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A generalization of symmetrized density matrices in combination with the technique of generating
functions allows one to calculate the partition function and the static correlation functions of identical
particles in a parabolic conˇning well with harmonic two-body interactions.

1. INTRODUCTION

In the present paper we summarize the essential ingredients, which enabled us
to derive the path-integral for a system of harmonically interacting spin-polarized
identical particles in a parabolic conˇning potential, including both the statistics
(BoseÄEinstein or FermiÄDirac) and the harmonic interaction between the parti-
cles. More details can be found in a series of papers [2]. This quadratic model,
giving rise to repetitive Gaussian integrals, allows one to derive an analytical
expression for the generating function of the partition function. The calculation
of this generating function circumvents the constraints on the summation over
the cycles of the permutation group. Moreover, it allows one to calculate the
canonical partition function recursively for the system with harmonic two-body
interactions.

2. PROPAGATOR OF THE MODEL SYSTEM

In atomic units (� = m = 1), the potential energy of the quadratic model
system under consideration is given by

V =
Ω2

2

N∑
j=1

r2
j ∓

ω2

4

N∑
j,l=1

(rj − rl)
2
, (1)

where Ω is the frequency of the conˇnement potential, and ω is the frequency of
the harmonic interparticle interaction, which might be either attractive or repul-
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sive. The classical equations of motion of this system lead to

r̈j = −w2rj ∓ ω2
N∑

l=1

rl with w =
√

Ω2 ∓Nω2, (2)

from which it readily follows that the centre-of-mass coordinate R = 1
N

∑N
j=1 rj

obeys the equation of motion R̈ = −Ω2R. The equations of motion for the
relative coordinates uj = rj − R become üj = −w2uj . It is straightforward to

rewrite the potential energy as V = 1
2NΩ2R2 + 1

2w
2
∑N

j=1 uj
2 . However, it

should be noted that this transformation does not diagonalize the Hamiltonian,
because of the subsidiary condition

∑N
j=1 uj = 0 which mixes up the relative

coordinates. This condition does not hinder the path-integral approach, because
it is easily incorporated in the derivation of the classical path, and hence of the
classical action. The derivation of the resulting path integral over the deviations
from the classical trajectory is a standard path-integral technique for quadratic
systems. In the Euclidean time variable, the resulting path integral KD for the
system of distinguishable particles becomes

KD (r̄′′, β |̄r′, 0)=
K (R′′, β|R′, 0)Ω
K (R′′, β|R′, 0)w

N∏
j=1

K
(
r′′j , β|r′j , 0

)
w
, (3)

where K (rβ , β|r0, 0)w is the standard path integral for a 3D harmonic oscillator
with frequency w

K (rβ , β|r0, 0)w =

=
√

w

2π sinhwβ
exp


−w

2

(
r2

β + r2
0

)
coshwβ − 2rβ · r0

sinhwβ


 . (4)

Similarly, K (Rβ , β|R0, 0)w is the path integral for the centre-of-mass, which has
mass N (in units of the particle mass)

K (Rβ, β|R0, 0)w =

=
√

w

2π sinhwβ
exp


−Nw

2

(
R2

β + R2
0

)
coshwβ − 2Rβ ·R0

sinhwβ


 . (5)

The path integral KI for identical particles is obtained by imposing the proper
symmetry (ξ = +1 for bosons) or antisymmetry (ξ = −1 for fermions), i.e.,

KI (r̄′′, β |̄r′, 0) =
1
N !

∑
p

ξpKD (P r̄′′, β |̄r′, 0) , (6)
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where
∑

p denotes the sum over all possible permutations, and r̄ is the gener-

alized coordinate r̄T = (r1, · · · , rN ) . The centre of mass is clearly not affected
by the permutations, which therefore only have to be studied in the product∏N

j=1 K
(
r′′j , β|r′j , 0

)
w
.

This method is also applicable in the presence of a magnetic ˇeld [1], although
the anisotropy induced by the magnetic ˇeld considerably complicates the algebra.

3. THERMODYNAMICS

The partition function ZI for the system of identical particles is obtained by
integrating the path integral over the conˇguration space:

ZI =
∫

dr̄KI (r̄, β |̄r, 0)=
1
N !

∫
dr̄
∑

p

ξpKD (P r̄, β |̄r, 0) . (7)

The explicit evaluation [2] involves the following major steps.
3.1. The Centre of Mass. The centre-of-mass coordinate R = 1

N

∑N
j=1 rj

does not only depend on the coordinates of all the particles, but it also has
its own propagator. Therefore substituting R by its expression in terms of the
particle positions and then performing the integration seems not to be the most
adequate way to deal with the integration over the conˇguration space. Instead,
the following identity is used for the formal treatment of R as an independent
coordinate, at the expense of additional integrations:

∫
dr̄f


r̄,

1
N

N∑
j=1

rj


 =

∫
dR
∫

dr̄f (r̄,R) δ


R − 1

N

N∑
j=1

rj


 . (8)

Fourier transformation of the δ function then leads to

∫
dr̄f


r̄,

1
N

N∑
j=1

rj


 =

∫
dR
∫

dk

(2π)3
eik·R

∫
dr̄f (r̄,R) e−ik̄·r̄, (9)

where k̄T = k
N

(
(1, 1, 1) , · · · , (1, 1, 1)

)
is a 3N -dimensional row vector.

Applying this transformation to the partition function ZI and rearranging the
factors one obtains

ZI =
∫

dR
∫

dk

(2π)3
eik·RK (R, β|R, 0)Ω

K (R, β|R, 0)w
×

×
∫

dr̄
1
N !

∑
p

ξp
N∏

j=1

K
(
(P r̄)j , β|rj , 0

)
w
e−

i
N k·rj . (10)
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This transformation makes R independent of the particle positions relative to
the centre of mass. The real dependence on the relative positions is reintroduced
by the Fourier transform. It should be noted that the explicit dependence of the
propagator on R, and the presence of the factor e−

i
N k·rj , are consequences of

the two-body interactions.
3.2. Cyclic Decomposition. The remaining sum over the permutations is

converted into a sum over their cyclic decompositions [3]. A permutation can be
broken up into cycles. Suppose that a particular permutation contains M cycles
of length �. The positive integers M and � then have to satisfy the constraint∑



�M = N. (11)

Furthermore, the number M (M1, · · ·MN) of cyclic decompositions with M1

cycles of length 1, · · · , M cycles of length �, · · · is known to be

M (M1, · · ·MN ) =
N !∏

 M!�M�
. (12)

A cycle of length � will be obtained from (�− 1) permutations. Therefore
the sign factor ξp can be decomposed as

ξp =
∏



ξ(−1)M� . (13)

Combining these result originating from the permutation symmetry one obtains

ZI =
∫

dR
∫

dk

(2π)3
eik·R

K
(√

NR, β|
√
NR, 0

)
Ω

K
(√

NR, β|
√
NR, 0

)
w

×

×
∑

M1···MN

∏


ξ(−1)M�

M!�M�
(K (k))M� , (14)

K (k) =
∫

dr+1

∫
dr · · ·

∫
dr1δ (r+1 − r1)

N∏
j=1

K (rj+1, β|rj , 0)w e−ik·rj/N .

The main ingredient in this calculation then become path-integrals K (k)
over all cycles with length �, which can be evaluated in closed form, using the
path integral of the driven harmonic oscillator:

K (k) =
(

1
2 sinh 1

2�βw

)3

exp
(
− �

4N2

k2

w

1 + e−βw

1 − e−βw

)
. (15)
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As a result, the partition function can be written as a product

ZI =
(

sinh 1
2βw

sinh 1
2βΩ

)3

ZI (N) ; (16)

ZI (N) ≡
∑

M1···MN

N∏
=1

ξ(−1)M�

M!�M�

(
e−

1
2 βw

1 − e−βw

)3M�

, (17)

where ZI (N) is the contribution from the internal degrees of freedom, which in
ZI is multiplied by a centre-of-mass correction. The constraint

∑
 �M = N on

the cycles substantially complicates the direct summation of ZI (N).
3.3. Generating Function. The introduction of the generating function

ΞI (u) =
∞∑

N=0

ZI (N)uN , (18)

lifts the restrictions on the cycles. The summations can then be performed
analytically. The result is

ΞI (u) = exp

( ∞∑
=1

ξ−1

�

e−
3
2 βwu

(1 − e−βw)3

)
. (19)

By expanding
(
1 − e−βw

)−3
as a power series e−βw and then performing the

summation over the cycle lenghts �, this generating function can be written in the
form

ΞI (u) =
∞∏

ν=0

(
1 − ξue−βεν

)−ξ
(ν+1)(ν+2)

2 , (20)

where εν = w
(

3
2 + ν

)
are the harmonic oscillator energy levels of the internal

degrees of freedom.
It should be stressed that ΞI (u) is not the grand canonical partition function

of the model system, but a generating function introduced for ˇnding the partition
function ZI (N) . This can be realized in two natural ways:

(1) by a Taylor series expansion in powers of u;

(2) by contour integration.

The ˇrst method gives a recurrence relation for ZI (N) , whereas the second
method results in an integral which is numerically tractable.
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3.3.1. Recurrence Relations for the Partition Function. Starting from the
deˇning equation of the generating function ΞI (u), a recursion relation can be
obtained for the partition function ZI (N). Introducing:

b = e−βw (21)

for brevity in the notations, we observe that

d

du
ΞI (u) = ΞI (u)

∞∑
ν=0

1
2

(ν + 1) (ν + 2)
b

3
2 +ν

1 − ξub
3
2+ν

.

Considering next ZI (N) = 1
N !

dN−1

duN−1
d

duΞ (u)
∣∣
u=0

, the product rule and an ele-
mentary binomial expansion can be used to ˇnd

ZI (N) =
1
N

N−1∑
m=0

ξN−m−1

(
b

1
2 (N−m)

1 − bN−m

)3

ZI (m) . (22)

Fig. 1. Boson speciˇc heat
CB/Nk per particle in units of
the Boltzmann constant k for N =
10, 100, 1000 as a function of
T/Tc, where Tc is the conden-
sation temperature in the limit
N → ∞

Of course, the corresponding recursion rela-
tions for the free energy F = − 1

β lnZ, the inter-
nal energy U = d (βF )/dβ and the speciˇc heat
C = dU/dT can readily be derived. The result-
ing speciˇc heat contribution from the internal
degrees of freedom clearly illustrates the effect
of condensation for a ˇnite number of particles,
as can be seen from the plot in the Figure for
10, 100 and 1000 bosons, with the temperature

expressed in units of Tc = w/k (ζ (3)/N)1/3

which is the condensation temperature in the
limit N → ∞. For fermions the recurrence re-
lation, although correct, is not appropriate for
numerical evaluation, because of the alternating
signs in the subsequent contributions, with terms
of the same order of magnitude. But the contour
integration method, discussed below, overcomes
this difˇculty.

The corresponding one-dimensional version
of the recurrence relation (indicated with the
subscript i to distinguish it from the 3D case
with capital subscript) becomes

Zi (N) =
1
N

N−1∑
m=0

ξN−m−1 b
1
2 (N−m)

1 − bN−m
Zi (m) ,
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leading to the following partition functions in closed form for one-dimensional
bosons and one-dimensional fermions

Zb =
b

1
2N∏N

j=1 (1 − bj)
; Zf =

b
1
2N2∏N

j=1 (1 − bj)
.

It is easy to check that these partition functions are the solution of the recurrence
relation for Zi (N) with ξ = 1 for bosons and ξ = −1 for fermions. However, in
the two-dimensional and the three-dimensional case we did not ˇnd a systematic
method to obtain analytical solutions for this type of recurrence relations.

3.3.2. Contour Integration and Steepest Descent. For fermions the numerical
evaluation of the thermodynamical quantities from the recurrence relations for the
partition function is found to be inaccurate. For a very large number of bosons
(N � 10000) it becomes very time consuming. For these cases an alternative
derivation using

ZI (N) =
1

2πi

∮
c

ΞI (z)
zN+1

dz =
1
2π

∫ 2π

0

ΞI

(
ueiθ

)
uN

e−iNθdθ,

becomes very useful and numerically accurate if the radius u of the contour
integral is determined from the steepest descent approximation, i.e., determine u
from the following transcendental equation

N = u
d lnΞI (u)

du
→ N =

∞∑
ν=0

1
2

(ν + 1) (ν + 2)
u

u− ξeβεν
,

which is precisely the expression for the expected number of particles N in the
®grand canonical ensemble¯ if u is interpreted as u = eβµ. A more detailed
discussion about the relation between the grand canonical ensemble and the sta-
tistics of a ˇnite number of particles can be found in [4]. Using this optimized
expression for u, the integral for ZI (N) can be written as

ZI (N) =
ΞI (u)
uN

∫ π

0

Ψ (θ) dθ, (23)

with

Ψ (θ) =
1
π

ΞI

(
ueiθ

)
ΞI (u)

e−iNθ =
1
π
e−
∑∞

�=1(1−cos θ)C� cos

(
θN −

∞∑
=1

C sin �θ

)
,

(24)

where

C =
ξ−1

�

(
b

3
2 u
)

(1 − b)3
. (25)



54 DEVREESE J.T., BROSENS F., LEMMENS L.F.

For the free energy one readily obtains

FF (N) = F
(0)
F (N) − 1

β
ln
(∫ π

0

Ψ (θ) dθ
)

with F
(0)
F (N) = − 1

β
ln

ΞF (u)
uN

,

(26)

where F
(0)
F (N) is the zero-order steepest descent result, which would be obtained

from the ®grand-canonical¯ treatment.
For bosons it turns out that the integral correction from

∫ π

0
Ψ (θ) dθ to the

free energy, which accounts for the ˇnite number of particles, becomes negligible

as compared to the ®grand canonical contribution¯ F
(0)
F (N) if N � 100.

For fermions, the integrandum Ψ (θ) is well-behaved, and very suitable for
numerical integration. More details can be found in Ref. 1.

4. STATIC CORRELATIONS

The static correlation functions, in particular the density and the pair corre-
lation function

n (r) =
1
N

〈
N∑

l=1

δ (r− rl)

〉

=
1
N

∫
d3q

(2π)3
eiq·r

〈
N∑

l=1

e−iq·rl

〉

g (r) =
1

N (N − 1)

〈
N∑

l=1,l′ �=l

δ (r − rl + rl′)

〉

=
1

N (N − 1)

∫
d3q

(2π)3
eiq·r

〈
N∑

l=1,l′ �=l

e−iq·(rl−rl′)

〉

could be derived (see [2]) using the same techniques, i.e.,

1. transformation of the centre of mass into an independent variable,

2. cyclic decomposition of the permutations,

3. calculation of the generating function,

4. inversion of the generating function series.
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For example, for the spatial Fourier transform nq of the density we found

nq = exp
[
− �q2

4mN

(
coth 1

2β�Ω
Ω

−
coth 1

2β�w

w

)]
ñq, (27)

where the exponent in front of ñq accounts for the centre-of-mass correction,
whereas ñq is the contribution from the internal degrees of freedom. Its explicit
expression is

ñq =
1
N

N∑
=1

ξ−1 exp
(
− �q2

4mw coth 1
2�β�w

)
(
2 sinh 1

2�β�w
)3 ZI (N − �)

ZI (N)
. (28)

For the spatial Fourier transform gq of the pair correlation function we found that

gq =
1
N

N∑
=2

ZI (N − �)
ZI (N)

ξ−1b
3
2 

(1 − b)3

−1∑
j=1


 exp

(
− �q2

2mw
1

Q�,j(b)

)
+ξ (Q,j (b))3 exp

(
− �q2

2mwQ,j (b)
)

 ,

(29)

where

Q,j =
1 − b

(1 − bj) (1 − b−j)
. (30)

The centre of mass does not contribute directly to the pair correlation function.
These results were obtained by a Taylor series expanding the generating

functions for the density and the pair correlation function, and are appropriate for
a limited number of bosons.

Similarly as for the partition function, for fermions or for a very large number
of bosons the inversion of the generating function by contour integration is again
to be preferred for numerical purposes.

5. CONCLUSIONS

In the present paper, we sketched the methodology which we introduced to
calculate the partition function and the static correlation functions of a system
of harmonically interacting identical particles (bosons or fermions) with the tech-
niques of path integration. The main point in the derivation is the conversion
of the sum over all permutations into a sum over their cyclic decompositions,
which in turn can be evaluated using a generating function technique. Detailed
explicit results can be found in some of our papers [1,2]. Among the main results,
we mention that this model in itself already shows the onset of BoseÄEinstein
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condensation in the speciˇc heat for a number of bosons of order 10. For 1000
or 10000 bosons, the peak in the speciˇc heat becomes very pronounced. Since
also the static correlation functions could be obtained explicitly, the model is a
powerful candidate to serve as the trial system for applying the JensenÄFeynman
inequality for more realistic systems of identical particles.
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