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The time evolution of a quantized electromagnetic ˇeld appears to be a dynamical Bogoliubov
transformation if the ˇeld is being pumped by the two-photon decays of Bose condensate particles.

In the classical work ®On the Theory of SuperAuidity¯ N.N.Bogoliubov for
the ˇrst time wrote the special type of canonical transformations that mix creation
and annihilation operators [1]:

ξf =
bf − Lb∗−f√

1 − |L|2
, ξ∗f =

b∗f − L∗b−f√
1 − |L|2

. (1)

Since then the Bogoliubov transformations are effectively used in statistical
physics. I would like to present an example of dynamical Bogoliubov trans-
formations that emerge in the case of a nonequilibrium system.

The system under consideration will consist of interacting electromagnetic
and pseudoscalar ˇelds with the phenomenological Lagrangian:

L =
E2 − H2

2
+

ϕ̇2 − (�∇ϕ)2 − m2ϕ2

2
+ gϕEH. (2)

Imposing the radiation gauge:

A0 = 0, divA = 0, E = −Ȧ, H = rotA, (3)

and introducing the canonical momenta:

Π = Ȧ − gϕH, π = ϕ̇, (4)

we obtain the Hamiltonian density:

H =
(Π + gϕH)2 + H2

2
+

ϕ̇2 + (�∇ϕ)2 + m2ϕ2

2
, (5)
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that consists of two positive contributions from each ˇeld. The interaction mani-
fests through the noncommutativity of these two energy densities.

The canonical commutation relations (nontrivial) are:

[π(x, t), ϕ(x′, t)] = −iδ(3)(x − x′), (6)

[Πi(x, t), Aj(x′, t)] = −iδijδ
(3)(x − x′) − i

∂2

∂xi∂xj

1
4π|x − x′| .

They are consistent with the radiation gauge conditions:

divA = 0, divΠ = 0. (7)

The second condition implies the negligible smallness of spatial variations of the
ϕ ˇeld and, in turn, simpliˇes further calculations.

With the help of the canonical commutators we obtain the rate of the energy
exchange between the two ˇelds:

d

dt

∫
d3x

E2 + H2

2
= i

[
Htot,

∫
d3x

E2 + H2

2

]
=

= g

∫
d3x

πHE + EH π

2
= − d

dt

∫
d3x

π2 + (�∇ϕ)2 + m2ϕ2

2
. (8)

This equation shows that the Aow of energy between the two ˇelds oscillates
with a characteristic frequency of order of τ−1 = 〈gπ〉 if the system remains
closed and conservative.

For a real open system in a thermal environment the rate of energy exchange
can be enhanced through the BoseÄEinstein condensation of the ϕ ˇeld.

We have to consider this possibility in detail.
The canonical variables ϕ(x, t) and π(x, t) can be represented by a plain

wave decomposition:

ϕ(x, t) =
∑
p

1√
2V Ep

(
b(p, t) eipx + b†(p, t) e−ipx

)
, (9)

π(x, t) =
∑
p

√
Ep

2V

(
−ib(p, t) eipx + ib†(p, t) e−ipx

)
, (10)

∑
p

· · · ≡
∫

V d3p
(2π)3

· · · , Ep =
√

p2 + m2,

[
b(p, t), b†(p′, t)

]
=

(2π)3

V
δ(3)(p − p′). (11)
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For the electromagnetic ˇeld the decomposition into circularly polarized plain
waves is:

A(x, t) =
∑
k

1√
2V ω

[(
aR(k, t) e(k) + aL(k, t) e∗(k)

)
eikx + H.c.

]
, (12)

ω = |k|, e =
1√
2

(
e⊥ + i

k
ω
× e⊥

)
, e⊥ · k = 0, e2

⊥ = 1,

Π(x, t) =
∑
k

√
ω

2V

[
−i
(
aR(k, t) e(k) + aL(k, t) e∗(k)

)
eikx + H.c.

]
, (13)

H(x, t) =
∑
k

√
ω

2V

[(
aR(k, t) e(k) − aL(k, t) e∗(k)

)
eikx + H.c.

]
, (14)

[
aR(k, t), a†R(k′, t)

]
=
[
aLk, t), a†L(k′, t)

]
=

(2π)3

V
δ(3)(k − k′). (15)

If we, for physical reasons, only take the condensate mode into account
ϕ(x, t) ≡ ϕ(t):

ϕ(t) =
1√

2mV

(
b(t) + b†(t)

)
, π(t) =

√
m

2V

(
−ib(t) + ib†(t)

)
, (16)

[
b(t), b†(t)

]
= 1, [π(t), ϕ(t)] = − i

V
, (17)

the total Hamiltonian becomes:

H=
∫
V

d3x
Π2 + H2

2
+V

π2 + m2ϕ2

2
+ gϕ

∫
V

d3x
ΠH + HΠ

2
+ g2ϕ2

∫
V

d3x
H2

2
.

(18)

For reasonable ˇelds g2 < ϕ2 > � 1, thus the last term in the equation above
is negligible. Without it the total Hamiltonian takes the following momentum
representation form:

H = m

(
b†(t) b(t) +

1
2

)
+

∑
k

ω
(
a†R(k, t) aR(k, t) + a†L(k, t) aL(k, t) + 1

)
+

g√
2mV

(
b(t) + b†(t)

)∑
k

ω

2
[
−i
(
aR(k, t) aR(−k, t)−

aL(k, t) aL(−k, t)
)

+ H.c.
]
. (19)
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It is convenient to separate the high frequency time dependence by going over to
the slow varying tilde operators:

aR(k, t) = e−iωt ãR(k, t), . . . , b(t) = e−imt b̃(t) . . . . (20)

Their time dependence is determined by the interaction Hamiltonian

˙̃b(t) = i
[
Hint(t), b̃(t)

]
, . . . , ˙̃a

R
(k, t) = i

[
Hint(t), ãR(k, t)

]
, . . . , (21)

in which we retain only the resonant ω = m/2 terms:

Hint(t) =
g√

2mV

∑
k

ω

2
×

×
[
−ib̃†(t)

(
ãR(k, t)ãR(−k, t) − ãL(k, t)ãL(−k, t)

)
+ H.c.

]
(22)

and omit the fast varying nonresonant terms like ã ã b̃ e−i(m+2ω)t.
For every ˇxed direction and circular polarization of a plain electromagnetic

wave there are two coupled equations, e.g.:

˙̃a
R
(k, t) =

gω√
2mV

b̃(t) ã†R(−k, t), ȧ†R(−k, t) =
gω√
2mV

b̃†(t) ãR(k, t).

(23)

Let the decay of the Bose condensate be compensated by a new delivery to it.
In this case we may consider b†b = N  1 as a constant c-number, so the last
equations become linear and easily solvable. We have come to the dynamical
Bogoliubov transformation:

ãR(k, t) = ch

(
g

2

√
mN

2V
t

)
ãR(k, 0) + sh

(
g

2

√
mN

2V
t

)
b√
N

a†R(−k, 0).

(24)

The considered phenomenon is a clear case of quantum parametric resonance [2].
The given condensate ˇeld plays the role of the time dependent external ˇeld
that pumps the coherent electromagnetic ˇeld. The application of the obtained
result to the feasibility study of positronium gamma laser was done in the author,s
work [3]. The coherent creation of scalar boson pairs by a time dependent external
electric ˇeld is also described by a dynamical Bogoliubov transformation [4].
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