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A search for fingerprints of «vortical currents» in nuclear structure data is presented.
These currents affect little or not at ail the changes of nuclear shape and volume. The paper
starts with a classification of currents and with their parametrization applicable for studies
of spherical and deformed nuciei. Here we generalize the concept of the time-dependent
TAS transformation of liquid elements positions introduced by Riemanne’s followers in
their studies of currents in ellipsoidally shaped liquid bodies. We examine fingerprints of a
dipole toroidal motion in the electromagnetic properties of rotational states built upon the
collective octupole excitations in deformed nuclei and show one example where the
experimental data give an indication of an important role played by such a mode. We study
the conjecture according to which the vortical mode involved in the motion with a uniform
circulation of nuclear matter may be regarded as an independent collective branch of
cxcitation. This study allows us to interprete AI=4 staggering of the energies of
superdeformed states. We discuss also another mechanism of producing regular
perturbations in the spectrum of rotational bands: the installation of an unaxial octupole
deformation with rapid rotation. We mention an analogy between our interpretation of
unusual properties of superdeformed nuclear states and recent findings concerning the
quantal apparatus produced using the modern technology (SQUID’s). This analogy shows
that the effects we are talking about may take place not only in atomic nuclei but also in
other «mesoscopic» systems.

Orivican TOHCK CNENOB BUXPEBOTO [BMXEHHS SIEPHOMN MaTepyd B JaHHLIX O CTPYKTYpe
sapa. Takoe NBUKEHHE HE BIMZET COBCEM WM BIUSET c1a60 HAa M3MEHEHUS ANEPHOH HOPMEI
1 obvema. B ob3ope maercs xiaccudmKauus TOKOB H HX napameTpu3alus, yrobHas as
M3y4eHUs cepuyeckux M nedopmupopauHbix sgep. Jenaercs obobimenue KOHLENIMH
sapucslero ot BpeMeHM «TAS»-1peo6pasoBannst KOOPAMHAT 3MEMENTOB KHUIKOCTH, npes-
JIOKCHHOE TIoCmenoBate/siMd PrMaHa B CBOMX UCCHENOBAHMAX 110TOKOB B KMIKHX TENaX
BITHITHYECKOM (hopmbl. M3yHaloTcs ClTeNbl AMIIONBHOTO TOPOHNILHOIO JIBHKEHHS B [IdH-
HBIX 06 9IEKTPOMATHUTHBIX CBOHCTBAX COCTOSINMIL POTALMOHHBIX TONOC, BBICTPOCHHBIX Hajl



304 MIKHAILOV LN., BRIANCON Ch., QUENTIN P.

KOTNEKTHBHEIMHE OKTYIONBHBIMH BO36YXIEHUAMH, U TIPUBOIMTCS [IPUMED, YKA3bIBAIOLIMIT Ha
BAXHYIO POJIb TAKOIO ABUXEHHA. AHATH3UPYETCS NPEANONO0XEHUE, COTIACHO KOTOPOMY BHMX-
peBas MoIa OBHXKEHHS C TOCTOSHHOH No oOheMy LMPKYISLUHMEH CKOPOCTH MOXET pac-
CMATPUBATHCA KaK HE3aBHCHMas BETBb BO3OYXIEHHH. DTo HCCleoBaHHE MO3BOMSET UHTED-
npetupoBath Al = 4 WcKaxeHust criekTpa cynepaetopMHPOBaHHBIX (c.1.) noioc. O6cyxna-
eTcs aIbTepHATUBHBIH MEXaHW3M TeHepaluH [epHOIMYECKHMX HCKaXeHHH  crekTpa
POTALHOHHBIX MOJNOC: BO3HHKHOBEHHE HEaKCHA/IbHOHM OKTYNOMbHOH AecopMaluH, BhI3BaH-
Hoe 6bicTpbiM BpauleHreM. OTMEYaeTCs aHATOrUS MexXIy Halllell MHTeprperauyed HeoOsy-
HBIX CBOWCTB C.1. COCTOAHWH aTOMHBIX SiA€p M HEINaBHUMM OTKDBITHUSMH, CACIAHHBIMU C
NOMOILLBI0 KBAHTOBBIX ITPUOOPOB, M3rOTOBNEHHBIX Ha 0ale COBPEMEHHOH TEXHONOTHH
(SQUID-0B). AHajiords ToBOPHT O TOM, 4To ofcyxnaembie HaMH 3(eKThl MOTYT MMETh
MECTO HE TOJLKO B aTOMHBIX S1pax, HO U B APYIHX ME30CKOMMYECKHX CHCTEMaX.

1. INTRODUCTION

It is well known by now that atomic nuclei reveal elastic properties when
responding to perturbations creating collective flow of the matter inside them.
The best studied branches of nuclear collective modes of motion are the ones
generated by changes of the nuclear shape (and size). However, the scope of
collective modes in nuclei is much larger than that which can be related with -
the changes of the nuclear geometry. We may mention here the giant magnetic
resonance as one particular example of collective motion which is not directly
related to the nuclear shape. An analysis of nuclear currents plays the leading
role in the description of such a motion. In fact, such an analysis contributes
much to the understanding of all kinds of nuclear collective motions. The
currents reflect changes in the distribution of nucleons in the momentum space,
and consequently they are related with the changes in the nuclear Fermi-surface
determining the properties of quantal Fermi liquids.

It is the study of the properties of nuclear collective currents that unifies
investigations reported here. The paper is organized as follows:

* In Section 2 we give a classification of the types of collective currents in
spherical and deformed nuclei. A practical method is suggested for the
description of the motion in deformed nuclei introducing a «stretched»
velocity field corresponding to a given type of motion in a spherical nucleus.
Special attention is paid to the vortical motion. An important example is
discussed concerning the vortical motion involved in the rotating Riemann
S-ellipsoids.

+ Section 3 treats the quantization of the vortical motion in that case. The band
structure issued from the coupling of the global rotation with the Kelvin
circulation is examined and compared with the experimental energy spectra
obtained for the yrast superdeformed states which show a characteristic
staggering behaviour.
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Fig.1. By examining the flows of the collective tide perhaps we
might be able to learn something about its ebbs (elementary
building blocks) [1]

* In Section 4 we generalize the procedure described in the previous section to
the case of nuclei having no axial symmetry. This allows us to show the
relation of our description of the staggering in superdeformed bands with the
description given in other publications.

* In Section 5 we show that the most probable type of nonaxiality in
superdeformed nuclei may be within the Cy-symmetry. ’

* Section 6 is devoted to a more complicated type of vortical motion generating
the dipole toroidal moment. The fingerprints of such a motion are presented.

* In Section 7 we remark the parallels between the quantal descriptions of
vortical motion in a liquid drop and of the motion of charged particles in an
electromagnetic field (Aharonov-Bohm effects).

2. INTRINSIC VORTICITY AND OTHER NONTRIVIAL MODES
OF NUCLEAR MOTION

In Refs. [2], [3] and [4] a scheme has been worked out to develop a
velocity field parametrization for the study of the currents in deformed nuclei.
This problem is of the same nature as the classical hydrodynamical problem of
determining the flows of the matter in a homogeneous liquid filling a container
whose shape and orientation in the space is changing with time [5]. This
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approach is currently applied in Ref.[6] to visualize the collective flow in some
nontrivial cases.

The method suggested here is based on the knowledge of currents
describing the motion in spherical nuclei. The parametrization of velocity fields
for the latter can be easily done applying the techniques of spherical vector

functions (7] YILM(r/r) by writing for the velocity field an expression

ur)= Y, f; 40 Y /0.
LLM

Expansion for currents in spherical vectors has much in common with the
widely used in nuclear physics expansion for the distance of a point on the
surface from the origin of the coordinate frame

Rr/N=R, Y, 0¥ T/ 7).

I,m

However, the former expansion provides possibilities of studying collective
phenomena which are not related with the nuclear shape. Figure 2 allows one
to see this feature in a clear way. Here some examples of velocity fields
obtained using the spherical vectors expansion are presented. In the figure the
lines of «solenoidal» (leaving unchanged the density) currents in spherical
nuclei are shown.

Oscillations of the surface around the spherical shape of multipolarity 2, 3

and 4 can be described in terms of the shape parameters o, with I=2,3 and

4 or in terms of the velocity fields u, (r)= ri-lyl- I(r/r). The pattern of
Y Ilm Im lm

velocity fields corresponding to the surface oscillations is shown in Fig.2 in the
fragments marked as L=2b (for quadrupole vibrations), L =3 (cctupole case)
and L =4 (hexadecapole case).

All the other fragments of Fig.2 describe the motion in the spherical body
leaving undisturbed the surface. Among the modes of the motion shown in the
picture there are two (isoscalar) /=1 modes: the dipole toroidal mode (L = la)
and the mode describing the distributed magnetism (L = 15). In addition to these
modes, Figure 2 shows the quadrupole magnetic mode (L =2a) and the
quadrupole toroidal mode (L =2¢).

The spherical vectors form a set of functions orthonormal on the sphere and
may be used as a basis for numerical solution for dynamic equations of the
motion in the normal and in the quantum fluids. However, to apply them, one
must specify first of all the model of a quantum-fluid dynamics. These
functions may be used differently as generic tields giving the possible motions
in bodies (either classical or quantal) of an arbitrary shape. To do it, we suggest
to generate velocity fields considering the displacements of liquid elements
which appear after a series of transformations shown in Fig.3 and defined as:
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flrt) =d'(t)r + ¥ (t)r

Fig.2. Examples of «elementary» currents visualized by
«the lines of currents». In these examples the function
J(r) in the expansions of the current in spherical vectors is
given by polynoms in r whose power is < 4
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r(1) = TASA;'r(0). (1)

Here Ar is the displacement of a given liquid

element resulting from the transformation of the

-1 body’s shape by the irrotational flow, A~'r des-

/‘\ cribes the inverse displacement, T is a rotational

matrix and finally Sr is a displacement resulting

l from one of the «elementary» modes of motion
in a spherical nucleus.

S The velocity field corresponding to this series

]
‘
1
! ) of transformations is given by the following
I expression:
Y
u(r, ) =Qxr+u, (T 'r)+ uTeT. (@)
i
1
The first term in eq.(2) describes the uniform
@ ' rotation of the body (Qi = z gij,k(TT_l)j,k)’ while
v ik
— the second and the third ones are associated with
!
1

l the intrinsic motion. The second term corres-
ponds to the irrotational flow transforming the

SE) o= TYA-S.ATRLD)

body into a sphere (uA=AA_1r). The last one
gives the contribution from the chosen mode of
«elementary vortical» flow «S» in the spherical

Fig.3. The transformations ge-  pycleus (uszss_lr)) «stretched» by the defor-
nerating currents in deformed

nuclei keeping their shapes mation so that

str -

Ug

Aug, = Alr (3)

In the general case, the operator A must result from a variational calculation
and thus demands numerical calculations. When the shape of the body is
ellipsoidal, the operator A is a diagonal matrix whose matrix elements in the

inertial frame are half the length (semiaxes) in the principal directions (a, a,

and az). When the «S» transformation is also a uniform rotation (around the

z-axis of the ellipsoid), the corresponding collective velocity field u(r) in the
laboratory frame has the following components on the principal axes of the
nucleus:

le=~—~(Q+q(l))y, uy:[Q-}-—]x, uZ:O g=
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Fig.4. Flow patterns of Riemann’s S-ellipsoids corresponding to various values of the
dimensionless parameter & (see text). The picture shows the case when the global rotation
frequency Q and rot (u) are parallel to one of the main axes of the inertia tensor (z-axis)

introducing the frequences (o and ) of «S» and «T» rotations. The velocity
field has a uniform circulation:

0] 1
(rotu)Z=2Q[l+E(q+gJJ.

This field is a particular solution of the well-known classical Dirichlet prob-
lem for the most general linear velocity field in the system bounded by an
ellipsoidal surface as studied by Riemann [5], [8]. The pattern of the motion
depends on the guantity

1+q_19

e a

1+¢2
10

The corresponding parametrization of the velocity field comprises the uni-
form (rigid-body) rotation (§ = 1), the motion of an ideal liquid without circula-
tion within a nonspherical stationary rotating container (§ =— 1), various shear
modes (§ =0, + o) and also the flow with an arbitrarily large angular momen-

tum inside the container with an elliptic shape which does not change its orien-

tation in the space (§ =a§/a§). Figure 4 shows a variety of physically different
types of flow which could be studied in this way (assuming a_< a, <a).

In Refs. [2], [3], [4] we have generalized the usual Routhian or cranking
approach for uniform rotations to allow the study of a variety of collective
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modes. It is done using a formal analogy between canonical transformations in
Classical Mechanics and specific unitary transformations in Quantum
Mechanics. The stationary motion in the presence of currents is described by a
«cranked» Hamiltonian with the generalized cranking term [3]

A

A 1 A A
HcrankedzH_ﬁZ(u 'pi+pi ' u)’ )
i

where u is the velocity field and the summation goes over all the particle’s
indices. In classical mechanics the cranking term represents the point-
coordinates transformation to the coordinates attached to moving «liquid
elements», whereas in quantum formulation it corresponds to the unitary
transformation of the wave function

A
Y 5 Y =exp(iS) ¥ (5)
A
with the S-operator such that

ds 1

das Al _ 1 A A

oS —2ﬁZ(u p,+p, u. (6)

H

The presence of the cranking term in the Hamiltonian and the associated
phase transformation of the wave function lead to changes in the distribution of
nucleons in the momentum space and have numerous physical consequences
[9].

Such an approach is applied to the coupling of a global rotation with a
uniform intrinsic vortical motion in the aligned case discussed in the previous
lines. Applying it, the nuclear inertia properties with respect to the motion were
estimated in the simple case when the energy dependence on Q=0 and ® =0
was approximated by a quadratic form

EQ, m)=%92+BQm+~g~m2. (7
This was done using a truncated # expansion of the generalized cranking
equation when the effective nucleon-nucleon interaction is a full-fledged
Skyrme force [9]. The density was approximated as being constant within an
ellipsoid whose semiaxes were given by

_ 2/3 s —
a,=ayq”’”, a,=a =a,

-1/3
q / »
where a, is expressed in terms of the total particle number N and the usual

size parameter r, by a,= r0N1/3, whereas q=ax/ay is the shape parameter.

Introducing the parameter
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_2 5/3.1/3
1=2 N S/3g1/3,

which is equal to the rigid body moment of inertia times q1/3, and defining
the geometrical factor

1 1
R==|g+~

one obtains for the three inertia parameters in eq.(4) the following estimates:

A=yR[1—[€—]R] B=y{l—~(%]R] C=7R[1—[%JJ. (8)

The semiclassical factor D/y is given in terms of the real and effective
masses in nuclear matter (m*/m),,, by

% = 1001y 2/ 3(m* /my N2/3471/3

and is small compared to one.

In this way one finds that the semiclassical approximation of the
corresponding stationary solutions of the Hartree-Fock equations gives the
classical Riemann results [8] at the Thomas-Fermi level with small corrections
(~N72/3) at the order 2. The physical significance of the inertia parameters A,
B and C will be studied in the next section.

3. QUANTAL ANALOGUE OF THE MOTION INVOLVED
IN THE ROTATING RIEMANN S-ELLIPSOIDS AND STAGGERING
IN SOME SUPERDEFORMED ROTATIONAL BANDS

The use of the quantal analogue of the motion involved in the rotating
Riemann S-ellipsoids in nuclear physics had been already proposed by many
authors, including D.R.Rowe [1], R.Y.Cusson [13], G.Rosensteel [10]—[12],
P.Kramer [14] and one of the authors [15]. A simple quantization procedure of
such a motion is suggested in the papers |2]-[4] and considered in more detail
in Ref.[9]. To quantize the motion, one introduces the angular momentum #J
and the «vortex» momentum #J as conjugate momenta (in classical mechanics
terms) with respect to the angle variables (® and 6) of «7» and «S» rotations:

oF oE
ﬁI—aQ, ‘h’.l—am. 9)
Then, the quantal Hamiltonian operator is introduced rewriting the energy in
terms of 7 and J and substituting them by
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Fig.5. Schematic representation of the
band pattern E(I, J) in its dependence on
the angular momentum (/) and
«vorticity» (J) quantum numbers

. 9 . d 10
“ieer T=7iee U9

The quantal states are determi-
ned from the Schroedinger equation

for the wave function ‘P”(G, 0)=

=7n1/2 exp (i(I® + JO))  imposing
natural periodicity boundary condi-
tions at the ends of the interval

I 0<0O, 8<n. The precise formu-

lation of the boundary conditions involves the intrinsic part of the wave func-
tion. Whatever its contribution, the periodicity conditions admit only a discrete
set of quantum numbers [ and J: [=1,+2k, J=J,+ 2l with integer numbers k

and .
In the quadratic case one arrives at the following expression for the energy:

E(I,J)=ﬁzl(%12—BU+%12] 11

with
A=@AcC-BY!
(A, B, C being the inertia parameters defined in eq.(7)).

The corresponding quantal states form a set of rotational collective bands
as illustrated in Fig.5. The collective band states belong to parabolas labelled by
the vorticity number J. The parabola enveloping these parabolas is the classical
yrast band with a moment of inertia equal to C. The yrast sequence is composed
of states belonging to different collective bands. The passage from one band to
another introduces a kink in the energy as a function of the angular momentum.

The periodicity in I of such kinks corresponds to AI=2B/C. The maximal
value of the kink (which does not change along the yrast line in the quadratic

case) is equal to AEY= C/2(AC-B 2).

Recently, an energy staggering yielding a Al =4 periodic structure has been
found experimentally for some rotational bands in superdeformed nuclear states.
This structure whose amplitude corresponds merely to less than 0.1 per cent of
the observed transition energies has been found in the presently available data
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Fig.6. Experimental [17] staggering amplitude in '49Gd (right lower corner) and in
three superdeformed bands of 194Hg (bands 1, 2, 3)

zg(@(n—%(4EY(1+2)+4EY(1—2)—EY(1+4)_Ey(1_4)j_

only in 149Gd for one and in 194Hg for three bands [17] {see Fig.6). However a
few other candidates are tentatively proposed in nuclei of the same super-
deformation region or in the A ~ 130 region [18].

Clearly, the coupling of the global rotation with the uniform vortical
motion above considered may provide an explanation for such a staggering
phenomenon. Indeed, within the described model when C/B =2 the interval
between the kinks is A7 =4. In this case the kinks are absolutely regular. When
C/ B is close to two, the staggering becomes slightly modulated and may even
change sign when increasing the angular momentum. All such features seem to
appear in the experimental results as shown in Fig.6.
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One finds also that the semiclassical estimates of the model parameters, if
not exactly coincide with the values deduced from experimental data, are
globally consistent with them [4].

No contradiction to the explanation of staggering in terms of coupling of
two different «rotation-like» modes could be infered from the decay-time meas-
urements of the states in staggered bands. In fact, the time of life measurements
show within our model assumptions that the J-mixing does exist: othervise the
E2 transitions along the yrast line would not be quenched but would exhibit a
staggering which is not seen experimentally. It has been proved [9] that the
level of quenching of E2 transitions resulting from our modelization of the yrast
line is not inconsistent with the data, considering their currently available poor
accuracy.

On the other hand, J-mixing leads to some quenching of the kink
magnitude. The semiclassical theory prediction of the staggering amplitude
which is done ignoring the mixing yields a value several times greater than
experimentally found [9]. This difference may be attributed at least partly to the
J-mixing of collective bands.

4. VORTICITY QUANTUM NUMBER CONSERVATION VERSUS
AXTAL SYMMETRY VIOLATION

The AI'=4 character of the staggering phenomenon has prompted some
explanations involving a non-axial hexadecapole deformation, namely the
L, M =44 collective degree of freedom [16], [19], [20]. Does the suggested
C,-symmetry exclude the conservation of the vorticity quantum number? In

other words, do the two lines of interpretation of the staggering phenomenon
exclude each other? Apparently, it is not so. The rotational motion in high-spin
superdeformed states must follow the rules of the quasiclassical theory.
According to the presented model, in nuclei where the staggering phenomenon
is found, the value of the quantum number in the states lying near the yrast line
must be equal to J =~ (B/C)I ~1/2>> 1. Then to answer the question one may
study the vortical motion in these nuclei using also semiclassical arguments.

The way of generating vortical currents suggested in Section 2 is quite
general and may be applied to the bodies of arbitrary shapes and to arbitrary
currents going in three dimensions. Applying the technique similar to that
which was used before (see, in particular, Section 3) one arrives at the
Hamiltonian

i| o i iitit ] (12)
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Assuming that in the states lying near the yrast line, the global and the
stretched rotations go predominantly around one of the principal axes of

inertia tensors Ai‘]., BI.J,, CiJ, which we call as axis one, we rewrite the

Hamiltonian in the following way:

A1 oA
=ﬁ2x1 BIJ+ J2 +7%h ", (13)
The second term in the r.h.s. of eq. (9) has the form:
A A A A .
h’=h'+h[;+hc’, (14)
where
hy =0, (7 +12)+ B2~ 12)
A ,
hB - 20LB(IZJ2 + I3J3) + BB(Izjz - 13J3) (15)
AV 2, 42 252
hC = o/, +J5)+ BC(J2 -J7)
and
1 1
A:ZO‘A +XA ZX]AI), BA:—(kA —-k3A3)
]
oy =7 (A,B, +AyBy — 21 B)), BB‘"O‘ - A,B)) (16)
1
=3 (k C, +k Cy— 2k1C]), BC.:Z(X2C2—X3C3).

When the two generalized momenta I and J are parallel and have the largest
projection on the first axis in the intrinsic reference frame the following boson
representation of I and J is appropriate (see Ref.[21] for the case of merely one
set of angular momentum operators):

=1,

- T — 1 =/
Il—l—clcl, 1+— 2Icl, I = 21cl

— —/ i =/
Ji=1-cjec;, J, = 2c), J_=N2c,.

[c; . cj*] =5

Using the boson operators one writes the first term on the r.h.s. of eq.(13) as

i

A C
29 | 1 R )
‘ﬁll 2I—BlLI+ 5 Ji

=E(I,J)+ﬁ2leI(]c c,+Jele, ~\I(c]e T4ce), a7
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where
Al Cl
E(I,J)=1‘227u1 -2—I(I+l)—BIIJ+7J(J+l) . (18)

In this way one arrives at the following expression for the Hamiltonian :

A 2/\
H=E{,1T)+#*h

) - (19)
where A, , is a quadratic Hermitian polynomial:
2/\
7 h Z (ek l(l J)c c -+—Ak I(I J)(c ¢ g Ckcl))’ 20)
(the indexes k and ! standmg for [ or J).
The boson operators
bl =2 x (M. De +y, (& De) 2
{
satisfying the commutation relation
A
[hy ;b 1= oL Db (22)

are the creation operators of the excited collective states; they determine also
the yrast state wave function ‘I’ rasids I Wthh is the vacuum with respect to

the b operators. The contrlbutlon of the h ; operator to the yrast state energy

AE(I, J) can be found when bringing this operator to the form
2

_ 2 A TA
=AE(, J)+72 3 o (I, Dbb, . (23)
k=1
The eigenfunctions of this Hamiltonian are given by the multiphonon
configurations

¥ = e h Y,
n[,nj_ */n[ !nj! I ( J) yast( )

with the vacuum function ‘I‘yrast(l, J) such as bk‘{’yrast(l, J) =0. The zero-point

precession renormalizes the energy by
. . n
AB(L D) =128, (D) [y )

and may affect the staggering amplitude.

This renormalization has no evident relation with the one issuing from the
effective Hamiltonians considered in Refs. [16], [19], [20] where the installation
of the C, symmetry is advocated. In the quoted papers vortical currents are not

considered. On the other hand, the Hamiltonians suggested in these papers
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contain, in addition to terms quadratic in the angular momentum operators I,

also terms of the fourth power chosen so that the effective Hamiltonians possess
the C,-symmetry. In the language of this section such terms correspond to

anharmonic corrections with respect to the precessional global rotation. The
authors show that appropriate combinations of parameters in such Hamiltonians
lead to the staggering pattern of the spectrum.

Admitting both the vortical motion and the anharmonic terms, one increases
the number of parameters in such effective Hamiltonians and consequently
increases the number of favorable combinations yielding staggering. Thus, the
installation of a C ,-Symmetry may, in principle, interfere (in constructive or

destructive ways) with the quantized vortical motion in producing (or not) a
persisting staggering in rotational superdeformed bands. One must have in
mind, however, that whatever the chosen line of explanation for the staggering
phenomenon is one must tune the parameters of the effective Hamiltonians in
a very specific way: apparently the staggering appears as a result of an interplay
of many tiny details of the nuclear structure and this happens only in very rare
cases. There is no reason to think that various physically different ways of
generating the staggering could be realised in the same nucleus.

We point out that the interplay of global rotation and of vortical motion
may simulate the unharmonic effects in each of these modes even then no
anharmonic terms are present in the Hamiltonian. Upon writing the one-phonon
wave function v as

yrast (pJ

with
R CARS WA i rast

one obtains for the function @, an equation

A A 1 A
[hl,l_hI,J n hy —® ]‘91: 0.
hu—u)

A A
The power expansion of the operator h”7\—-h“ yields an effective
» h]j_(o ’
Hamiltonian with essentially the same general structure as that which could
be obtained for the precessional motion starting from the effective

Hamiltonians of the C,-models. This shows merely that the effective

Hamiltonians of this type may describe various physical phenomena not
necessarily related with the symmetry of the nuclear mean field.
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5. WHY NOT CONSIDER THE C,-SYMMETRY INSTEAD OF C,?

The model of two coupled collective modes is able, as we have seen, to
explain the staggering in the yrast band with an arbitrary periodicity Al in the
angular momentum scale depending on the ratio of inertia parameters. The C,

symmetry model has an appealing feature of being seemingly related with the
Al = 4 nature of the staggering found experimentally. Here we show that this
relation is not intimate at all, and that the type of the axial symmetry breaking
is not directly related with the interval between the kinks.

The well-known differences between the even I and odd [ states in
deformed nuclei are indeed deeply related with the prevailing D,-symmetry of

the nuclear mean field (and thus with the C,-symmetry contained in D,-

symmetry [22]). This difference is due to the nature of the angular variables
determining the spacial orientation of the nucleus: these angles are associated
with the orientation of the main axes of the nuclear inertia tensor. Indeed, the
choice of the intrinsic reference frame associated with the inertia tensor is not
unique. Correspondingly, the definition of intrinsic variables is not unique in
this case: each of equivalent orientations of the principal axes of a quadrupoloid
with respect to the reference frame corresponds to a particular set of intrinsic
coordinates. These properties of systems with D, -symmetry are incorporated in

the unified nuclear model [21] and are expressed by the condition imposed on
the wave function with respect to the coordinates transformation associated with
a reference frame rotation by the angle ®t around each of the principal axes of
the quadrupole tensor: the transformation of collective and intrinsic coordinates
issuing from such an operation must leave the wave function unchanged. Such
formulation of the theory lies in the origin of the differences in the description
of states with positive and negative signatures and is deeply related with various
«Al =2 staggering» phenomena.

One may imagine a physical system for which such a definition of
collective angles is inappropriate: a system with the shape of a perfect cube. The
inertia tensor of such systems possesses the spherical symmetry, and the choice,
usual for nuclear physics, of angular coordinates is not adequate for them. Then
one would be inclined to associate the collective angles with the hexadecapole
moment instead of the quadrupole moment. The quantal collective motion in
such systems must be quite different from that which is known in nuclear
physics. Here one would expect various kinds of «AI =4 staggering».

Surely, the superdeformed nuclear states are not states to be understood
with such a choice of the reference frame. Here we deal with a system having
a large quadrupole moment. The image given for nuclei by the adepts of the
C,-symmetry reminds a cigar kept in a tightly packed rectangular box: looked
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from the thin side, it appears as an object of rectangular shape. The usual
definition of collective angles must be perfectly justified in this case. Thus, no
a priori limiting conditions additional to those existing in the unified model
could be formulated and no a priory AI=4 staggering could be expected as a
consequence of the Y4, 4 deformation. In corroboration with this statement, the

effective Hamiltonians introduced in Ref.[19], [20] describe various kinds of
spectra with or without staggering depending on the values of entering them
parameters.

These arguments do not mean that the explanation of the staggering in
terms of effective Hamiltonians in the above quoted papers is necessarily
wrong. They indicate that the staggering phenomenon does not give a solid
proof for the existence of a C ,-Symmetry: these Hamiltonians may describe

implicitly any kind of physics, and in particular the quantized vortical motion
advocated in this paper.

The staggering effects and other irregularities of the rotational bands may
be related, in principle, with other types of violation of the axial symmetry. In
particular, the Y3’3—deformation of the mean field has good reasons to be

involved in the high-spin physics. This is because the octupole collective
excitations carry an intrinsic angular momentum (i = 37 for purely octupole

one-phonon state) which has a natural tendency to align with the collective
rotational angular momentum.

The alignment is reflected by a reduction of the energy interval between the
yrast and the lowest K™=0" bands upon increasing the total angular
momentum. It is found practically in all even-even deformed nuclei already at
very moderate angular momenta. Figure 7 shows two examples of such a
tendency [23]: one for a nucleus considered as beeing rigid with respect to
octupole vibrations (232Th) and the other for an octupolly soft nucleus (220Ra)_
The Coriolis effects leading to the alignment may be studied within the model
Hamiltonian [23]

A A A

H=H ({-j)+H (24)

rot intr’

A
where H_ represents a rotational part depending on the difference between
A
the total angular momentum operator (I) and the angular momentum operator
A

(J) associated with the octupole vibrations of the nuclear surface.
The second term in the above formula describes the excitation of
vibrational degrees of freedom :
A 3 3 2
Hyo= 2 o gblbe+h| Y blb, (25)
K=-3 K=-3
containing thus an anharmonic correction in addition to the harmonic term.
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Fig.7. Energy of nuclear states as function of the spin for
232Th [24] and 220Ra [25] nuclei

The intrinsic angular momentum operator
3

A A
i= X dggbiby (26)
KK =-3
establishes a coupling between rotational and vibrational motions and leads to
the hybridization of the positive and negative collective bands.
The eigenfunction of the model Hamiltonian can be written as the product

of multiphonon configuration states an:—S"""K: 5 Wwith the spherical
; I — .
functions D, , (K= 2 Ki"Ki)'

W= v, Dy g peng ) 27)
The amplitudes Vi, are found als solutions to the matrix equation
A A
(H,py — Q) )] = €ly] (28)
with Q=dErm/dI. The eigenenergies are then equal to

E=E_ +€. (29
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When Q becomes large (i.e., when the spin increases) it is found that the
lowest value of & corresponding to an aligned superposition of one phonon
states becomes negative. This means that at some spin value the one-phonon
configurations become yrast states. At still larger values of spin the yrast states
correspond to two-phonon configurations and so forth. Due to linear depend-
ence on [ of the energy of aligned multiphonon configurations which is weaker
than the quadratic dependence on [ of the energy of collective rotation, the
intervals between the I-even and J-odd states decrease when the angular
momentum increases.

However, the hybridization of I-even and I-odd yrast sequences does not
proceed in a monotonic way. The quantized nature of the number of phonons
and of the angular momentum results, as in the model discussed before, in a
staggering of the yrast-states energies.

An analysis of the described system has been performed upon using
coherent states |k) such that b | Ay = KTK) within a variational ansatz for finding

the amplitudes y, in the phonon operator b=2\|leK . It yields a smooth

yrast line corresponding to a renormalized moment of inertia. The quantal
staggering is lost within the variational treatment just like in the case considered
in previous sections.

Coherent states are not eigenstates of the vibrational angular momentum j
and may be considered as some deformed states. To find out the nature of the

K.

i

deformation which is involved here we associate the boson operators b;, b

with the components of the octupole mass tensor and conjugated to it momen-
tum p, ~ [T, q,] (T being the kinetic energy operator). Then we find that the

optimal shape of the nucleus at high spins involves an octupole Y3’3 deformation.

These results published first in Ref.[23] led the authors to conclude that the
installation of such a deformation is a potentially general property of nuclei at
high spins*.

One cannot expect that such a schematic model may go far in explanation
of the high-spin states in atomic nuclei. Anyway, it allowed one to predict an
unusual pattern of the spectrum in the nucleus 220Ra soft in respect to the .
octupole vibrations. In Fig.8 we reproduce the comparison of the experimentally
found values of the ratio

2E(I+1)" -1
R= Y

- E(U+2)" 1)

*That is the property expected at sufficiently high spins which may turn out however to be higher
than critical for the fission in some nuclei.



322 MIKHAILOV LN., BRIANCON Ch., QUENTIN P.

IR
Sk

\. AN S -
I e e S
N
0 ! 1 L 1 ) 1y
0 0.1 0.2 0.3 0.4 0.5 05
fiw (MeV)

Fig.8. The calculated and experimental transition energy ratios
R=2E(I+ 1y = IY/ELI +2)* - I') in Ra. The symbols in
the picture stand for: ——»—— experiment [25], - - + —— experiment
{26], - —— -~ theory [23],

with the values corresponding to the presented above model. The approach of
R to one is taken in the literature as an indication for the break-up of the
left-right symmetry of the nuclear mean field. Both the experimental data (the
high-spin part of which was obtained about five years after publication of
Ref.[23]) and the theory show that the installation of the octupole symmetry
is accompanied by some staggering effects with the periodicity having
nothing in common with the type of the symmetry involved.

The high-spin superdeformed states are excellent candidates for the search
for the deformation of this type, although the model discussed before cannot
yield a quantitative prediction here. One knows that an appreciable fraction of
the octupole strength is concentrated around the excitation energy [27] of the
«low-lying octupole resonance» (LEOR)

314
ELEOR=;‘72> N7/4-X (MeV)

throughout the periodic table (in the above formula X=Zz/49A is the
fissility parameter). In rare earth nuclei this excitation energy becomes equal
to the magnitude of the Coriolis coupling between octupole states at the
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rotational frequency of about 1 MeV which is not too far from the frequencies
found in the superdeformed bands in this region of nuclei.

6. HIGHER-ORDER EFFECTS IN THE ELECTROMAGNETIC
RADIATION AS A PROBE OF VORTICAL MOTION

The uniform circulation may manifest itself only in systems with an
appreciable quadrupole deformation. Indeed, the «stretched» rotation becomes
indistinguishable from the uniform rotation of the matter when the container has
a spherical shape. Strictly speaking, it is expected only in ellipsoidally shaped
bodies. However, other types of vortical motion may exist also in spherical or
slightly deformed nuclei with arbitrary shapes. For example, in spherical nuclei
the dipole toroidal motion produces the currents with the velocity field

u(r, t)=a(t)[ 1 —2}% ]+(a(r) : r)»Rr—, (30)

where r is a position of a moving liquid element and R is the radius of a
sphere representing the nuclear surface. This type of motion is known as the
Hill’s vortex [5]. The vector a(f) determines the amplitude and the direction
of the Hill’s vortex. The lines of current of such a velocity field are shown in
the upper right corner in Fig.2. The procedure described in Section 2 gives
for the stretched toroidal current in ellipsoidally deformed nuclei the
following expression [6]:

u=ue +u

0o €, 31

with
] 2 2 b
up:Azp, uzzA[b -2 —2—2p J (32)
a

Here, A is the amplitude of the vortex aligned with the z-axis, @ and b are the
semiaxes of the ellipsoid determining the surface. The corresponding lines of
the current in ellipsoidally deformed nuclei are shown in Fig.9.

Fingerprints of one particular mode of such a motion (toroidal mode) have
been already looked for in the data on the nuclear structure for some years
already.

The toroidal currents in an electrically charged liquid interact with the
transverse electromagnetic field and consequently may influence the dipole-
electric transitions between nuclear eigenstates [28]. Strong deviations from
predictions of the adiabatic theory for the absolute values of El-transitions

found recently in the multiple Coulomb excitation of 22°Ra have been analysed
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Fig.9. The lines of the current corresponding to the toroidal dipole modes in deformed
nuclei: right — the Hill’s vortex is aligned with the short axis, left — the Hill’s vortex is
aligned with the long axis

in order to estimate the contribution of the dipole toroidal moment to the E1
transition probabilities [29]. The analysis is performed taking into account the
effects of Coriolis coupling between the negative-parity bands and including in
the E1 transition operator the terms describing the interference of the «pure»
electric dipole and toroidal moments. This is done writing for the intrinsic part
of the dipole electric operator an expression:

Mge<d + Ev te .
Here, d is the standard dipole electric moment and ¢ is the dipole toroidal
moment of the nucleus; EY is the y-ray energy.

In Fig.10 we show the best fit of experimental results obtained in this way
in comparison with the best fit obtained assuming that the toroidal contribution
is absent (t=0). Here, the «effective electric dipole moment» is given:

A/ 4n (2I+1) -
Q*—\/ 3 ((1+1/2)3F1/2)B(E1’I —>(Iq:1)‘g*r)

extracted in Ref.[30] from experimental data and calculated from the model.
It is seen that the admission of toroidal currents allows one to improve
essentially the reproduction of experimental results.

In Ref.[29] the energy weighted sum of matrix elements squared for the
toroidal dipole operator is estimated (Sop)- A phenomenological treament shows

that the strength of toroidal transitions between the ground and the lowest
negative-parity band is rather large: I(l_ltlgr>’2(El_—Eg') >~ 0.135, . This
allows one to think that the collective toroidal current plays an important role

in the structure of the lowest negative-parity band in 22Ra. Such a conclusion
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Fig.10. Comparison of the «effective» dipole moments Q% extracted from the experimental
data and calculated admitting toroidal contributions to the transition matrix element (full
line) and without such contributions (broken line)

calls for verifications which could be done by analysing both theoretically and
experimentally the internal conversion process accompanying the nuclear
transitions studied in this paper. Indeed, the internal convertion coefficients give
an independent test of the presence of such currents.

7. ANALOGY WITH THE AHARONOV-BOHM EFFECT

We want to give here an image of the phenomena discussed before
somewhat different from previously presented. The emphasis of our commu-
nication is made on collective motions which do not change the distribution of
the matter in space. The existence of such motions in macrophysics does not
need any proof: with a very tiny idealization of the reality, one may think that
the electric current in an ordinary conductor is not related with any changes in
the electric circuit. The amplitude of the current may be regulated at one’s
desire and may be considered as one of the parameters determining the physical
state of the circuit. Certainly, intrinsic vortical currents exist in microscopic
systems like atomic nuclei. The value of the moment of inertia of deformed
nuclei indicates that the motion involved in the collective totation is different
from the global (rigid body) rotation. Magnetic properties of spherical nuclei
reflect the presence of currents yielding a circulation of the nuclear matter. The
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previous section has also given an evidence for the dipole toroidal currents in
heavy nuclei.

Still a rather fl}ndamental question concerning the vortical currents in
microscopic systems may be raised: may such currents represent, or not,
degrees of freedom independent from those which are associated with the
distribution of the matter in the space? Such a question is prompted by the
following simplistic consideration. In quantal systems consisting of identical
particles one could think that their (infinitesimally slow) displacements would
affect the physical state only inasmuch as by changing the distribution of the
matter. Arguing like this, one may say that the second of the transformations
considered in Section 2 (the S-transformation in eq.(1)) must be considered as
unphysical in application to atomic nuclei, and all theoretical constructions
based on it are erroneous. However, this argument fails in the case of the time-
dependent transformations, because the latter reflect the changes of the particle
distribution in the momenturn space. The state ¥ satisfying the generalized
cranking equation (4) is quite different from the one corresponding to the same
distribution of the matter in space but which is obtained using a variational
approach involving only time-even constraints.

The wave function describing the stationary motion contains a time-dependent
phase factor (see eq.(5)). It is precisely the place, where the motion generating
parameters appear. Representing no measurable quantities in the sense of classical
picture, such parameters play an important role in the quantal description of the
motion. These aspects of the theory have been shown in this paper for the case of
the motion involving the Kelvin circulation. In fact, such aspects of the theory are
well known in the literature : they play the central role in the so-called Aharonov-
Bohm effect [31,32,33]. The latter concerns the reaction of the quantal system on
the electromagnetic field in special circumstances when the electromagnetic field is
localized in the region inattainable to a charged particle but affects the phase of its
wave function through the electromagnetic potentials (the scalar potential and
especially the vector potential A). When the charged particle passes the region of a
nonvanishing value of A the presence of a remote electromagnetic field manifests
itself by a variety of interference effects.

The Aharonov-Bohm effect stems from the accentuation of the role of the
phase of the wave-function: the changes in physical arrangements responsible
for the changes of the phase of the wave function may lead to measurable
effects even in cases when such effects are not expected for classical systems.
The model suggested in this paper for the explanation of the energy staggering
in superdeformed bands gives a new example of such a situation.
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Since the publication of the paper by Y.Aharonov and D.Bohm, a number
of possible experiments has been discussed in which the phase of the wave
function plays an unexpected role. In particular, there was considered a system
consisting of an electron in a circular circuit placed in the static magnetic field.
It the circuit is infinitely thin and the electron-ion interaction is absent the
quantum state of an electron is given by the Schroedinger equation with the
Hamiltonian

A A 2
I :L[[,g_e_é] (33)

with

where R is the radius of the circuit. Naturally, the solutions of the
Schroedinger equation are

[¢]
¥, (0) =T/2n exp [i(Rk, 0 — -5 [ave)a®))]
0

with kn quantum numbers determined by the boundary periodicity conditions:

[4
2Rk, — = @ =2mn, (34)
where, n=0,%1,%2,..., and"
o=[d1A=[dsH (35)
c A

is the magnetic flux passing through the circuit.
The energy of the electron in the quantum state n

(fik,)?

E= 2m

N:E >

does not depend in an explicit way on the magnetic field. However, the allowed
values of k’l depend on the flux according to eq. (34). In particular, the ground

state energy is not necessarily equal to zero whenever their is a nonvanishing
magnetic flux through the circuit. Indeed the lowest ,kn| value is either

1 e e
kO_EHhc(D}—hcq))

or ko-— I (here [x] means the integer part of x and it is assumed that & >0).

Thus, the energy of the lowest state is a «staggering» function of the flux.
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[
The energy staggering in the electric circuit is accompanied by the presence

of an electric current whose magnitude depends non-monotonically on the
magnetic flux @. The magnitude of the current is equal to

#i
_ne,

eln” g n’

U

From the above discussion it follows that whenever ® /(e /hc) is not an inte-
ger, one expects to register the permanent electric current in the circuit (even
when it is in its ground state). Very fine recent experiments on Supercon-
ducting Quantum Interference Devices (SQUID) representing electric «meso-
scopic» chains with the size of the order of 3um show indeed the presence of
such currents [34], [35].

It is easy to establish parallels between the model of Section 3 describing
the irregularities in superdeformed bands with the system discussed in the pre-
vious paragraphs. To do it, we examine in a slightly different way the Hamil-
tonian in eq.(13) to which we add a term describing the coupling of the rota-
tional dt}grees of freedom with the degrees of freedom of the intrinsic motion:

~

A A A C A A
H=#, (*2—‘?2—311‘1+—2112 +#2h 4V (36)

coupl

A
assuming that [I, Vcoup]] =(. The eigenfunctions have exact angular momen-

tum quantum numbers (/ and M) and may be written in the usual way as
superpositions of states with definite projection of the angular momentum on
a quantization axis. Choosing the latter as the axis of rotation yields the

expansion of the wave function in the spherical harmonics D’M K(@) depending

on the orientation of the system in space :

_ I
EVED I LA () (37
n

We represent the eigenfunction \PIM as a column vector (dropping the I and
M indices)

v Se=|Y, (38)

and write the Schroedinger equation in a matrix form
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A
HY=EY. (39)

The state W having a fixed angular momentum quantum number J, the

A
projected Hamiltonian H, is

Fa\ Z(Al A/\ Cl A2 A
H, =1 k71(1+1)—31(1—n)11+71 +h [+ V (40)

coupl’

As a starting point we make the same approximation as in Section 4. We
A
neglect the terms hl’ and Vcoup]. The first of them contributes to the precessional

motion while the second describes the J-mixing. Then the [/ and K quantum
numbers are conserved:

A
I2P=[I+1)¥, n¥=n¥, K=I-n

In this case the dynamical equation for ¥ becomes:

A .
(Hypp + #2B (I - n)n )¥ = AE(), ¥, (41)
where
AE, = E(I) - E(I)
— K 812 2
ED=—7|All+1)-—(U-n) . (42
2|7 C, I
and also B
A #C (n B,
Hie="5" J—a(l—nl) . (43)

The solution for AE(J) is
#C,
AE(]) = N

B
1
J—~C~1(1—n1) +ﬁ231(1—n1)nj. (44)

When n,=n,=0 one easily recognises in the last expressions the results

presented in Section 3 and 4 for the smooth and staggering parts of the energy
of the system in which the quantized Kelvin circulation is coupled with the
global rotation.

The Hamiltonians in eq. (33) and eq. (43) have an important property in
common: they represent positive definite operators each depending on the
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Fig.11. Parallels in the properties of mesoscopic conducting rings (left side) and the
rotational motion in the nuclear model with quantized Kelvin circulation (right side). See
explanation in the text

A
difference of a quantized quantity (J and 29 correspondingly) and an «external»

parameter (I and A). For these reasons the «ground state energy» as a function
of the corresponding «external» parameter has repetitive kinks following the
quantal changes in the ground state wave function. The possible relation of such
kinks with the observed Al =4 energy staggering has been already discussed in
this paper. The experimental proof for the existence of such kinks in the electric
circuit has also been given, although the direct measurements of the energy of
a circuit with the precision necessary to register the tiny quantal effects turn out
to be impossible. The proof of the considered phenomenon has been done
measuring the accompanying electric current.
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The parallels between the energy staggering in the superdeformed bands
and the permanent electric currents are illustrated in Fig.11. The upper part of
the figure shows the two quantal systems considered before (the «mesoscopic»
electric chain in the magnetic field at the left and the rotating nucleus with
vortical currents at the right). The lower part of the figure presents the quantal
phenomena establishing the similarity of the two systems. The permanent
electric currents in SQUIDs (solid line for an ideal «symmetric» SQUID and
dotted line for the real SQUID with finite inductivity) are shown on the left side
of the picture. At the right we reproduce once more the data concerning the

energy staggering in the superdeformed band in '49Gd explained in Section 3
within the model of a vortical motion coupled with the global rotation.

One may go much further in studying parallels in the properties of these
two kinds of systems. One may establish a similarity of effects produced by the
finite width of an electric circuit and of the precessional motion in the nuclear
model presented in Section 3. Both factors are related with the activation of an
additional degree of freedom. If the possibility of a motion in an additional
direction is open then the closed orbitals may be destroyed and thus the kinks
may be deminished. One may see the similarity between the «J» and «k >

mixing in the corresponding models. The mixing of these quantum numbers
diminishes the role of the limiting conditions and also diminishes the amplitude
of the kinks.

8. CONCLUDING REMARKS

To conclude we may refer once more to Figure 1 picturing an oldish man
looking for the treasure in a pool of water. The particular pool in which we have
dwelt here may look to some readers rather shallow and its waters much
disturbed by the previous passage of so many gold searchers. It is our prejudice
however that whatever the fate of some tentative explanations proposed here
might ultimately be, taking into account in a systematic way of the dynamics
associated with shape conserving collective currents is a rich field of
investigations deserving a particular attention.

As a matter of fact we have considered here mostly but not exclusively a
particular type of such motions namely the uniform intrinsic vortical modes
whose classical analogues are the S-type Riemann ellipsoids. Their quantization
has yielded such interesting spectroscopic features as the regular presence of
kinks in the energies of the yrast states. Even though our proposition of such a
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phenomenon to explain the observed A/=4 staggering still remains to be
confirmed, it is not without significance that it may be ascribed as an analogue
of the Aharonov-Bohm effect in rotating nuclei.

The influence of the breaking of axial symmetry as well as intrinsic parity
symmetry has also been discussed. Under some reasonable model assumptions,
breaking these symmetries one retrieves, roughly speaking, the same coupling
scheme of collective modes and therefore the same type of spectroscopic
properties as in axially and reflection invariant nuclei.

We have sketched also some directions of further work which go beyond
the uniform intrinsic vortical motion either by considering more complicated
intrinsic vortical modes or by explicitly taking into account the mixing of the
Kelvin circulation quantum number.

Altogether most of our ideas brought up in the present review call for an
assessment through specific microscopic calculations. In particular the crucial
role of pairing correlations should be studied in a detailed fashion. Such studies
will without any doubt illustrate new facets of the rich dynamical behavior of
the atomic nuclei considered as small quantal fermionic droplets.

This paper is dedicated to Professor Vadim G. Soloviev not only for many
illuminating scientific discussions on various aspects of nuclear collective
motion but also for his constant example of positive, enthusiastic and deep
attitude in front of the challenging and sometimes overwhelming body of
nuclear spectroscopic data.

We have benefitted from the interaction with many experimentalists, among
which we would like to thank specially B.Cederwall, B.Haas, F.Hannachi,
M.Meyer and F.Stephens for discussions on superdeformed states and the
Al = 4 staggering, as well as with many theoreticians with a special mention of
E.Nadjakov, M.Cerkaski and G.Rosensteel.

This work is based upon the results from a collaboration which has been
possible through an agreement between the IN2P3 of France and JINR in
Dubna (Russia) which is gratefully acknowledged.
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