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The work demonstrates how fundamental concept of the BogoliubovÄMitropolslky method can
be used to study the laws that govern the particle motion in gravitational ˇeld of a radiating star.

Academician N.N.Bogoliubov, an eminent Russian scientist, has developed
many of the latest research lines in mathematics, physics, and mechanics. Among
his developments, the asymptotic methods [1Ä4] for integration of nonlinear equa-
tions have been used extensively in the nonlinear oscillation theory. We shall
demonstrate the techniques for using the fundamental concept of the BogoliubovÄ
Mitropolsky method in examining the laws that govern the particle motion in the
gravitational ˇeld of radiating star.

The Schwarzschild solution [5] is normally used at large to study the processes
in gravitational ˇelds of stars. But, no matter how high merited the solution is,
it describes an extremely idealized situation disregarding the possible star rota-
tion, electric charge, nonspherical distribution and motion of matter, and radiation
from the star. Therefore, in line with studying the Schwarzschild solution proper
and the characteristic processes therein (particle motion in the ˇeld, collapse),
attempts were made to solve the Einstein equations for more general astrophys-
ical situations. Since the Einstein equations are the system of the nonlinear
partial differential equations, whose right-hand sides comprise the matter energy-
momentum tensor (which, in turn, is much affected by gravity), it has become
quite clear that the above problems cannot be solved analytically.

At the same time, some of the exact solutions [5] for these equations have
been found. Among them, we are most interested in the metrics of a radiating
star obtained ˇrst by Vaidya [6] in 1949. This solution describes a gravitational
ˇeld beyond a spherical star with a spherically-symmetric radiation of massless
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particles. The present-day approaches treat such a radiation to be the electromag-
netic radiation and neutrino radiation from the conventional ®steady-state¯ stars
and from Supernova outburst.

According to Einstein's equations, the interval for this case has the form:

ds2 =
(

1 − 2M(w)
r

)
dw2 + 2dwdr − r2[dθ2 + sin2 θdϕ2], (1)

where the system of units, in which G = c = 1, is used.
Contrary to the Schwarzschild metrics, the star's mass M(w), entering this

expression depends on the EddingtonÄFinkelstein [5] retarded time w, thus form-
ing the function predestined by the star radiation law: dM(w)/dw = −f(w),
where f(w) is the quantity of energy emitted from a star in unit time.

Since the stellar evolution stages are ranging from Supernova explosions
(when the radiation from the stars is extremely high) to slow-dying white dwarfs,
neutron stars, and black holes, the function M = M(w) for a star is qualitatively
of different forms for different stages.

The equations of geodesics for the metric (1) are complicated, in comparison
with the equations of geodesics in Schwartzschild's space-time:

du0

ds
+ r(uϕ)2 − M

r2
(u0)2 = 0, (2)

dur

ds
+

[
M

r2

(
1 − 2 M

r

)
− 1

r

dM

dw

]
(u0)2 +

2M

r2
u0ur + (2M − r)(uϕ)2 = 0,

duϕ

ds
+

2
r
uruϕ = 0.

All the persistent attempts [7] made throughout the last ˇve decades to in-
tegrate the above equations have failed. Therefore, our ˇrst step in studying the
massive particle motion in the gravitational ˇeld of a radiating star is to exam-
ine the particular case of steady and moderate radiation from a star, where the
function M = M(w) is ®slowly¯ varying function of the time w.

To emphasize a slowness of a modiˇcation M we shall enter ®slow¯ time
τ = εw, where ε � 1, and we shall consider that M = M(τ). In terms of
the BogoliubovÄMitropolsky classiˇcation [4], then, the system of differential
equations (2) for ˇnite motion of a massive particle coincides with the equations
of nonlinear oscillations with slowly-varying parameter M(τ), (the term ®slowly¯
is used in the sense as indicated by Bogoliubov and Mitropolsky, i.e., the star
mass M(τ) can change but little within the period of orbital particle motion).

The system of equations (2) has two ˇrst integrals. Really, as the metric (1)
does not depend on an angle ϕ , then a component uϕ of 4-velocity vector of
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massive particle should be a constant: uϕ = α = const. From here follows, that

uϕ =
dϕ

ds
= gϕϕuϕ = − α

r2
. (3)

Another integral of a system (2) can be received if to take into account that
the quadrate of 4-vector of any massive particle should be equal to unity:
uiukgik = 1.

In result we shall have:

(u0)2
(

1 − 2M

r

)
+ 2 u0 ur = 1 +

α2

r2
. (4)

Thus, from two remaining equations (2) one by virtue of a relation (4) will be
a consequence of another and can be dropped. Remaining independent equation
of the system (2) we shall reduce in the most simple form. For it, the radial
component of 4-velocity vector shall present as:

ur = E −
(

1 − 2M

r

)
u0 , (5)

where E is some new slowly varying unknown function having sense of an energy
of particle per unit of its mass.

Then from relations (5) and (4) we shall have:

u0 =
r

[
E ±

√
E2 −

(
1 − 2M

r

) (
1 + α2

r2

)]
(r − 2M)

, (6)

ur = ∓

√
E2 −

(
1 − 2M

r

)(
1 +

α2

r2

)
.

As at the movement to gravitating centre ur < 0 , the upper sign in these
expressions corresponds to the coordinate's origin, and lower sign Å from it.

Substituting a relation (5) in the second equation of the system (2) and using
the ˇrst equation, it is simple to receive:

dE = −u0

r
dM = −

[
E ±

√
E2 −

(
1 − 2M

r

) (
1 + α2

r2

)]
(r − 2M)

dM. (7)

From here directly follows, that the energy of particle is enlarged (dE > 0 ) if
the star loses a mass on radiation (dM < 0 ), and decreases (dE < 0 ) if there
is an absorption by a star of the radiation which has come from spatial inˇnity
(dM > 0 ).
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Using relations (3) and (6), we shall receive a system of the differential
equations:

dw

dr
=

u0

ur
= ∓ r

(r − 2M)


 E(τ)√

E2(τ) −
(
1 − 2M

r

) (
1 + α2

r2

) ± 1


 , (8)

dϕ

dr
=

uϕ

ur
= ± α

r2

√
E2(τ) −

(
1 − 2M

r

) (
1 + α2

r2

) ,

ds

dr
=

1
ur

= ∓ 1√
E2(τ) −

(
1 − 2M

r

) (
1 + α2

r2

) .

Thus, to get the laws that govern the massive particle motion in the gravitational
ˇeld of a radiating star, we must integrate the equations (8) making allowance for
expression (7).

Without restricting the generality, the initial conditions can be prescribed
at the moment w = 0, assuming that the massive particle was at the point
r = r0, ϕ = ϕ0 just at that moment and had an energy E = E0 per its mass unit.

Examine equation (7) and the ˇrst equation of system (8). The asymptotic
solutions for these two equations will be constructed in terms of the ideology
of the BogoliubovÄMitropolsky method [4, p.339-340] concerning the existence
of ®fast¯ and ®slow¯ times. However, the straightforward application of this
technique to equations (7) and (8) has not been a success in virtue of the peculiar
character of the celestial mechanics problems. Namely, the dominant asymptotic
part and the correction thereto cannot be singled out in the radicand because, in
the case of ˇnite motion, this expression is strictly vanishing at the trajectory
turning points and differs from zero between these points.

Therefore, the asymptotic solutions for the system of equations (7) and (8)
will be constructed by iterations. The iteration procedure can readily be realized
if the equation

E2
0 −

(
1 − 2M0

r

) (
1 +

α2

r2

)
= 0 (9)

does not have any multiple roots. This condition is met when the initial energy
of a particle per the particle mass unit obeys the relation

E2
0 �= 36M2

0α + α3 ±
√

(α2 − 12M2
0 )3

54M2
0α

.

Since the function M = M(w) is slowly varying, the zero-order approximation
in small parameter ε of equation (7) yields E = E0 = const.
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Substituting this value to the right-hand side of the ˇrst of the equations (8),
we can ˇnd function w(r) in the same approximation:

w(0)(r) = ∓
r∫

r0

xdx

[x − 2M0]

{ E0√
E2
0 −

(
1 − 2M0

x

) (
1 + α2

x2

) ± 1
}
.

Let's reduce now equation (7) to the form:

dE
dr

= ±εr

[
E(r) ±

√
E2(r) −

(
1 − 2M

(
εw(r)

)
r

)(
1 + α2

r2

)]2

dM
(
εw(r)

)
dτ

[r − 2M
(
εw(r)

)
]2

√
E2(r) −

(
1 − 2M

(
εw(r)

)
r

) (
1 + α2

r2

) . (10)

For deriving its solution in the following approximation on small parameter ε it
is enough to make replacement: w(r) = w0(r), E(r) = E0, M = M0 in the
right-hand side of this expression. In result we shall have:

E(r)(1) = E0 ± ε

r∫
r0

xdx

[
E0 ±

√
E2
0 −

(
1 − 2M0

x

) (
1 + α2

x2

)]2
dM

(
εw(0)(x)

)
dτ

[x − 2M0]2
√
E2
0 −

(
1 − 2M0

x

) (
1 + α2

x2

) .

Substituting this expression in the right-hand side of the ˇrst of the equations (8),
we shall ˇnd expression for w(r) = w(1)(r) to within ε, inclusive:

w(1)(r) = ∓
r∫

r0

xdx

[
E(1)(x) ±

√
E2
(1)(x) −

(
1 − 2M

(
εw0(x)

)
x

) (
1 + α2

x2

)]

[x − 2M
(
εw0(x)

)
]

√
E2
(1)(x) −

(
1 − 2M

(
εw0(x)

)
x

) (
1 + α2

x2

) .

Sticking to the above iteration procedure, we can construct the expressions
for w(r) = w(N)(r) and E(r) = E(N)(r), that satisfy the ˇrst equation of system
(8) and equation (10) up to N-th order in ε. After that, by substituting the resultant
expressions w(r) = w(N)(r) and E(r) = E(N)(r) in the right-hand sides of the
remaining equations of system (8) and by integrating the expressions, we ˇnd the
trajectory equation ϕ = ϕ(r) and the dependence of the massive particle proper
time on r up to εN , inclusive:

ϕ(r) = ϕ(N)(r) = ϕ0 ± α

r∫
r0

dx

x2

√
E2
(N)(x) −

(
1 − 2M

(
εw(N)(x)

)
x

) (
1 + α2

x2

) ,



THE APPLICATION OF THE BOGOLIUBOVÄMITROPOLSKY METHOD 149

s(r) = s(N)(r) = ∓
r∫

r0

dx√
E2
(N)(x) −

(
1 − 2M

(
εw(N)(x)

)
x

) (
1 + α2

x2

) .

The above expressions get applicable up to the trajectory turning points, i.e.,
up to the point r = rrev, that solves equation (9). To extend the trajectory to
beyond this point, the resultant values E(rrev), w(rrev), ϕ(rrev), and s(rrev) must
be taken to be the initial conditions, whereupon the above iteration procedure is
to be repeated to construct the asymptotic solution for a next trajectory branch.

Thus, the BogoliubovÄMitropolsky method makes it possible to construct a
massive particle trajectory in the gravitational ˇeld of a radiating star and to study
the law that governs the massive particle motion along the found trajectory.
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