# PERIODIC SOLUTIONS AND INTEGRALS OF MOTION FOR THE CLASSICAL EQUATION OF RELATIVISTIC STRING WITH MASSIVE ENDS IN 3-DIMENSIONAL MINKOWSKI SPACE 

B.M. Barbashov

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia


#### Abstract

It is well known that a straight-line relativistic string is an exact solution of the equation of motion and boundary conditions, when its massive ends move along a circular orbit. In this report, we investigate the exact solution of string equations for periodic motions of massive string ends which move along an elliptic orbit in the $x, y$-plane (planar motion). We determine analytically the coordinates of the string in terms of the Weierstrass elliptic functions. In the considered case, the curved string has a transverse excitation, and its ends have a radial momentum, not present in a straight-line string. We determine the shape of the curved string.


## 1. PERIODIC SOLUTIONS AND INTEGRAL OF MOTION

The string action with masses attached to its ends has the form

$$
\begin{equation*}
S=-\gamma \int_{\tau_{1}}^{\tau_{2}} d \tau \int_{\sigma_{1}}^{\sigma_{2}} d \sigma \sqrt{\left(\dot{x} x^{\prime}\right)^{2}-\dot{x}^{2} x^{\prime 2}}-\sum_{i=1}^{2} m_{i} \int_{\tau_{1}}^{\tau_{2}} \sqrt{x^{\prime 2}\left(\tau, \sigma_{i}\right)} \tag{1}
\end{equation*}
$$

where $\gamma=1 /\left(2 \pi \alpha^{\prime}\right)$ is the string tension, $\dot{x}^{\mu}(\tau, \sigma)=\partial x^{\mu} / \partial \tau, x^{\mu}(\tau, \sigma)=$ $\partial x^{\mu} / \partial \sigma$. The general solution to the equation of motion

$$
\ddot{x}^{\mu}(\tau, \sigma)-x^{\prime \prime \mu}(\tau, \sigma)=0
$$

is

$$
x^{\mu}(\tau, \sigma)=\frac{1}{2}\left[\Psi_{+}^{\mu}(\tau+\sigma)+\Psi_{-}^{\mu}(\tau-\sigma)\right]
$$

The orthogonal gauge condition $\left(\dot{x}^{\mu} \pm x^{\prime \mu}\right)^{2}=0$ results in equations for vectors $\Psi_{ \pm}^{\prime \mu}(\tau \pm \sigma)$

$$
\Psi_{ \pm}^{\prime 2}=0
$$

according to which $\Psi_{ \pm}^{\mu}$ should be isotropic vectors, and for further consideration, it is convenient to represent them as expansions over a constant basis in the 3-dimensional Minkowski space:

$$
\begin{align*}
& \Psi_{+}^{\prime \mu}(\tau+\sigma)=\frac{A_{+}(\tau+\sigma)}{f^{\prime}(\tau+\sigma)}\left\{a^{\mu}+b^{\mu} f(\tau+\sigma)+c^{\mu} \frac{f^{2}(\tau+\sigma)}{2}\right\} \\
& \Psi_{-}^{\prime \mu}(\tau-\sigma)=\frac{A_{+}(\tau-\sigma)}{g^{\prime}(\tau+\sigma)}\left\{a^{\mu}+b^{\mu} g(\tau+\sigma)+c^{\mu} \frac{f^{2}(\tau+\sigma)}{2}\right\} \tag{2}
\end{align*}
$$

where $a^{\mu}, b^{\mu}, c^{\mu}$ is a constant basis, consisting of two isotropic vectors $a^{\mu}, c^{\mu}$ : $(a c)=1, a^{2}=c^{2}=0$, and orthonormal space-like vector $b^{\mu}: b^{2}=-1,(a b)=$ $(b c)=0$.

The orthonormal gauge does not determine the functions $A_{ \pm}(\tau \pm \sigma)$ in (2), and consequently, there is a possibility of fixing them by imposing further gauge conditions, since expressions (2) are invariant under conformal transformations of the parameters $\bar{\tau} \pm \bar{\sigma}=V_{ \pm}(\tau \pm \sigma)$. We fix them by two more gauge conditions:

$$
\left[\dot{x}^{\prime \mu} \pm \ddot{x}^{\mu}\right]^{2}=-A^{2}=\text { const }
$$

which in terms of the vectors $\Psi_{ \pm}^{\prime \mu}$ mean that the space-like vectors $\Psi_{ \pm}^{\prime \prime \mu}$ are modulo constant

$$
\Psi_{ \pm}^{\prime \prime 2}=-A^{2}
$$

The boundary conditions for the string ends $\sigma_{1}=0$ and $\sigma_{2}=l$ are the following

$$
\begin{equation*}
m_{1} \frac{d}{d \tau}\left(\frac{\dot{x}^{\mu}(\tau, 0)}{\sqrt{\dot{x}^{2}(\tau, 0)}}\right)=\gamma x^{\prime \mu}(\tau, 0), \quad m_{2} \frac{d}{d \tau}\left(\frac{\dot{x}^{\mu}(\tau, l)}{\sqrt{\dot{x}^{2}(\tau, l)}}\right)=-\gamma x^{\prime \mu}(\tau, l) \tag{3}
\end{equation*}
$$

Now let us calculate the curvature $K_{i}(\tau)$ and torsions $\kappa_{i}(\tau)$ of boundary curves along which masses $m_{i}$ are moving. To this end, we compare the boundary Eq. (3) with the Serret-Frenet equations for boundary curves [2]

$$
\begin{equation*}
\frac{d}{d \tau}\left(\frac{\dot{x}^{\mu}(\tau)}{\sqrt{\dot{x}^{2}(\tau)}}\right)=(-1)^{i+1} K_{i}(\tau) x_{i}^{\prime \mu}(\tau), \quad \frac{d}{d \tau} n_{i}^{\mu}(\tau)=\kappa_{i}(\tau) x_{i}^{\prime \mu}, \quad i=1,2 \tag{4}
\end{equation*}
$$

where $x_{i}^{\mu}(\tau)=x^{\mu}\left(\tau, \sigma_{i}\right), \quad n_{i}^{\mu}(\tau)=n^{\mu}\left(\tau, \sigma_{i}\right)$ are binormals of the boundary curves. By comparing with (3), we can find that $K_{i}(\tau)=\gamma / m_{i}$ is constant.

Projecting the second equation (4) onto $x_{i}^{\prime \mu}(\tau)$ and taking into account that $n_{i}^{\mu} \perp \dot{x}_{i}^{\mu}, x_{i}^{\prime \mu}, n_{i}^{2}=-1$, we obtain

$$
\begin{equation*}
\kappa_{i}(\tau)=\frac{\left(\dot{n}_{i} x_{i}^{\prime}\right)}{x_{i}^{\prime 2}}=\frac{\left(n_{i} \dot{x}_{i}^{\prime}\right)}{\dot{x}_{i}^{2}}=\frac{A}{\dot{x}^{2}\left(\tau, \sigma_{i}\right)} \tag{5}
\end{equation*}
$$

Thus, torsions $\kappa_{i}$ are determined by $\dot{x}^{2}\left(\tau, \sigma_{i}\right)$ and the constant $A$ that is a nonzero coefficient of the second quadratic form of 2-dimensional string surface
$b_{k l}=\left(n_{\mu} \frac{\partial^{2} x^{\mu}}{\partial u_{k} \partial u_{l}}\right), \quad u_{1}=\tau, u_{2}=\sigma, \quad b_{11}=b_{22}=0, \quad b_{12}=b_{21}=A$.
By inserting $\Psi_{ \pm}^{\prime \mu}\left(\tau \pm \sigma_{i}\right)$ from (2) into the boundary equations (3) and taking into account that $A_{ \pm}^{2}(\tau \pm \sigma)=A^{2}$, we get

$$
\begin{align*}
m_{1}\left[\frac{d}{d \tau} \ln \left(\frac{g^{\prime}(\tau)}{f^{\prime}(\tau)}\right)+2 \frac{f^{\prime}(\tau)+g^{\prime}(\tau)}{f(\tau)-g(\tau)}\right] & =2 \gamma \sqrt{\dot{x}^{2}(\tau, 0)}, \sigma_{1}=0 \\
m_{2}\left[\frac{d}{d \tau} \ln \left(\frac{g^{\prime}(\tau-l)}{f^{\prime}(\tau+l)}\right)+2 \frac{f^{\prime}(\tau+l)+g^{\prime}(\tau-l)}{f(\tau+l)-g(\tau-l)}\right] & =-2 \gamma \sqrt{\dot{x}^{2}(\tau, l)}, \sigma_{2}=l, \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
\dot{x}^{2}(\tau, \sigma)=A^{2} \frac{[f(\tau+\sigma)-g(\tau-\sigma)]^{2}}{4 f^{\prime}(\tau+\sigma) g^{\prime}(\tau-\sigma)} \tag{7}
\end{equation*}
$$

As is known [1], expression (7) is the general solution to the Liouville Eq. for $\dot{x}^{2}(\tau, \sigma)$, i.e., the Gauss equation for a minimal 2-dimensional surface:

$$
\frac{\partial^{2} \ln \dot{x}^{2}(\tau, \sigma)}{\partial^{2} \tau}-\frac{\partial^{2} \ln \dot{x}^{2}(\tau, \sigma)}{\partial^{2} \sigma}=\frac{A^{2}}{\dot{x}^{2}(\tau, \sigma)}
$$

In 3-dimensional Minkowski space, we can, by using the expressions for $\dot{x}^{2}\left(\tau, \sigma_{i}\right),\left(\sigma_{1}=0, \sigma_{2}=l\right)$

$$
\begin{align*}
\dot{x}^{2}(\tau, 0) & =\dot{x}_{1}^{2}(\tau)=A^{2} \frac{[f(\tau)-g(\tau)]^{2}}{4 f^{\prime}(\tau) g^{\prime}(\tau)} \\
\dot{x}^{2}(\tau, l) & =\quad \dot{x}_{2}^{2}(\tau)=A^{2} \frac{[f(\tau+l)-g(\tau-l)]^{2}}{4 f^{\prime}(\tau+l) g^{\prime}(\tau-l)} \tag{8}
\end{align*}
$$

and boundary Eq. (6), express the functions $f(\tau), g(\tau)$ in terms of $\dot{x}_{i}^{2}(\tau)$ and $K_{i}=\gamma / \mu_{i}$ [3].

The first boundary results in the equations:

$$
\begin{align*}
& \mathcal{D}[f(\tau)]=\mathcal{D}\left[\int^{\tau} \frac{d \eta}{\sqrt{\dot{x}_{1}^{2}(\eta)}}\right]+\frac{A^{2}}{\dot{x}_{1}^{2}(\tau)}-K_{1}^{2} \dot{x}_{1}^{2}(\tau)-2 K_{1} \frac{d}{d \tau} \sqrt{\dot{x}_{1}^{2}(\tau)} \\
& \mathcal{D}[g(\tau)]=\mathcal{D}\left[\int^{\tau} \frac{d \eta}{\sqrt{\dot{x}_{1}^{2}(\eta)}}\right]+\frac{A^{2}}{\dot{x}_{1}^{2}(\tau)}-K_{1}^{2} \dot{x}_{1}^{2}(\tau)+2 K_{1} \frac{d}{d \tau} \sqrt{\dot{x}_{1}^{2}(\tau)} \tag{9}
\end{align*}
$$

where

$$
\mathcal{D}[f(\tau)]=\frac{f^{\prime \prime \prime}(\tau)}{f^{\prime}(\tau)}-\frac{3}{2}\left(\frac{f^{\prime \prime(\tau)}}{f^{\prime}(\tau)}\right)^{2}
$$

is the Schwarz derivative.
The second boundary results in the equations:

$$
\begin{align*}
& \mathcal{D}[f(\tau+l)]=\mathcal{D}\left[\int^{\tau} \frac{d \eta}{\sqrt{\dot{x}_{2}^{2}(\eta)}}\right]+\frac{A^{2}}{\dot{x}_{2}^{2}(\tau)}-K_{2}^{2} \dot{x}_{2}^{2}(\tau)+2 K_{2} \frac{d}{d \tau} \sqrt{\dot{x}_{2}^{2}(\tau)} \\
& \mathcal{D}[g(\tau-l)]=\mathcal{D}\left[\int^{\tau} \frac{d \eta}{\sqrt{\dot{x}_{2}^{2}(\eta)}}\right]+\frac{A^{2}}{\dot{x}_{2}^{2}(\tau)}-K_{2}^{2} \dot{x}_{2}^{2}(\tau)-2 K_{2} \frac{d}{d \tau} \sqrt{\dot{x}_{2}^{2}(\tau)} \tag{10}
\end{align*}
$$

Thus, the functions $f(\tau), g(\tau)$ and therefore according to (2) the string coordinates $x^{\mu}(\tau, \sigma)$ are completely defined by $K_{i}$ and boundary value of component of matric tensors $\dot{x}_{i}^{2}(\tau)=\dot{x}^{2}\left(\tau, \sigma_{i}\right)$.

Let us consider a simple example, where $\kappa_{i}(\tau)=A / \dot{x}^{2}\left(\tau, \sigma_{i}\right)$ is constant, then from (9), (10) we derive equations

$$
\begin{align*}
\mathcal{D}[f(\tau)] & =\mathcal{D}[g(\tau)]=\frac{A^{2}}{\dot{x}_{1,0}^{2}}-K_{1}^{2} \dot{x}_{1,0}^{2}=2 \omega^{2}, \\
\mathcal{D}[f(\tau+l)] & =\mathcal{D}[g(\tau-l)]=\frac{A^{2}}{\dot{x}_{2,0}^{2}}-K_{2}^{2} \dot{x}_{2,0}^{2}=2 \omega^{2}, \tag{11}
\end{align*}
$$

which have solutions:

$$
\mathcal{D}[f(\tau)]=-2 \sqrt{f^{\prime}(\tau)} \frac{d^{2}}{d \tau^{2}}\left(\frac{1}{\sqrt{f^{\prime}}}\right)=2 \omega^{2} \Longrightarrow \frac{1}{\sqrt{f^{\prime}(\tau)}}=B \cos \left(\omega \tau+\theta_{0}\right)
$$

and finally

$$
f(\tau)=B^{-2} \tan \left(\omega \tau+\theta_{0}\right)
$$



Fig. 1.
In this case, the string surface is a helicoid (see Fig. 1 and [5]) because the string coordinate has the form

$$
\begin{equation*}
x^{\mu}(\tau, \sigma)=A\left\{\tau, \frac{\sin \left(\omega \sigma-\theta_{0}\right)}{\omega}\left[\sin \left(\omega \tau+\phi_{0}\right), \cos (\omega \tau+\theta)\right]\right\} \tag{12}
\end{equation*}
$$

Thus our approach is best described in terms of Schwarz derivatives because an important property of $\mathcal{D}[f(\tau)]$ is that it is invariant under Möbius transformations (linear-fractional transformations)

$$
\begin{equation*}
\phi(\tau)=\frac{a f(\tau)+b}{c f(\tau)+d}, \quad(a d-b=1) \Longrightarrow \mathcal{D}[\phi(\tau)]=\mathcal{D}[f(\tau)] \tag{13}
\end{equation*}
$$

It is a remarkable fact that the system of boundary equations (9) and (10) possesses conserved quantities [3] and periodic solutions when $\dot{x}^{2}\left(\tau, \sigma_{i}\right)$ are periodic with a period $2 l: \dot{x}^{2}\left(\tau+2 l, \sigma_{i}\right)=\dot{x}^{2}\left(\tau, \sigma_{i}\right)$.

In the general case, we can represent equations (9) and (10) in the form

$$
\begin{aligned}
\mathcal{D}[f(\tau)]-\mathcal{D}[g(\tau)] & =-4 K_{1} \frac{d}{d \tau} \sqrt{\dot{x}^{2}(\tau, 0)}, \\
\mathcal{D}[f(\tau+l)]-\mathcal{D}[g(\tau-l)] & =4 K_{2} \frac{d}{d \tau} \sqrt{\dot{x}^{2}(\tau, l)}
\end{aligned}
$$

Eliminating $\mathcal{D}[g(\tau)]$ from these two equations by changing $\tau$ to $\tau+l$ in the second Eq. and subtracting one from another, we get

$$
\begin{equation*}
\mathcal{D}[f(\tau+2 l)]-\mathcal{D}[f(\tau)]=4 \frac{d}{d \tau}\left[K_{1} \sqrt{\dot{x}^{2}(\tau, 0)}+K_{2} \sqrt{\dot{x}^{2}(\tau+l, l)}\right] \tag{14}
\end{equation*}
$$

Eliminating $\mathcal{D}[(\tau)]$ by changing $\tau$ to $\tau-l$, we obtain the equation for $g(\tau)$

$$
\begin{equation*}
\mathcal{D}[g(\tau)]-\mathcal{D}[g(\tau-2 l)]=4 \frac{d}{d \tau}\left[K_{1} \sqrt{\dot{x}^{2}(\tau, 0)}+K_{2} \sqrt{\dot{x}^{2}(\tau-l, l)}\right] \tag{15}
\end{equation*}
$$

Now let us note that equations (14), (15) and the expressions

$$
\dot{x}^{2}\left(\tau, \sigma_{i}\right)=A^{2} \frac{\left[f\left(\tau+\sigma_{i}\right)-g\left(\tau-\sigma_{i}\right)\right]^{2}}{4 f^{\prime}\left(\tau+\sigma_{i}\right) g^{\prime}\left(\tau-\sigma_{i}\right)}
$$

are invariant under Möbius transformations, and their being periodic $\dot{x}^{2}(\tau+$ $\left.2 l, \sigma_{i}\right)=\dot{x}^{2}\left(\tau, \sigma_{i}\right)$ leads to the transformation of the functions

$$
\begin{align*}
f(\tau+2 l) & =\frac{a f(\tau)+b}{c f(\tau)+d}, & g(\tau+2 l) & =\frac{a g(\tau)+b}{c g(\tau)+d}, \\
f^{\prime}(\tau+2 l) & =\frac{f^{\prime}(\tau)}{(c f(\tau)+d)^{2}}, & g^{\prime}(\tau+2 l) & =\frac{g^{\prime}(\tau)}{(c g(\tau)+d)^{2}} . \tag{16}
\end{align*}
$$

Thus, taking into account the property of the Schwarz derivative, from (13), (14), and (15), we obtain the integral of motion [4]

$$
\begin{equation*}
K_{1} \sqrt{\dot{x}^{2}(\tau, 0)}+K_{2} \sqrt{\dot{x}^{2}(\tau \pm l, l)}=h \tag{17}
\end{equation*}
$$

where $h$ is a positive constant of integration. The equality (17) can be interpreted geometrically as follows. Since the length of a boundary curve $L_{i}$ between points $\tau_{1}$ and $\tau_{2}$ is given by

$$
L_{i}\left(\tau_{1}, \tau_{2}\right)=\int_{\tau_{1}}^{\tau_{2}} \sqrt{\dot{x}^{2}\left(\tau, \sigma_{i}\right)} d \tau
$$

then integrating (17) in the interval $\left[\tau_{1}, \tau_{2}\right]$ and expressing the curvature $K_{i}$ through the curvature radius $R_{i}=1 / K_{i}$, we arrive at the equality

$$
\frac{L_{1}\left(\tau_{1}, \tau_{2}\right)}{R_{1}}+\frac{L_{2}\left(\tau_{1}, \tau_{2}\right)}{R_{2}}=h\left(\tau_{2}-\tau_{1}\right)
$$

From this expression it is seen that the sum of the lengths of boundary curves divided by constant radii $R_{i}$ of their curvatures grows linearly with the parameter $\tau$ as though their element of the length were constant $\sqrt{\dot{x}_{i, 0}^{2}}$. Consequently, we can set the constant $h$ to be equal to

$$
h=\frac{\sqrt{\dot{x}_{1,0}^{2}}}{R_{1}}+\frac{\sqrt{\dot{x}_{2,0}^{2}}}{R_{2}} .
$$

In the Euclidean geometry, these curves are called the Bertrand curves [2]. When $K_{1}=K_{2},\left(m_{1}=m_{2}\right)$, they are conjugate Bertrand curves, i.e., the centre of curvature of one curve lies always on the other curve.

## 2. DEFINITION OF THE STRING WORLD SURFACE

The representation of $\sqrt{\dot{x}^{2}\left(\tau, \sigma_{i}\right)}$ in the form

$$
\begin{equation*}
\sqrt{\dot{x}^{2}(\tau, 0)}=\frac{h}{K_{1}+K_{2} p(\tau)}, \quad \sqrt{\dot{x}^{2}(\tau+l, l)}=\frac{h p(\tau)}{K_{1}+K_{2} p(\tau)} \tag{18}
\end{equation*}
$$

where $p(\tau)$ is a positive and periodic function $p(\tau+2 l)=p(\tau)$, makes the integral of motion (17) an identity. From (8) and (18) we obtain

$$
p(\tau)=\sqrt{\frac{\dot{x}^{2}(\tau+l, l)}{\dot{x}(\tau, 0)}}=\left|\frac{f(\tau+2 l)-g(\tau)}{f(\tau)-g(\tau)}\right| \sqrt{\frac{f^{\prime}(\tau)}{f^{\prime}(\tau+2 l)}}
$$

Taking into account equality (16) for $f^{\prime}(\tau+2 l)$, we can express $g(\tau)$ through functions $f(\tau)$ and $p(\tau)$

$$
g(\tau)=\frac{[a+p(\tau)] f(\tau)+b}{c f(\tau)+d+p(\tau)}, \quad g^{\prime}(\tau)=\frac{f^{\prime}(\tau) \mathcal{Q}[p]+p^{\prime}(\tau) \mathcal{F}[f]}{[c f(\tau)+d+p(\tau)]^{2}}
$$

where $\mathcal{Q}[p]=p^{2}(\tau)+(a+d) p(\tau)+1, \mathcal{F}[f]=c f^{2}(\tau)+(d-a) f(\tau)-b$ are positive valuated polynomials if one assumes that $|a+d|<2$.

Now from (18) we can express the function $f(\tau)$ in terms of the function $p(\tau)$ and constants $A, h, K_{1}, K_{2}$

$$
\frac{f^{\prime}(\tau)}{\mathcal{F}[f]}=\frac{\sqrt{{p^{\prime}}^{2}+\left(\frac{A}{h}\right)^{2}\left[K_{1}+K_{2} p(\tau)\right]^{2} \mathcal{Q}[p]}-p^{\prime}(\tau)}{2 \mathcal{Q}[p]}
$$

As a result we obtain from (14), (15) the elliptic equation for a positive definite function $p(\tau)$

$$
\begin{equation*}
{p^{\prime}}^{2}(\tau)=h^{2} p^{2}(\tau)-\frac{A^{2}}{h^{2}}\left[K_{1}+K_{2} p(\tau)\right]^{2}\left[p^{2}(\tau)+(a+d) p(\tau)+1\right] \tag{19}
\end{equation*}
$$

Indeed, at the point $p(\tau)=0$, Eq. (19) results in ${p^{\prime}}^{2}(\tau)=-A^{2} K_{1}^{2} / h^{2}<0$, which is inadmissible. Consequently, $p(\tau)$ takes values either on the half-line $p(\tau)>0$ or on $p(\tau)<0$. We fix the sign: $p(\tau)>0$.

Now we consider the solution of Eq. (19) for equal masses $m_{1}=m_{2}=m$, $K_{1}=K_{2}=K=\gamma / m$. In this case after putting $a+d=2 \cos 2 \alpha, h^{2}=$ $4 A K \sin \alpha$ from (19) we derive more simple elliptic equation

$$
\begin{equation*}
{p^{\prime}}^{2}(\tau)=h^{2} p^{2}(\tau)-\left(\frac{A K}{h}\right)^{2}[1+p(\tau)]^{2}\left[p^{2}(\tau)+2 \cos 2 \alpha p(\tau)+1\right] \tag{20}
\end{equation*}
$$

Substituting into Eq. (20) the expression

$$
p(\tau)=\frac{\sqrt{2}-s(u)}{\sqrt{2}+s(u)}
$$

where the new function $s(u)$ satisfies the inequality $|s(u)|<\sqrt{2}$, and the new variable $u=\tau h / 2^{3 / 2}$, we arrive at the following equation for $s(u)$

$$
\begin{equation*}
s^{\prime 2}(u)=s^{4}(u)-6 s^{2}(u)+4\left(1-\cot ^{2} \alpha\right), \quad \cot ^{2} \alpha<1 \tag{21}
\end{equation*}
$$

The general solution of this equation has the form

$$
\begin{equation*}
s(u)=s_{0} \frac{\mathcal{P}(u)-e_{1}-\sqrt{\left(e_{1}-e_{2}\right)\left(e_{1}-e_{3}\right)}}{\mathcal{P}(u)-e_{1}+\sqrt{\left(e_{1}-e_{2}\right)\left(e_{1}-e_{3}\right)}} \tag{22}
\end{equation*}
$$

where $s_{0}=\sqrt{3-\sqrt{s+4 \cot ^{2} \alpha}}<\sqrt{2}$ is the amplitude of oscillations, $\mathcal{P}(u)$ is the periodic Weierstrass elliptic function [6] with real roots $e_{i}$
$e_{1}=1, \quad e_{2}=\sqrt{1-\operatorname{ctg}^{2} \alpha}-1 / 2, \quad e_{3}=-\sqrt{1-\cot ^{2} \alpha}-1 / 2, \quad\left(e_{1}+e_{2}+e_{3}=0\right)$.
The real period $2 \omega_{1}$ of $\mathcal{P}(u)$ is given by the elliptic integral

$$
2 \omega_{1}=\int_{e_{1}}^{\infty} \frac{d t}{\sqrt{\left(t-e_{1}\right)\left(t-e_{2}\right)\left(t-e_{3}\right)}}=\frac{h}{2^{3 / 2}} l
$$

It is to be fixed at $2 \omega_{1}=l \sqrt{2 A K \sin \alpha}$, which results in the constraint on arbitrary constants: $A, \alpha, l$, because the left-hand side of this equation is the function of $\alpha$. The behavior of functions $\mathcal{P}(u)$ and $s(u)$ is drawn in Figs. 2 and 3.


Fig. 3.

Thus, $s(u)$ defines $\dot{x}^{2}\left(\tau, \sigma_{i}\right)$ as a smooth periodic function

$$
\begin{align*}
\sqrt{\dot{x}^{2}(\tau, 0)} & =\frac{h}{K} \frac{1}{1+p(\tau)}=\sqrt{\frac{A \sin \alpha}{K}}\left(1+\frac{s(u)}{\sqrt{2}}\right), \quad \dot{x}^{2}(\tau, 0)=\dot{x}^{2}(\tau, l) \\
\sqrt{\dot{x}^{2}(\tau+l, l)} & =\frac{h}{K} \frac{p(\tau)}{1+p(\tau)}=\sqrt{\frac{A \sin \alpha}{K}}\left(1-\frac{s(u)}{\sqrt{2}}\right) \tag{23}
\end{align*}
$$

To compute the functions $f(\tau), g(\tau)$, and string coordinates, let us introduce the trigonometric representation for these functions through the angles $\phi(\tau)$ and $\theta(\tau)$

$$
f(\tau)=\sqrt{2} \tan \left[\frac{\phi(\tau)-\theta(\tau)}{2}\right], \quad g(\tau)=-\sqrt{2} \cot \left[\frac{\phi(\tau)+\theta(\tau)}{2}\right]
$$

In the frame of reference, where

$$
a^{\mu}=\frac{1}{\sqrt{2}}\{1,0,1\}, \quad b^{\mu}=\{0,1,0\}, \quad c^{\mu}=\frac{1}{\sqrt{2}}\{1,0,-1\}
$$

we get

$$
\begin{aligned}
\psi_{+}^{\prime \mu}(\tau+\sigma) & =\frac{A}{\phi^{\prime}(\tau+\sigma)-\theta^{\prime}(\tau+\sigma)}\{1 ; \sin [\phi-\theta] ; \cos [\phi-\theta]\} \\
\psi_{-}^{\prime \mu}(\tau-\sigma) & =\frac{A}{\phi^{\prime}(\tau-\sigma)+\theta^{\prime}(\tau-\sigma)}\{1 ;-\sin [\phi+\theta] ; \cos [\phi+\theta]\}
\end{aligned}
$$

where the angles $\phi(\tau), \theta(\tau)$ are expressed through the elliptic functions $s(u)$ in the following manner:
$\phi^{\prime}(\tau)=\sqrt{A K \sin \alpha} \frac{2-s^{2}(u)}{2 \cot ^{2} \alpha+s^{2}(u)} ; \quad \theta^{\prime}(\tau)=-\sqrt{A K \sin \alpha} \frac{s^{\prime}(u)}{2 \cot ^{2} \alpha+s^{2}(u)}$.

In the case when $s(u)=$ const and, as a consequence, $\phi^{\prime}(\tau)=\mathrm{const}=\omega, \theta^{\prime}(\tau)=$ $0, \theta(\tau)=\theta_{0}$, one gets a straight-line string with the angular velocity $\omega$ ( compare (12))

$$
\begin{aligned}
\phi_{+}^{\prime \mu}(\tau+\sigma) & =\frac{A}{\omega}\left\{1, \sin \left[\omega(\tau+\sigma)-\theta_{0}\right], \cos \left[\omega(\tau+\sigma)-\theta_{0}\right]\right\} \\
\phi_{-}^{\prime \mu}(\tau-\sigma) & =\frac{A}{\omega}\left\{1,-\sin \left[\omega(\tau-\sigma)+\theta_{0}\right],-\cos \left[\omega(\tau-\sigma)+\theta_{0}\right]\right\}
\end{aligned}
$$

In general case, by integration of (24) we obtain for the angle $\phi(\tau)$ the expression
$\phi(\tau)=\phi(0)+\phi^{\prime}(0) \tau+i\left\{\left[J\left(u_{1}\right)-J\left(u_{2}^{*}\right)\right] u+\frac{1}{2} \ln \left[\frac{\sigma\left(u-u_{1}\right) \sigma\left(u+u_{1}^{*}\right)}{\sigma\left(u+u_{1}\right) \sigma\left(u-u_{1}^{*}\right)}\right]\right\}$,
where $\sigma(u)$ is the Weierstrass entire function; $J(u)=-\int \mathcal{P}(u) d u$ is a quasiperiodic function; $u_{1}$ is a complex constant determined by the equation $s\left(u_{1}\right)=$ $i \sqrt{2} \cot \alpha$. For the angle $\theta$, one obtains:

$$
\theta(\tau)=\operatorname{arcctg}\left[\frac{s(u)}{\sqrt{2}} \tan \alpha\right]-\alpha
$$

Now one can determine the string vectors:

$$
\begin{aligned}
\dot{x}^{\mu}(\tau, 0)=\dot{x}^{\mu}(\tau, l) & =\frac{A}{\phi^{\prime 2}(\tau)-\dot{\theta}^{2}(\tau)}\{\dot{\phi}(\tau), \dot{\vec{x}}(\phi(\tau), \theta(\tau))\}, \\
x^{\prime \mu}(\tau, 0)=-x^{\prime \mu}(\tau, l) & =\frac{A}{\phi^{\prime 2}(\tau)-\theta^{\prime 2}(\tau)}\left\{-\dot{\theta}(\tau), \vec{x}^{\prime}(\phi(\tau), \theta(\tau))\right\} .
\end{aligned}
$$

For these solutions we cannot turn to the gauge $t=\tau$, because

$$
\dot{t}\left(\tau, \sigma_{i}\right)=\frac{A \dot{\phi}(\tau)}{\dot{\phi}^{2}(\tau)-\dot{\theta}^{2}(\tau)}, \quad t^{\prime}\left(\tau, \sigma_{i}\right)=\frac{-A \dot{\theta}(\tau)}{\dot{\phi}^{2}(\tau)-\dot{\theta}^{2}(\tau)}
$$

The string world surface is not a helicoid and does not belong to the class of developable surfaces (ruled surfaces), therefore, it describes transverse excitations of the string and radial motions of the masses $m_{i}$.

## 3. THE OSCILLATION WITH A SMALL AMPLITUDE: $s_{0}=\sqrt{2} \varepsilon \ll 1$

If oscillation has a small amplitude $s_{0}=\sqrt{3-\sqrt{5+4 \cot ^{2} \alpha}}=\sqrt{2} \varepsilon$, then $\cot ^{2} \alpha=1-3 \varepsilon^{2} \sim 1$, and we arrive at the degenerate case of the elliptic function $\mathcal{P}(u)$, when $e_{2} \sim e_{3}, e_{1} \simeq-2 e_{2}, \omega_{1}=\pi / \sqrt{6}$. In this case, we have

$$
\begin{gathered}
\mathcal{P}(u)=-\frac{1}{2}+\frac{3}{2} \frac{1}{\sin ^{2}\left(\pi \frac{\tau}{l}\right)}-\frac{\varepsilon^{2}}{4} \cos \left(\frac{\pi \tau}{l}\right)+\mathcal{O}\left(\varepsilon^{3}\right) \\
s(u)=\sqrt{2} \varepsilon \cos \left(\pi \frac{\tau}{l}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{gathered}
$$

Then from (23) we obtain simple expression for $\dot{x}^{2}(\tau, 0)=\dot{x}^{2}(\tau, l)$

$$
\dot{x}^{2}\left(\tau, \sigma_{i}\right)=\frac{A \sin \alpha}{K}\left[1+\varepsilon \cos \left(\pi \frac{\tau}{l}\right)\right]^{2}
$$

which satisfies the integral of motion (17)

$$
K \sqrt{\dot{x}^{2}(\tau, 0)}+K \sqrt{\dot{x}^{2}(\tau \pm l, l)}=2 \sqrt{A K \sin \alpha}
$$

In this approximation, the angles $\theta(\tau)$ and $\phi$ take the form

$$
\begin{align*}
\theta(\tau) & =\operatorname{arcctg}[\varepsilon \cot \alpha \cos (\pi \tau / l)]-\alpha \\
\phi(\tau) & =\phi(0)+(\pi-2 \alpha) \frac{\tau}{l}-\frac{\varepsilon^{2}}{\sqrt{3}} \sin (2 \pi \tau / l) \tag{25}
\end{align*}
$$

Now we can consider a geometrical picture of the movement of massive string ends in the $(x, y)$-plane. The element of length of boundary curve is given by

$$
d \mathcal{L}^{2}=\cos ^{2} \alpha[1-2 \varepsilon \cos (\pi \tau / l)] d \tau^{2}
$$

It is an ellipse with semiaxes (see Fig. 4)

$$
a=\frac{2 l}{\pi}(1+\varepsilon / 2) \cos \alpha, \quad b=\frac{2 l}{\pi}(1-\varepsilon / 2) \cos \alpha
$$

Then the shape of the curved string is an ellipsoid to leading order in the parameter $\varepsilon$.


Fig. 4.

## 4. CONCLUSION

The geometrical method proposed here for solving the boundary problem in the theory of the relativistic string with massive ends is based on the torsions $\kappa_{i}(\tau)$ of world trajectories of the string ends, and the string world surface is completely determined by trajectories of massive ends. We investigated the shape of a confining string for periodic motion of its ends and showed that the shape of the curved string is an ellipsoid to the leading order in the parameter $\varepsilon$ in deviation from straightness. It is possible to find that the angular momentum and energy are the same in this leading order as for a straight string, but the curved string has a small radial momentum $\sim \varepsilon^{2}$, not present in the straight string.

## REFERENCES

1. Barbashov B.M., Nesterenko V.V. - Introduction to the Relativistic String Theory. World Scientific, Singapore, 1990.
2. Norden A.P. - Differential Geometry. M.: Uchpedgiz, 1949 (in Russian).
3. Barbashov B.M., Chervyakov A.M. - J. Phys. A: Math. Gen., 1991, v.24, p.11.
4. Barbashov B.M. - J. Phys. A: Math. Gen., 1997, v.30, p. 4651.
5. Barbashov B.M. - Classical Dynamics of Rotating String with Massive Ends, in: Proceedings of the Workshop «Strong Interaction of Long Distances», Hadronic Press ISBN, 1995, p.257-275; JINR preprint E2-94-444, Dubna, 1994.
6. Bateman H., Erdelyi A. - Higher Transcendental Functions, v.3. Mc. Graw-Hill Book Company, New-York, 1955.
