEXC(STR,'A B C') 2

INDXBC(STR,'A B C') 36

ISCAN(STR,'ABC') 1

VERIFY(STR,'ABC') 2

SPAC17=SPACES(STR,0) 'ABC123ABC123ABC12'

SPAC30=SPACES(STR,2) 'A B C 1 2 3 A B C 1 2'

�
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VXINV CERN Program Library M434

Author(s) : F. Carminati, M. Jonker, J. Zoll Library: KERNLIB, VAX and DECSTATION only

Submitter : Submitted: 05.10.1987

Language : Fortran or Assembler Revised:

Fast VAX Byte Inversion

These routines do VAX byte inversions 1-2-3-4 to 4-3-2-1 in each word of an array, either in-place or
copied.

Structure:

SUBROUTINE subprogram
User Entry Names: VXINVB, VXINVC

Usage:

CALL VXINVB(IXV,N)

inverts four bytes in each of the N words at array IXV, in-place.

CALL VXINVC(IV,IXV,N)

copies the N words at array IV to array IXV, with the bytes inverted in each word.

On DEC machines bytes read from a disk file are loaded in memory in reverse order. One of the above
routines, applied to the result of a binary read from a disk file, causes the bytes to be stored in each 32 bits
word in the same order than in the disk file. This is useful when reading a binary file transferred through a
network from a foreign system, in order to preserve the order of the bytes in each 32 bits word. Please note
that several network utilities include the possibility to perform a bytes inversion in the network protocol.
Note also that when reading or writing from a magnetic tape, the bytes may be swapped in pairs and not in
groups of 4.
�
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BUNCH CERN Program Library M436

Author(s) : CDC: J. Blake, IBM: A.Berglund Library: KERNLIB

Submitter : Submitted: 20.10.1975

Language : Fortran or Assembler Revised:01.02.1982

Pack Bytes into Full Words

BUNCH converts a source array containing NBYTES bytes of NBITS bits per byte (where each byte is stored
right-adjusted in a full word), into a target array in which the bytes follow each other contiguously without
intermediate padding. The last word of the target array, if incomplete, is however padded with binary zero.
BUNCH is the inverse of BLOW (M426).

Structure:

SUBROUTINE subprogram
User Entry Names: BUNCH
External References: PKCHAR (M427)

Usage:

CALL BUNCH(SOURCE,TARGET,NBYTES,NBITS)

SOURCE Source array containing NBYTES bytes, each right-adjusted in a full word.

TARGET Target array, which must be at least NBYTES � NBITS=nbpw (rounded up to an integral value)
words long, where nbpw = 60 on CDC and nbpw = 32 on IBM.

NBYTES Number of bytes in the source array (NBYTES > 0).

NBITS Number of bits per byte (0 < NBITS � nbpw).

Restrictions:

The arrays SOURCE and TARGET must not overlap in any way.

Error handling:

BUNCH ignores calls with erroneous parameter values.

Examples:

IBM:

CALL BUNCH(SOURCE,TARGET,200,16)

The array SOURCE contains 200 words, each containing an 16-bit byte, right-adjusted. After returning from
BUNCH, the array TARGET will contain 100 32-bit words, in which the 200 16-bit bytes are stored contigu-
ously.
�
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GETBIT CERN Program Library M437

Author(s) : R. Matthews Library: KERNLIB

Submitter : H. Grote Submitted: 01.07.1979

Language : Assembler Revised:

Set or Retrieve a Bit in a String

GETBIT/SETBITfind or set the value of a single bit in a bit-string which may extend across word boundaries.

Structure:

SUBROUTINE subprogram
User Entry Names: GETBIT, SETBIT

Usage:

CALL GETBIT(I,M,L)

CALL SETBIT(I,M,L)

I Position of the selected bit, starting on the left with 1.

M A word or an array, considered as a continuous string of bits.

L Integer whose right-most bit will contain the value found by GETBIT or the value to be set by SETBIT
in the I-th position of the bit-string starting at the left-most bit of the first word of M.

�

284 M437 – 1



BTMOVE CERN Program Library M438

Author(s) : H. Grote Library: KERNLIB

Submitter : Submitted: 01.12.1980

Language : CDC: Fortran and Compass, IBM: Assembler Revised:

Move Bit String

BTMOVE moves a contiguous string of N bits from any position in memory to any other position. Bits are
numbered from left to right (most significant to least significant within words) and may be across word
boundaries.

Structure:

SUBROUTINE subprogram
User Entry Names: BTMOVE
External References: UCOPY (V301) (CDC only)

Usage:

CALL BTMOVE(SOURCE,ISRC,TARGET,ITGT,N)

moves the string of N contiguous bits starting at position ISRC in word or array SOURCE to position ITGT in
word or array TARGET. The other bits in TARGET are not changed, nor is SOURCE.

Notes:

Source and target strings must not overlap in storage, else the results may be unpredictable.

Examples:

IBM:
Move the highest bit (sign-bit) in word A to the lowest position of I so that it can be treated as an integer:

REAL A

INTEGER*4 I

I=0

CALL BTMOVE(A,1,I,32,1)

CDC:
Pack the five integers of array I5(5) into one word IPACK, using 12 bits per packed integer:

DIMENSION I5(5)

IPOS=1

DO 1 I = 1,5

CALL BTMOVE(I5(I),49,IPACK,IPOS,12)

1 IPOS=IPOS+12

Move a string of 20 characters from positions 41-60 in array A to positions 7-26 in array B:

DIMENSION A(6),B(3)

CALL BTMOVE(A,241,B,37,120)

�
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GETBYT CERN Program Library M439

Author(s) : T. Lindelöf, R. Matthews, A. Shevel Library: KERNLIB

Submitter : T. Lindelöf Submitted: 01.07.1979

Language : Assembler Revised:

Set or Retrieve a Bit String

GETBYT extracts and right-adjusts a group of bits of any length up to a full word from a bit string which may
extend across word boundaries. SETBYT is the inverse of GETBYT.

Structure:

SUBROUTINE subprogram
User Entry Names: GETBYT, SETBYT
Internal Entry Names: SHRERR
Files Referenced: Printer

Usage:

CALL GETBYT(ADDR,IBEG,ILEN,IRES)

ADDR Name of an array containing the desired group of bits.

IBEG The bit position within ADDR of the left-most bit of the group (bits are numbered starting at 1 with
the left-most or most significant bit in ADDR(1)).

ILEN Length of the group in bits (at most one word).

IRES Will contain the desired group, right-justified and zero-filled.

CALL SETBYT(ADDR,IBEG,ILEN,IBYT)

causes the ILEN right-most bits of IBYT to replace the group of bits of length ILEN starting at the IBEG-th
bit in the array ADDR (bits are numbered starting at 1 with the left-most or most significant bit in ADDR(1)).
Replacement goes across word boundaries, i.e. the most significant (left-most) bit of ADDR(N+1) is adjacent
to the least significant (right-most) bit of ADDR(N).

Error handling:

Calling either GETBYT or SETBYT with IBEG < 1 or ILEN > the number of bits in one word (errors) will
result in a diagnostic message. After more than 20 such errors the job will come to a STOP.

Examples:

IBM:
If ADDR(1) and ADDR(2) contain the 32-bit configurations '0...001110001' and '110100...0' respec-
tively, then

CALL GETBYT(ADDR,27,10,IRES)

will set IRES to '0...001100011101' or decimal 797.

If IBYT contains the integer value 3 (binary '11') and ADDR(1) = ADDR(2) = 0, then

CALL SETBYT(ADDR,32,2,IBYT)

will set ADDR(1) to 0...001' and ADDR(2) to '100...0'.
�
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BITPAK CERN Program Library M441

Author(s) : M. Metcalf Library: KERNLIB or Fortran library

Submitter : Submitted: 10.12.1984

Language : Fortran with ISA extensions Revised:18.10.1985

Handling Bits and Bytes, Bit Zero the Least Significant

BITPAK handles bits and bytes in a single word, with bit zero being the least significant bit.

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: IOR, IAND, NOT, IEOR, ISHFT, ISHFTC, IBITS, MVBITS,

BTEST, IBSET, IBCLR

Usage:

A numeric storage unit is considered to consist of a string of bits numbered from right to left, starting
at zero. The standard MIL-STD-l753 defines ll bit manipulation functions on such units, 8 of which are
the ANSI/ISA functions found as intrinsic functions in many compilers. This package complements the
functions available in compilers, ensuring that the full range is available on all machines. This description
includes all the functions for the sake of completeness.

Logical operations:

IOR(M,N) provides the inclusive OR of the two integer arguments.

IAND(M,N) provides the logical AND of the two integer arguments.

NOT(M) provides the logical complement of the integer argument.

IEOR(M,N) provides the exclusive OR of the two integer arguments.

Shift operations:

A shift count K specifies

8><>:
a left shift for K > 0

no shift for K = 0

a right shift for K < 0:

ISHFT(M,K) provides the value of the integer argument M with the bits shifted. Bits shifted out
to the left or right are lost, and zeros are shifted in from the opposite end.

ISHFTC(M,K,IC) provides the value of the integer argument M with the rightmost IC bits shifted,
and the remaining bits untouched. The shift is circular; no bits are lost.

Bit subfields:

IBITS(M,I,LEN) provides, right justified, the value of the LEN bits of the integer argu-
ment M, starting from position I.

CALL MVBITS(M,I,LEN,N,J) moves LEN bits of integer argument M, starting at position I, to the
integer argument N, starting at position J. All other bits of N are left
untouched. The arguments M and N may refer to the same numeric
storage unit.
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Bit testing:

BTEST(N,I) has the value .TRUE. if bit I of the integer argument N is set, and .FALSE. otherwise.
Note that many compilers require BTEST to be declared type LOGICAL.

IBSET(N,I) has the value of the integer argument N with bit I set to 1.

IBCLR(N,I) has the value of the integer argument N with bit I set to 0.

Notes:

If bits are specified outside the range of one numeric storage unit, or if fields are specified which are longer
than one numeric storage unit or zero, or if shifts are specified which are longer than the fields being shifted,
then the results are undefined.
�

M441 – 2 288



NAMEFD CERN Program Library M442

Author(s) : J. Shiers Library: KERNLIB

Submitter : Submitted: 25.07.91

Language : Fortran Revised:

Fortran Emulation of VM/CMS NAMEFIND Command

NAMEFD is a Fortran callable routine providing an emulation of the VM/CMS NAMEFIND command.

Structure:

SUBROUTINE subprogram
User Entry Names: NAMEFD

Usage:

CHARACTER*255 CHIN(NIN),CHOUT(NOUT)

CALL NAMEFD(LUN,CHFILE,CHIN,NIN,CHOUT,NOUT,IRC)

NAMEFD scans the specified file for entries that match the specified input tags and values. It returns the values
of the specified output tags. Thus, given the example file shown below, one might call NAMEFD with input
tag :NICK, value SNIFFLES and output tags :PHONE and :ADDRESS. If no match is found for the specified
input, a code IRC is returned.

CHIN(1,1) = ':NICK'

CHIN(2,1) = 'SNIFFLES'

NIN = 1

CHOUT(1,1) = ':PHONE'

CHOUT(1,2) = ':ADDRESS'

NOUT = 2

CALL NAMEFD(1,'TEST.NAMES',CHIN,NIN,CHOUT,NOUT,IRC)

Return codes: 32 - no match for input tags and values,

4 - not all requested output tags found,

other - IOSTAT from FORTRAN OPEN of specified names file.

Format of a Names File

A names file is a collection of entries, with each entry identied by a nickname. A nickname tag plus a series
of other tags with associated values make up an entry.

The format of data lines in a names file is as follows:

tag.value (:tag.value...)

The only tag that is required is a :NICK tag, e.g.

:NICK.fatuser

This is the primary tag, one for each entry. It identifies the beginning of an entry and must be the first word
on a line. Any tags that follow relate to the preceding :NICK tag.
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Examples:

An example of a NAMES file.

:nick.SNOW :userid.SNOWHITE :node.FOREST

:name.Snow White :phone.ZZZ-ZZZZ

:addr.Forest Primeval

:nick.SNOOZY :userid.SNOOZY :node.COTTAGE

:name.I. M. Dozing :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.DUMMY :userid.DUMMY :node.COTTAGE

:name.S. A. What :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.BOSS :userid.BOSS :node.COTTAGE

:name.T.O.P. Banana :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.SNIFFLES :userid.SNIFFLES :node.COTTAGE

:name.A. H. Choo :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.GROUCHY :userid.GROUCHY :node.COTTAGE

:name.E. B. Scrooge :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.SMILEY :userid.SMILEY :node.COTTAGE

:name.H. A. Haas :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.WISTFUL :userid.WISTFUL :node.COTTAGE

:name.R. U. Shy :phone.777-7777

:addr.Dwarf Cottage;Forest

:nick.WITCH :userid.QUEEN :node.CASTLE

:name.Bad Queen :phone.UGLY-1111

:addr.Vanity Lane;Mirror City

:nick.GORGEOUS :userid.PRINCE :node.ATLARGE :notebook.PRIVATE

:name.Prince Charming :phone.Area 111 111-1111

:nick.DWARFS

:list.SNOOZY DUMMY BOSS SMILEY GROUCHY SNIFFLES WISTFUL

�
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IUSAME CERN Program Library M501

Author(s) : C. Letertre Library: KERNLIB

Submitter : Submitted: 21.08.1971

Language : Fortran or Assembler Revised:15.09.1978

Locating a String of Same Words

IUSAME locates the first of a continuous sequence of identical words occuring at least a given number of
times. It returns the number of contiguous identical words in the sequence.

Structure:

FUNCTION subprogram
User Entry Names: IUSAME

Usage:

NSAME = IUSAME(VECT,JL,JR,MIN,JSAME)

VECT(JL) Start of the portion of the vector to be analysed.

VECT(JR) End of the portion of the vector to be analysed.

MIN Minimum length of a string to be considered a string.

The function returns the length of the string as function value, and also the position of the first element of
the string: VECT(JSAME).

If no string of at least MIN elements has been found starting at or after VECT(JL), the function returns
NSAME = 0 and JSAME = JR+ 1.
�
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UOPTC CERN Program Library M502

Author(s) : J. Zoll, P. Rastl Library: KERNLIB

Submitter : Submitted: 21.09.1971

Language : Fortran or Assembler Revised:16.09.1991

Decoding Options Characters

UOPTC and UOPT compare a string of actualoption-characters against a similar string of possibleoption-
characters filling an INTEGER vector with 1’s and 0’s, indicating for each possible option whether or not it
was taken.

Structure:

SUBROUTINE subprogram
User Entry Names: UOPTC, UOPT

Usage:

CALL UOPTC(CHACT,CHPOSS,IOPT)

CHACT (CHARACTER) String of actual option-characters.

CHPOSS (CHARACTER) String of possible option-characters.

IOPT (INTEGER) Vector of at least LEN(CHPOSS) words, the j-th word of which is set to 1 or 0, de-
pending on whether the j-th possible character does or does not occur in CHACT.

CALL UOPT(IACT,IPOSS,IOPT,N)

IACT Hollerith string of actual option-characters. It is terminated by the first character not occuring in
the string of possibilities.

IPOSS Hollerith string of N possible option-characters (N � 30).

IOPT A vector of at least N words, the j-th word of which is set to 1 or 0, depending on whether the
j-th possible character does or does not occur in the IACT string.

Examples:

CALL UOPTC('+AB','ABC+/Y',IOPT)

CALL UOPT (4H+AB.,6HABC+/Y,IOPT,6)

will set the first 6 elements of IOPT to 1,1,0,1,0,0.

Notes:

UOPT was written for Fortran 4 and should no longer be used for new programs.
�
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UBITS CERN Program Library M503

Author(s) : M. Metcalf, R. Matthews Library: KERNLIB

Submitter : Submitted: 01.02.1982

Language : Fortran or Assembler Revised:20.06.1985

Locate the One-Bits of a Word or an Array

UBITS locates and counts the 1-bits in the right-most NBITS bits in a word or full-word array, returning their
positions. Bit numbering is right to left, bit number 1 being the least significant bit in the first full word, bit
number NBPW+1 being the least significant bit in the second full word, where NBPW is the number of bits per
machine word.

Structure:

SUBROUTINE subprogram
User Entry Names: UBITS
External References: UPKBYT (M422) (Fortran version only)

Usage:

CALL UBITS(IWORDS,NBITS,IXV,NX)

IWORDS Word or full-word array to be analysed.

NBITS Bits 1 to NBITS of array IWORDS are inspected.

IXV Bit positions of the 1-bits in IWORD are placed into IXV(1) through IXV(NX) in increasing
order. IXV must be dimensioned to NBITS at least.

NX Number of 1-bits found.

Examples:

DIMENSION IXV(9)

IWORD=1676

C 1676 in base 2 is 11010001100

CALL UBITS(IWORD,9,IXV,NX)

sets

NX = 3, IXV(1) = 3, IXV(2) = 4, IXV(3) = 8.

�
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LENOCC CERN Program Library M507

Author(s) : F. Rademakers, J. Zoll Library: KERNLIB

Submitter : Submitted: 27.11.1984

Language : Fortran or C Revised:05.05.1992

Occupied Length of a Character String

LENOCC returns the occupied length of a string of type CHARACTER.

Structure:

FUNCTION subprogram
User Entry Names: LENOCC

Usage:

In any arithmetic expression,

LENOCC(LINE)

has the value of the occupied length of the character string LINE, i.e. the length up to and including the last
non-blank character. LENOCC = 0 if LINE contains blanks only. LINE is of type CHARACTER and LENOCC is
of type INTEGER.

For few trailing blanks LENOCC is slower than LNBLNK of M432, but it may be substantially faster for very
many trailing blanks; the break-even point depends on the machine and is usually around 25 trailing blanks.

Method:

On some machines LINE is first scanned backwards for machine words containing all blanks, and then the
remaining string is scanned for the last non-blank character.
�
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BITPOS CERN Program Library M508

Author(s) : M. Metcalf, R. Matthews Library: KERNLIB

Submitter : Submitted: 01.02.1982

Language : Fortran and CDC: COMPASS, IBM: Assembler Revised:20.06.1985

Find One-Bits in a String

BITPOS locates and counts the 1-bits in the right-most NBITS bits in a word or in a full-word array, returning
their positions. Bit numbering is right-to-left, bit number 0 being the least significant bit in the first full word,
bit number NBPW being the least significant bit in the second full word etc., where NBPW is the number of bits
per machine word; this numbering is compatible with BITPAK (M441).

Structure:

SUBROUTINE subprogram
User Entry Names: BITPOS
External Entry Names: URKBYT (M422) (Fortran only)
COMMON Block Names and Lengths: /SLATE/ 40 (Fortran only)

Usage:

CALL BITPOS(IWORDS,NBITS,IXV,NX)

IWORDS Word or full-word array to be analysed.

NBITS The first NBITS of array IWORDS are inspected.

IXV Bit positions of the 1-bits in IWORD are placed into IXV(1) through IXV(NX) in increasing
order. IXV must be dimensioned to NBITS at least. The positions are numbered from 0.

NX Number of 1-bits found.

Notes:

The Fortran version contains a symbolic constant whose value must be set equal to the number of bits in a
word (default 32).

Examples:

DIMENSION IXV(9)

IWORD = 1676

C 1676 in base 2 is 11010001100

CALL BITPOS(IWORD,9,IXV,NX)

sets

NX = 3, IXV(1) = 2, IXV(2) = 3, IXV(3) = 7.

�
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KERSET CERN Program Library N001

Author(s) : H. Lipps Library: KERNLIB

Submitter : Submitted: 22.10.1984

Language : Fortran Revised:15.03.1993

Error Processing for Sections A-H of KERNLIB

PARTIALLY OBSOLETE
Please note that, as a consequence of transferring subprograms from KERN-
LIB to MATHLIB, this routine has been partially obsoleted in CNL 211. It
can, for a transitional period, still be used for sections D (D509 only), and for
sections E and F of KERNLIB. Users are advised not to use it any longer for
other cases and to replace it in older programs. With the foreseen transfer of
the subroutines in sections D,E,F in KERNLIB to MATHLIB, it will eventu-
ally disappear.

Suggested replacement: MTLSET (N002)

Subroutine KERSET allows the user to redefine the action to be taken by subprograms in the Fortran version
of sections A-H of KERNLIB when certain specified error conditions are detected. (This subroutine does
not exist in the Fortran 66 version.) Error recovery may be performed either on each occurrence of the error,
or only a specified number of times. Messages may be written either on each occurrence of the error, or
only a specified number of times. Error messages may be written (by default) onto the system output unit,
or may be re-routed to some other output file.

Structure:

SUBROUTINE subprogram
User Entry Names: KERSET
Internal Entry Names: KERMTR
Files Referenced: Printer or user-defined
External References: ABEND (Z035)

Usage:

CALL KERSET(ER,LGFILE,LM,LR)

ER (CHARACTER*6) A character string that identifies the range of error conditions for which action
is to be redefined.

LGFILE (INTEGER) The logical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.

LM (INTEGER) The number of occurrences of each error condition in the range ER for which an
error message is to be written. LM � 0 is treated as zero, LM � 100 as infinity.

LR (INTEGER) The number of times that error recovery is to be performed for each error condition
in the range ER. LR � 0 is treated as zero. LR � 100 is treated as infinity. If any error condition
in the range ER occurs LR+ 1 times a message is printed and the run is terminated by calling
ABEND (Z035).
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Notes:

1. KERSET applies to those KERNLIB error conditions which are specified by a six-character code (e.g.,
C204.2) in the Error handling section of the Short Write-ups.

2. If the string ER consists of six characters specifying a single error condition
(e.g., ER='C204.2'), LM and LR apply only to this one error condition.

If the six-character string ER ends with one or more blanks, LM and LR apply to all error conditions
whose leftmost characters match the non-blank characters of ER.
Thus ER = 'C2 ' (four blanks) applies to all error conditions in packages C200 to C299, and
ER = ' ' (six blanks) applies to all error conditions under the control of KERSET.

3. The value of LGFILE applies to all error messages written under the control of KERSET.

�
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MTLSET CERN Program Library N002

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:15.03.1993

Error Processing for MATHLIB

Subroutine MTLSET allows the user to redefine the action to be taken by certain subprograms in MATHLIB
when certain specified error conditions are detected. Error recovery may be performed either on each occur-
rence of the error, or only a specified number of times. Messages may be written either on each occurrence
of the error, or only a specified number of times. Error messages may be written (by default) onto the system
output unit, or may be re-routed to some other output file.

Structure:

SUBROUTINE subprogram
User Entry Names: MTLSET
Internal Entry Names: MTLMTR
Files Referenced: Printer or user-defined
External References: ABEND (Z035)

Usage:

CALL MTLSET(ER,LGFILE,LM,LR)

ER (CHARACTER*6) A character string that identifies the range of error conditions for which action
is to be redefined.

LGFILE (INTEGER) The logical unit number to be used for error messages, or zero if error messages are
to be written onto the system output unit.

LM (INTEGER) The number of occurrences of each error condition in the range ER for which an
error message is to be written. LM < 0 is ignored, LM � 255 is treated as infinity.

LR (INTEGER) The number of times that error recovery is to be performed for each error condition
in the range ER. LR < 0 is ignored, LR � 255 is treated as infinity. If any error condition in the
range ER occurs LR+ 1 times a message is printed and the run is terminated by calling ABEND
(Z035).

Notes:

1. MTLSET applies to those MATHLIB error conditions which are specified by a six-character code (e.g.
C204.2) in the Error handling section of the Short Write-ups.

2. If the string ER consists of six characters specifying a single error condition
(e.g., ER='C204.2'), LM and LR apply only to this one error condition.

If the six-character string ER ends with one or more blanks, LM and LR apply to all error conditions
whose leftmost characters match the non-blank characters of ER.
Thus ER = 'C2 ' (four blanks) applies to all error conditions in packages C200 to C299, and
ER = ' ' (six blanks) applies to all error conditions under the control of MTLSET.

3. The value of LGFILE applies to all error messages written under the control of MTLSET.

�
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LOCF CERN Program Library N100

Author(s) : CDC Library: KERNLIB

Submitter : J.Zoll Submitted: 01.03.1968

Language : Fortran or Assembler or C Revised:16.09.1991

Address of a Variable

The function LOCB returns the absolute address of the variable given as its argument.

LOCF returns the absolute address measured in terms of Fortran machine words.

Structure:

FUNCTION subprogram
User Entry Names: LOCF, LOCB

Usage:

IAD = LOCB(X)

where X is the name of a variable of any type, or a name declared EXTERNAL in the calling program.

IAD = LOCF(X)

where X is the name of a variable of type INTEGER or REAL.

Notes:

On CDC, LOCF is included in the FTN library, and documented in the Fortran manual.

On all machines LOCF is intended to measure the displacement between variables, thus for example for:

COMMON /X/ M(12),A(4),LAST

N = LOCF(LAST) - LOCF(M(1))

N will be set to contain 16 on all machines, whilst LOCB(LAST) - LOCB(M(1)) will give some multiple
of 16.
�
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IUWEED CERN Program Library N103

Author(s) : C. Letertre Library: KERNLIB

Submitter : J. Zoll Submitted: 01.09.1969

Language : Fortran or Assembler Revised:15.09.1991

Detect Indefinite and Infinite in an Array

IUWEED scans a vector and returns the address of the first quantity which is either ’indefinite’ or ’infinite’.

Structure:

FUNCTION subprogram
User Entry Names: IUWEED

Usage:

IW = IUWEED(IVEC,N)

sets IW to the relative address, in the N element vector IVEC, of the first element containing either an ’indef-
inite’ or ’infinite’. IW = 0 if there are no such elements. IVEC is not changed.
�
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TRACEQ CERN Program Library N105

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 01.12. 1973

Language : Fortran Revised:15.09.1978

Print Trace-Back

TRACEQ prints the Fortran trace-back leading to TRACEQ. The maximum number of trace-back levels is
specified as an argument. Fewer levels may be printed either because the main program has been reached or
because the trace-back linkage is invalid.

Structure:

SUBROUTINE subprogram
User Entry Names: TRACEQ
Internal Entry Names: TRAC1Q, TRAC2Q
Files Referenced: User defined
COMMON Block Names and Lengths: /SLATE/ 40

Usage:

CALL TRACEQ(LUN,N)

LUN Logical unit number of the print file, LUN = 0 is accepted to mean the standard print file.

N Maximum number of trace-back levels to be printed.

Notes:

The implementation of TRACEQ depends on the machine; on some machines this cannot be done at all and
the routine is a dummy. On some other machines the unit for printing or the number of levels printed is not
under program control.
�
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TCDUMP CERN Program Library N203

Author(s) : C. Letertre, J. Zoll Library: KERNLIB

Submitter : C. Letertre Submitted: 31.01.1972

Language : Fortran Revised:15.09.1978

Memory Dump

TCDUMP may be used for dumping sections of memory in octal (CDC) or hexadecimal (IBM), optionally
combined with any or all of the other modes (INTEGER, REAL, or Hollerith).

The dump shows 5 words per line. The address of the first word of each line is given 3 times. The absolute
address in memory (using LOCF), the relative address within the vector in decimal, and in octal (CDC) or
hexadecimal (IBM).

Continous strings of identical content or strings of preset indefinitesproduce a single line.

Structure:

SUBROUTINE subprogram
User Entry Names: TCDUMP
Files Referenced: Printer
External References: UBLOW (M409), IUCOMP (V304), IUSAME (M501), LOCF (N100)

Usage:

CALL TCDUMP(TEXT,VECTOR,N,MODE)

TEXT 1 word of text printed as heading.

VECTOR Variable address for start of dump.

N Number of words for dumping.

MODE 1H dump in octal,
1HI dump in INTEGER and octal,
1HF dump in floating and octal,
1HH dump in Hollerith and octal,
2HIH dump in INTEGER, Hollerith and octal,
etc...

Examples:

COMMON /TOC /A,B(12),D

CALL TCDUMP(5H/TOC/,A,14,1HF)

dumps the common block TOC in octal and floating.
�
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ZEBRA CERN Program Library Q100

Author(s) : R. Brun, M. Goossens, B. Holl, O. Schaile, J. Shiers, J. Zoll Library: PACKLIB

Submitter : Submitted: 18.04.1986

Language : Fortran Revised:

Dynamic Data Structure and Memory Manager

ZEBRA is a dynamic data structure and memory manager. It allows the management of large amounts of data
in a computer store by providing the functions required to construct a logical graph of the data and their
interrelations.

The data are stored in Fortran COMMON blocks, called ”stores”. Each store can be subdivided into up to 20
”divisions”. Relations between the basic units of data, or ”banks”, are expressed by attaching a structural
significance to part of a bank. A bank is accessed by specifying its address in a given store. Such addresses
(called ”links”) are kept inside the banks or in ”link areas” inside a common block.

� The memory management part of ZEBRA is performed by the MZ package. Utilities are available for
reorganizing, sorting and deleting banks and data structures.

� Individual banks, data structures or complete divisions can be output with the FZ package.

� Direct access files for data structures and the management of the data by keywords are provided by
the RZ package.

� Dumps and verification of ZEBRA structures and documentation tools are available in the DZ package.

Structure:

SUBROUTINE subprograms
User Entry Names: ZEBRA
External References: KERNLIB (Q100) routines

Usage:

See Long Write-up.
�
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HIGZ CERN Program Library Q120

Author(s) : O. Couet Library: GRAFLIB

Submitter : Submitted: 10.02.1988

Language : Fortran and C Revised:01.11.1994

High Level Interface to Graphics and Zebra

The HIGZ package is part of PAW (Q121) (Physics Analysis Workstation), but can be used independently.
HIGZ contains entries which look and act like many of the entries of GKS (Graphics Kernel System) and, in
addition, has entries providing a higher level of functionality such as plotting whole histograms. HIGZ also
contains an option to create a device independent metafile stored in ZEBRA (Q100) format which can hence
be ported, and re-interpreted, on other machines and operating systems.

The complete HIGZ facilities are available in the PAW (Q121) system.

Structure:

SUBROUTINE subprograms

Usage:

See Long Write-up .
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PAW CERN Program Library Q121

Author(s) : R. Brun, O. Couet, N. Cremel, A. Nathaniel, A. Rademakers, C. Vandoni Library: GRAFLIB

Submitter : R. Brun Submitted: 10.02.1988

Language : Interactive Revised:01.11.1994

PAW - Physics Analysis Workstation Package

PAW is a program package to assist physicists in the analysis and presentation of their data. It provides
interactive graphical presentation and statistical or mathematical analysis, working on objects familiar to
physicists like histograms, event files (n-tuples) and vectors.

The PAW++ program provides a Motif interface to PAW.

Structure:

Interactive data analysis program.

Usage:

See Long write-up .

Notes:

The packages involved in the implementation of PAW and the platform availability are described in the
Reference Manual.
�
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SIGMA CERN Program Library Q122

Author(s) : C. Vandoni Library: PAWLIB

Submitter : Submitted: 14.11.1988

Language : Fortran Revised:

SIGMA - System for Interactive Graphical Mathematical Applications

SIGMA can be considered a system for interactive on-line numerical analysis problem-solving which has
been designed essentially for mathematicians and theoretical physicists. The major characteristics of SIGMA
are:

� The basic data units are scalars, one-dimensional arrays, and multi-dimensional rectangular arrays;
SIGMA provides automatic handling of these arrays.

� The calculational operators of SIGMA closely resembles the operations of numerical mathematics;
procedural operators are often analogous to those of Fortran.

� The system is designed to be used in interactive mode; it provides convenient facilities for graphical
display of arrays in form of (sets of) curves.

� The user can construct his own programs within the system and has also access to a program library;
he can store and retrieve his data and programs; he obtains on request hard copy of alphanumeric and
graphical type.

SIGMA was operational for many years on the CYBER computers at CERN. Most of its functionality has
been converted to run on other machines as part of the PAW (Q121) package.

Usage:

See Chapter 6 of the PAW Manual.
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FATMEN CERN Program Library Q123

Author(s) : J. Shiers Library: PACKLIB

Submitter : Submitted: 01.10.1991

Language : Fortran, C Revised:

Distributed File and Tape Management System

The FATMEN package is a set of Fortran callable routines and utilities for the management of disk and tape
files. In particular, the package provides location, operating system and medium transparency. A command
line interface also exists.

Structure:

SUBROUTINE subprograms and command line shell.

Usage:

See Long Write-up .
�

307 Q123 – 1



CSPACK CERN Program Library Q124

Author(s) : Various Library: PACKLIB

Submitter : J. Shiers Submitted: 01.10.1991

Language : Fortran, C, Pascal, Assembler Revised:

Client Server Routines and Utilities

The CSPACK package is a set of Fortran callable routines and utilities. In particular, it provides remote
file access and transfer with automatic conversion between data representations for commonly used HEP
formats, such as PAM files, Zebra FZ and RZ files. A command line interface also exists (ZFTP).

This package also includes TELNETG, an enhanced TELNET utility with graphics capabilties and the SYSREQ
facility, used at CERN for interaction with the Tape Management System.

Structure:

SUBROUTINE subprograms and command line shell.

Usage:

See Long Write-up .
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HEPDB CERN Program Library Q180

Author(s) : L3, OPAL, CN Library: PACKLIB

Submitter : J. Shiers Submitted: 01.06.1992

Language : Fortran, C Revised:

Distributed Database Management System

The HEPDB package is a set of Fortran callable routines and utilities for the management of database objects
such as calibration data and detector geometry. One may store and retrieve objects such as Zebra structures,
vectors, text files and help information. The package is heavily based upon the DBL3 and OPCAL systems,
developed by the L3 and OPAL collaborations respectively. A command line interface also exists.

Structure:

SUBROUTINE subprograms and command line shell.

Usage:

See Long Write-up .
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ZBOOK CERN Program Library Q210

Author(s) : R. Brun, F. Carena, M. Hansroul, H. Grote, J.C. Lassalle, W. Wojcik Library: PACKLIB

Submitter : Submitted: 15.09.1978

Language : Fortran Revised:17.12.1991

Dynamic Memory Management

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: ZEBRA (Q100)

ZBOOK provides facilities to create (at execution time) memory blocks of variable lengths, manage them and
perform the following operations on them:

� create a block

� increase or decrease size of block

� set block to zero

� drop or delete block

� write block to file

� read from file

� print contents of block

Using ZBOOK, the total size of all blocks together cannot exceed the dimension of the array specified in the
user’s Fortran program. Using a subpackage YBOOK in connection with HBOOK (Y250), however, dynamic
allocation of the total space is possible.

Structure:

SUBROUTINE package
User Entry Names: ZBOOK

Usage:

See Long Write-up .
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INDENT CERN Program Library Q901

Author(s) : M. Metcalf Library: PGMLIB

Submitter : Submitted: 01.04.1983

Language : Fortran Revised:

Indent Fortran Source

The program reads Fortran source from a specified input file and writes the indented source code to a
specified output file.

Structure:

Complete PROGRAM
User Entry Names: INDENT
Files Referenced: Input and output units, either default or user defined.

Usage:

INDENT reads from the default input unit four integer values in a single record. The default values are taken
if this record is absent.

Indenting shift (Default = 3)

Maximal indenting level (Default = 10)

File number of source input (Default = 5)

File number of transformed source output (Default = 6)

Note that the first column of the output file will be taken as carriage control information if the output unit is
a line printer.

Method:

The program detects the beginning and end of each DO– and IF–block, and indents each following source
line by a shift corresponding to the nesting level. Continuation lines are constructed when necessary, but
variable names are never split across two lines.

PATCHY control records are treated as comment lines, and so complete PAMs can be handled.

Restrictions:

Lines containing FORMAT statements, or character strings with multiple embedded blanks are not indented.

Sequences of more than 200 comment lines may have their order with respect to the following statement
modified.

Assembler code gets destroyed.

Error handling:

Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcalf, FORTRAN Optimization, Academic Press London (1982), Appendix B.

�
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FLOP CERN Program Library Q902

Author(s) : H. Grote Library: PGMLIB

Submitter : Submitted: 29.11.1988

Language : Fortran Revised:

FLOP - Fortran Language Oriented Parser

FLOP is best described as an ”intelligent” editor that recognizes Fortran (ANSI 77) code, with a full coverage
of ANSI 66 and some of its extensions). To achieve this, FLOP has to perform part of the functions of a
compiler, mainly the declaration and syntax analysis. The knowledge resulting from this then allows FLOP
to edit the Fortran input file in various ways, and to provide useful information about its contents.

Structure:

Complete PROGRAM
Files Referenced: Unit 11 (input), Unit 5 (commands), Unit 6 (output)
External References: TIMEL (Z007), TIMEX (Z007)

Usage:

See Long Write-up .

Refer also to the interactive help files or to the FLOP DECKS in the various Patches of the INSTALL Pam file
for examples of usage.

The source code can be found in the FLOP Pam file on the various machines.
�
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CONVERT CERN Program Library Q904

Author(s) : M. Metcalf Library: PGMLIB

Submitter : Submitted: 01.02.1992

Language : Fortran Revised:

Fortran 77 to Fortran 90 source form conversion tool

Users of Fortran 90 can choose between two different styles of source form, the old (Fortran 77) and a new.

This program reads code written according to the Fortran 77 fixedsource form from a specified input file
and writes it according to the Fortran 90 freesource form to a specified output file. It also formats the code
by indenting the bodies of DO-loops and IF-blocks, and performs a small number of syntax conversions.

Structure:

Complete PROGRAM
User Entry Names: CONVERT
Files Referenced: Input and output units, either default or user defined.

Usage:

CONVERT has the following calling sequence on all systems:

convert [-b] [-id n] [-il m] [-sb] ifile[.f] [ofile[.f90]]

[+b] [+sb]

where the meaning of the arguments is as follows:

-id Indenting depth (default = 3).

-il Maximal indenting level (default = 10).

-sb Handle significant blanks (default).

-b Generate interface blocks only.

If no options are specified, significant blanks will be handled (-sb) and all code will be processed (+b). In
order to do nothing but change the source form, type e.g.:

convert -id 0 -il 0 +sb mysource.f

Method:

The program converts between the old fixed Fortran 77 source form to the new Fortran 90 free source form.
Note that blanks are significant in the new source form. In addition it is able to perform a few other useful
operations on the fly.

Statement keywords are followed if necessary by a blank, and blanks within tokens are suppressed; this
handling of blanks is optional, but the default (-sb).

If a CONTINUE statement terminates a single DO loop, it is replaced by END DO.

Procedure END statements have the procedure name added, if blanks are handled (-sb).

Statements like INTEGER*2 are converted to INTEGER(2), if blanks are handled (-sb). Depending on the
target processor, a further global edit might be required (e.g. where 2 bytes correspond to KIND=1). Typed
functions and assumed-length character specifications are treated similarly. The length specification *4 is
removed for all data types except CHARACTER, as is *8 for COMPLEX. This treatment of non-standard type
declarations includes any non-standard IMPLICIT statements.
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Optionally, interface blocks only may be produced (-b); this requires blank processing to be requested
(-sb). The interface blocks are written in a form compatible with both the old and the new source forms.

The program is able to handle Patchy Card files, as a + in column 1 is treated as a comment line

Restrictions:

The program does not indent FORMAT statements or any statement containing a character string with an
embedded multiple blank. The order of comment lines and Fortran statements is slightly modified if there
are sequences of more than 200 comment lines. If there are syntax errors, continued lines do not have a
trailing &.

When producing interface blocks, a check is required that any dummy argument that is a procedure has a
corresponding EXTERNAL statement. Also, since no COMMON blocks or PARAMETER statements are copied,
part of an assumed-size array declaration may be missing. Similarly, parts of an assumed-length character
symbolic constant might be copied and have to be deleted. BLOCK DATA statements are copied and must be
deleted. These problems would normally be detected by a compiler and are trivially corrected.

Within a given keyword, the case must be all upper or all lower, and lower case programs require blank
handling for correct indenting.

Error handling:

Primitive syntax checks protect the program from most non-Fortran source input.

References:

1. M. Metcalf and J.Reid, Fortran 90 explained, Oxford Science Publications (1990), Chapter 2

�
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WYLBUR CERN Program Library Q905

Author(s) : J. Zoll Library: None

Submitter : Submitted: 15.09.1994

Language : Fortran + C Revised:

Wylbur Phoenix – a Line Editor for ASCII Text Files

OBSOLETE
Please note that this routine has been obsoleted. Users are advised not to use
it any longer. No maintenance for it will take place and it will eventually
disappear.

Wylbur Phoenix is a portable command driven editor, capable of embedding a full-screen editor of the
user’s choice as a sub-system. It can operate with the simplest Telnet connection to some remote machine.
It is designed to give maximum power for the development and maintenance of the source files of the large
programs used in particle physics, where it is neccessary to easily find in a large volume what one is looking
for. It has been written because no editor is available which combines all the features considered essential:

a) Ease of use for the casual user;

b) ’undo’ a series of mistaken edit operations;

c) global changes displayed, and maybe confirmed individually;

d) column sensitive editing;

e) handling of program variable names, not only text strings, but without language syntax analysis;

f) direct handling of program units, ie. Fortran or C routines or Patchy decks.

g) ’master range’ automatically limiting edit operations to an arbitrary fraction of the whole file;

h) usage of windows as monitors and for full-screen editing;

i) immediate, context-free, display of critical lines.

j) permanent line numbers, not hindering normal access to the files by programs other than the editor;

k) portability.

Although Wylbur Phoenix does have some aspects of ’full screen’ and interactive operations, these are
distinct features which can selectively be switched off in ’batch mode’ or in ’nowindow mode’. Thus
Wylbur can be used in shell scripts and across non-specialized computer links; indeed for some applications
Wylbur in batch mode is very convenient.

Structure:

Complete program

Usage:

Shell command ”use fn” calls the normal version of Wylbur into operation to act on file ”fn”. This version
is typically capable of handling 60000 lines. For bigger files one may use ”useb” on some machines, which
allows for 120000 lines.
On the Unix machines ”use” and ”useb” are links in /cern/pro/bin pointing to the executable modules.
On the Vax ”use” should be a symbol like

$ USE :== $CERN_ROOT:[EXE]WYLBUR

Wylbur has not been made to work on IBM with VM/CMS.
To print the file used for delivering on-line help proceed as follows:

type ”use” to call Wylbur into operation,

type ”help -p temp 84” to create file ”temp” for printing,

type ”help h” for instructions on how to print file ”temp”.

�
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POISCR CERN Program Library T604

Author(s) : C. Iselin Library: PGMLIB

Submitter : Submitted: 01.02.1982

Language : Fortran Revised:27.11.1984

Solution of Poisson’s or Laplace’s Equation in Two-Dimensional Regions

The POISCR program package consists of a set of programs designed for the solution of Poisson’s or
Laplace’s equation in two-dimensional regions. The programs have originally been written to solve magne-
tostatic problems, but they can equally well be used for other potential problems. Material properties may
be linear or non-linear. Polarized material (like permanent magnet material) is allowed.

Structure:

Complete PROGRAM package
User Entry Names: FORCCR, LATTCR, POISCR, TRIPCR
Files Referenced: As defined in the POISSON exec file. Unit 11, Unit 12

Usage:

See Long Write-up .

Source:

A program POISSON was originally written by R.F. Holsinger then working at LBL. It was based on an
earlier program TRIM by A. Winslow and on theoretical work by K. Halbach (LBL). The CERN Program
Library version POISCR is a revision of these programs by C. Iselin (CERN).
�
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LOREN4 CERN Program Library U101

Author(s) : TC Library: KERNLIB

Submitter : J. Zoll Submitted: 01.03.1968

Language : Fortran Revised:27.11.1984

Lorentz Transformation

This routine transforms momentum and energy of a particle from one Lorentz-frame to another.

Seen from the reference system �, the other system �0 has the velocity ~�, with ~� = ~�.

If a rest mass M is tied to system �0, with energy E and momentum ~P , we have:

~� = ~P=E; ~� = ~P=M;  = E=M:

The momentum and energy of a particle with mass m is

in system � : ~p and e =
p
p2 +m2,

in system �0 : ~p0 and e0 =
p
p02 +m2.

Structure:

SUBROUTINE subprogram
User Entry Names: LOREN4

Usage:

CALL LOREN4(S,A,X)

with the 4–vectors S = ( ~P ;E) and A = (~p; e) calculates the transformed 4–vector X = (~p0; e0).
LOREN4 contains one square-root to derive M from P and E.

Method:

If we split ~p = ~pL + ~pT into components parallel and normal to ~�, where

~pL =
~p ~�

�2
~�; ~pT = ~p� ~pL;

we can write the transformations as

~p0L =  ~pL � ~� e; ~p0T = ~pT ; e0 =  e� ~� ~p

and get

~p0 = ~p+ ( � 1)~pL � e ~�

= ~p+ ~� (( � 1)~p ~�=�2 � e)

= ~p+ ~� (~p ~�=( + 1)� e) (because of �2 = 2 � 1)

= ~p+ ~P (~p ~P=(E +M)� e)=M;

~e0 = e� ~� ~p
= (eE � ~p ~P )=M:

�
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LORENF CERN Program Library U102

Author(s) : V. Framery, L. Pape Library: KERNLIB

Submitter : Submitted: 01.03.1968

Language : Fortran Revised:16.09.1991

Lorentz Transformations

LORENF transforms the momentum 4-vector of a particle from the Lorentz-frame � to the frame �0 like
LOREN4 (U101); it is faster than LOREN4 because the rest-mass M of �0 is passed as an argument to save the
square root.

LORENB executes the inverse transformation.

Structure:

SUBROUTINE subprograms
User Entry Names: LORENF, LORENB

Usage:

CALL LORENF(SM,SP,PB,PF) forward transformation PB -> PF

CALL LORENB(SM,SP,PF,PB) backward transformation PF -> PB

with

SM Rest-mass M of system �0 withM 2 = E2 � P 2.

SP Momentum 4-vector (P;E) of �0 in �.

PB Momentum 4-vector (p; e) in �.

PF Momentum 4-vector (p0; e0) in �0.

Method:

For LORENF (cf. LOREN4 (U101)):

e0 = (eE � pP )=M

p0 = p� P (e+ e0)=(E +M)

because pP = eE � e0M and pP � e(E +M) = �M(e+ e0).

For LORENB:

e = (e0E + p0P )=M

p = p0 + P (e+ e0)=(E +M)

�
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RWIG3J CERN Program Library U111

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Wigner 3-j, 6-j, 9-j Symbols; Clebsch-Gordan, Racah W-, Jahn U-Coefficients

Function subprograms RWIG3J, DWIG3J; RWIG6J, DWIG6J; RWIG9J, DWIG9J; RCLEBG, DCLEBG; RRACAW,
DRACAW and RJAHNU, DJAHNU calculate the Wigner 3-j, 6-j and 9-j symbols, the Clebsch-Gordan coeffi-
cients, the Racah W -coefficients and the Jahn U -coefficients, respectively.

On CDC and Cray computers, the double-precision versions DWIG3J etc. are not available.

Structure:

FUNCTION subprograms
User Entry Names: RWIG3J, RWIG6J, RWIG9J, RCLEBG, RRACAW, RJAHNU

DWIG3J, DWIG6J, DWIG9J, DCLEBG, DRACAW, DJAHNU

Usage:

In any arithmetic expression, for t = R (type REAL), or t = D (type DOUBLE PRECISION),

tWIG3J(A,B,C,X,Y,Z) has the value of

 
a b c

x y z

!
;

tWIG6J(A,B,C,X,Y,Z) has the value of

(
a b c

x y z

)
;

tWIG9J(A,B,C,P,Q,R,X,Y,Z) has the value of

8><>:
a b c

p q r

x y z

9>=>;;

tCLEBG(A,B,C,X,Y,Z) has the value of (a b x y j a b c z);
tRACAW(A,B,C,D,E,F) has the value of W (a b c d ; e f);

tJAHNU(A,B,C,D,E,F) has the value of U(a b c d ; e f).

All the arguments must have integral or half-integral values (see Notes). They have the same type as the
function name. For definitions and notations see References.
The following relations hold (see Refs. 1 and 3):
Clebsch-Gordan coefficient (in terms of the Wigner 3-j symbol):

(a b x y j a b c z) = (�1)a�b�z p2c+ 1

 
a b c

x y �z

!
;

Racah W -coefficient (in terms of the Wigner 6-j symbol):

W (a b c d ; e f) = (�1)a+b+c+d
(
a b e

d c f

)
:

Jahn U -coefficient (in terms of the Wigner 6-j symbol and the Racah W -coefficient):

U(a b c d ; e f) = (�1)a+b+c+d
p
(2e+ 1)(2f + 1)

(
a b e

d c f

)
=

p
(2e+ 1)(2f + 1)W (a b c d ; e f):
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Method:

The Wigner 3-j symbol and the Clebsch-Gordan coefficient are calculated from formulas (5.1) and (5.10) of
Ref. 1, respectively. The Wigner 6-j symbol, the Racah W - and the Jahn U -coefficient are calculated from
formulas (5.23) and (5.24) of Ref. 1. In both cases, the factorials are replaced by their logarithms during
the calculation. The Wigner 9-j symbol is calculated from formula (5.37) of Ref. 1 in terms of Wigner 6-j
symbols.

Notes:

A Wigner-3j symbol

 
j1 j2 j3

m1 m2 m3

!
is considered to be zero unless simultaneously

(i) ji and mi have both either integral or half-integral values (each i),

(ii) ji � jmij � 0 (each i),

(iii) m1 +m2 +m3 = 0,

(iv) j1 � j2 �m3 is an integer,

(v) j1 + j2 + j3 is an integer and j1 + j2 � j3; j2 + j3 � j1; j3 + j1 � j2.

The conditions (v) are often denoted by �(j1 j2 j3) and are called the triangle relations.

For a Clebsch-Gordan coefficient (j1 j2m1m2 j j1 j2 j3m3), condition (iii) reads m1 + m2 = m3 and
condition (iv) disappears.

A Wigner-6j symbol

(
j1 j2 j3

l1 l2 l3

)
is considered to be zero unless simultaneously

(i) all ji and li have non-negative integral or half-integral values,

(ii) the four triangle relations �(j1 j2 j3); �(j1 l2 l3); �(l1 j2 l3); �(l1 l2 j3) hold.

A Wigner-9j symbol

8><>:
j11 j12 j13

j21 j22 j23

j31 j32 j33

9>=>; is considered to be zero unless simultaneously

(i) all jik have non-negative integral or half-integral values,

(ii) the arguments in each row and in each column satisfy the triangle relations.

Restrictions:

The sum of arguments in any triangle relationmust not exceed 100. No test is made.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981).

2. A.F. Nikiforov, V.B. Uvarov and Yu.L. Levitan, Tables of Racah coefficients (Pergamon Press, Oxford
1965).

3. M. Rotenberg, R. Bivins, N. Metropolis and J.K. Wooten, Jr., The 3-j and 6-j symbols (Crosby
Lockwood, London 1959).

4. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum
(World Scientific, Singapore 1988).

�
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RTCLGN CERN Program Library U112

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Clebsch-Gordan Coefficients in Rational Form

Function subprogram RTCLGN calculates the (signed) square of the Clebsch-Gordan coefficient in rational
form and in powers of prime numbers. In terms of the Wigner-3j symbol, this coefficient is defined by

C = (j1 j2m1m2 j j1 j2 j3m3) = (�1)j1�j2+m3

p
2j3 + 1

 
j1 j2 j3

m1 m2 �m3

!
:

All ji and mi must have integral or half-integral values (see Notes). For definitions and notations see Ref.
1.

On computers other than CDC and Cray, only the double-precision version DTCLGN is available. On CDC
and Cray computers, only the single-precision version RTCLGN is available.

Structure:

SUBROUTINE subprogram
User Entry Names: RTCLGN
Files Referenced: Unit 6

Usage:

For t = R (type REAL), t = D (type DOUBLE PRECISION),

CALL tTCLGN(JJ1,JJ2,JJ3,MM1,MM2,MM3,RNUM,RDEN,KPEX)

JJ1,JJ2,JJ3 (INTEGER) The j-parameters multiplied by two, i.e. JJ1= 2j1 etc.

MM1,MM2,MM3 (INTEGER) The m-parameters multiplied by two, i.e. MM1= 2m1 etc.

RNUM (type according to t) Contains, on exit, the signed numerator of C2.

RDEN (type according to t) Contains, on exit, the denominator of C2.

KPEX (INTEGER) Array of length 40 at least. Contains, on exit, the exponents kn in the expression

C2 =
40Y
n=1

pknn ;

where p1 = 2; p2 = 3; p3 = 5; : : : ; p40 = 173 are the first 40 prime numbers.

Notes:

A Clebsch-Gordan coefficient (j1 j2m1m2 j j1 j2 j3m3) is considered to be zero unless simultaneously

(i) ji and mi have both either integral or half-integral values (each i),

(ii) ji � jmij � 0 (each i),

(iii) m1 +m2 = m3,

(iv) j1 + j2 + j3 is an integer and j1 + j2 � j3; j2 + j3 � j1; j3 + j1 � j2.

In this case, RNUM = 0, RDEN = 1 or DNUM = 0, DDEN = 1, respectively, and KPEX(n) = 0; (n = 1; : : : ; 40).
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Source:

This subroutine is based on an earlier version by H. Yoshiki.

Error handling:

Error U112.1: The calculation requires a prime number pn with n > 40.
In this case, DNUM = 0, DDEN = 1, KPEX(n) = 0; (n = 1; : : : ; 40). A message is written on Unit 6 unless
subroutine MTLSET (N002) has been called.

References:

1. R.D. Cowan, The theory of atomic structure and spectra, (Univ. of California Press, Berkeley CA
1981) 142–144

�
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RDJMNB CERN Program Library U501

Author(s) : K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.02.1989

Language : Fortran Revised:01.12.1994

Beta-Term in Wigner’s D-Function

Function subprograms RDJMNB and DDJMNB calculate the �-term d
j

mn(�) in the matrix element of the finite
rotation operator (Wigner’s D-function)

Dj

mn
(�; �; ) = e�im� dj

mn
(�) ein

by using the formula (Ref. 1, No. 4.3.1(3))

djmn(�) = (�1)j+m
p
(j +m)!(j �m)!(j + n)!(j � n)! �

X
k

(�1)k cos2k�m�n(1
2
�) sin2j+m+n�2k(1

2
�)

k!(j +m� k)!(j + n � k)!(k �m� n)!

for arbitrary (either all integer or all half-integer) values of j;m; n such that j � 0; jmj � j and jnj � j.
The summation over k runs from max(0; m+ n) to min(j +m; j + n).
On computers other than CDC or Cray, only the double-precision version DDJMNB is available. On CDC and
Cray computers, only the single-precision version RDJMNB is available.

Structure:

FUNCTION subprograms
User Entry Names: RDJMNB, DDJMNB
Obsolete User Entry Names: DJMNB � RDJMNB

Files Referenced: Unit 6

External References: MTLMTR (N002), ABEND (Z035)

Usage:

In any arithmetic expression,

RDJMNB(AJ,AM,AN,BETA) or DDJMNB(AJ,AM,AN,BETA) has the value d
j

mn(�),

where AJ = j, AM = m, AN = n and BETA = �. RDJMNB is of type REAL, DDJMNB is of type DOUBLE

PRECISION, and AJ, AM, AN, BETA have the same type as the function name. BETA has to be given in
degrees.

Restrictions:

0 � AJ � 25, jAMj � AJ, jANj � AJ, 0 � BETA � 360.

Accuracy:

Approximately full single- or double-precision machine accuracy, at least for small values of the indices.

Error handling:

Error U501.1: If any of the restrictions is not satisfied, the function value is set equal to zero, and a message
is written on Unit 6, unless subroutine MTLSET (N002) has been called.

References:

1. D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, Quantum theory of angular momentum,
(World Scientific, Singapore 1988) 76

�
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RNDM CERN Program Library V104

Author(s) : CDC: H. von Eicken, IBM: T. Lindelöf Library: KERNLIB

Submitter : Submitted: 07.12.1970

Language : Assembler Revised:15.09.1978

Uniform Random Numbers

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

RNDM generates uniformly distributed pseudo-random numbers in the interval (0,1) in type REAL and in the
interval (1; 247� 1) (CDC) or (1; 231� 1) (IBM) in type INTEGER. The CDC version has a period of more
than 1013. The IBM period, however, is only about 5 � 108 which may not be good enough for some
calculations. In that case RNDM2 (V107) should be used instead.

Structure:

SUBROUTINE subprogram
User Entry Names: IRNDM, RNDM, RDMIN, RDMOUT

Usage:

Y = RNDM(X)

where X is a dummy argument (see Notes), sets Y to a pseudo-random number in the interval (0,1). X and Y

are of type REAL.

I = IRNDM(X)

where X is a dummy argument (see Notes), sets I to an integer pseudo-random number in the interval
(1; 247� 1) on CDC, (1; 231� 1) on IBM. X is of type REAL and I is of type INTEGER.

CALL RDMOUT(SEED)

replaces SEED by the current value of the integer pseudo-random number. This SEED may then be used to
restart the sequence at this point, by a call to RDMIN. SEED is of type REAL.

CALL RDMIN(SEED)

replaces the current value of the integer pseudo-random number by the value of the variable SEED. SEED is of
type REAL. The value of SEED should not be chosen by the user but should be obtained by a previous call to
RDMOUT. If this is not complied with, the numbers generated may have serious defects in their randomness.

Method:

CDC:
Consider the sequence:

ri = �ri�1( mod 247) for i = 1; 2; : : :

with r0 = 2000 0000 0110 6047 16258

and � = 2000 0000 3432 7724 46158
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where r0 and � are the unnormalised floating-point representation of the starting number and 515 respec-
tively. The j-th floating-point numberRj is obtained by packing rj with an exponent (�47) and normalising
it. This ensures that Rj falls in the interval (0,1).

The product �rj�1 is generated in a 96 bit accumulator. The integer number Nj returned is the low order 47
bits of the contents of this accumulator, except that the right-most 11 bits are replaced by those occupying
bit positions 48-58. This replacement is done in order to increase the time period of the low order bits.

IBM: See write-up for RNDM2 (V107).

Notes:

While the argument is dummy, in the sense that the generator makes no use of it, it must be noted that if a
reference to RNDM occurs

� more than once within a Fortran statement, the argument to it should be different in each case;

� in a DO-loop, the argument must depend either directly or indirectly on the index of this loop.

These rules must be observed since the compilers, in their attempt to optimise the object code, assume that
functions called with identical arguments return the same function value.
�
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NRAN CERN Program Library V105

Author(s) : T. Lindelöf, F. James Library: MATHLIB

Submitter : Submitted: 15.06.1976

Language : CDC: Compass, IBM: Fortran Revised:

Arrays of Uniform Random Numbers

OBSOLETE
Please note that this routine has been obsoleted in CNL 215. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement:
RANMAR (V113) or RANECU (V114) or RANLUX (V115)

NRAN on CDC is about 4 times faster than RNDM when ’many’ uniformly distributed random numbers are to
be generated at once.

NRAN on IBM is not recommended. It is merely a Fortran interface to RNDM. Thus this description applies
only to the CDC version.

Structure:

SUBROUTINE subprogram
User Entry Names: NRAN, NRANIN, NRANUT

Usage:

CALL NRAN(VEC,N)

fills the array VEC (of length N at least) with N independent pseudo random numbers uniformly distributed in
the interval (0,1), the end-points excluded. The other two entries may be used to retrieve and set the ’seed’
as follows:

CALL NRANUT(SEED)

returns in SEED the current value of a quantitity which is changed after each call to NRAN and upon which
the future random number sequence depends. Its initial default value is
171700000000000000018.

CALL NRANIN(SEED)

presets the above-mentioned quantity to SEED. SEED may be any number of the form
1717xxxxxxxxxxxxxxxy8 where y must be 1 or 5 and the x’s any octal digits.

Method:

Multiplicative congruential method with the multiplier 200011706736334577258. The sequence generated
is independent of that of RNDM (V104) so that both may be used together.

References:

1. Computing 6, (1970) 121.

�
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RANMAR CERN Program Library V113

Author(s) : G. Marsaglia, A. Zaman Library: MATHLIB

Submitter : F. Carminati, F. James Submitted: 08.06.1989

Language : Fortran Revised:

Fast Uniform Random Number Generator

RANMAR generates a sequence of 32-bit floating-point random numbers uniformly distributed in the interval
(0,1), the end points excluded. These numbers are returned in a vector. The period is about 1043 and the
quality is good but it fails some tests. For better quality use RANLUX (V115), which is slower.

Several independent sequences can be initialized and used in the same run.

Structure:

SUBROUTINE subprograms
User Entry Names: RMMAR, RMMAQ, RANMAR, RMARIN, RMARUT
COMMON Block Names and Length: /RANMA1/ 104, /RANMA2/ 104

Usage:

For a single sequence:

CALL RANMAR(VEC,LEN)

VEC (REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.

LEN (INTEGER) Number of random numbers to be generated. Unchanged on exit.

The initialization is made by

CALL RMARIN(IJKLIN,NTOTIN,NTO2IN)

IJKLIN (INTEGER) Seed from which to start the sequence. Every integer number from 1 to 900 000

000 originates an independent sequence of random numbers with operand of 2144 (about 1043).

NTOTIN (INTEGER) Number (mod 109) of random number generated.

NTO2IN (INTEGER) Billions (109) of random numbers generated.

The arguments NTOTIN and NTO2IN are used to restart the generation from a given point by skipping over
already performed extractions. They are returned by RMARUT and should not be touched by the user.

CALL RMARUT(IJKLUT,NTOTUT,NTO2UT)

IJKLUT (INTEGER) Seed from which the sequence was started.

NTOTUT (INTEGER) Number (mod 109) of random number generated so far.

NTO2UT (INTEGER) Billions (109) of random numbers generated so far.
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For multiple sequences:

CALL RMMAR(VEC,LEN,ISEQ)

VEC (REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.

LEN (INTEGER) Number of random numbers to be generated. Unchanged on exit.

ISEQ (INTEGER) Number of the independent sequence from which the LEN numbers should be ex-
tracted. If � 0, the last valid sequence explicitely defined is used. Unchanged on exit.

Several independent sequences can be defined and used. Each sequence must be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a buffer of space to handle only one
sequence. If more sequences are needed, then a bigger buffer should be allocated in the main program
defining the COMMON block /RANMA2/ to the appropriate size. The space needed is 1 word + 103 words for
every random sequence initialized.

The sequences are initialized by

CALL RMMAQ(ISEED,ISEQ,CHOPT)

ISEED (INTEGER) Array of length 3 or 103 according to the option specified in CHOPT. The first location
contains the integer seed from which to start the sequence. Every integer number from 1 to 900

000 000 originates an independent sequence of random numbers, with a period of 2144 (about
1043). The second and the third location contain numbers used internally to re-initialize the
generator by skipping and should not be touched by the user. The other numbers are a snapshot
of the complete status of the generator. If saved, they can be used to restart the generator without
skipping over numbers already generated.

ISEQ (INTEGER) This variable contains, on entry, the number of the independent random number se-
quence which should be addressed by the present call. If � 0, then the last valid sequence used
will be addressed either for a save or a store. If option 'R' is specified, on exit the variable will
contain the sequence actually used.

CHOPT (CHARACTER) Specifies the action which RMMAQ should take. Possible options are:

' ' (Blank) The sequence number 1 will be initialized with a default seed. All arguments are
ignored.

'R' Get the present status of the generator. If option 'V' is also present, then the complete
status of the generator will be dumped in the array ISEED. This options will use 103 words
in ISEED but has the advantage that the generator can be restarted immediately without
skipping numbers. If option 'V' is not present, then only 3 words will be used but the
generator will have to be restarted by skipping the number of events generated so far.

'S' Set the status of the generator to a previously saved state. If option 'V' is also present,
then an array ISEED of 103 words is expected, which comes from a previous call to the
routine with option 'RV'. This kind of initialization is very fast. If the option 'V' is not
specified then the generator will be restarted regenerating the same number of random
extractions it generated at the time the status was saved. In this case only the first 3
locations of ISEED will be used.

'V' Vector option. 103 words will be saved/restored. This allows to restart the generator
without skipping over numbers already generated.
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For RMMAR one seed is needed to initialize the random number, but it is a one-way initialization. The seed
cannot be output and used to restart the sequence. In order to restart the generation, the number of random
numbers generated is recorded by the generator. The sequence is restarted either generating this many
random numbers or saving and restoring a vector of 103 words. The number of generations is stored in the
two array elements ISEED(2),ISEED(3) as the period is bigger than the maximum number which can be
represented by a 32-bit integer.

Timing:

Time in �sec for extractions and skips:

Extractions 1000=105

per call 1 4 16 128 skips

APOLLO 10000 7.4 6.0 5.6 5.5 15/4.6

APOLLO 4000 69 55 51 50 120/73

IBM390E 4.3 2.5 2.0 1.9 7.4/1.2

CRAY X-MP/48 4.1 2.1 1.7 1.5 6.9/1.6

VAX8650 14 7.3 5.9 5.8 4.7/4.6

References:

1. G. Marsaglia and A. Zaman, Toward a Universal Random Number Generator, Florida State University
FSU-SCRI-87-50 (1987).

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329–
344.
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RANECU CERN Program Library V114

Author(s) : P. l’Ecuyer Library: MATHLIB

Submitter : F. Carminati Submitted: 27.02.1989

Language : Fortran Revised:

Uniform Random Number Generator

RANECU generates a sequence of uniformly distributed random numbers in the interval (0,1). The numbers
are returned in a vector. Several independent sequences can be initialized and used in the same run.

Structure:

SUBROUTINE Subprograms
User Entry Names: RANECU, RANECQ
COMMON Block Names and Lengths: /RANEC1/ 402

Usage:

CALL RANECU(VEC,LEN,ISEQ)

VEC (REAL) Array of length LEN at least. On exit, it will contain the in (0,1) uniformly distributed
random numbers.

LEN (INTEGER) Number of random numbers wanted. Unchanged on exit.

ISEQ (INTEGER) Number of the independent sequence from which the LEN numbers should be ex-
tracted. If ISEQ � 0 then the extraction will be made from the sequence used last. Unchanged on
exit.

Several independent sequences can be defined and used. Each sequence MUST be initialized by the user,
otherwise the result is unpredictable. By default the routine contains a space buffer to handle only one
sequence. If more sequences are needed, then a bigger buffer should be allocated in the calling program
defining the COMMON block /RANEC1/ appropriately. Two words have to be allocated plus four words for
every sequence initialized.

Twointeger seeds are used to initialize a sequence. Not all pairs of integers define a good random sequence or
one which is independent from others. Sections of the same random sequence can be defined as independent
sequences. The period of the generator is 260 � 1018. A generation has been performed in order to provide
the seeds to start any of the generated sections. There are 100 possible seed pairs and they are all 109

numbers apart. Thus a sequence started from one of the seed pairs, after 109 numbers will start generating
the next one. Each of these sequences is of the same order of magnitude as the basic sequence offered by
RNDM (V104). Longer sequences will be generated and the corresponding seeds made available to users.
Note that, while the numbers generated by the default sequence will always be the same, the introduction of
more sequences may modify some of them. In order to handle the initialization of the package, the following
routine is provided:
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CALL RANECQ(ISEED1,ISEED2,ISEQ,CHOPT)

ISEED1 (INTEGER) On entry, it contains the first integer seed from which to start the sequence. Un-
changed on exit.

ISEED2 (INTEGER) On entry, it contains the second seed from which to start the sequence. Unchanged
on exit.

ISEQ (INTEGER) On entry, it contains the number of the independent sequence of random numbers
to be addressed by this call. If ISEQ � 0, then the last valid sequence used will be addressed
either for a save or a store. In case the option 'R' is specified, on output the variable will
contain the sequence actually used.

CHOPT (CHARACTER*1) A character specifying the action which RANECQ should take. Possible options
are:

' ' If 1 � ISEQ � 100, the sequence number ISEQ will be initialized with the default
seeds of the pre-computed independent sequence number ISEQ. ISEED1 and ISEED2

are ignored.

If ISEQ � 0 or ISEQ > 100, then sequence number 1 will be initialized with the default
seeds. ISEED1 and ISEED2 are ignored.

'R' Get the present status of the generator. The two integer seeds ISEED1 and ISEED2 will
be returned for sequence ISEQ.

'S' Set the status of the generator to a previously saved state. The two integer seeds ISEED1
and ISEED2 will be used to restart the generator for sequence ISEQ.

'Q' Get the pre-generated seeds for ISEQ (1 � ISEQ � 100). There are 100 pre-generated
sequences each one will generate 109 numbers before reproducing the following one.

Timing:

Time in �sec for extractions:

Extractions

per call 1 4 16 128

Apollo 10000 6.2 4.4 3.9 3.8

Apollo 4000 52 37 34 33

IBM 3090E 4.9 2.9 2.5 2.4

IBM 3090EVF 3.4 2.3 2.0 1.8

Cray X-MP/48 4.2 2.2 1.7 1.5

VAX 8650 19 13 12 11.6

References:

1. P. l’Ecuyer, Efficient and Portable Random Number Generators, Comm. ACM 31 (1988) 742.

2. F. James, A Review of Pseudorandom Number Generators, Computer Phys. Comm. 60 (1990) 329–
344.
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RANLUX CERN Program Library V115

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.03.1994

Language : Fortran Revised:

Uniform Random Numbers of Guaranteed Quality

RANLUX generates pseudorandom numbers uniformly distributed in the interval (0,1), the end points ex-
cluded. Each call produces an array of single-precision real numbers of which 24 bits of mantissa are
random. The user can choose a luxury level which guarantees the quality required for his application. The
lowest luxury level (zero) gives a fast generator which will fail some sophisticated tests of randomness; The
highest level (four) is about five times slower but guarantees complete randomness. In all cases the period is
greater than 10165. Independent subsequences can be generated. Entries are provided for initialization and
checkpointing.

Structure:

SUBROUTINE Subprograms
User Entry Names: RANLUX, RLUXGO, RLUXAT, RLUXIN, RLUXUT

Usage:

CALL RANLUX(RVEC,LEN)

returns a vector RVEC of LEN 32-bit random floating point numbers in the interval (0,1), the end points
excluded. RVEC is an array of type REAL and of length LEN at least.

Luxury levels:

For simplicity, five standard luxury levels may be chosen (t is the time factor relative to level zero; for the
definition of p, see References). Ref. 1. explains the method, Ref. 2. describes the Fortran implementation
in more detail.

Level p t

0 24 1 Equivalent to the original RCARRY of Marsaglia and Zaman, very
long period, but fails many tests.

1 48 1.5 Considerable improvement in quality over level 0, now passes the
gap test, but still fails spectral test.

2 97 2 Passes all known tests, but theoretically still defective.

3 223 3 DEFAULT VALUE. Any theoretically possible correlations have
very small chance of being observed.

4 389 5 Highest possible luxury, all 24 bits chaotic.

As a rough indication of timing, RNDM (V104) is about t=0.5, RANMAR (V113) t=1, and RANECU (V114) t=2.
Concerning the quality scale, RNDM is maybe good enough for moving fish around on a screen saver (if you
are not afraid of getting some diagonal lines on your screen), RANMAR and RANECU both have quality which
probably corresponds to a luxury level between 1 and 2, but this is based only on empirical testing and true
quality may be lower.

No initialization is necessary if the user wants default values. Otherwise the following are available:

CALL RLUXGO(LUX,INT,K1,K2)
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When K1 = K2 = 0, this call initializes the RANLUX generator from one 32-bit integer INT and sets the
Luxury Level. If LUX is an integer between 0 and 4, it sets the luxury level as defined above. If LUX > 24,
it is taken as the value of p, which then can take on other values than those given in the table. If INT = 0,
default initialization is used and only the luxury level is set by LUX. Otherwise, every possible value of INT
gives rise to a valid, independent sequence which will not overlap any sequence initialized with any other
value of INT. The integers K1 and K2 are used for restarting the generator from a break point saved by
RLUXAT.

CALL RLUXAT(LUX,INT,K1,K2)

dumps the four integers which can be used to restart the generator at this point by calling RLUXGO. RANLUX
will then skip over K1 + 109�K2 numbers to reach the break point. A more efficient but less convenient
method for restarting is offered by RLUXIN and RLUXUT.

CALL RLUXIN(IVEC)

restarts the generator from vector IVEC of 25 32-bit integers (see RLUXUT). IVEC is an array of type INTEGER
and of length 25 at least.

CALL RLUXUT(IVEC)

outputs the current values of the 25 32-bit integer seeds, to be used for restarting.

References:

1. M. Lüscher, A portable high-quality random number generator for lattice field theory simulations,
Computer Phys. Commun. 79 (1994), 100–110.

2. F. James, RANLUX: A Fortran implementation of the high-quality pseudorandom number generator
of Lüscher, Computer Phys. Commun. 79 (1994) 111–114.
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RM48 CERN Program Library V116

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.03.1994

Language : Fortran Revised:

Double Precision Uniform Random Numbers

RM48 generates pseudorandom numbers using a double-precision (64-bit) adaptation of RANMAR (V113). The
floating-point numbers in the interval (0,1), the end points excluded, have 48 significant bits of mantissa
(additional bits of mantissa, if supported by the hardware, are zero). Both the code and the results are
portable, provided the floating-point mode is adapted to the computer being used (for example, single-
precision mode on 64-bit machines, double-precision mode on 32-bit machines).

Structure:

SUBROUTINE Subprograms
User Entry Names: RM48, RM48IN, RM48UT

Usage:

CALL RM48(RVEC,LEN)

returns a vector RVEC of LEN 64-bit random floating-point numbers in (0,1), the end points excluded. RVEC
is an array of length LEN at least. It is of type DOUBLE PRECISION on 32-bit machines, and of type REAL

otherwise.

CALL RM48IN(I1,N1,N2)

initializes the generator from one 32-bit integer I1, and number counts N1, N2 (for initializing, set N1 = N2 = 0,
but to restart a previously generated sequence, use values output by RM48UT).

CALL RM48UT(I1,N1,N2)

outputs the value of the original seed and the two number counts, to be used for restarting by initializing to
I1 and skipping 100000000 � N2+ N1 numbers.

Method:

The method is that of RANMAR (V113).
�
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RNORML CERN Program Library V120

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.03.1994

Language : Fortran Revised:

Gaussian-distributed Random Numbers

RNORML and RNORMX generate (vectors of) single-precision random numbers in a Gaussian distribution of
mean zero and variance one. RNORML uses the uniform generator RANMAR underneath, and RNORMX allows
the user to choose the uniform generator to be used underneath. The code is portable Fortran, but the results
are not guaranteed to be identical on all platforms because there is branch on a floating-point compare which
may (very rarely) cause the sequence produced on a given platform to be out of step with that of a different
platform.

Structure:

SUBROUTINE Subprograms
User Entry Names: RNORML, RNORMX

Usage:

CALL RNORML(RVEC,LEN)

generates a vector RVEC of LEN Gaussian-distributed random numbers. RVEC is an array of type REAL and
of length LEN at least.

The uniform generator used is RANMAR, so it may be initialized by calling RMARIN (V113), but beware that
this also initializes RANMAR (V113)!

An alternative subroutine is supplied which allows the user to select the underlying uniform generator, for
example RANLUX (V115).

EXTERNAL urng

...

CALL RNORMX(RVEC,LEN,urng)

where urng is a uniform random number generator of standard calling sequence: CALL urng(VEC,LENG).

For example,

DIMENSION RVEC(10)

LEN = 10

EXTERNAL RANLUX

CALL RLUXGO(4,7675039,0,0)

DO ...

CALL RNORMX(RVEC,LEN,RANLUX)

would generate vectors of 10 Gaussian-distributed pseudorandom numbers of the highest quality. Note that
initialization is now performed by the initializing entry for RANLUX, which is RLUXGO.

Method:

The method used to transform uniform deviates to Gaussian deviates is that known as the ratio of random
deviates, discovered by Kinderman and Monahan, and improved by Leva (see References). The generation
of one Gaussian random number requires at least two, and on average 2.74 uniform random numbers, as
well as one floating-point division and on average 0.232 logarithm evaluations.
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References:

1. J.L. Leva, A fast normal random number generator, ACM Trans. Math. Softw. 18 (1992) 449–453.

2. J.L. Leva, Algorithm 712. A normal random number generator, ACM Trans. Math. Softw. 18 (1992)
454–455.
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CORSET CERN Program Library V122

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.03.1994

Language : Fortran Revised:

Correlated Gaussian-distributed Random Numbers

CORGEN generates vectors of single-precision random numbers in a Gaussian distribution of mean zero and
covariance matrix V. The generator must first be set up by a call to CORSET which transforms the covariance
matrix V to an appropriate square rootmatrix C which is then used by CORGEN. CORGEN uses the Gaussian
generator RNORML (V120) underneath, which in turn uses the uniform generator RANMAR (V113) underneath,
so initialization is performed as in V113, but beware that this also initializes both RANMAR and RNORML! The
code is portable Fortran, but the results are not guaranteed to be identical on all platforms as explained in
RNORML (V120).

Structure:

SUBROUTINE Subprograms
User Entry Names: CORSET, CORGEN

Usage:

DIMENSION V(n,n), C(n,n), X(n)

CALL CORSET(V,C,n)

DO ...

CALL CORGEN(C,X,n)

The call to CORSET transforms covariance matrix V to C. The call to CORGEN uses C to generate vector X of
correlated Gaussian variables with covariance matrix V.

The limitation n � 100 is imposed by the dimension of an intermediate storage vector in CORSET.

Note that CORSET takes longer than CORGEN (for medium to large matrices). If it is desired to generate
numbers according to a few different matrices, then each pair Vi, Ci must be separately dimensioned and
saved as long as it is needed.

Method:

The square root method seems to be an old one whose origins are not known to the author (Ref. 1, p. 1182).

References:

1. F. James, Monte Carlo theory and practice, Rep. Prog. Phys. 43 (1980) 1145–1189.
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RAN3D CERN Program Library V130

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.09.1978

Language : Fortran Revised:

Random Three-Dimensional Vectors

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RN3DIM (V131)

RAN3D generates random vectors, uniformly distributed over the surface of a sphere of a given radius.

Structure:

SUBROUTINE subprogram
User Entry Names: RAN3D
External References: NRAN (V105)

Usage:

CALL RAN3D(X,Y,Z,XLONG)

X,Y,Z (REAL) A random 3-dimensional vector of length XLONG.

XLONG (REAL) Length of the vector (to be specified on entry).

Method:

A random vector in the unit cube is generated using NRAN (V105) and is rejected if it lies outside the unit
sphere. This rejection technique uses on average about 6 random numbers per vector, where only two are
needed in principle. However, it is faster than the classical two-number technique which requires a square
root, a sine, and a cosine.
�
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RN3DIM CERN Program Library V131

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 22.04.1996

Language : Fortran Revised:

Random Two- and Three-Dimensional Vectors

RN3DIM generates random vectors, uniformly distributed over the surface of a sphere of given radius.
RN2DIM generates random vectors, uniformly distributed over the circumference of a circle of given radius.

Structure:

SUBROUTINE subprogram
User Entry Names: RN2DIM, RN3DIM
External References: RANLUX (V115)

Usage:

CALL RN3DIM(X,Y,Z,XLONG)

X,Y,Z (REAL) A random 3-dimensional vector of length XLONG.

XLONG (REAL) Length of the vector (to be specified on entry).

CALL RN2DIM(X,Y,XLONG)

X,Y (REAL) A random 2-dimensional vector of length XLONG.

XLONG (REAL) Length of the vector (to be specified on entry).

Method:

A random vector in the unit cube is generated using RANLUX (V115) and is rejected if it lies outside the unit
sphere. In the case of RN3DIM, this rejection technique uses on average about 6 random numbers per vector,
where only two are needed in principle. However, it is faster than the classical two-number technique which
requires a square root, a sine, and a cosine.
�
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RNGAMA CERN Program Library V135

Author(s) : F. James, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Gamma or Chi-Square Random Numbers

Function subprogram RANGAM generates a positive random number x according to the gamma distribution
with parameter p > 0, i.e., according to the density

P (t < x < t + dt) =
1

�(p)
tp�1e�tdt:

A special case is the �2-distribution withN degrees of freedom

�2(t < 2x < t + dt) =
1p

2N �(1
2
N)

t
1

2
N�1 e�

1

2
t dt:

Structure:

FUNCTION subprogram
User Entry Names: RNGAMA
External References: RANLUX (V115), RNORMX (V120)

Usage:

In any arithmetic expression,

RNGAMA(P)

has the value of a gamma-distributed random number, where P > 0 is of type REAL. The value of P may
vary from call to call without influencing the efficiency.

Method:

For integral values of p � 15, the logarithm of the product of p uniform random numbers is used. For any
value of p > 15, the Wilson-Hilferty approximation (a transformed normal distribution) is used. For all
other p, Johnk’s algorithm is used.

Notes:

The routine is fast for small integer values of p, and for p > 15, (one Gaussian random number and one
square root, plus a few multiplications). Non-integral values of p < 15 are rather slow.

Examples:

CHI2 = 2*RNGAMA(0.5*N)

sets CHI2 to a random number distributed as �2 with N degrees of freedom.
�
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RNPSSN CERN Program Library V136

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:10.05.1995

Poisson Random Numbers

Subroutine subprogram POISSN generates a random integer N > 0 according to the Poisson distribution

Prob(N) =
1

N !
e���N ;

where � > 0 (the mean) is a constant specified by the user.

Structure:

SUBROUTINE subprogram
User Entry Names: RNPSSN, RNPSET
External References: RANLUX (V115), RNORMX (V120)

Usage:

CALL RNPSSN(AMU,N,IERR)

AMU (REAL) Mean �.

N (INTEGER) The generated random number N , Poisson-distributed, with mean AMU.

IERR (INTEGER) Error flag.
= 0 : Normal case.
= 1 : AMU � 0.

For AMU > AMAX, a (faster) normal approximation is made. The default value for AMAX is AMAX = 88:0. It
can be reset (to smaller values only) by

CALL RNPSET(AMAX)

Timing:

Time increases with � roughly as �0:7.
�
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RNBNML CERN Program Library V137

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Binomial Random Numbers

Subroutine subprogram RNBNML generates a random integer N > 0 according to the binomial distribution

Prob(N = n) =

�
M

n

�
Pn (1� P )M�n

where the ’sample size’ M > 0 and the probabilityP (0 � P � 1) are specified by the user.

Structure:

SUBROUTINE subprogram
User Entry Names: RNBNML
External References: RANLUX (V115)

Usage:

CALL RNBNML(M,P,N,IERR)

M (INTEGER) Sample size M .

P (REAL) Probability P .

N (INTEGER) The generated random number N , binomially distributed in the interval 0 � N �M

with mean P �M .

IERR (INTEGER) Error flag.
= 0 : Normal case,
= 1 : P � 0 or P � 1.

Notes:

RNBNML should not be used when M is ’large’ (say> 100). The normal approximation is then recommended
instead (with mean P � M+ 0:5 and standard deviation

p
M � P � (1� P)).

�
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RNMNML CERN Program Library V138

Author(s) : D. Drijard, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 15.10.1994

Language : Fortran Revised:

Multinomial Random Numbers

Subroutine subprogram RNMNML generates a vector of random integers ni > 0 (i = 1; 2; : : : ; N) with
probabilities pi according to the multinomial distribution

Prob(n1; n2; : : : ; nN) =
(n1 + n2 + � � �+ nN )!

n1!n2! � � � nN ! pn11 pn22 � � � pnN
N
:

Structure:

SUBROUTINE subprogram
User Entry Names: RNMNML
External References: RANLUX (V115)

Usage:

CALL RNMNML(N,NSUM,PCUM,NVEC,IERR)

N (INTEGER) Number N of random integers ni requested.

NSUM (INTEGER)
P

N

i=1 ni, specified by the user.

PCUM (REAL) One-dimensional array of length� N. Must contains, on entry, the (normalized) cumula-
tive channel probabilities

P
i

j=1 pj in PCUM(i) (i= 1; : : : ; N). In particular, PCUM(N) = 1.

NVEC (INTEGER) One-dimensional array of length� N. On exit, NVEC(i),(i = 1, : : : ,N) contains
the generated random integers.

IERR Error flag.
= 0 : Normal case,
= 1 : PCUM(i) < PCUM(i� 1) for one i al least,
= 2 : PCUM(N) 6= 1.

Notes:

For N = 2, use RNBNML (V137).
�
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RNHRAN CERN Program Library V149

Author(s) : F. James, K.S. Kölbig Library: MATHLIB

Submitter : Submitted: 20.03.1996

Language : Fortran Revised:

Random Numbers According to Any Histogram

RNHRAN generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,
FUNLUX (V152) should be used instead.

Structure:

SUBROUTINE subprograms
User Entry Names: RNHRAN, RNHPRE
Files Referenced: Printer
External References: LOCATR (E106), RANLUX (V115)

Usage:

CALL RNHPRE(Y,NBINS) (once for each histogram)

CALL RNHRAN(Y,NBINS,XLO,XWID,XRAN) (for each random number)

Y Array of length NBINS at least containing the desired distribution as histogram bin contents on
input to RNHPRE.

NBINS Number of bins.

XLO Lower edge of first bin.

XWID Bin width.

XRAN A random number returned by RNHRAN.

Method:

A uniform random number is generated using RANLUX (V115). The uniform number is then transformed to
the user’s distribution using the cumulative probability distribution constructed from his histogram. The cu-
mulative distribution is inverted using a binary search for the nearest bin boundary and a linear interpolation
within the bin. RNHRAN therefore generates a constant density within each bin.

Notes:

RNHPRE changes the values Y to form the cumulative distribution which is needed by RNHRAN. If Y already
contains the cumulative distribution rather than the probability density, then RNHPRE should not be called,
but in that case Y(NBINS) must be exactly equal to one. Numbers may be drawn from several different
distributions in the same run by calling RNHRAN with different arrays Y1, Y2, etc. and (if desired) different
values of NBINS, XLO, XWID (but always the same values for a given array Y). The routine RNHPRE should be
used to initialize each array Yi.
The performance of the above method is nearly independent of the shape of the function or number of bins.

Error handling:

If the the input data to RNHPRE are not valid (some values negative or all values zero), an error message is
printed, the input values are printed, and zero is returned instead of a random number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.
If RNHPRE is not called, and the input data are not already in cumulative form, RNHRAN performs the initial-
ization itself and prints a warning message. RNHRAN recognizes that the data are not in cumulative form if
Y(NBINS) 6= 1.
�
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HISRAN CERN Program Library V150

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 15.09.1978

Language : Fortran Revised:

Random Numbers According to Any Histogram

OBSOLETE
Please note that this routine has been obsoleted in CNL 223. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: RNHRAN (V149)

HISRAN generates random numbers distributed according to any empirical (one-dimensional) distribution.
The distribution is supplied in the form of a histogram. If the distribution is known in functional form,
FUNRAN (V151) should be used instead.

Structure:

SUBROUTINE subprograms
User Entry Names: HISRAN, HISPRE
Files Referenced: Printer
External References: LOCATR (E106), RNDM (V104)

Usage:

CALL HISPRE(Y,NBINS) (once for each histogram)

CALL HISRAN(Y,NBINS,XLO,XWID,XRAN) (for each random number)

Y Array of length NBINS at least containing the desired distribution as histogram bin contents on
input to HISPRE.

NBINS Number of bins.

XLO Lower edge of first bin.

XWID Bin width.

XRAN A random number returned by HISRAN.

Method:

A uniform random number is generated using RNDM (V104). (The user may therefore use RDMOUT and
RDMIN (V104) to restart a run.) The uniform number is then transformed to the user’s distribution using the
cumulative probability distribution constructed from his histogram. The cumulative distribution is inverted
using a binary search for the nearest bin boundary and a linear interpolation within the bin. HISRAN therefore
generates a constant density within each bin.

Notes:

HISPRE changes the values Y to form the cumulative distribution which is needed by HISRAN. If Y already
contains the cumulative distribution rather than the probability density, then HISPRE should not be called,
but in that case Y(NBINS) must be exactly equal to one. Numbers may be drawn from several different
distributions in the same run by calling HISRAN with different arrays Y1, Y2, etc. and (if desired) different
values of NBINS, XLO, XWID (but always the same values for a given array Y). The routine HISPRE should be
used to initialize each array Yi.
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The performance of the above method is nearly independent of the shape of the function or number of bins.

Error handling:

If the the input data to HISPRE are not valid (some values negative or all values zero), an error message is
printed, the input values are printed, and zero is returned instead of a random number. As many as five such
messages may be printed to allow for possible errors in more than one distribution.

If HISPRE is not called, and the input data are not already in cumulative form, HISRAN performs the initial-
ization itself and prints a warning message. HISRAN recognizes that the data are not in cumulative form if
Y(NBINS) 6= 1.
�
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FUNRAN CERN Program Library V151

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 27.11.1984

Language : Fortran Revised:

Random Numbers According to Any Function

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: FUNLUX (V152)

FUNRAN generates random numbers distributed according to any (one-dimensional) distribution f(x). The
distribution is supplied by the user in the form of a FUNCTION subprogram. If the distribution is known as a
histogram only, HISRAN (V150) should be used instead.

Structure:

SUBROUTINE subprograms
User Entry Names: FUNRAN, FUNPRE
Internal Entry Names: FUNZER
Files Referenced: Printer
External References: GAUSS (D103), RNDM (V104), user-supplied FUNCTION subprogram
COMMON Block Names and Lengths: /FUNINT/ 1

Usage:

CALL FUNPRE(F,FSPACE,XLOW,XHIGH) (once for each function)

CALL FUNRAN(FSPACE,XRAN) (for each random number)

F (REAL) A name of a FUNCTION subprogram declared EXTERNAL in the calling program. This
subprogram must calculate the (non-negative) density function f(X), for all X in the interval
XLOW � X � XHIGH.

FSPACE (REAL) One-dimensional array of length 100.

XLOW (REAL) Lower limit of the requested interval.

XHIGH (REAL) Upper limit of the requested interval.

XRAN (REAL) A random number returned by FUNRAN.

A call to FUNPRE calculates the percentiles of F between XLOW and stores them into the array FSPACE.

Method:

In FUNPRE, the percentiles are calculated using a combination of trapezoidal and Gaussian integration to a
rather high accuracy, which is printed out by FUNPRE. If the desired accuracy is not obtained, an warning is
printed in addition.

Subroutine FUNRAN finds the desired random number by calling RNDM (V104) and doing a 4-point inter-
polation on FSPACE to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function F is badly skew or spiked as long as
the width of a spike is not less than 1/1000 of the total range.
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Error handling:

An error message is printed

– if the integral of the user-supplied function F is zero or negative,

– if XLOW � XHIGH,

– if F(X) < 0 somewhere between XLOW and XHIGH.

Notes:

Some additional information which may be of use is contained in

COMMON / FUNINT/ FINT

After a call to FUNPRE, FINT contains the integral of F from XLOW to XHIGH.

After a call to FUNRAN, FINT contains the integral of F from XLOW to XRAN, divided by the total integral to
XHIGH (i.e., it will be a number uniformly distributed between zero and one).
�
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FUNLUX CERN Program Library V152

Author(s) : F. James Library: MATHLIB

Submitter : Submitted: 22.02.1996

Language : Fortran Revised:

Random Numbers According to Any Function

FUNLUX generates random numbers distributed according to any (one-dimensional) distribution f(x). The
distribution is supplied by the user in the form of a FUNCTION subprogram. If the distribution is known as a
histogram only, HISRAN (V150) should be used instead.

Structure:

SUBROUTINE subprograms
User Entry Names: FUNLUX, FUNLXP
Internal Entry Names: FUNPCT, FUNLZ

Files Referenced: Printer
External References: RADAPT (D102), RANLUX (V115), user-supplied FUNCTION subprogram
COMMON Block Names and Lengths: /FUNINT/ 1

Usage:

CALL FUNLXP(F,FSPACE,XLOW,XHIGH) (once for each function)

CALL FUNLUX(FSPACE,XRAN,LEN) (for each vector of random numbers)

F (REAL) A name of a FUNCTION subprogram declared EXTERNAL in the calling program. This
subprogram must calculate the (non-negative) density function f(X), for all X in the interval
XLOW � X � XHIGH.

FSPACE (REAL) One-dimensional array of length 200.

XLOW (REAL) Lower limit of the requested interval.

XHIGH (REAL) Upper limit of the requested interval.

XRAN (REAL) A vector of random numbers returned by FUNRAN.

LEN (INTEGER) Length of the vector XRAN.

A call to FUNLXP calculates the percentiles of F between XLOW and XHIGH and stores them into the array
FSPACE.

Method:

In FUNLXP, the 100 percentiles of the integral of f(X) are calculated using a combination of trapezoidal and
Gaussian integration to a rather high accuracy, which is printed out by FUNLXP. Then both the left-hand and
right-hand 2 percentiles are expanded to 50 percentiles each in order to cater for functions with long tails. If
the desired accuracy is not obtained, a warning is printed in addition.
Subroutine FUNLUX finds the desired random number by calling RANLUX (V115) and doing a 4-point inter-
polation on FSPACE to transform the uniform random number to the distribution specified. This method
produces quite accurately distributed numbers even when the function F is badly skew or spiked as long as
the width of a spike is not less than 1/1000 of the total range.

Error handling:

An error message is printed

– if the integral of the user-supplied function F is zero or negative,

– if XLOW � XHIGH,

– if F(X) < 0 somewhere between XLOW and XHIGH.
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Notes:

Some additional information which may be of use is contained in

COMMON / FUNINT/ FINT

After a call to FUNLXP, FINT contains the integral of F from XLOW to XHIGH.

After a call to FUNLUX, FINT contains the integral of F from XLOW to XRAN(LEN), divided by the total integral
to XHIGH (i.e., it will be a number uniformly distributed between zero and one).
�
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PERMU CERN Program Library V202

Author(s) : F. Beck, T. Lindelöf Library: MATHLIB

Submitter : K.S. Kölbig Submitted: 15.09.1978

Language : Fortran Revised:07.06.1992

Permutations and Combinations

Successive calls to subroutine subprogram PERMU will generate all permutations of a set of integers of total
length N consisting of n1 repetitions of the integer 1, followed by n2 repetitions of the integer 2; : : : etc,
concluding with nm repetitions of the integerm, where

P
m

j=1 nj = N .

Subroutine subprogram PERMUT generates directlya single member of the set of all lexicographically ordered
permutations of the first integers 1; 2; : : : ; N , as specified by its lexicographical ordinal.

Successive calls to subroutine subprogram COMBI will generate all the
�
N

J

�
possible combinations without

repetition of J � N integers from the set f1; 2; : : : ; Ng.

Structure:

SUBROUTINE subprogram
User Entry Names: PERMU, PERMUT, COMBI
Files Referenced: Unit 6

Usage:

Subroutine PERMU:

CALL PERMU(IA,N)

IA (INTEGER) One-dimensional array of length � N. On entry, IA(i); (i= 1; 2; : : : ; N), must contain
the initial set of integers to be permuted (see Examples). A call with IA(1) = 0 will place the set
f1; 2; : : : ; Ng in IA. On exit, IA contains the ”next” permutation. If all the permutations have been
generated, the next call sets IA(1) = 0.

N (INTEGER) Length of the set to be permuted.

Subroutine PERMUT:

CALL PERMUT(NLX,N,IP)

NLX (INTEGER) Lexicographical ordinal of the permutation desired.

N (INTEGER) Length of the set to be permuted.

IP (INTEGER) One-dimensional array of length � N. On exit, IP(i); (i= 1; 2; : : : ; N), contains the
NLX-th lexicographically ordered permutation of the integers 1; 2; : : : ; N (see Examples).

Subroutine COMBI:

CALL COMBI(IC,N,J)

IC (INTEGER) One-dimensional array of length � N+ 1. The first call must be made with IC(1) = 0.
This generates the first combination IC(i) = i; (i = 1; 2; : : : ; J). Each successive call generates
a new combination and places it in the first J elements of IC. If all the combinations have been
generated, the next call sets IC(1) = 0.

N (INTEGER) Length of the set from which the combinations are taken.

J (INTEGER) Length of the combinations.
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Examples:

1. Consider the following set of N = 12 objects, only 8 are different:

fy1; y2; y3; y; y; r1; r2; r; r; b; b; bg:
This set consists of m = 8 sequences of length n1 = n2 = n3 = n5 = n6 = 1, n4 = n7 = 2,
n8 = 3. Thus, in order to get the possible permutations, set

IA = f1 2 3 4 4 5 6 7 7 8 8 8g
before calling PERMU(IA,12) the first time.

2. To generate all permutations of N indistinguishable objects, set IA(1) = 0, which is equivalent to
IA(i) = i; (i = 1; 2; : : : ; N), before calling PERMU(IA,N) the first time.

3. To compute the, lexicographically second, third and last (4! = 24) permutions of the set f1; 2; 3; 4g:

CALL PERMUT( 2,4,IP) sets IP = f1; 2; 4;3g
CALL PERMUT( 3,4,IP) sets IP = f1; 3; 2;4g
CALL PERMUT(24,4,IP) sets IP = f4; 3; 2;1g

4. To generate and print all 20 combinations of 3 integers from the set f1; 2; 3; 4;5;6g one could write:

...

IA(1)=0

1 CALL COMBI(IC,6,3)

IF(IC(1) .NE. 0) THEN

PRINT *, IC(1),IC(2),IC(3)

GO TO 1

ENDIF

...

Restrictions:

PERMUT: 1 � NLX � N!; N � 12.
COMBI: J � N.

Error handling:

If any of the above conditions is not satisfied, a message is written on Unit 6.

Notes:

1. If N � 0 or J � 0, the subprograms return control without action.

2. The number of distinct permutations of a set of N numbers which can be decomposed intom groups
of n1; n2; : : : ; nm indistinguishable elements is given by

N !

n1!n2! � � �nm!
where n1 + n2 + � � �+ nm = N . This number can become large even for seemingly simple cases,
e.g. in Example 1 above,

12!

1! 1! 1! 2! 1! 1! 2! 3!
= 19958400:

�
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UZERO CERN Program Library V300

Author(s) : J. Zoll Library: KERNLIB

Submitter : C. Letertre Submitted: 01.03.1968

Language : Fortran or Assembler Revised:16.09.1991

Preset Parts of an Array

These routines fill each word of an array with zero, ’blank’, or a quantity given in the argument list.

Structure:

SUBROUTINE subprograms
User Entry Names: UBLANK, UZERO, UFILL

Usage:

Required 0 < J1 � J2.

CALL UZERO(A,J1,J2)

sets A(J1) until A(J2) to zero.

CALL UBLANK(A,J1,J2)

sets A(J1) until A(J2) to BCD blank.

CALL UFILL(A,J1,J2,STUFF)

loads A(J1) until A(J2) with the contents of STUFF.
�
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UCOPY CERN Program Library V301

Author(s) : R.K. Böck, C. Letertre Library: KERNLIB

Submitter : Submitted: 01.03.1968

Language : Fortran or Assembler Revised:16.09.1991

Copy an Array

These routines copy a continuous string of words into a continuous set of locations.

Structure:

SUBROUTINE subprograms
User Entry Names: UCOPY, UCOPIV, UCOPYN, UCOPY2, USWOP
External References: LOCF (N100) (Fortran version of UCOPY2 only)

Usage:

CALL UCOPY(A,X,N)

copies N words from A into X; the beginning of A may overlap the end of X.

CALL UCOPY2(A,X,N)

copies N words from A into X, any overlap is allowed.

CALL UCOPYN(IA,IX,N)

transfers into IX the negative values of N integer words from IA; the beginning of IA may overlap the end
of IX. (For numbers of type REAL, use VCOPYN (F121).)

CALL UCOPIV(A,X,N)

copies N words from A into X, in reverse order, i.e. X(1) = A(N); : : : ; X(N) = A(1). No overlapping is
allowed.

CALL USWOP(A,B,N)

exchanges the first N � 0 words of arrays A and B. A and B must not overlap.

For N = 0 the above routines act as ’do-nothing’.
�
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UCOCOP CERN Program Library V302

Author(s) : F. Bruyant Library: KERNLIB

Submitter : C. Letertre Submitted: 21.08.1971

Language : Fortran or Assembler Revised:16.09.1991

Copy a Scattered Vector

UCOCOP and UDICOP copy the contents of a scattered vector into a new scattered vector.

Structure:

SUBROUTINE subprograms
User Entry Names: UCOCOP, UDICOP

Usage:

CALL UCOCOP(A,X,IDO,IW,NA,NX)

CALL UDICOP(A,X,IDO,IW,NA,NX)

extract IDO times IW consecutive words from A, every NA words, and place them into X, every NX words.
Both routines have the same effect if the vectors A and X do not overlap. UCOCOP allows concentration,
UDICOP allows dilation of a vector in situ.

For IDO = 0 or IW = 0, the routines act as ’do-nothing’.

Examples:

DIMENSION IA(14),IX(12)

DATA IA /1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14/

CALL UCOCOP(IA,IX,4,2,4,3)

CALL UCOCOP(0,IX(3),4,1,0,3)

gives

IX = 1,2,0, 5,6,0, 9,10,0, 13,14,0

�
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IUCOMP CERN Program Library V304

Author(s) : J. Zoll, C. Letertre Library: KERNLIB

Submitter : Submitted: 01.03.1968

Language : Fortran or Assembler Revised:16.09.1991

Search a Vector for a Given Element

These routines all search through a vector for a given element. The calling sequences and the default returns
are different.

Structure:

FUNCTION subprograms
User Entry Names: IUCOMP, IUCOLA, IUFIND, IUFILA, IUHUNT, IULAST

Usage:

IUCOMP(IT,IVEC,N) or IUCOLA(IT,IVEC,N)

returns the relative address in the array IVEC of the first (or the last) word which is equal to IT, or zero if IT
is not contained in IVEC(1), : : : ,IVEC(N) or if N = 0.

IUFIND(IT,IVEC,JL,JR) or IUFILA(IT,IVEC,JL,JR)

returns the relative address in the array IVEC of the first (or the last) element between IVEC(JL) and
IVEC(JR) (JL � JR) which equals IT, or JR+ 1 if IT is not contained in IVEC(JL),IVEC(JL+1), : : : ,

IVEC(JR) or if JL > JR.

IUHUNT(IT,IVEC,N,INC)

returns the relative address of the first word among IVEC(1),IVEC(INC+1),IVEC(2*INC+1), : : : of
array IVEC (the search does not go beyond IVEC(N)) which equals IT, or zero if IT is not found or if
N = 0.

IULAST(IT,IVEC,N)

returns the relative address of the last word which, in the array IVEC of N elements, is not equal to IT, or
zero if N = 0 or if all elements in IVEC equal IT.

Notes:

IVEC and IT above may be of type INTEGER or REAL, but the comparison is done in type INTEGER.
�
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PROXIM CERN Program Library V306

Author(s) : J. Zoll, K.S. Kölbig Library: KERNLIB

Submitter : Submitted: 15.03.1976

Language : Fortran Revised:15.02.1989

Adjusting an Angle to Another Angle

Function subprogram PROXIM computes, for two angles �; � given as arguments, and by adding a suitable
multiple of 2� to �, an angle �� such that

�� � � �� � � + �:

Structure:

FUNCTION subprogram
User Entry Names: PROXIM

Usage:

In any arithmetic expression,

PROXIM(B,A)

has the value �� for B = � and A = �. PROXIM, B and A are of type REAL and in radians.

Notes:

The Fortran statement function

PROXIM(B,A)=B+C1*ANINT(C2*(A-B))

with C1 = 2�; C2 = 1=C1 has the same effect.
�
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GRAPH CERN Program Library V401

Author(s) : A. Regl Library: MATHLIB

Submitter : H. Grote Submitted: 01.02.1974

Language : Fortran Revised:15.09.1978

Find Compatible Node-Nets in an Incompatibility Graph

GRAPH finds all compatible sets of events (nodes) in an incompatibility graph (in which incompatible events
or nodes are connected). It is useful, for example, in track-matching programs for eliminating spurious
tracks.

On each call, one compatible node-set is returned. The user may decide in the first call whether the solutions
should be evaluated over the whole graph or subgraph by subgraph. Indications on ”end-of-graph” and, if
applicable, ”end-of-subgraph” are given.

Structure:

SUBROUTINE subprogram
User Entry Names: GRAPH
Internal Entry Names: PGRAPH, GETBIT, SETBIT, TUP, IGET, TREVNI
External References: JBIT (M421), SBIT (M421), JBYT (M421), SBYT (M421),

UFILL (V300), UZERO (V300)

COMMON Block Names and Lengths : /BITSXB/ 2

Usage:

See Long Write-up .
�
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RVNSPC CERN Program Library V700

Author(s) : K.S. Kölbig, F. Lamarche, C. Leroy Library: MATHLIB

Submitter : Submitted: 07.06.1992

Language : Fortran Revised:

Volume of Intersection of a Circular Cylinder with a Sphere

Function subprograms RVNSPC and DVNSPC calculate the volume of intersection V (r; �; d) of a circular
cylinder of radius r � 0 with a sphere of radius � � 0, the distance from the center of the sphere to the axis
of the cylinder being d � 0.

This volume is given by

V (r; �; d) = 2

ZZ p
�2 � x2 � y2 dxdy;

where the integration is performed over the intersection, if any, of the two circular disks (x� d)2+ y2 � r2

and x2 + y2 � �2. If r 6= 0 ^ � 6= 0 ^ d < r + � this is equal to

V (r; �; d) = 4

Z min(d+r;�)

max(d�r;��)

Z min
�p

r2�(x�d)2;
p
�2�x2

�

0

p
�2 � x2 � y2 dxdy:

Otherwise V (r; �; d) = 0.

On CDC and Cray computers, the double-precision version DVNSPC is not provided.

Structure:

FUNCTION subprograms
User Entry Names: RVNSPCC347, DVNSPCC347
External References: DELI3C (C347), DELIKC (C347), DELIEC (C347)

Usage:

In any arithmetic expression,

RVNSPC(R,RHO,D) or DVNSPC(R,RHO,D) has the value V (R; RHO; D).

RVNSPC is if type REAL, DVNSPC is of type DOUBLE PRECISION, and R, RHO and D are of the same type as
the function name.

Method:

The integral given above can be expressed in closed form in terms of complete elliptic integrals of the first,
second, and third kind. For details see Ref. 1.

Notes:

Any negative sign in the parameters is ignored.

In the single-precision version RVNSPC on machines other than CDC or Cray, the complete elliptic integrals
are calculated inside the subprogram. This version, faster than DVNSPC, is intended mainly for applications
in experimental physics, where its limited accuracy of about 6 digits can be tolerated.

References:

1. F. Lamarche and C. Leroy, Evaluation of the volume of intersection of a sphere with a cylinder by
elliptic integrals, Computer Phys. Comm. 59 (1990) 359–369.

�
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TRSPRT CERN Program Library W150

Author(s) : C.H. Moore, D.C. Carey Library: PGMLIB

Submitter : C. Iselin Submitted: 27.11.1984

Language : Fortran 4 Revised:

Transport, Second-Order Beam Optics

TRSPRT is a first- and second-order matrix multiplication program for the design of magnetic beam transport
systems. It has been in use in various versions since 1963. The present version, written by D.C. Carey at
FNAL and extensively modified at CERN is described in CERN 80-04, NAL 91 and SLAC 91. It includes
both first- and second-order fitting capabilities. A beam line is described as a sequence of elements. Such
elements may represent magnets or the intervals separating them, but also specify calculations to be done, or
special conditions to be applied. The program works in six-dimensional phase space (x; x 0; y; y0; l; dp=p);
it is therefore also capable of calculating coupling between planes.

Structure:

Complete PROGRAM
User Entry Names: TRSPRT
Files Referenced: INPUT, OUTPUT,
External References: UBUNCH (M409), ABEND (Z035), DATIMH (Z007)

Usage:

See Long Write-up . TRSPRT is accessed from PGMLIB as described in section ’Execution of Complete
Programs, PGMLIB’ in Chapter 1 of the Program Library Manual.

Source:

SLAC and FNAL, USA

References:

1. K.L. Brown, D.C. Carey, C. Iselin and F. Rothacker, Designing Charged Particle Beam Transport
Systems, CERN 80-04 (1980)

A copy of Ref. 1 is available as Long Write-up .
�
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TURTLE CERN Program Library W151

Author(s) : D.C. Carey, C. Iselin Library: PGMLIB

Submitter : C. Iselin Submitted: 01.07.1974

Language : Fortran 4 Revised:27.11.1984

Beam Transport Simulation, Including Decay

TURTLE is designed to simulate charged particle beam transport systems. It allows evaluation of the effects
of aberrations in beams with a small phase space volume. These include higher-order chromatic aberra-
tions, non-linearities in magnetic fields and higher-order geometric aberrations due to the accumulation of
second-order effects. The beam at any point in the system may be represented by one- or two-dimensional
histograms. TURTLE also provides a simulation of decay of pions or kaons into muons and neutrinos.

TURTLE uses the same input format as TRSPRT (W150). An input stream set up for TRSPRT can thus be used
for TURTLE with only a few additions.

Structure:

Complete PROGRAM
User Entry Names: TURTLE
Files Referenced: INPUT, OUTPUT
External References: RANF (G900), UBUNCH (M409), TIMEL (Z007), ABEND (Z035)

Usage:

See Long Write-up . TURTLE is accessed from PGMLIB as described in ’Execution of Complete Programs,
PGMLIB’ in Chapter 1 of the Program Library Manual. Page 50 of the Long write-up is obsolete.

Source:

FNAL. The parts concerning decay have been written at CERN.

References:

1. K.L. Brown and C. Iselin DECAY TURTLE, a Computer Program for Simulating Charged Particle
Beam Transport Systems, including Decay Calculations, CERN 74-2 (1974).

A copy of Ref. 1 is available as Long Write-up .
�
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FOWL CERN Program Library W505

Author(s) : F. James Library: POOL

Submitter : Submitted: 13.11.1972

Language : Fortran Revised:01.12.1981

General Monte-Carlo Phase-Space

FOWL uses the Monte-Carlo method to calculate phase space distributions arising from particle interactions.
The events are generated according to Lorentz-invariant phase space, and after each event the user may
calculate (in a subroutine) all quantities (effective masses, angles, moments, delta squared, etc.) whose
distribution he wants.

Moreover, the user may calculate, for each quantity, a weight (or ’matrix element’, for example a Breit-
Wigner) which is in general a function of the kinematic quantities for the event. In addition, one can
investigate the effects of cutoffs, selections or biases in an actual experiment by imposing the same selections
on events in FOWL. The program then prints histograms and/or scatter plots of quantities calculated by the
user.

Structure:

SUBROUTINE subprogram
User Entry Names: FOWL
Files Referenced: INPUT, OUTPUT, PUNCH
External References: RNDM (V104), UBLANK (V300), IUCHAN (Y201), DATIME (Z007),

user-supplied subroutine USER.

Usage:

See Long Write-up .

Source:

Event generator GENEV was adapted by K. Kajantie from a program by G. Lynch.
�
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GENBOD CERN Program Library W515

Author(s) : F. James Library: POOL

Submitter : Submitted: 20.10.1975

Language : Fortran Revised:

N-Body Monte-Carlo Event Generator

GENBOD generates a multi-particle weighted event according to Lorentz-invariant Fermi phase space. It is a
modification of the routine GENEV (in FOWL (W505)) and uses the method of Raubold and Lynch (see Ref.
1). The total CM energy as well as the number and masses of the outgoing particles are specified by the
user, but may be changed from event to event. GENBOD generates the CM vector momenta (and energies) of
the outgoing particles and gives the weight which must be associated with each event. The weight may then
be multiplied by any ’matrix element’ or geometrical detection function calculated by the user.

Structure:

SUBROUTINE subprogram
User Entry Names: GENBOD
Files Referenced: Printer
External References: FLPSOR (M103), RNDM (V104), PDK (W505), ROTES2 (W505)
COMMON Block Names and Lengths : /GENIN/ 21, /GENOUT/ 91

Usage:

COMMON /GENIN /NP,TECM,AMASS(18),KGENEV

COMMON /GENOUT/ PCM(5,18),WT

CALL GENBOD

Input:

NP (INTEGER) Number of outgoing particles (2 � NP � 18).

TECM (REAL) Total CM energy.

AMASS (REAL) Array where element I contains the mass of the I-th outgoing particle.

KGENEV (INTEGER) = 1 for cross section constant with energy, = 2 for Fermi energy dependence.

Output:

PCM(1,I) (REAL) Px of I-th particle.

PCM(2,I) (REAL) Py of I-th particle.

PCM(3,I) (REAL) Pz of I-th particle.

PCM(4,I) (REAL) Energy of I-th particle.

PCM(5,I) (REAL) P of I-th particle.

WT (REAL) Weight of the event.

See also the Long Write-up for FOWL (W505).

References:

1. F. James, Monte Carlo Phase Space, CERN 68-15 (1968)

�
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IUCHAN CERN Program Library Y201

Author(s) : J. Zoll, P. Rastl Library: KERNLIB

Submitter : C. Letertre Submitted: 01.09.1969

Language : Fortran or Assembler Revised:16.09.1991

Find Histogram-Channel

IUCHAN, IUBIN, IUHIST all find the histogram-channel for a given quantity in the same way. They differ
only slightly in the way in which the parameters are passed.

Structure:

FUNCTION subprograms
User Entry Names: IUCHAN, IUBIN, IUHIST

Usage:

All routines need the the following parameters:

X (REAL) Quantity to be histogrammed.

XLOW (REAL) Lower limit of the histogram.

DX (REAL) Channel width.

NX (INTEGER) Number of channels.

and they return the channel number N = (X� XLOW)=DX+ 1+ " normally, or N = 0 for underflow (X < XLOW),
or N = NX+ 1 for overflow (X � XLOW+ NX � DX).

" > 0 is a small bias to counteract rounding effects when X is exactly on a bin edge, a likely and serious
problem when compressed data are histogrammed.

" = 10�5 on 32-bit machines, " = 10�6 on machines with a larger word size.

Function IUCHAN:

N = IUCHAN(X,XLOW,DX,NX)

Functions IUBIN and IUHIST:

DIMENSION PAR(3)

EQUIVALENCE(NX,PAR(1))

LOGICAL SPILL

N = IUBIN (X,PAR,SPILL)

N = IUHIST(X,PAR,SPILL)

with

PAR Histogram parameters:
PAR(1) � NX

PAR(2) � DX (for IUBIN), or � 1=DX reciprocal of the channel width (for IUHIST).
PAR(3) � XLOW

SPILL (LOGICAL) Flag set to .TRUE. or .FALSE. depending on whether X is outside or inside the his-
togram.

�
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HBOOK CERN Program Library Y250

Author(s) : R. Brun, I. Ivanchenko, P. Palazzi Library: PACKLIB

Submitter : Submitted:
Language : Fortran Revised:

Statistical Analysis and Histogramming

HBOOK offers as basic options the booking, filling and printing of a histogram, scatter plot or table. Other
available facilities are:

� Projections and slices of scatter plots and tables.

� Wide choice of editing options (what to print and how).

� Easy access to the information.

� Operations on histograms (arithmetic, smoothing, filling, fitting).

� Packing of several channels in 1 computer word/or extension of the memory on disk file, to allow
simultaneous handling of a very large number of plots.

Structure:

SUBROUTINE and FUNCTION subprograms

Usage:

See Long Write-up .
�
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HPLOT CERN Program Library Y251

Author(s) : O. Couet Library: GRAFLIB

Submitter : Submitted: 01.03.1976

Language : Fortran Revised:01.11.1994

HPLOT : HBOOK Graphics Interface for Histogram Plotting

HPLOT is a FORTRAN-callable facility for producing HBOOK (Y250) output on all kind of graphic devices. The
output is of a quality suitable for publications.

Structure:

SUBROUTINE subprograms

Usage:

A full description of the system is given in the HIGZ-HPLOT Manual (Q120, Y251). The full HPLOT
facilities are available in the PAW (Q121) system.
�
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KERNGT CERN Program Library Z001

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 19.09.1991

Language : Fortran Revised:

Print KERNLIB Version Numbers

KERNGT prints the titles of the PAM-files which have been used to make the general part of KERNLIB.

Structure:

SUBROUTINE subprogram
User Entry Names: KERNGT
Files Referenced: Parameter

Usage:

CALL KERNGT(LUN)

with:

LUN Fortran logical unit number for printing, if zero: use ’standard output’.

Examples:

CALL KERNGT(0)

gives something like:

KERNGT. KERNLIB from: KERNAPO 1.23 910719 13.00

KERNFOR 4.29 910731 19.17

�
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DATIME CERN Program Library Z007

Author(s) : See below Library: KERNLIB

Submitter : Submitted: 15.01.1977

Language : Fortran or C or Assembler Revised:18.09.1991

Job Time and Date

Authors: J. Harms, E. Jansen, A. Michalon, J. Zoll, A. Berglund, T. Cass, C. Wood, H. Renshall.

The DATIME package interfaces with the system of any particular machine to obtain the current calendar
date and time, as well as the central processor time used by and remaining to the job.

Structure:

SUBROUTINE subprograms
User Entry Names: DATIME, DATIMH, TIMEX, TIMEL, TIMED, TIMEST
External References: Machine dependent
COMMON Block Names: /SLATE/ ISL(40)

Usage:

CALL DATIME(ID,IT)

returns decimal INTEGER date and time: ID=yymmdd, IH=hhmm. It also stores the components into /SLATE/
as small integers:

ISL(1) = 19yy; ISL(2) = mm; ISL(3) = dd; ISL(4) = hh; ISL(5) = mm; ISL(6) = ss

for convenience of further processing by the user.

CALL DATIMH(ND,NT)

returns Hollerith date and time: ND = 8Hdd/mm/yy and NT = 8Hhh.mm.ss

CALL TIMEX(T)

returns the execution time used by the job so far; T is the central processor time in seconds, a REAL number
with fractional part. In supported interactive systems the time returned is that relative to the first call to
TIMEST.

CALL TIMEL(T)

returns the execution time remaining until time-limit; T in seconds as for TIMEX. In supported interactive
systems the time returned is the time left until the time-limit set by the first call to TIMEST. See Note 4
below.

CALL TIMED(T)

returns the execution time interval since the last call to TIMED; T in seconds as for TIMEX.
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CALL TIMEST(TLIM)

This routine is necessary to initialise the timing operations in the interactive mode of VM-CMS. In other
systems (including VM-CMS batch) it is a dummy do-nothing routine.

It must be called once (subsequent calls are ignored) before any calls to TIMEX and TIMEL. Before this
routine is called TIMEX will return zero and TIMEL will return 999.0. TLIM is an input floating point value
which will be used inside TIMEL as if it were the job time-limit. The first call to TIMEST also establishes the
time origin for subsequent calls to TIMEX and TIMEL.

Accuracy:

IBM: The RMS error returned in consecutive calls to TIMED without any intermediate code is of the order
of 3 �sec on the the CERN IBM 3090 with a minimum time for one call of 20 �sec. The timing distribution
has a long tail, however, and any individual measurement could take as long as four or five times this value.
TIMEX is accurate to within a tenth of a second and TIMEL only to the nearest second.

Notes:

1. The symbols yy,mm,dd,hh,mm,ss used above stand for the two decimal digits of year, month, day,
hours, minutes, seconds.

2. NT and ND in the call to DATIMH are 2-word vectors on machines with a character-capacity of less than
8 characters per word.

3. The information returned by these routines is obtained by a system request. On some machines this is
expensive in real time, so one should avoid too many calls, to TIMEL in particular.

4. Some machine/operating system configurations do not have a value for timelimit, for example inter-
active work under VM-CMS (IBM) or VMS (VAX) or no-limit batch job classes under VMS. In these
cases a constant time-left of 999.0 seconds is returned, unless the time limit has been set with TIMEST.

Examples:

Suppose the date is Sept 16, 1976, and the time of day 19h 24m 55s.

CALL DATIME(ID,IT)

returns ID = 760916; IT = 1924; ISL = 1976; 9; 16; 19; 24; 55

CALL DATIMH(ND,NT)

returns ND = 8H16/09/76 and NT = 8H19.24.55.
�
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CALDAT CERN Program Library Z009

Author(s) : O. Hell Library: KERNLIB

Submitter : Submitted: 27.11. 1984

Language : Fortran Revised:

Calendar Date Conversion

CALDAT converts any calendar date represention in a set of such representations to all other calendar date
representations in the set; in addition a few extra bits of information are produced.

Structure:

SUBROUTINE subprogram
User Entry Names: CALDAT
Internal Entry Names: CDMON, CLEAP, CYDIY, CYEARY
External References: DATIME (Z007)

Usage:

CALL CALDAT(IINDEX,CHREP,IBNREP,IERR)

IINDEX (INTEGER) Integer specifying which of the possible date representations is being given as the
input representation. This input may either be as type CHARACTER within the CHREP string or
as type INTEGER within the IBNREP array.

CHREP (CHARACTER*119) A character string containing, as substrings, the possible date representa-
tions. One such substring may be filled as the input representation, in which case it should be
pointed to by IINDEX.

IBNREP (INTEGER) Array of length 8 containing various binary date representations. One such date
representation may be filled as the input representation, in which case it should be pointed to
by IINDEX.

IERR (INTEGER) Error flag. IERR = 0 success, IERR 6= 0 failure of the conversion.

The substrings of CHREP can be accessed directly, using CHARACTER substring operations. Alternatively all,
or part, of the EQUIVALENCE statements below may be used:

CHARACTER DMY14*14,DMY11*11,DMY9*9,DMY10*10

CHARACTER*8 DMY8A,DMY8B,YMD8,MDY8,YDM8

CHARACTER*6 DMY6, YMD6,MDY6,YDM6

CHARACTER YD5*5,W4*4,W2*2

EQUIVALENCE

* (CHREP( 1: 14), DMY14), (CHREP( 15: 25), DMY11),

* (CHREP( 26: 34), DMY9 ), (CHREP( 35: 44), DMY10),

* (CHREP( 45: 52), DMY8A), (CHREP( 53: 60), DMY8B),

* (CHREP( 61: 66), DMY6 ), (CHREP( 67: 74), YMD8 ),

* (CHREP( 75: 80), YMD6 ), (CHREP( 81: 88), MDY8 ),

* (CHREP( 89: 94), MDY6 ), (CHREP( 95:102), YDM8 ),

* (CHREP(103:108), YDM6 ), (CHREP(109:113), YD5 ),

* (CHREP(114:117), W4 ), (CHREP(118:119), W2 )
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Details of the substrings in argument CHREP and the corresponding IINDEX values:

EXAMPLE IINDEX EXAMPLE IINDEX

DMY14 16. APRIL 1982 1 YMD6 820416 9

DMY11 16 APR 1982 2 MDY8 04/16/82 10

DMY9 16 APR 82 3 MDY6 041682 11

DMY10 16. 4.1982 4 YDM8 82/16/04 12

DMY8A 16. 4.82 5 YDM6 821604 13

DMY8B 16/04/82 6 YD5 82106 14

DMY6 160482 7 W4 FRI.

YMD8 82/04/16 8 W2 FR

Details of the elements in argument IBNREP and the corresponding IINDEX values:

Element Contents Type Example IINDEX

1,2,3 d, m, y binary 16, 4, 1982 101

4 day in the year binary 106 102

5 00YYDDDC packed dec 0082106C 103

6 Julian date binary 723651 104

7 weekday, MO=0,... binary 4

8 week in the year binary 15

3,4 y, day in year binary 1982, 106 105

Notes: Julian date = days since 1/1/1, without Gregory’s pause. Week 1 of the year contains the 1st
Thursday in the year (ISO).

Names of the months:

3 characters: 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN',

'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'

5 characters: 'JAN. ', 'FEB. ', 'MARCH', 'APRIL', 'MAY ', 'JUNE ',

'JULY ', 'AUG. ', 'SEPT.', 'OCT. ', 'NOV. ', 'DEC. '

Names of the week days:

2 characters: 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU'.

4 characters: 'MON.', 'TUE.', 'WED.', 'THUR', 'FRI.', 'SAT.', 'SUN.'.

Method:

Two arguments are used for passing the calendar dates: a character string and an array of full words. The
various representations are numbered, and an input parameter (’input index’) specifies the representation
containing the input calendar date.

An extra output parameter receives a return code.

Special cases:

� Input index = 0 designates todaywhich CALDAT will find.

� Input year yy rather than yyyy, designates this century.

� Input index or input data invalid:

– output character string with all '*';

– output numbers all X'81818181' = -2 122 219 135.
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Restrictions:

CALDAT will give incorrect dates and weekdays for dates prior to the reformation of the Calendar by pope
Gregory (16th century).

Error handling:

IERR Meaning

0 everything fine

4 IINDEX < 0

8 upper bound for CHREP < IINDEX < lower bound for IBNREP

12 upper bound for IBNREP < IINDEX

16 ddd out of bounds

20 mm | dd out of bounds

24 yyyy out of bounds

Syntax errors:

IERR in IINDEX IERR in IINDEX IERR in IINDEX

1001 DMY14 1 1006 DMY8B 6 1011 MDY6 11

1002 DMY11 2 1007 DMY6 7 1012 YDM8 12

1003 DMY9 3 1008 YMD8 8 1013 YDM6 13

1004 DMY10 4 1009 YMD6 9 1014 YD5 14

1005 DMY8A 5 1010 MDY8 10 1103 Julian 103

Notes:

Element 5 of IBNREP is not a Fortran type. Nevertheless this calendar date format may show up in data from
the ’real world’. Element 7 of IBNREP is especially well suited for arithmetical calculations with dates.

Examples:

C Initialize substring CHREP(15:25)

DMY11='16 APR 1982'

C Define this substring to be the input format

IINDEX=2

CALL CALDAT(IINDEX,CHREP,IBNREP,IERR)

�
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UMON CERN Program Library Z020

Author(s) : F. Carminati Library: KERNLIB, VAX/VMS only

Submitter : Submitted: 01.03.1989

Language : VAX Fortran Revised:

Usage Monitor for VAX/VMS

UMCOM is an usage monitor package for VAX/VMS systems. Usage log requests are performed either via
Fortran calls or via DCL commands.

Structure:

Complete PROGRAM and SUBROUTINE subprograms
User Entry Names: UMCOM, UMLOG

Usage:

CALL UMCOM(CMD,MONITOR,TEXT)

CMD (CHARACTER) The first two letters of CMD are interpreted as a command to UMON. See the
Long Write-up for possible commands.

MONITOR (CHARACTER) Name of the monitor to be affected by the command. If this name is longer
than 8 characters, only the first 8 will be taken into account.

TEXT (CHARACTER) A character string containing information about the command given. If this
string is longer than 80 characters, only the first 80 will be taken into account.

CALL UMLOG(MONITOR,TEXT)

MONITOR (CHARACTER) Name of the monitor to be affected by the command. If this name is longer
than 8 characters, only the first 8 will be taken into account.

TEXT (CHARACTER) A character string containing the text to be logged. If this string is longer than
80 characters, only the first 80 will be taken into account.

See also the Long Write-up .
�
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ABEND CERN Program Library Z035

Author(s) : B. Lautrup, R. Matthews Library: KERNLIB

Submitter : C. Letertre Submitted: 06.01.1971

Language : Fortran or Assembler or C Revised:20.01.1986

Abnormal Termination of Fortran Programs

ABEND causes abnormal termination of a program. (On CDC all subsequent JCL control cards up to the next
EXIT card will be ignored by the system).

Structure:

SUBROUTINE subprogram
User Entry Names: ABEND

Usage:

Not IBM:

CALL ABEND

causes abnormal termination of execution and prints the dayfile message ABEND. The output files are closed
and INPUT is correctly positioned.

IBM:

CALL ABEND(KODEU)

The optional argument KODEU is used as the user completion code and must be an integer expression with
a value in the range 0� 4095. If the argument is omitted, or does not have a value in this range, a default
value of 1 will be used.
�
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ABUSER CERN Program Library Z036

Author(s) : R. Matthews, A. Cass Library: KERNLIB, IBM only

Submitter : Submitted: 01.02.1983

Language : Assembler Revised:19.07.1988

Intercept a Fortran Abend on IBM

ABUSER enables a user-supplied subroutine to receive control when the user’s program abends. A call to
ABUSER identifies the user-supplied subroutine which is to receive control. The identified subroutine will be
called if the user’s program abends and can perform pre-termination processing such as printing summaries
or plotting histograms.

Structure:

SUBROUTINE subprogram
User Entry Names: ABUSER

Usage:

CALL ABUSER(NAME)

NAME Name of a user-supplied SUBROUTINE subprogram declared EXTERNAL in the calling program.

This subprogram receives control via a call of the form

CALL NAME(KODES,KODEU)

KODES A 4-byte integer containing, if available, the system completion code as hexadecimal number (use
Z format for printing).

KODEU A 4-byte integer containing, if available, the user completion code as integer number (use I format
for printing).

Restrictions:

This subprogram is compiler and system dependent.

MVS:

The Fortran 4 version relies on modifications to the IBM H-extended compiler library and is therefore not
portable. The Fortran 77 version uses a standard interface into the FACOM compiler library.

CMS:

The subprogram is compiler independent but KODES and KODEU are not available and so are set to zero. Note
that the routine uses storage in the CMS nucleus – the NUSERFWD field and also 8-bytes at NCCOPYR – which
must not be overwritten. (No other CERN Library routine uses these locations.)

Notes:

ABUSER can be called at any time during normal processing, (i.e. before an abend occurs), to re-specify the
name of the user-supplied subroutine. Alternatively, the effect of previous calls can be cancelled by CALL

ABUSER(0). A call to ABUSER after an abend will have no effect.

A secondary abend which occurs while the user is processing the primary abend will cause program termi-
nation.
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Under MVS the user-supplied subroutine will not receive control for the following completion codes:

122 – job cancelled with dump

222 – job cancelled

322 – cpu time exceeded

522 – wait time limit exceeded

Examples:

In the following example, ABUSER is called to identify a subroutine called FATAL as the subroutine which is
to receive control when the user’s program abends. If an abend occurs, subroutine FATAL will be called and
will print the completion codes and then call HISTDO to plot histograms.

EXTERNAL FATAL

...

CALL ABUSER(FATAL)

...

END

SUBROUTINE FATAL(KODES,KODEU)

WRITE(6,'(1X,''PROGRAM ABENDING WITH CODES '',Z3,I5)') KODES,KODEU

CALL HISTDO

RETURN

END

�
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VAXAST CERN Program Library Z037

Author(s) : C. Mekenkamp Library: KERNLIB

Submitter : R. Veenhof Submitted: 10.03.1988

Language : Fortran, Vax Macro Revised:

Routines to Handle Control-C Interrupts on Vax

These routines allow you to write a program that, when interrupted with a control-C, resumes execution in a
routine that you specify, which is higher up in the calling tree.

Structure:

Vax Macro and Vax Fortran routines
User Entry Names: ASTINT, ASTXIT, ASTDCC, ASTECC, ASTSCS, ASTECS
Internal Entry Names: ASTCCH

Usage:

VAXAST should be initialised at the beginning of the program by

CALL ASTINT

The routine to which control should be returned after a control-C has been typed, should have in its header

EXTERNAL ASTCCH

CALL LIB$ESTABLISH(ASTCCH)

When a control-C is typed on the terminal, ASTCCH is called. This routine is part of VAXAST, its main job
is to unwind the stack of routine calls until the routine is found in which the LIB$ESTABLISH was issued.
Your program then continues execution just after the call to the routine that was interrupted. You may have
several routines with the header shown above. Only the last call to LIB$ESTABLISH has effect.

When you no longer wish to make use of the VAXAST routines:

CALL ASTXIT

You may not wish to have control-C trapped all the time, for instance when the program is waiting for input.
To suspend trapping for a short while, do the following:

CALL ASTDCC

...

CALL ASTECC

Between ASTDCC and ASTECC a control-C typed on the terminal has the same effect as a control-Y, i.e.
stopping the program and returning to DCL. Execution can, as with control-Y, be resumed at the point it was
interrupted, via the CONTINUE command.

Not all programs survive the stack unwind ASTCCH performs. A classical example is the set of I/O routines
in the Vax Fortran run time library (RTL). VAXAST replaces those routines by variants that are stack unwind
proof but perform otherwise identical tasks. You will see 29 messages about multiply defined symbols when
you LINK your program, you can safely ignore them.
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If there is a part in your own program where the stack should not be unwound but during which you would
like a control-C to be stored, do the following:

CALL ASTSCS

...

CALL ASTECS

A control-C typed between the ASTSCS and ASTECS calls remains ’dormant’ and takes effect only at the
ASTECS call.

Notes:

1988 C.A.J. Mekenkamp. All Rights Reserved.
Carlo Mekenkamp, President Krugerstraat 42, NL-1975 EH IJmuiden.
�
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QNEXTE CERN Program Library Z041

Author(s) : W. Jank, D. Lellouch, R. Matthews, E. Pagiola, J. Zoll Library: KERNLIB

Submitter : Submitted: 28.08.1984

Language : Assembler or C Revised:

Restart of Next Event

This interface routine allows the user to restart his program at the entry point QNEXTE, provided he has
initiated it at this same entry point.

For first entry, QNEXTE remembers all necessary internal Fortran parameters, such as registers, trace-back,
stack pointers, signal mask, whatever is needed on a given machine, and then calls a user-supplied routine
QNEXT.

On any subsequent entry, QNEXTE resets all internal parameters so as to cancel all open CALLs below its own
level, and then transfers again control to QNEXT. If in QNEXT a RETURN statement is reached this will lead
back to the routine which did the first call to QNEXTE, usually the MAIN program.

Structure:

(Pseudo) SUBROUTINE subprogram
User Entry Names: QNEXTE
Internal Entry Names: QNEXTD (on Vax)
External References: User-supplied SUBROUTINE subprogram QNEXT (Z041)

Usage:

CALL QNEXTE

will transfer control to the routine QNEXT supplied by the user, via a CALL QNEXT (no parameter list).

Notes:

QNEXT is a user routine which cannot be loaded implicitly from a library. If to be used at all, it has to be
loaded explicitly, either from a load file (such as produced by the compiler) or by some form of INCLUDE
from a user library.

Because QNEXTE is referenced by some general packages, whose user may not want to supply a QNEXT, the
reference from QNEXTE to QNEXT has been made ’weak’ (to avoid the ’missing external’ message from the
loader) on the Vax (and probably also on some other machines in the future). In this case QNEXTE has a call
to a Fortran dummy routine QNEXTD to print a message if it is reached without the user having supplied a
routine QNEXT.

On most UNIX machines the loader is not able to start a module with missing externals; in this case, the
user is obliged to provide a routine QNEXT, to stop the run, for example.

Examples:

Schema of Fortran CALL levels :

MAIN CALL QNEXTE ... EVLOOP CALL MATCH

QNEXTE CALL QNEXT . MATCH CALL TEST

QNEXT CALL EVLOOP ... TEST CALL QNEXTE

The last CALL QNEXTE abandons the current event.
�
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JUMPXN CERN Program Library Z042

Author(s) : J.Zoll, R.Brun et al. Library: KERNLIB

Submitter : J. Zoll Submitted: 27.04.1988

Language : Fortran or C or Assembler Revised:20.02.1995

Calling a Subroutine by its Address

The purpose of this package is to provide a (limited) tool to connect what is called a user-routine with an
arbitrary name to a CALL in a package, pre-existing on a library.

Because on most machines JUMPXn is implemented in Fortran or C, separate entries are needed for calling
the user-routine with zero, one, two, ..., nine parameters.

Structure:

SUBROUTINE subprogram
User Entry Names: JUMPAD, JUMPST, JUMPXn, (n = 0; 1; : : : ; 9)
Internal Entry Names: JUMPYn (Z042) (n = 0; 1; : : : ; 9) (if not Assembler or C)

Usage:

Three steps are necessary:

1) Get the transfer address IAD of the routine (for example TARGET) to be called:

EXTERNAL TARGET

IAD=JUMPAD(TARGET)

2) Set the transfer address for the next transfer(s):

CALL JUMPST(IAD)

3) Execute a transfer, for a call with n = 0; 1; : : : ; 9 parameters:

CALL JUMPX0

or CALL JUMPX1(P1)

...

or CALL JUMPX9(P1,P2,P3,P4,P5,P6,P7,P8,P9)

Restrictions:

Since on most machines JUMPXn is written in Fortran or C, the call to JUMPXn will be found in the trace-
back of routine TARGET, and RETURN from TARGET will pass through JUMPXn. Hence, normally (i.e. unless
recursion is handled by a particular machine), TARGET or any of its called routines may not again call
JUMPXn.
�
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INTRAC CERN Program Library Z044

Author(s) : F. Carminati, T. Lindelöf, R. Matthews, C. Vosicki, J. Zoll Library: KERNLIB

Submitter : Submitted: 01.12.1974

Language : Fortran or C or Assembler Revised:01.06.1993

Identify Job as Interactive

INTRAC allows an executing module to determine whether it is running interactively or not.

Structure:

FUNCTION subprogram
User Entry Names: INTRAC

Usage:

In any logical expression,

INTRAC()

has the value .TRUE. if the module is executing interactively and .FALSE. otherwise. Note that INTRAC
must be declared LOGICAL in the calling routine.

Method:

On UNIX machines execution is interactive if ’standard input’ (System Unit 0, i.e. Fortran Unit 5 nor-
mally) is connected to a terminal. The same is true on VAX as from June 1993.
�

381 Z044 – 1



IFBATCH CERN Program Library Z045

Author(s) : J. Shiers, C. Vosicki Library: KERNLIB, VAX only

Submitter : Submitted: 01.04.1994

Language : Fortran Revised:

Identify Job as Running in Batch Mode

IFBATCH allows an executing module to determine whether it is running in batch mode or not.

Structure:

FUNCTION subprogram
User Entry Names: IFBATCH

Usage:

In any logical expression,

IFBATCH()

has the value .TRUE. if the module is executing in batch mode and .FALSE. otherwise. Note that IFBATCH
must be declared LOGICAL in the calling routine.
�
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XINOUT CERN Program Library Z203

Author(s) : R. Matthews, J. Zoll Library: KERNLIB

Submitter : Submitted: 15.07.1978

Language : Fortran Revised:18.09.1991

Short List Reading and Writing

The ’long list’ form WRITE(LUN) (A(J),J=1,N) is translated into slow object code by some compilers.
Normally, these compilers handle the ’short list’ form

DIMENSION A(N)

WRITE(LUN) A

correctly, compiling just one system request, rather than N requests.

Furthermore, some machines require the calling program to know the record size beforehand, if reading is
done in Fortran. The problem can be solved by adding the record size as the first word of the record, thus
for

writing: WRITE(LUN) N,(B(J),J=1,N)

reading: READ (LUN) N,(B(J),J=1,N)

This way of reading and writing is an extra convention; it is called ’variable length’ in the descriptions
below.

Sometimes it is convenient to prefix each record with some identifiers, always the same number of words,
say NA words:

writing: WRITE(LUN) N,(A(J),J=1,NA),(B(J),J=1,N)

reading: READ (LUN) N,(A(J),J=1,NA),(B(J),J=1,N)

This mode is called ’split mode’ in the descriptions below.

The routines of XINOUT provide ’short list’ reading and writing for split mode, variable length mode and
also for fixed length mode.

Structure:

SUBROUTINE subprograms
User Entry Names: XINB, XINBF, XINBS, XOUTB, XOUTBF, XOUTBS
COMMON Block Names and Lengths: /SLATE/ NR,DUMMY(39)

Files Referenced: Parameter

Notes:

The routines XINCF and XOUTCF to handle formatted files are obsolete.
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Usage:

Reading:

The vectors to be read are XAV and XV of length NA and NX; the read routines contain effectively

DIMENSION XV(NX) [,XAV(NA)]

Before calling, NX must be preset to the maximum number of words to be accepted into XV with, say,
NX = NWMAX.

CALL XINB(LUN,XV,NX) Read binary, variable length:

READ(LUN) NR,(XV(J),J=1,MIN(NR,NX))

CALL XINBF(LUN,XV,NX) Read binary, fixed length:

READ(LUN) XV

CALL XINBS(LUN,XAV,NA,XV,NX) Read binary, split mode:

READ(LUN) NR,XAV,(XV(J),J=1,MIN(NR,NX))

On return NX contains:

NX > 0 : Read successful, number of words transmitted into XV.
= 0 : End-of-file.
< 0 : Read error, its value contains the IOSTAT error code on most machines.

For XINB and XINBS the record length NR read from the file is stored into the first word of /SLATE/.

Writing:

The vectors to be written are AV and V of length NA and N; the write routines contain

DIMENSION V(N) [,AV(NA)]

CALL XOUTB(LUN,V,N) Write binary, variable length:

WRITE(LUN) N,V

CALL XOUTBF(LUN,V,N) Write binary, fixed length:

WRITE(LUN) V

CALL XOUTBS(LUN,AV,NA,V,N) Write binary, split mode:

WRITE(LUN) N,AV,V
�
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IARGC CERN Program Library Z264

Author(s) : F. Carminati, M. Marquina Library: KERNLIB or Fortran Run-Time Library

Submitter : Submitted: 13.07.1988

Language : Fortran + C Revised:15.03.1993

Returns Command Line Arguments

IARGC is used to return arguments that the user has given to an executable module on the command line.

Structure:

FUNCTION subprograms
User Entry Names: GETARG, IARGC

Usage:

NPAR = IARGC()

sets NPAR to the number of blank delimited arguments present after the program name on the command line.
NPAR and IARGC are of type INTEGER.

CALL GETARG(IARG,GOTEXT)

IARG (INTEGER) Contains, on entry, the number of the argument to retrieve. Unchanged on exit.

GOTEXT (CHARACTER) Contains, on exit, the IARG-th argument.

Notes:

1. Arguments surrounded by double quotes (") are treated as single, e.g.

"a variable here"

is equivalent to one argument.

2. On VM/CMS, due to technical restrictions, at least one of the routines must be called before any I/O
(typically a PRINT statement).

3. GETARG(0,GOTEXT) returns name of executing program (not VM).

Example:

CHARACTER*100 STRING

C

C-- Retrieve the number of arguments given to this program

C

NPAR=IARGC()

C-- and then get one by one, storing it in STRING

DO 10 N = 1,NPAR

CALL GETARG(N,STRING)

PRINT *, STRING(1:LENOCC(STRING))

10 CONTINUE

END

�
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CINTF CERN Program Library Z265

Author(s) : see below Library: KERNLIB

Submitter : Submitted: 19.09.1991

Language : Fortran + C Revised:01.04.1994

Immediate Interface Routines to the C Library

Authors: F. Carminati, M. Marquina, A. Rademakers, J. Shiers, J. Zoll.

The routines of this package are Fortran callable routines which in turn call their corresponding C Library
routines, after having taken care of the Fortran way of passing parameters.

The names of the interface routines are exactly the names of the C functions with the letter F added; the
parameters are in one-to-one correspondence with the C functions; thus "man <name>" gives the exact
details also for the interface routine.

Most Fortran systems on Unix machines are clever, they protect the Fortran user against name-clashes with
the C library, for example a "CALL RENAME (...)" compiles as a reference to "rename_" (or to "RENAME"
on the Cray).

If this is not strictly true, and/or if moreover the Fortran Run-time library does itself contain an interface
routine "rename" then there might be trouble because it is not obvious which "rename" will be linked to
the interface routine RENAMEF. The IBM 6000 machine has succeeded in creating this problem, it has both
"rename" and "rename_" on the Fortran Run-time library. In this case one has to give an explicite -lc on
the link statement to ensure that the C library is searched before the Fortran library (but after the Kernlib
library).

Structure:

SUBROUTINE and FUNCTION subprograms
User Entry Names: ACCESSF, CHDIRF, CTIMEF, EXITF, GETENVF, GETGIDF, GETPIDF, GETUIDF,

GETWDF, GMTIMEF, KILLF, LSTATF, PERRORF, READLNF, RENAMEF, SETENVF,

SLEEPF, STATF, SYSTEMF, UNLINKF
COMMON Block Names and Lengths: /SLATE/ ISLATE(40)

Usage:

The types of all variables and functions follow from the Fortran default typing convention (unless typed
explicitly), except that variables starting with the letters CH are of type CHARACTER.

The symbol * designates an output parameter.

For convenience, routines which return a CHARACTER string also return the occupied useful length of this
string in ISLATE(1) of /SLATE/.

386 Z265 – 1



’access’ — determine accessibility of file

LOGICAL ACCESSF

truth = ACCESSF(CHNAME,MODE)

CHNAME the path-name of the file

MODE a bit pattern specifying the type of access:

bit 1 (1): execution permission

2 (2): write permission

3 (4): read permission

all zero: existence

’chdir’ — set current working directory

INTEGER CHDIRF

ISTAT = CHDIRF(CHNAME)

CHNAME the path-name of the new working directory

ISTAT function value returns zero if successful.

’ctime’ — convert encoded time to ASCII

CHARACTER CHTIME*24

CALL CTIMEF(ITIME, CHTIME)

ITIME encoded time (as returned by STATF)

CHTIME* decoded time string of length 24

’exit’ — terminate the process with a status code

CALL EXITF(IRC)

stops setting return status IRC. This should not be used for normal run termination. On the IBM VM this
had to be implemented with a computed GOTO, hence if IRC > 20 a STOP 255 is executed.

On the Unix machines IRC will appear in the shell variable ”status” which is reset after execution of each
command, thus for more complicated logic the value of status has to be saved like (in the C shell):

set rc = $status

if (rc != 0) then

if (rc == 1) then

echo ' not quite happy, but continue'

else

echo ' stop for trouble'

exit

endif

endif
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’getenv’ — get the text of an environment variable

CHARACTER CHTEXT*(big enough)

CALL GETENVF(CHNAME, CHTEXT)

CHNAME the name of the environment variable,

CHTEXT* returns its value, with blank-fill

ISLATE(1) occupied length, =0 if not found

’getgid’ — get group identification

CALL GETGIDF(IDG)

IDG returns the real group ID of the current process.

’getpid’ — get process identification

CALL GETPIDF(IDP)

IDP returns the process ID of the current process.

’getuid’ - get user identification

CALL GETUIDF(IDU)

IDU returns the real user ID of the current process.

’getwd’ — get the path-name of the working directory

CHARACTER CHTEXT*(big enough)

CALL GETWDF(CHTEXT)

CHTEXT* returns the path-name, with blank-fill

ISLATE(1) occupied length, =0 if not found

’gmtime’ — blow encoded time to time elements for Greenwich Mean Time

INTEGER ITMELS(9)

CALL GMTIMEF(ITIME, ITMELS)

ITIME encoded time (as returned by STATF)

ITMELS* decoded time elements:

(1) sec, (2) min, (3) hour, (4) day, (5) month, (6) year,

(7) weekday, (8) yearday, (9) isdst

’kill’ — send a signal to a process

ISTAT = KILLF(IPID,ISIG)

IPID process ID

ISIG signal number

ISTAT function value returns zero if successful.
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’perror’ — print message for the most recent C Library error

CALL PERRORF(CHTEXT)

CHTEXT the text to be printed before the error message

’readlink’ — read value of a symbolic link

INTEGER READLNF

CHARACTER VAL*(big enough)

NCH = READLNF(CHNAME,VAL)

CHNAME path-name of the link

VAL(1:NCH) returns the value of the link

NCH useful length returned,

= -1 if trouble, PERRORF may be called.

’rename’ — rename a file

INTEGER RENAMEF

ISTAT = RENAMEF(CHFROM,CHTO)

CHFROM old file name

CHTO new file name

ISTAT function value returns zero if successful.

’setenv’ - set environment variable

INTEGER SETENVF

ISTAT = SETENVF(CHNAME,CHVAL)

CHNAME name of the environment variable

CHVAL its value to be set

ISTAT function value returns zero if succesful.

On machines where the setenv function of system BSD is not available, putenv is used instead on a string
constructed from CHNAME and CHVAL in allocated memory, hence one should avoid re-defining the same
variable very many times.

’sleep’ — suspend execution

CALL SLEEPF(NSECS)

NSECS number of seconds to wait
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’stat’ — get file status

INTEGER INFO(12)

INTEGER STATF

ISTAT = STATF(CHNAME, INFO)

CHNAME path-name of the file

INFO* information returned

ISTAT function value returns zero if successful.

This routine returns the properties of a given file in a 12-word integer vector:

INFO(1) = dev device inode resides on

INFO(2) = ino this inode's number

INFO(3) = mode protection

INFO(4) = nlink number or hard links to the file

INFO(5) = uid user-id of owner

INFO(6) = gid group-id of owner

INFO(7) = size total size of file

INFO(8) = atime file last access time

INFO(9) = mtime file last modify time

INFO(10) = ctime file last status change time

INFO(11) = blksize optimal blocksize for file system i/o ops

INFO(12) = blocks actual number of blocks allocated

On machines where 'blksize' and 'blocks' are not available (like Silicon Graphics) the words
INFO(11/12) will always be zero.

’lstat’ — get file status

LSTATF is like STATF except in the case where the named file is a symbolic link, in which case LSTATF

returns information about the link, while STATF returns information about the file the link references.

For convenience LSTATF stores into /SLATE/ some information about the nature of CHNAME:

ISLATE(1) = 0 if CHNAME is a regular file

ISLATE(2) = 0 if CHNAME is a symbolic link

ISLATE(3) = 0 if CHNAME is a directory

’system’ — issue a shell command

INTEGER SYSTEMF

ISTAT = SYSTEMF(CHTEXT)

CHTEXT the command to be executed

ISTAT returns the exit status of the shell
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’unlink’ — remove directory entry

INTEGER UNLINKF

ISTAT = UNLINKF(CHNAME)

CHNAME the path-name of the file to be unlinked

ISTAT function value returns zero if successful.

Normally this deletes file CHNAME. If CHNAME is a soft link, the link is deleted, but not the file pointed to.

Notes:

The routine SIGNALF, which belongs to this family, will be described separately in the next paper

These routines have also been implemented on some machines which are not running Unix. The present
state is as follows:

VAX system VMS has :

CHDIRF, EXITF, GETENVF, GETWDF, RENAMEF, SLEEPF, SYSTEMF

Presently GETENVF looks in the symbol table, except if the name of the environment variable is "HOME" for
which it will return the value of the logical name SYS$LOGIN.

Some other routines are available through the C run-time library.

IBM 3090 system VM/CMS has :

CHDIRF, CTIMEF, EXITF, GETENVF, GETPIDF, GETWDF, GMTIMEF,

KILLF, PERRORF, RENAMEF, SLEEPF, STATF, SYSTEMF

�
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WHOAMI CERN Program Library Z266

Author(s) : F. Carminati, J. Zoll Library: KERNLIB, VAX only

Submitter : Submitted: 01.04.1994

Language : Fortran Revised:

Get the name of the executing module

This routine will figure out the path-name of the executing image. On the VAX this is done with a system
call, on UNIX by scanning the search path until it finds the module whose name is in argv[0].

Structure:

SUBROUTINE subprograms
User Entry Names: WHOAMI
Common Blocks: COMMON /SLATE/ ND,NE,NF,DUMMY(37)

Usage:

CALL WHOAMI(NAME)

On exit, NAME contains the full path-name of the module.

Status and various lengths are returned in /SLATE/:

ND = 0 if the call failed,

> 0 the number of characters in the path-name

On the VAX:

ND = number of characters in the path-name with .EXE;n stripped

NE = number of characters before the semicolon,

NF = number of characters in the complete name.

For example:

if NAME is DISK:[CERN]WYLBUR.EXE;4

_:.=+=.: 1_:.=+=.: 2_:.=+=

we will get ND=17, NE=21, NF=23.

Note: At the moment this is available only on the VAX; the code exists for UNIX but is not yet in the library.
�
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FTOVAX CERN Program Library Z267

Author(s) : J. Zoll Library: KERNLIB, VAX only

Submitter : Submitted: 01.09.1990

Language : Fortran Revised:01.11.1994

Convert File-name to and from UNIX Syntax

These routines convert a file name from UNIX form to VAX VMS form, and vice versa. The correspondance
is as follows:

VAX: node::disk:[a.b.c]file.ext;cy

UNIX: //node/disk/a/b/c/file.ext;cy

VAX: [a.b.c]file.ext;cy and [.a.b.c]file.ext;cy

UNIX: /(a/b/c/file.ext;cy a/b/c/file.ext;cy

Forms like ../file.ext;cy and /dir/file.ext;cy are also handled.
For back-compatibility /=disk is handled as /disk.

Structure:

SUBROUTINE subprograms
User Entry Names: FTOVAX, FFRVAX
Common Blocks: COMMON /SLATE/ ISTAT,DUMMY(39)

Usage:

Convert to VAX form

CALL FTOVAX(CHNAME,NCH)

*CHNAME* file-name to be converted in situ

*NCH* significant length of the name

No conversion is done if the file-name does not contain a character "/" on input.

Convert to UNIX form

CALL FFRVAX(CHNAME,NCH)

*CHNAME* file-name to be converted in situ

*NCH* significant length of the name

No conversion is done if the file-name does already contain a character "/" on input.
This routine does some tidying up if necessary, thus for example the troublesome

disk:[a][b.c]fn.ext becomes the correct /disk/a/b/c/fn.ext

Both routines return ISTAT=0 if no conversion was needed, ISTAT=1 for successful conversion,
and ISTAT=-1 if a syntax error was detected.
Note that both routines update both the file-name and its useful length NCH in situ.

Examples:

tex/z267.tex [.tex]z267.tex

../wyl/kernfor.car [-.wyl]kernfor.car

/(julia/kern/wyl/kernvax.car [julia.kern.wyl]kernvax.car

/cern_root/pam/kernfor.car cern_root:[pam]kernfor.car

�
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VAXTIO CERN Program Library Z301

Author(s) : C. Ciapetti, J. Zoll Library: KERNLIB, VAX only

Submitter : Submitted: 01.09.1983

Language : VAX Fortran Revised:

VAX Fortran Interface for Reading and Writing ’Foreign’ Tapes

VAXTIO handles non-native tapes on the VAX; it is needed because VAX Fortran does not provide a U format.

If the tape to be handled is on logical unit 11, mounted on MTAO, with physical records of 3600 bytes
maximum, for example, the following commands have to be given:

$ MOUNT MTAO:/FOREIGN/BLOCKSIZE=3600/RECORDSIZE=3600

$ ASSIGN MTA0: QIOUNIT11

Structure:

SUBROUTINE subprogram
User Entry Names: VAXTIO
Internal Entry Names: WAIT2S
Files Referenced: User defined parameter
COMMON Block Names and Lengths: /VAXTIO/ 240

Usage:

CALL VAXTIO(LUN,MODOP,IBUF,NDO,NDONE,NCODE,LUNMSG)

Input parameters:

LUN Logical unit number (0 < LUN < 61).

MODOP Operation mode, indicating the kind of operation to be performed; for details, see below.

IBUF Data area for read and write.

NDO Number of units to be done.

LUNMSG Fortran logical unit number for printing diagnostic messages; if zero, printing is suppressed.

Output parameters:

NDONE Number of units done; error if negative.

NCODE QIO System status code.

The following operations are provided at present:

MODOP = �2 : Write EOF (3 tape marks are written and the tape is positioned after the first

tape mark).

NDONE = 1 Successful.

NDONE = 0 End-of-tape.

NDONE = �7 Trouble.

MODOP = �1 : Write one record, tranfer NDO bytes from IBUF to tape.

NDONE > 1 Number of bytes written.

NDONE = 0 End-of-tape, but record written.

NDONE = �7 Trouble.
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MODOP = 0 : Read one record, transfer at most NDO bytes from tape to IBUF, excess data

are lost.

NDONE > 0 Number of bytes transferred.

NDONE = 0 EOF, end-of-tape.

NDONE = �1 Read error, record skipped.

NDONE = �7 Trouble.

MODOP = 1 : Assign a channel for logical unit (if not done explicitly, assignment occurs on

first contact).

NDONE = 1 Successful.

NDONE = 0 Channel already assigned.

NDONE = �7 Trouble.

MODOP = 2 : Skip jNDOj records, forward if NDO > 0, reverse if NDO < 0. (jNDOj < 32768)

NDONE > 0 Number of records skipped.

NDONE < NDO EOF seen, skipped, counted.

NDONE = �7 Trouble.

MODOP = 3 : Skip jNDOj files, forward if NDO > 0, reverse if NDO < 0.

NDONE > 0 Number of files skipped.

NDONE < NDO End-of-tape seen.

NDONE = �7 Trouble.

MODOP = 4 : Rewind.

MODOP = 5 : Rewind and unload.

NDONE = 1 Successful.

NDONE = �7 Trouble.

MODOP = 6 : De-assign channel; this should be done if a logical unit is no longer needed.

NDONE = 1 Successful.

NDONE = �7 Trouble.
�
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KAPACK CERN Program Library Z303

Author(s) : R. Matthews Library: PACKLIB

Submitter : Submitted: 25.08.1983

Language : Fortran Revised:07.02.1986

Random Access I/O Using Keywords

OBSOLETE
Please note that this routine has been obsoleted in CNL 219. Users are advised
not to use it any longer and to replace it in older programs. No maintenance
for it will take place and it will eventually disappear.

Suggested replacement: ZEBRA (Q100) or HEPDB (Q180)

A package of Fortran-callable subprograms for manipulating a random access file in which the records are
of variable length and identified by a two-component name. This package may be used as the basis of a data
base or bookkeeping system.

Structure:

SUBROUTINE subprograms
User Entry Names: KAADD, KAADDM, KACOPY, KADEL, KADELM, KAFREE, KAGET, KAGETM,

KAHOLD, KALEN, KALIST, KALOC, KAMAKE, KAMSG, KAOPTN, KAPRE,

KAPREM, KAPRIK, KAPUT, KAPUTM, KARLSE, KASEQ, KASEQM, KASTOP

Usage:

See Long Write-up .
�
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CFIO CERN Program Library Z310

Author(s) : J. Zoll Library: KERNLIB, UNIX and VMS

Submitter : Submitted: 19.09.1991

Language : Fortran + C Revised:

Handle Fixed-length Records on Unix Streams

The routines of this package are an interface to the C library functions open, read, write, lseek, close, to
permit a Fortran program to handle an unstructured Unix file as a string of fixed-length binary records. Both
sequential and direct-access READ / WRITE can be simulated.

These routines are simple little interface routines, there is no book-keeping done of the files which have
been opened, the properties of the file have to be specified on each call, and the user is responsible for the
consistency of all his calls for a particular file.

Processing has to be different for a disk file or for a tape file; therefore the medium must be indicated in the
calls. Also, a user could take the source of these routines and modify them to add other branches for special
processing.

New files are opened with the default permissions 644; one may set different permissions by calling CFPERM
just before calling CFOPEN, which resets to the default after every call.

Three parameters are common to almost all routines :

LUNDES is the file-descriptor of C to identify the file;

with CFOPEN this is an output parameter,

for all other routines it is an input parameter.

MEDIUM = 0 for disk file, normal

1 tape file, normal

2 disk file, user coded I/O

3 tape file, user coded I/O

NWREC is the number of machine words for each one

of the fixed-length records.

In the examples below it is assumed that for a given file these three parameters are available in something
like COMMON storage.

Structure:

SUBROUTINE subprograms
User Entry Names: CFOPEN, CFGET, CFPUT, CFSIZE, CFTELL, CFSEEK, CFREW, CFCLOS, CFPERM
Files Referenced: Parameter

Usage:

Note: the symbol * designates output parameters.
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Open a file

CALL CFOPEN(LUNDES,MEDIUM,NWREC, CHMODE, NBUF, CHNAME, ISTAT)

LUNDES* file-descriptor returned

CHMODE CHARACTER string selecting the IO mode :

= 'r' open for reading

'r+' open for read/write

'w' create or truncate for writing

'w+' open for write/read, create or truncate

'a' append

'a+' open for append/read

[ add the letter "l" if labeled tape,

action on this is not yet implemented ]

NBUF not used for the time being, always give zero

CHNAME name of the file, CHARACTER variable

ISTAT* status, =zero if success

For example, create a new file in the current directory :

MEDIUM = 0

NWREC = 900

CALL CFOPEN(LUNDES,MEDIUM,NWREC, 'w', 0, 'run201.dat', ISTAT)

IF(ISTAT .NE. 0) GO TO trouble

Read next record

CALL CFGET(LUNDES,MEDIUM,NWREC, NWTAK, MBUF, ISTAT)

*NWTAK* input: number of words to be read

output: number of words actually read

MBUF* vector to be read into

ISTAT* status, = zero if success,

= -1 if end-of-file

To simulate direct-access reading one has to call CFSEEK first.

For example:

<< if the 7th record of the file is to be read:

CALL CFSEEK(LUNDES,MEDIUM,NWREC, 6, ISTAT)

IF(ISTAT .NE. 0) GO TO trouble >>

NWTAK = NWREC

CALL CFGET(LUNDES,MEDIUM,NWREC, NWTAK, MBUF, ISTAT)

IF(ISTAT .EQ.-1) GO TO eof

IF(ISTAT .NE. 0) GO TO trouble
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Write next record

CALL CFPUT(LUNDES,MEDIUM,NWREC, MBUF, ISTAT)

MBUF vector to be written, NWREC words

ISTAT* status, =zero if success

Get the size of the file

CALL CFSIZE(LUNDES,MEDIUM,NWREC, NRECT, ISTAT)

NRECT* number of records on the file

ISTAT* status, =zero if success

Careful : this will position the file to the end.

Get the current file position

CALL CFTELL(LUNDES,MEDIUM,NWREC, NRECC, ISTAT)

NRECC* number of records before current

ISTAT* status, =zero if success

Set the current file position

CALL CFSEEK(LUNDES,MEDIUM,NWREC, NRECC, ISTAT)

NRECC number of records before current

ISTAT* status, =zero if success

For example :

CALL CFSEEK(..., 0, ISTAT) position to start-of-file

CALL CFSEEK(..., 6, ISTAT) position to 7th record

use CFSIZE to position to end-of-file

Rewind the file

CALL CFREW(LUNDES,MEDIUM)

Close the file

CALL CFCLOS(LUNDES,MEDIUM)

Set the permissions for the next open

CALL CFPERM(IPERM)

IPERM the permissions as a decimal integer,

as returned by STATF (Z265) for example

For example (using NCOCTI of M432) :

CALL CFPERM(NCOCTI('660'))

set read and write for owner and group only.

�
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CIO CERN Program Library Z311

Author(s) : J. Zoll Library: KERNLIB, VAX and UNIX systems only

Submitter : Submitted: 31.10.1991

Language : Fortran + C Revised:01.04.1994

Handle Unix Disk Files

The routines of this package are an interface to the C library functions open, read, write, lseek, close, to
permit a Fortran program to handle an unstructured Unix file as a string of bytes. Both sequential and
direct-access READ / WRITE can be done.

New files are opened with the default permissions 644; one may set different permissions by calling CIPERM
just before calling CIOPEN, which resets to the default after every call.

One parameter is common to almost all routines : LUNDES is the file-descriptor of C to identify the file; with
CIOPEN this is an output parameter, for all other routines it is an input parameter.

Structure:

SUBROUTINE subprograms
User Entry Names: CIOPEN, CIGET, CIGETW, CIPUT, CIPUTW, CISIZE, CITELL, CISEEK, CIREW, CICLOS,
CIPERM

Files Referenced: Parameter

Usage:

Note: the symbol * designates output parameters.

Open a file

CALL CIOPEN(LUNDES, CHMODE, CHNAME, ISTAT)

LUNDES* file-descriptor returned

CHMODE CHARACTER string selecting the IO mode :

= 'r' open for reading

'r+' open for read/write

'w' create or truncate for writing

'w+' open for write/read, create or truncate

'a' append

'a+' open for append/read

CHNAME name of the file, of type CHARACTER

ISTAT* status, =zero if success

For example, create a new file in the current directory :

CALL CIOPEN(LUNDES, 'w', 'concert.car', ISTAT)

IF(ISTAT .NE. 0) GO TO trouble
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Read next string of bytes

CALL CIGET (LUNDES, CHBUF, NBDO, NBDONE, ISTAT)

CHBUF* text vector to be read into

NBDO maximum number of bytes to be read

NBDONE* number of bytes actually read

ISTAT* status, = zero if success,

= -1 if end-of-file

Read next string of full words

CALL CIGETW(LUNDES, MBUF, NWDO, NWDONE, ISTAT)

MBUF* vector to be read into

NWDO maximum number of words to be read

NWDONE* number of words actually read

ISTAT* status, = zero if success,

= -1 if end-of-file

A full word is normally 4 bytes; on the CRAY it is 8 bytes.

To simulate direct-access reading one has to call CISEEK first.

For example:

To read the next 2048 bytes:

<< starting at byte 8193 :

CALL CISEEK(LUNDES, 8192, ISTAT)

IF(ISTAT .NE. 0) GO TO trouble >>

CALL CIGET(LUNDES, CHBUF, 2048, NBDONE, ISTAT)

IF(ISTAT .EQ. -1) GO TO eof

IF(ISTAT .NE. 0) GO TO trouble

Write next string of bytes

CALL CIPUT(LUNDES, CHBUF, NBDO, ISTAT)

CHBUF text vector to be written, NBDO bytes

ISTAT* status, =zero if success

Write next string of full words

CALL CIPUTW(LUNDES, MBUF, NWDO, ISTAT)

MBUF vector to be written, NWDO words

ISTAT* status, =zero if success
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Get the size of the file

CALL CISIZE(LUNDES, NBYTT, ISTAT)

NBYTT* number of bytes on the file

ISTAT* status, =zero if success

Careful : this will position the file to the end.

Get the current file position

CALL CITELL(LUNDES, NBYTC, ISTAT)

NBYTC* number of bytes before current

ISTAT* status, =zero if success

Set the current file position

CALL CISEEK(LUNDES, NBYTC, ISTAT)

NBYTC number of bytes before current

ISTAT* status, =zero if success

For example :

CALL CISEEK(LUNDES, 0, ISTAT) position to start-of-file

CALL CISEEK(LUNDES, 8, ISTAT) position to 9th byte

use CISIZE to position to end-of-file

Rewind the file

CALL CIREW(LUNDES)

Close the file

CALL CICLOS(LUNDES)

Set the permissions for the next open

CALL CIPERM(IPERM)

IPERM the permissions as a decimal integer,

as returned by STATF (Z265) for example

For example (using NCOCTI of M432) :

CALL CIPERM(NCOCTI('664'))

set read for everybody, and write for owner and group.

Note: formally the buffer for reading and writing should be of type CHARACTER for CIGET and CIPUT, and
of type INTEGER for CIGETW and CIPUTW. On most machines there is no difference, but on the VAX this
must be observed, because the parameter passing mechanisme differs crucially for the two cases. Also, on
the CRAY there would be problems if one were using CIGETW to read into a Character address other than a
word boundary.
�
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TMREAD CERN Program Library Z313

Author(s) : J. Zoll Library: KERNLIB

Submitter : Submitted: 01.11.1994

Language : Fortran Revised:

Terminal Dialogue Routines

These routines prompt the user on-line to the executing program for input from the terminal, and read it. The
prompt is written to standard output by calling TMPRO, the input is read from standard input with TMREAD.
Whether or not standard input is in fact a terminal can be detected with INTRAC (Z044); if it is not the call
to TMPRO should be by-passed.

Structure:

SUBROUTINE subprograms
User Entry Names: TMINIT, TMPRO, TMREAD
Files references: standard input, standard output

Usage:

Initialize the dialogue

On some machines it is necessary to switch off buffered mode on standard output, this is done by calling
once, and before the first call to TMPRO:

CALL TMINIT (IFINIT)

IFINIT* is reset to non-zero by TMINIT

Put the prompt to standard output

CALL TMPRO (TEXT)

TEXT is the character string to be written

Read next line from standard input

CALL TMREAD (MAXCH, CHLINE, NCH, ISTAT)

MAXCH maximum number of char. to be stored into LINE

LINE* text read, of type CHARACTER

NCH* number of characters read into LINE

ISTAT* status returned:

= 0 success

< 0 end-of-file seen

> 0 read error

�
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ABEND, 17, 22, 24, 28, 29, 32–36, 40, 41, 43–45,
48, 50, 52, 55, 56, 58, 60, 63, 66–68, 70,
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193, 213, 215, 217, 218, 221–223, 231,
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ABUSER, 375
ACCESSF, 386
ADDBND, 112
ALGAMA, 34, 63, 223
ALOGAM, 34
AMAXMU, 147
ANDB, 208
ASINH, 15, 80
ASLGF, 58
ASSNDX, 233
ASTCCH, 377
ASTDCC, 377
ASTECC, 377
ASTECS, 377
ASTINT, 377
ASTSCS, 377
ASTXIT, 377
ATANI, 53
ATG, 14

BESI0, 41
BESI1, 41, 60
BESIO, 60
BESJ0, 40
BESJ1, 40, 60
BESJO, 60, 73
BESK0, 41, 71
BESK1, 41, 71
BESY0, 40, 73
BESY1, 40
BFGS, 112
BINOM, 13
BINSIZ, 241
BINVEC, 208
BITPOS, 295
BLOW, 262
BNDOPT, 112
BNDTST, 112
BOUNDS, 112
BSIA, 74
BSIR3, 70
BSIR4, 55
BSJA, 74
BSKA, 71
BSKR3, 70, 71

BSKR4, 55, 71
BTEST, 287
BTMOVE, 285
BUCMVE, 112
BUFOPT, 112
BUKDMP, 112
BUNCH, 283
BZEJY, 78

CALDAT, 370
CAUCHY, 96
CBSJA, 76
CBYT, 258, 263
CCLBES, 37, 56
CCMMPY, 185
CCOPIV, 268
CCOPYL, 268
CCOPYR, 268
CCOSUB, 268
CCUMPY, 185
CELFUN, 48
CELINT, 87
CENVIR, 268
CEQINV, 189
CEQN, 189
CEXPIN, 68
CFACT, 189, 191
CFCLOS, 397
CFEQN, 189, 191
CFGET, 397
CFILL, 268
CFINV, 189, 191
CFOPEN, 397
CFPERM, 397
CFPUT, 397
CFREW, 397
CFSEEK, 397
CFSIZE, 397
CFSTFT, 141, 143
CFT, 139
CFTELL, 397
CGAMMA, 35, 60
CGAUSS, 106
CGPLG, 50
CHDIRF, 386
CHECF, 176
CHISIN, 218
CHSUM, 178
CHTOI, 253, 267
CICLOS, 400
CIGET, 400
CIGETW, 400
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CINV, 189
CIOPEN, 400
CIPERM, 400
CIPUT, 400
CIPUTW, 400
CIREW, 400
CISEEK, 400
CISIZE, 400
CITELL, 400
CKRACK, 268
CLEFT, 268
CLGAMA, 36, 37, 56, 60
CLTOU, 268
CMADD, 185
CMBIL, 185
CMCPY, 185
CMDMP, 185
CMMLA, 187
CMMLS, 187
CMMLT, 187
CMMLTC, 187
CMMNA, 185
CMMNS, 185
CMMPA, 185
CMMPS, 185
CMMPY, 185
CMMPYC, 185
CMNMA, 187
CMNMS, 187
CMRAN, 185
CMSCL, 185
CMSET, 185
CMSUB, 185
CMUTL, 185
CNTOB, 208
CNTZB, 208
COMBI, 351
CONVERT, 313
COPYB, 208
CORGEN, 337
CORSET, 337
COSINT, 66
CPLNML, 16
CPOLYZ, 28
CPSIPG, 37, 45
CRIGHT, 268
CROSS, 201
CSETDI, 268
CSETHI, 268
CSETOI, 268
CSETVI, 268
CSETVM, 268
CSQMBL, 268

CSQMCH, 268
CTIMEF, 386
CTRANS, 268
CUMNA, 185
CUMNS, 185
CUMPA, 185
CUMPS, 185
CUMPY, 185
CUMPYC, 185
CUTOL, 268
CVADD, 183
CVCPY, 183
CVDIV, 183
CVMPA, 183
CVMPAC, 183
CVMPY, 183
CVMPYC, 183
CVMUL, 183
CVMULA, 183
CVMUNA, 183
CVRAN, 183
CVSCA, 183
CVSCL, 183
CVSCS, 183
CVSET, 183
CVSUB, 183
CVSUM, 183
CVXCH, 183
CWERF, 65
CWHITM, 56

DADAPT, 92
DADMUL, 110
DASINH, 15, 80
DASLGF, 58
DATANI, 53
DATIME, 239, 362, 368, 370
DATIMH, 360, 368
DAWSON, 69
DBEQN, 213
DBESI0, 41, 60
DBESI1, 41, 60
DBESJ0, 40, 60, 73
DBESJ1, 40, 60
DBESK0, 41, 71
DBESK1, 41, 71
DBESY0, 40, 73
DBESY1, 40
DBINOM, 13
DBSIA, 74
DBSIR3, 70
DBSIR4, 55
DBSJA, 74
DBSKA, 71
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DBSKR3, 70, 71
DBSKR4, 55, 71
DBZEJY, 78
DCAUCH, 96
DCHEBN, 168
DCHECF, 176
DCHPWS, 179
DCHSUM, 178
DCLAUS, 54
DCLEBG, 319
DCOSIN, 66
DCSPLN, 166
DCSPNT, 166
DDAWSN, 69
DDEQBS, 115
DDEQMR, 117
DDERIV, 124
DDILOG, 62
DDJMNB, 323
DEBIR3, 70
DEBIR4, 55
DEBKA, 71
DEBKR3, 70, 71
DEBKR4, 55, 71
DEBSI0, 41
DEBSI1, 41
DEBSK0, 41, 71
DEBSK1, 41, 71
DELBND, 112
DELETE, 112
DELFUN, 46
DELI1, 80
DELI1C, 83
DELI2, 80
DELI2C, 83
DELI3, 80
DELI3C, 83, 359
DELIEC, 60, 83, 359
DELIGC, 83
DELIKC, 60, 83, 359
DELLIE, 83
DELLIK, 83
DELSLV, 112
DENLAN, 224, 226
DEQBS, 115
DEQINV, 189
DEQMR, 117
DEQN, 135, 189
DERF, 30
DERFC, 30, 217
DERIV, 124
DEXPIE, 67
DEXPIN, 67

DFACT, 189, 191
DFCONC, 60
DFEQN, 189, 191
DFERDR, 52
DFINV, 189, 191
DFRCOS, 51
DFRDH1, 135
DFRDH2, 135
DFRDH3, 135
DFREQ, 31
DFRSIN, 51
DFUNFT, 126
DGAGNC, 63
DGAMMA, 32, 43, 74, 76
DGAMMF, 33
DGAPNC, 63
DGAUSN, 222
DGAUSS, 94, 96
DGBTRF, 157
DGBTRS, 157
DGEQPF, 126
DGESVD, 157
DGMLT1, 103
DGMLT2, 103
DGMLT3, 103
DGMLT4, 103
DGMLT5, 103
DGMLT6, 103
DGQUAD, 100
DGS56P, 92, 99
DGSET, 100, 135
DIFLAN, 224
DILOG, 62
DINV, 189, 215
DISLAN, 224, 226
DIVDIF, 150
DIVON, 112
DJAHNU, 319
DJMNB, 323
DLGAMA, 34, 63
DLHOIN, 215
DLOGAM, 34
DLSQP1, 153
DLSQP2, 153
DLSQPM, 153
DMADD, 185
DMAXLK, 126
DMBIL, 126, 185
DMCPY, 126, 157, 185, 215
DMDMP, 185
DMINFC, 131
DMMLA, 187
DMMLS, 187
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DMMLT, 126, 187
DMMNA, 185
DMMNS, 185
DMMPA, 185
DMMPS, 185
DMMPY, 126, 157, 185
DMNMA, 187
DMNMS, 187
DMRAN, 185
DMSCL, 126, 185
DMSET, 126, 185, 215
DMSUB, 185
DMULLZ, 22
DMUTL, 185
DORMQR, 126
DOTB, 208
DOTI, 200
DPLNML, 16
DPSIPG, 44
DPWCHS, 179
DRACAW, 319
DRANF, 183, 185, 230
DRIZET, 43
DRKNYS, 119
DRKSTP, 113
DRTEQ3, 26, 27
DRTEQ4, 27
DSEQN, 153, 155, 193
DSFACT, 193
DSFEQN, 193
DSFINV, 193
DSIMPS, 91
DSININ, 66
DSINV, 126, 193
DSMPLX, 231
DSNLEQ, 20
DSPAP1, 157
DSPAP2, 157
DSPCD1, 157
DSPCD2, 157
DSPIN1, 157
DSPIN2, 157
DSPKN1, 157
DSPKN2, 157
DSPNB1, 157
DSPNB2, 157
DSPPS1, 157
DSPPS2, 157
DSPVD1, 157
DSPVD2, 157
DSRTNT, 17
DSTLAN, 224
DSTRH0, 73

DSTRH1, 73
DSUMSQ, 126
DTHETA, 89
DTRGSM, 181
DTRINT, 97
DTRTRS, 126
DUMNA, 185
DUMNS, 185
DUMPA, 185
DUMPS, 185
DUMPY, 185
DVADD, 183
DVCOPY, 112
DVCPY, 126, 157, 183, 215
DVDIV, 183
DVDOT, 112
DVMPA, 183
DVMPY, 126, 153, 157, 183, 215
DVMUL, 183
DVMULA, 183
DVMUNA, 183
DVNBKD, 112
DVNOPT, 112
DVNSPC, 359
DVRAN, 183
DVSCA, 168, 183
DVSCL, 126, 168, 183, 215
DVSCS, 168, 183
DVSET, 126, 153, 157, 168, 183
DVSUB, 126, 183
DVSUM, 153, 157, 183
DVXCH, 168, 183
DWIG3J, 319
DWIG6J, 319
DWIG9J, 319
DZERO, 24
DZEROX, 18

EBESI0, 41
EBESI1, 41
EBESK0, 41, 71
EBESK1, 41, 71
EBSIR3, 70
EBSIR4, 55
EBSKA, 71
EBSKR3, 70, 71
EBSKR4, 55, 71
ELFUN, 46
ELLICE, 83
ELLICK, 83
ELPAHY, 122
EPADDH, 235
EPCLOS, 235
EPDE1, 121
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EPDROP, 235
EPEND, 235
EPGETA, 235
EPGETC, 235
EPGETW, 235
EPINIT, 235
EPOUTL, 235
EPOUTS, 235
EPREAD, 235
EPRWND, 235
EPSETA, 235
EPSETC, 235
EPSETW, 235
EPSTAT, 235
EPUPDH, 235
EPUREF, 235
ERF, 30
ERFC, 30, 217
ERRORF, 134
EXITF, 386
EXMBUC, 112
EXPINT, 67

FCONC, 60
FEASMV, 112
FEQN, 112
FERDR, 52
FFGET, 237
FFGO, 237
FFINIT, 237
FFKEY, 237
FFREAD, 237
FFRVAX, 393
FFSET, 237
FFUSER, 237
FINT, 148
FLPSOR, 246, 363
FORCCR, 316
FOWL, 362
FRCOS, 51
FREQ, 31
FROMI, 267
FRSIN, 51
FTOVAX, 393
FUMILI, 134
FUN, 112
FUNLUX, 349
FUNLXP, 349
FUNPRE, 347
FUNRAN, 347

GAGNC, 63
GAMDIS, 223
GAMMA, 32, 43, 74, 76, 223

GAMMF, 33
GAPNC, 63
GATHER, 206
GAUSIN, 218, 221, 222
GAUSS, 94, 96, 347
GENBOD, 363
GENPNT, 112
GETARG, 385
GETBIT, 284
GETBYT, 286
GETENVF, 386
GETGIDF, 386
GETPIDF, 386
GETUIDF, 386
GETWDF, 386
GMTIMEF, 386
GRAPH, 358
GRDCMP, 112
GTHRB, 208

HISPRE, 345
HISRAN, 345

IAND, 287
IARGC, 385
IBCLR, 287
IBITS, 287
IBSET, 287
ICDECI, 268
ICEQU, 268
ICFILA, 268
ICFIND, 268
ICFMUL, 268
ICFNBL, 268
ICHEXI, 268
ICINQ, 268
ICINQL, 268
ICINQU, 268
ICLOC, 268
ICLOCL, 268
ICLOCU, 268
ICLUNS, 268
ICNEXT, 268
ICNTH, 268
ICNTHL, 268
ICNTHU, 268
ICNUM, 268
ICNUMA, 268
ICNUMU, 268
ICOCTI, 268
ICTYPE, 268
IE3FOD, 251
IE3FOS, 251
IE3TOD, 251
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IE3TOS, 251
IEOR, 287
IFBATCH, 382
IFROMC, 267
IILZ, 206
ILSUM, 206
INCBYT, 261
INDENT, 311
INDEXA, 279
INDEXB, 279
INDEXC, 279
INDEXN, 279
INDEXS, 279
INDXAC, 279
INDXBC, 279
INDXNC, 279
INTGB, 208
INTGRL, 112
INTRAC, 381
INTSOR, 246
IOPACK, 235
IOR, 287
IRNDM, 324
ISCAN, 279
ISHFT, 287
ISHFTC, 287
ITOCH, 253, 267
IUBIN, 364
IUCHAN, 362, 364
IUCOLA, 356
IUCOMP, 302, 356
IUFILA, 356
IUFIND, 356
IUHIST, 364
IUHUNT, 356
IULAST, 356
IUSAME, 291, 302
IUWEED, 300
IYLOSB, 208
IYLOXB, 208

JBIT, 258, 358
JBYT, 258, 260, 263, 358
JBYTET, 258
JBYTOR, 258
JBYTPK, 260
JRSBYT, 258
JUMPAD, 380
JUMPST, 380
JUMPXn, 380
JUMPYn, 380

KAADD, 396
KAADDM, 396

KACOPY, 396
KADEL, 396
KADELM, 396
KAFREE, 396
KAGET, 396
KAGETM, 396
KAHOLD, 396
KALEN, 396
KALIST, 396
KALOC, 396
KAMAKE, 396
KAMSG, 396
KAOPTN, 396
KAPRE, 396
KAPREM, 396
KAPRIK, 396
KAPUT, 396
KAPUTM, 396
KARLSE, 396
KASEQ, 396
KASEQM, 396
KASTOP, 396
KBINOM, 13
KERMTR, 145, 148, 150, 155, 189, 191, 193, 213
KERNGT, 367
KERNLIB, 303
KERSET, 296
KILLF, 386

LATTCR, 316
LDLSOL, 112
LENOCC, 294
LFIT, 174
LFITW, 174
LIHOIN, 215
LIKELM, 134
LLSQ, 155
LNBLNK, 268
LOCATF, 152
LOCATI, 152
LOCATR, 152, 226, 344, 345
LOCB, 299
LOCBYT, 265
LOCF, 183, 185, 187, 299, 302, 354
LOCSCH, 112
LOREN4, 317
LORENB, 318
LORENF, 318
LSQ, 155
LSTATF, 386
LVMAX, 203
LVMAXA, 203
LVMIN, 203
LVMINA, 203
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LVSDMI, 203
LVSDMX, 203
LVSIMI, 203
LVSIMX, 203
LVSMI, 203
LVSMX, 203

MAXDZE, 146
MAXFZE, 146
MAXIZE, 146
MAXRZE, 146
MBYTET, 258
MBYTOR, 258
MCBYT, 258
MINDZE, 146
MINFZE, 146
MINIZE, 146
MINRZE, 146
MODCHL, 112
MSBIT, 258
MSBIT0, 258
MSBIT1, 258
MSBYT, 258
MTLMTR, 17, 22, 24, 28, 29, 32–36, 40, 41, 43–45,

48, 50, 52, 55, 56, 58, 60, 63, 66–68, 70,
71, 74, 76, 78, 80, 83, 87, 89, 91, 94, 96,
97, 100, 103, 106, 115, 117, 124, 135,
157, 176, 215, 217, 218, 221–223, 231,
323

MTLSET, 40, 41, 298
MULCHK, 112
MVBITS, 287
MXDIPR, 211
MXMAD, 196
MXMAD1, 196
MXMAD2, 196
MXMAD3, 196
MXMLRT, 196
MXMLTR, 196
MXMPY, 196
MXMPY1, 196
MXMPY2, 196
MXMPY3, 196
MXMUB, 196
MXMUB1, 196
MXMUB2, 196
MXMUB3, 196
MXSTEP, 112
MXTRP, 196
MXUTY, 196

NAMEFD, 289
NANDB, 208
NCDECI, 268

NCHEXI, 268
NCOCTI, 268
NEWPTR, 112
NMDCHL, 112
NOCUT, 112
NODAUD, 112
NORB, 208
NOT, 287
NOTB, 208
NRAN, 112, 326, 338
NRANIN, 326
NRANUT, 326
NUMBIT, 266
NZERFZ, 29

ONEB, 208
ORB, 208
ORTHVC, 112

PARLSQ, 175
PARTN, 112
PDK, 363
PERMU, 351
PERMUT, 351
PERRORF, 386
PKBYT, 260
PKCHAR, 263, 283
POISCR, 316
POLINT, 145
POLROT, 195
PRMFCT, 11
PROB, 217
PROBKL, 219, 220
PROXIM, 357
PSCALE, 250

QBSIA, 74
QBSJA, 74
QCHECF, 176
QGAMMA, 32, 74, 76
QGAUSS, 94
QLGAMA, 34
QNEXT, 379
QNEXTE, 379
QUAD, 112
QUASI, 112

RADAPT, 92, 349
RADMUL, 110, 112
RAN3D, 338
RANECQ, 330
RANECU, 330
RANF, 183, 185, 230, 361
RANGB, 208
RANGEN, 112
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RANGET, 230
RANLAN, 224
RANLUX, 332, 339–344, 349
RANMAR, 327
RANSET, 230
RANUMS, 112
RASLGF, 58
RATANI, 53
RBEQN, 213
RBINOM, 13
RBZEJY, 78
RCA, 137
RCAUCH, 96
RCHEBN, 168
RCHECF, 176
RCHPWS, 179
RCHSUM, 178
RCLAUS, 54
RCLEBG, 319
RCOSIN, 66, 228
RCSPLN, 166
RCSPNT, 166
RDAWSN, 69
RDEQBS, 115
RDEQMR, 117
RDERIV, 124
RDILOG, 62
RDJMNB, 323
RDMIN, 324
RDMOUT, 324
READLNF, 386
RECPAR, 112
RELFUN, 46
RELI1, 80
RELI1C, 83
RELI2, 80
RELI2C, 83
RELI3, 80
RELI3C, 83
RELIEC, 60, 83
RELIGC, 83
RELIKC, 60, 83
RENAMEF, 386
REPEAT, 279
REQINV, 189
REQN, 135, 189
REXPIE, 67
REXPIN, 67, 228
RFACT, 189, 191
RFCONC, 60
RFEQN, 189, 191
RFERDR, 52
RFINV, 189, 191

RFRCOS, 51
RFRDH1, 135
RFRDH2, 135
RFRDH3, 135
RFRSIN, 51
RFSTFT, 141
RFT, 122, 137
RFUNFT, 126
RGAGNC, 63
RGAPNC, 63
RGBTRF, 157
RGBTRS, 157
RGEQPF, 126
RGESVD, 157
RGMLT1, 103
RGMLT2, 103
RGMLT3, 103
RGMLT4, 103
RGMLT5, 103
RGMLT6, 103
RGQUAD, 100
RGS56P, 92, 99
RGSET, 100, 135
RINV, 189, 215
RIWIAD, 108
RJAHNU, 319
RJCTB, 208
RKNYS, 119
RKSTP, 113
RLEN, 112
RLHOIN, 215
RLSQP1, 153
RLSQP2, 153
RLSQPM, 153
RLUXAT, 332
RLUXGO, 332
RLUXIN, 332
RLUXUT, 332
RM48, 334
RM48IN, 334
RM48UT, 334
RMADD, 185
RMARIN, 327
RMARUT, 327
RMAXLK, 126
RMBIL, 126, 185
RMCPY, 126, 157, 185, 215
RMDMP, 185
RMINFC, 131
RMMAQ, 327
RMMAR, 327
RMMLA, 187
RMMLS, 187
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RMMLT, 126, 187
RMMNA, 185
RMMNS, 185
RMMPA, 185
RMMPS, 185
RMMPY, 126, 157, 185
RMNMA, 187
RMNMS, 187
RMRAN, 185
RMSCL, 126, 185
RMSET, 126, 185, 215
RMSUB, 185
RMULLZ, 22
RMUTL, 185
RN2DIM, 339
RN3DIM, 339
RNBNML, 342
RNDM, 108, 324, 345, 347, 362, 363
RNGAMA, 340
RNHPRE, 344
RNHRAN, 344
RNMNML, 343
RNORML, 335
RNORMX, 335, 340, 341
RNPSET, 341
RNPSSN, 341
RORMQR, 126
ROT, 202
ROTES2, 363
RPA, 137
RPLNML, 16
RPS, 137
RPSIPG, 44
RPWCHS, 179
RRACAW, 319
RRIZET, 43
RRKNYS, 119
RRTEQ3, 26, 27
RRTEQ4, 27
RSA, 137
RSEQN, 155, 193
RSFACT, 193
RSFEQN, 193
RSFINV, 193
RSININ, 66, 228
RSINV, 126, 193
RSMPLX, 231
RSNLEQ, 20
RSPAP1, 157
RSPAP2, 157
RSPCD1, 157
RSPCD2, 157
RSPIN1, 157

RSPIN2, 157
RSPKN1, 157
RSPKN2, 157
RSPNB1, 157
RSPNB2, 157
RSPPS1, 157
RSPPS2, 157
RSPVD1, 157
RSPVD2, 157
RSRTNT, 17
RSTRH0, 73
RSTRH1, 73
RSUMSQ, 126
RTCLGN, 321
RTEQ3, 26
RTEQ4, 27
RTHETA, 89
RTRGSM, 181
RTRINT, 97
RTRTRS, 126
RUMNA, 185
RUMNS, 185
RUMPA, 185
RUMPS, 185
RUMPY, 185
RVADD, 183
RVCPY, 126, 157, 183, 215
RVDIV, 183
RVMPA, 183
RVMPY, 126, 157, 183, 215
RVMUL, 183
RVMULA, 183
RVMUNA, 183
RVNSPC, 359
RVRAN, 183
RVSCA, 168, 183
RVSCL, 126, 168, 183, 215
RVSCS, 168, 183
RVSET, 126, 153, 157, 168, 183
RVSUB, 126, 183
RVSUM, 155, 157, 183
RVXCH, 168, 183
RWIG3J, 319
RWIG6J, 319
RWIG9J, 319
RZERO, 24, 228
RZEROX, 18

SBIT, 258, 358
SBIT0, 258
SBIT1, 258
SBYT, 258, 260, 263, 358
SBYTOR, 258
SBYTPK, 260
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SCALB, 208
SCATTER, 206
SCTTB, 208
SETBIT, 284
SETBYT, 286
SETENVF, 386
SETTOL, 112
SHRNK, 112
SIMPS, 91
SININT, 66
SLEEPF, 386
SNLEQ, 20
SORCHA, 247
SORTD, 248
SORTDQ, 249
SORTI, 248
SORTIQ, 249
SORTR, 248
SORTRQ, 249
SORTZV, 244
SPACES, 279
SPLIT, 112
STATF, 386
STRH0, 73
STRH1, 73
STRIP, 279
STUDIN, 221
STUDIS, 221
SUBWORD, 279
SXPYB, 208
SXYB, 208
SYSTEMF, 386

TCDUMP, 302
TIMED, 368
TIMEL, 312, 361, 368
TIMEST, 368
TIMEX, 312, 368
TKOLMO, 220
TLERR, 170
TLRES, 170
TLS, 170
TLSC, 170
TMINIT, 403
TMPRNT, 189, 193
TMPRO, 403
TMREAD, 403
TRAAT, 198
TRACEQ, 301
TRAL, 198
TRALT, 198
TRAPER, 102
TRAS, 198
TRASAT, 198

TRATA, 198
TRATS, 198
TRATSA, 198
TRCHLU, 198
TRCHUL, 198
TREAUD, 112
TREDMP, 112
TRIINT, 97
TRINV, 198
TRIPCR, 316
TRLA, 198
TRLTA, 198
TRPCK, 198
TRQSQ, 198
TRSA, 198
TRSAT, 198
TRSINV, 198
TRSMLU, 198
TRSMUL, 198
TRSPRT, 360
TRUPCK, 198
TSTEXT, 112
TURTLE, 361

UBITS, 293
UBLANK, 353, 362
UBLOW, 255, 302
UBUNCH, 255, 360, 361
UCOCOP, 355
UCOPIV, 354
UCOPY, 235, 237, 285, 354
UCOPY2, 354
UCOPYN, 354
UCTOH, 237, 255
UCTOH1, 255
UDICOP, 355
UFILL, 353, 358
UH1TOC, 255
UHTOC, 237, 255
UMCOM, 373
UMLOG, 373
UNLINKF, 386
UOPT, 292
UOPTC, 292
UPKBYT, 260, 293
UPKCH, 262, 263
URKBYT, 295
USRINT, 112
USRTRM, 112
USWOP, 248, 249, 354
UTRANS, 255
UZERO, 235, 353, 358

VADD, 203
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VASUM, 203
VAVDEN, 226
VAVDIS, 226
VAVRAN, 226
VAVRND, 226
VAVSET, 226
VAXTIO, 394
VBIAS, 203
VBLANK, 203
VCOPYN, 203
VDIST, 203
VDIST2, 203
VDOT, 203
VDOTN, 203
VDOTN2, 203
VECMAN, 248
VERIFY, 279
VEXCUM, 203
VFILL, 203
VFIX, 203
VFLOAT, 203
VIZPRI, 238, 239
VLINCO, 203
VMATL, 203
VMATR, 203
VMAX, 203
VMAXA, 203
VMIN, 203
VMINA, 203
VMOD, 203
VMUL, 203
VSCALE, 203
VSETB, 208
VSUB, 203
VSUM, 203
VUNIT, 203
VVIDEN, 228
VVIDIS, 228
VVISET, 228
VXINVB, 282
VXINVC, 282
VXPYB, 208
VZERO, 203

WBSJA, 76
WCLBES, 37, 56
WELFUN, 48
WELINT, 87
WEXPIN, 68
WGAMMA, 35, 60
WGAUSS, 106
WGPLG, 50
WHENEQ, 206
WHENFGE, 206

WHENFGT, 206
WHENFLE, 206
WHENFLT, 206
WHENIGE, 206
WHENIGT, 206
WHENILE, 206
WHENILT, 206
WHENNE, 206
WHOAMI, 392
WLGAMA, 36, 37, 56, 60
WORD, 279
WORDS, 279
WORDSEP, 279
WPLNML, 16
WPOLYZ, 28
WPSIPG, 37, 45
WQBSJA, 76
WWERF, 65
WWHITM, 56

XBANNER, 239
XINB, 383
XINBF, 383
XINBS, 383
XM1LAN, 224
XM2LAN, 224
XORB, 208
XOUTB, 383
XOUTBF, 383
XOUTBS, 383
XPWZB, 208

YCOMPAR, 243
YEDIT, 243
YFRCETA, 243
YLIST, 243
YLOSB, 208
YLOXB, 208
YPATCHY, 243
YSEARCH, 243
YSHIFT, 243
YTOBCD, 243
YTOBIN, 243
YTOCETA, 243

ZBOOK, 310
ZEBRA, 303
ZEROB, 208
ZEROX, 18
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