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It is well known that a straight-line relativistic string is an exact solution of the equation of
motion and boundary conditions, when its massive ends move along a circular orbit. In this report,
we investigate the exact solution of string equations for periodic motions of massive string ends
which move along an elliptic orbit in the x, y-plane (planar motion). We determine analytically the
coordinates of the string in terms of the Weierstrass elliptic functions. In the considered case, the
curved string has a transverse excitation, and its ends have a radial momentum, not present in a
straight-line string. We determine the shape of the curved string.

1. PERIODIC SOLUTIONS AND INTEGRAL OF MOTION

The string action with masses attached to its ends has the form

S = −γ
τ2∫

τ1

dτ

σ2∫
σ1

dσ
√

(ẋx′)2 − ẋ2x′2 −
2∑

i=1

mi

τ2∫
τ1

√
x′2(τ, σi), (1)

where γ = 1/(2πα′) is the string tension, ẋµ(τ, σ) = ∂xµ/∂τ , x′µ(τ, σ) =
∂xµ/∂σ. The general solution to the equation of motion

ẍµ(τ, σ) − x′′µ(τ, σ) = 0

is

xµ(τ, σ) =
1
2
[
Ψµ

+(τ + σ) + Ψµ
−(τ − σ)

]
.

The orthogonal gauge condition (ẋµ ± x′µ)2 = 0 results in equations for vectors
Ψ′µ

± (τ ± σ)
Ψ′2

± = 0,
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according to which Ψ′µ
± should be isotropic vectors, and for further consideration,

it is convenient to represent them as expansions over a constant basis in the
3-dimensional Minkowski space:

Ψ′µ
+ (τ + σ) =

A+(τ + σ)
f ′(τ + σ)

{
aµ + bµ f(τ + σ) + cµ

f2(τ + σ)
2

}
,

(2)

Ψ′µ
− (τ − σ) =

A+(τ − σ)
g′(τ + σ)

{
aµ + bµ g(τ + σ) + cµ

f2(τ + σ)
2

}
,

where aµ, bµ, cµ is a constant basis, consisting of two isotropic vectors aµ, cµ:
(ac) = 1, a2 = c2 = 0, and orthonormal space-like vector bµ: b2 = −1, (ab) =
(bc) = 0.

The orthonormal gauge does not determine the functions A±(τ ± σ) in (2),
and consequently, there is a possibility of ˇxing them by imposing further gauge
conditions, since expressions (2) are invariant under conformal transformations of
the parameters τ̄ ± σ̄ = V±(τ ± σ). We ˇx them by two more gauge conditions:

[ẋ′µ ± ẍµ]2 = −A2 = const,

which in terms of the vectors Ψ′µ
± mean that the space-like vectors Ψ′′µ

± are
modulo constant

Ψ′′2
± = −A2.

The boundary conditions for the string ends σ1 = 0 and σ2 = l are the
following

m1
d

dτ

(
ẋµ(τ, 0)√
ẋ2(τ, 0)

)
= γ x′µ(τ, 0), m2

d

dτ

(
ẋµ(τ, l)√
ẋ2(τ, l)

)
= −γ x′µ(τ, l).

(3)

Now let us calculate the curvature Ki(τ) and torsions κi(τ) of boundary curves
along which masses mi are moving. To this end, we compare the boundary
Eq. (3) with the SerretÄFrenet equations for boundary curves [2]

d

dτ

(
ẋµ(τ)√
ẋ2(τ)

)
= (−1)i+1Ki(τ)x

′µ
i (τ),

d

dτ
nµ

i (τ) = κi(τ)x
′µ
i , i = 1, 2,

(4)

where xµ
i (τ) = xµ(τ, σi), nµ

i (τ) = nµ(τ, σi) are binormals of the boundary
curves. By comparing with (3), we can ˇnd that Ki(τ) = γ/mi is constant.
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Projecting the second equation (4) onto x′µi (τ) and taking into account that
nµ

i ⊥ ẋµ
i , x

′µ
i , n2

i = −1, we obtain

κi(τ) =
(ṅi x

′
i)

x′2i
=

(ni ẋ
′
i)

ẋ2
i

=
A

ẋ2(τ, σi)
. (5)

Thus, torsions κi are determined by ẋ2(τ, σi) and the constant A that is a nonzero
coefˇcient of the second quadratic form of 2-dimensional string surface

bkl =
(
nµ

∂2xµ

∂uk∂ul

)
, u1 = τ, u2 = σ, b11 = b22 = 0, b12 = b21 = A.

By inserting Ψ′µ
± (τ ±σi) from (2) into the boundary equations (3) and taking into

account that A2
±(τ ± σ) = A2, we get

m1

[
d

dτ
ln
(
g′(τ)
f ′(τ)

)
+ 2

f ′(τ) + g′(τ)
f(τ) − g(τ)

]
= 2γ

√
ẋ2(τ, 0), σ1 = 0,

(6)

m2

[
d

dτ
ln
(
g′(τ−l)
f ′(τ+l)

)
+2

f ′(τ+l)+g′(τ−l)
f(τ+l)−g(τ−l)

]
= − 2γ

√
ẋ2(τ, l), σ2=l,

where

ẋ2(τ, σ) = A2 [f(τ + σ) − g(τ − σ)]2

4 f ′(τ + σ) g′(τ − σ)
. (7)

As is known [1], expression (7) is the general solution to the Liouville Eq. for
ẋ2(τ, σ), i.e., the Gauss equation for a minimal 2-dimensional surface:

∂2 ln ẋ2(τ, σ)
∂2τ

− ∂2 ln ẋ2(τ, σ)
∂2σ

=
A2

ẋ2(τ, σ)
.

In 3-dimensional Minkowski space, we can, by using the expressions for
ẋ2(τ, σi), (σ1 = 0, σ2 = l)

ẋ2(τ, 0) = ẋ2
1(τ) = A2 [f(τ) − g(τ)]2

4 f ′(τ) g′(τ)
,

(8)

ẋ2(τ, l) = ẋ2
2(τ) = A2 [f(τ + l) − g(τ − l)]2

4 f ′(τ + l) g′(τ − l)

and boundary Eq. (6), express the functions f(τ), g(τ) in terms of ẋ2
i (τ) and

Ki = γ/µi [3].
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The ˇrst boundary results in the equations:

D[f(τ)] = D
[∫ τ dη√

ẋ2
1(η)

]
+

A2

ẋ2
1(τ)

−K2
1 ẋ

2
1(τ) − 2K1

d

dτ

√
ẋ2

1(τ),

(9)

D[g(τ)] = D
[∫ τ dη√

ẋ2
1(η)

]
+

A2

ẋ2
1(τ)

−K2
1 ẋ

2
1(τ) + 2K1

d

dτ

√
ẋ2

1(τ),

where

D[f(τ)] =
f ′′′(τ)
f ′(τ)

− 3
2

(
f ′′(τ)

f ′(τ)

)2

is the Schwarz derivative.
The second boundary results in the equations:

D[f(τ + l)] = D
[∫ τ dη√

ẋ2
2(η)

]
+

A2

ẋ2
2(τ)

−K2
2 ẋ

2
2(τ) + 2K2

d

dτ

√
ẋ2

2(τ),

(10)

D[g(τ − l)] = D
[∫ τ dη√

ẋ2
2(η)

]
+

A2

ẋ2
2(τ)

−K2
2 ẋ

2
2(τ) − 2K2

d

dτ

√
ẋ2

2(τ).

Thus, the functions f(τ), g(τ) and therefore according to (2) the string coordinates
xµ(τ, σ) are completely deˇned byKi and boundary value of component of matric
tensors ẋ2

i (τ) = ẋ2(τ, σi).
Let us consider a simple example, where κi(τ) = A/ẋ2(τ, σi) is constant,

then from (9), (10) we derive equations

D[f(τ)] = D[g(τ)] =
A2

ẋ2
1,0

−K2
1 ẋ

2
1,0 = 2ω2,

(11)

D[f(τ + l)] = D[g(τ − l)] =
A2

ẋ2
2,0

−K2
2 ẋ

2
2,0 = 2ω2,

which have solutions:

D[f(τ)] = −2
√
f ′(τ)

d2

dτ2

(
1√
f ′

)
= 2ω2 =⇒ 1√

f ′(τ)
= B cos(ωτ + θ0),

and ˇnally
f(τ) = B−2 tan(ωτ + θ0).
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Fig. 1.

In this case, the string surface is a helicoid (see Fig. 1 and [5]) because the
string coordinate has the form

xµ(τ, σ) = A

{
τ,

sin(ωσ − θ0)
ω

[sin(ωτ + φ0), cos(ωτ + θ)]
}
. (12)

Thus our approach is best described in terms of Schwarz derivatives because
an important property of D[f(τ)] is that it is invariant under Méobius transforma-
tions (linear-fractional transformations)

φ(τ) =
a f(τ) + b

c f(τ) + d
, (ad− b = 1) =⇒ D[φ(τ)] = D[f(τ)]. (13)

It is a remarkable fact that the system of boundary equations (9) and (10) pos-
sesses conserved quantities [3] and periodic solutions when ẋ2(τ, σi) are periodic
with a period 2l: ẋ2(τ + 2l, σi) = ẋ2(τ, σi).

In the general case, we can represent equations (9) and (10) in the form

D[f(τ)] −D[g(τ)] = −4K1
d

dτ

√
ẋ2(τ, 0),

D[f(τ + l)] −D[g(τ − l)] = 4K2
d

dτ

√
ẋ2(τ, l).

Eliminating D[g(τ)] from these two equations by changing τ to τ + l in the
second Eq. and subtracting one from another, we get

D[f(τ + 2l)] −D[f(τ)] = 4
d

dτ

[
K1

√
ẋ2(τ, 0) +K2

√
ẋ2(τ + l, l)

]
. (14)
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Eliminating D[(τ)] by changing τ to τ − l, we obtain the equation for g(τ)

D[g(τ)] −D[g(τ − 2l)] = 4
d

dτ

[
K1

√
ẋ2(τ, 0) +K2

√
ẋ2(τ − l, l)

]
. (15)

Now let us note that equations (14), (15) and the expressions

ẋ2(τ, σi) = A2 [f(τ + σi) − g(τ − σi)]2

4 f ′(τ + σi) g′(τ − σi)

are invariant under Méobius transformations, and their being periodic ẋ2(τ +
2l, σi) = ẋ2(τ, σi) leads to the transformation of the functions

f(τ + 2l) =
a f(τ) + b

c f(τ) + d
, g(τ + 2l) =

a g(τ) + b

c g(τ) + d
, (ad− bc = 1)

f ′(τ + 2l) =
f ′(τ)

(c f(τ) + d)2
, g′(τ + 2l) =

g′(τ)
(c g(τ) + d)2

. (16)

Thus, taking into account the property of the Schwarz derivative, from (13), (14),
and (15), we obtain the integral of motion [4]

K1

√
ẋ2(τ, 0) +K2

√
ẋ2(τ ± l, l) = h, (17)

where h is a positive constant of integration. The equality (17) can be interpreted
geometrically as follows. Since the length of a boundary curve Li between points
τ1 and τ2 is given by

Li(τ1, τ2) =

τ2∫
τ1

√
ẋ2(τ, σi) dτ,

then integrating (17) in the interval [τ1, τ2] and expressing the curvature Ki

through the curvature radius Ri = 1/Ki, we arrive at the equality

L1(τ1, τ2)
R1

+
L2(τ1, τ2)

R2
= h(τ2 − τ1).

From this expression it is seen that the sum of the lengths of boundary curves
divided by constant radii Ri of their curvatures grows linearly with the parameter

τ as though their element of the length were constant
√
ẋ2

i,0. Consequently, we

can set the constant h to be equal to

h =

√
ẋ2

1,0

R1
+

√
ẋ2

2,0

R2
.

In the Euclidean geometry, these curves are called the Bertrand curves [2]. When
K1 = K2, (m1 = m2), they are conjugate Bertrand curves, i.e., the centre of
curvature of one curve lies always on the other curve.
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2. DEFINITION OF THE STRING WORLD SURFACE

The representation of
√
ẋ2(τ, σi) in the form

√
ẋ2(τ, 0) =

h

K1 +K2 p(τ)
,

√
ẋ2(τ + l, l) =

h p(τ)
K1 +K2 p(τ)

, (18)

where p(τ) is a positive and periodic function p(τ+2l) = p(τ), makes the integral
of motion (17) an identity. From (8) and (18) we obtain

p(τ) =

√
ẋ2(τ + l, l)
ẋ(τ, 0)

=
∣∣∣∣f(τ + 2l) − g(τ)

f(τ) − g(τ)

∣∣∣∣
√

f ′(τ)
f ′(τ + 2l)

.

Taking into account equality (16) for f ′(τ + 2l), we can express g(τ) through
functions f(τ) and p(τ)

g(τ) =
[a+ p(τ)]f(τ) + b

c f(τ) + d+ p(τ)
, g′(τ) =

f ′(τ)Q[p] + p′(τ)F [f ]
[c f(τ) + d+ p(τ)]2

,

where Q[p] = p2(τ) + (a + d) p(τ) + 1, F [f ] = cf2(τ) + (d − a) f(τ) − b are
positive valuated polynomials if one assumes that |a+ d| < 2.

Now from (18) we can express the function f(τ) in terms of the function
p(τ) and constants A, h, K1, K2

f ′(τ)
F [f ]

=

√
p′2 +

(
A
h

)2
[K1 +K2 p(τ)]2Q[p] − p′(τ)

2Q[p]
.

As a result we obtain from (14), (15) the elliptic equation for a positive deˇnite
function p(τ)

p′
2(τ) = h2 p2(τ) − A2

h2
[K1 +K2 p(τ)]2[p2(τ) + (a+ d)p(τ) + 1]. (19)

Indeed, at the point p(τ) = 0, Eq. (19) results in p′
2(τ) = −A2K2

1/h
2 < 0,

which is inadmissible. Consequently, p(τ) takes values either on the half-line
p(τ) > 0 or on p(τ) < 0. We ˇx the sign: p(τ) > 0.

Now we consider the solution of Eq. (19) for equal masses m1 = m2 = m,
K1 = K2 = K = γ/m. In this case after putting a + d = 2 cos 2α, h2 =
4AK sinα from (19) we derive more simple elliptic equation

p′
2(τ) = h2 p2(τ) −

(
AK

h

)2

[1 + p(τ)]2[p2(τ) + 2 cos 2αp(τ) + 1]. (20)
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Substituting into Eq. (20) the expression

p(τ) =
√

2 − s(u)√
2 + s(u)

,

where the new function s(u) satisˇes the inequality |s(u)| <
√

2, and the new
variable u = τh/23/2, we arrive at the following equation for s(u)

s′
2(u) = s4(u) − 6 s2(u) + 4 (1 − cot2 α), cot2 α < 1. (21)

The general solution of this equation has the form

s(u) = s0
P(u) − e1 −

√
(e1 − e2)(e1 − e3)

P(u) − e1 +
√

(e1 − e2)(e1 − e3)
, (22)

where s0 =
√

3 −
√
s+ 4 cot2 α <

√
2 is the amplitude of oscillations, P(u) is

the periodic Weierstrass elliptic function [6] with real roots ei

e1 = 1, e2 =
√

1 − ctg2α−1/2, e3 = −
√

1 − cot2 α−1/2, (e1+e2+e3 = 0).

The real period 2ω1 of P(u) is given by the elliptic integral

2ω1 =

∞∫
e1

dt√
(t− e1)(t− e2)(t− e3)

=
h

23/2
l.

It is to be ˇxed at 2ω1 = l
√

2AK sinα, which results in the constraint on arbitrary
constants: A, α, l, because the left-hand side of this equation is the function of
α. The behavior of functions P(u) and s(u) is drawn in Figs. 2 and 3.

Fig. 2. Fig. 3.
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Thus, s(u) deˇnes ẋ2(τ, σi) as a smooth periodic function

√
ẋ2(τ, 0) =

h

K

1
1 + p(τ)

=

√
A sinα
K

(
1 +

s(u)√
2

)
, ẋ2(τ, 0) = ẋ2(τ, l),

√
ẋ2(τ + l, l) =

h

K

p(τ)
1 + p(τ)

=

√
A sinα
K

(
1 − s(u)√

2

)
. (23)

To compute the functions f(τ), g(τ), and string coordinates, let us introduce
the trigonometric representation for these functions through the angles φ(τ) and
θ(τ)

f(τ) =
√

2 tan
[
φ(τ) − θ(τ)

2

]
, g(τ) = −

√
2 cot

[
φ(τ) + θ(τ)

2

]
.

In the frame of reference, where

aµ =
1√
2
{1, 0, 1}, bµ = {0, 1, 0}, cµ =

1√
2
{1, 0,−1},

we get

ψ
′µ
+ (τ + σ) =

A

φ′(τ + σ) − θ′(τ + σ)
{1; sin[φ− θ]; cos[φ− θ]} ,

ψ
′µ
− (τ − σ) =

A

φ′(τ − σ) + θ′(τ − σ)
{1;− sin[φ+ θ]; cos[φ+ θ]} ,

where the angles φ(τ), θ(τ) are expressed through the elliptic functions s(u) in
the following manner:

φ′(τ) =
√
AK sinα

2 − s2(u)
2 cot2 α+ s2(u)

; θ′(τ) = −
√
AK sinα

s′(u)
2 cot2 α+ s2(u)

.

(24)

In the case when s(u) = const and, as a consequence, φ′(τ) = const = ω, θ′(τ) =
0, θ(τ) = θ0, one gets a straight-line string with the angular velocity ω ( compare
(12))

φ
′µ
+ (τ + σ) =

A

ω
{1, sin[ω(τ + σ) − θ0], cos[ω(τ + σ) − θ0]} ,

φ
′µ
− (τ − σ) =

A

ω
{1,− sin[ω(τ − σ) + θ0],− cos[ω(τ − σ) + θ0]} .

In general case, by integration of (24) we obtain for the angle φ(τ) the expression

φ(τ) = φ(0) + φ′(0)τ + i

{
[J(u1) − J(u∗2)]u+

1
2

ln
[
σ(u − u1)σ(u + u∗1)
σ(u + u1)σ(u − u∗1)

]}
,
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where σ(u) is the Weierstrass entire function; J(u) = −
∫
P(u)du is a quasi-

periodic function; u1 is a complex constant determined by the equation s(u1) =
i
√

2 cotα. For the angle θ, one obtains:

θ(τ) = arcctg

[
s(u)√

2
tanα

]
− α.

Now one can determine the string vectors:

ẋµ(τ, 0) = ẋµ(τ, l) =
A

φ′2(τ) − θ̇2(τ)

{
φ̇(τ), ,̇x(φ(τ), θ(τ))

}
,

x′µ(τ, 0) = −x′µ(τ, l) =
A

φ′2(τ) − θ′2(τ)

{
−θ̇(τ), ,x′(φ(τ), θ(τ))

}
.

For these solutions we cannot turn to the gauge t = τ , because

ṫ(τ, σi) =
Aφ̇(τ)

φ̇2(τ) − θ̇2(τ)
, t′(τ, σi) =

−Aθ̇(τ)
φ̇2(τ) − θ̇2(τ)

.

The string world surface is not a helicoid and does not belong to the class of
developable surfaces (ruled surfaces), therefore, it describes transverse excitations
of the string and radial motions of the masses mi.

3. THE OSCILLATION WITH A SMALL AMPLITUDE: s0 =
√

2 ε  1

If oscillation has a small amplitude s0 =
√

3 −
√

5 + 4 cot2 α =
√

2 ε, then
cot2 α = 1−3ε2 ∼ 1, and we arrive at the degenerate case of the elliptic function
P(u), when e2 ∼ e3, e1 � −2e2, ω1 = π/

√
6. In this case, we have

P(u) = −1
2

+
3
2

1
sin2

(
π τ

l

) − ε2

4
cos
(πτ
l

)
+ O(ε3),

s(u) =
√

2 ε cos
(
π
τ

l

)
+ O(ε2).

Then from (23) we obtain simple expression for ẋ2(τ, 0) = ẋ2(τ, l)

ẋ2(τ, σi) =
A sinα
K

[
1 + ε cos

(
π
τ

l

)]2
which satisˇes the integral of motion (17)

K
√
ẋ2(τ, 0) +K

√
ẋ2(τ ± l, l) = 2

√
AK sinα.
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In this approximation, the angles θ(τ) and φ take the form

θ(τ) = arcctg [ε cotα cos(πτ/l)] − α,

φ(τ) = φ(0) + (π − 2α)
τ

l
− ε2√

3
sin(2πτ/l). (25)

Now we can consider a geometrical picture of the movement of massive string
ends in the (x, y)-plane. The element of length of boundary curve is given by

Fig. 4.

dL2 = cos2 α [1 − 2ε cos(πτ/l)] dτ2.

It is an ellipse with semiaxes (see Fig. 4)

a =
2l
π

(1 + ε/2) cosα, b =
2l
π

(1 − ε/2) cosα.

Then the shape of the curved string is an ellipsoid to

leading order in the parameter ε.

4. CONCLUSION

The geometrical method proposed here for solving the boundary problem in
the theory of the relativistic string with massive ends is based on the torsions
κi(τ) of world trajectories of the string ends, and the string world surface is
completely determined by trajectories of massive ends. We investigated the
shape of a conˇning string for periodic motion of its ends and showed that the
shape of the curved string is an ellipsoid to the leading order in the parameter ε in
deviation from straightness. It is possible to ˇnd that the angular momentum and
energy are the same in this leading order as for a straight string, but the curved
string has a small radial momentum ∼ ε2, not present in the straight string.
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