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The phase transition in a Fermi liquid, associated with translational symmetry breaking and the
formation of periodic structures is considered. Special attention is paid to the formation of one-
dimensional long-periodic structures in a three-dimensional Fermi liquid. The relation between the
formation of such structures and kinetic and thermodynamic stability of the normal state of the Fermi
liquid is analyzed.

The term ®normal Fermi liquid¯ is traditionally applied to a degenerate
(charged or neutral) Fermi liquid possessing main properties of a system of
noninteracting fermions in the case of a quasiparticle description. Such a deˇn-
ition of a normal Fermi liquid presumes that the equilibrium state of the Fermi
liquid is the most symmetric, i.e., the distribution function describing this state is
invariant to spatial translations and rotations in the spin and momentum spaces.

In spite of differences in the behavior of charged and neutral Fermi liquids,
basic concepts of the LandauÄSilin theory of the normal Fermi liquid [1,2] study-
ing low-lying excitations against the background of the equilibrium state make
it possible to disregard the electric charge of quasiparticles in the description of
some phenomena in charged and neutral systems of interacting fermions. Apart
from the main condition of applicability of the theory of the normal Fermi liq-
uid, i.e., the smallness of temperature T as compared to the Fermi energy εF
(T � εF ), the main postulate of the theory which is common for neutral and
charged systems concerns the functional dependence of the energy of the system
E on the fermion distribution function f(�p,�r): E = E(f)∗ .

∗We are using the system of units in which Boltzmann's constant k and Plank's constant � are
equal to unity.
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In this case, the quasiparticle energy which is a functional of the distribution
function is deˇned as

ε(�p,�r) = V
δE(f)
δf(�p,�r)

,

ε(�r, �p) = εp +
2
V

∑
�p ′

∫
d�r ′F (�r − �r ′; �p, �p ′)f(�r ′, �p ′), S = 1/2, (1)

where F (�r − �r ′; �p, �p ′) is the Landau amplitude characterizing two-particle in-
teractions, and εp ≡ F (�p) is the fermion energy in the absence of interaction
between quasiparticles. In the absence of magnetic ordering, the existence of
the fermion spin S = 1/2 is important only for the calculation of the fermion
density of states, which is reSected in the factor 2S + 1 = 2 in the second term
of formula (1). The equilibrium state of the normal fermi liquid in a spatially
inhomogeneous case is described by the FermiÄDirac distribution function

f(�p,�r) = {expβ(ε(�p,�r) − µ) + 1}−1 (2)

(β−1 = T is the inverse temperature and µ the chemical potential). Together
with Eq. (1), this equation determines the dispersion relation for quasiparticles in
the equilibrium state.

An important aspect of the theory is the determination of the stability condi-
tions for an equilibrium state of a normal Fermi liquid. This problem was solved
for the ˇrst time in the spatially homogeneous case by Pomeranchuk [3] who
formulated the stability criterion for the normal state down to the temperature
T = 0:

1 +
ν(µ)Fl

2l+ 1
> 0, (3)

where Fl are the coefˇcients of the l-th harmonic in the expansion of the spatially
homogeneous Landau amplitude

F (�p, �p ′) =
∫
d�r ′F (�r − �r ′; �p, �p ′) (4)

into a series in Legendre polynomials near the Fermi surface (p ≈ p′ ≈ pF ).

F (�p, �p ′) =
∞∑

l=0

Fl(p, p′)Pl(cos θ). (4)

The quantity ν(ε) appearing in formula (3) is the density of energy states deˇned
as

ν(ε) =
2

(2π)3

∫
d3p δ(ε− ε(p)) (5)

(ε(p) corresponds to the spatially homogeneous distribution function f(p)).
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It should be noted that the violation of Pomeranchuk's criterion indicates
that the stability of the normal state is broken at temperatures T < T0 (T0 is the
transition temperature, T � εF ).

The present work [4] is devoted to an analysis of such a phase transition, i.e.,
the transition involving the violation of the stability condition (3) for the zeroth
harmonic (l = 0), for which the following relation holds:

ν(µ)F0 � −1. (6)

We shall prove that condition (6) characterizes a phase transition in a Fermi
liquid, associated with translational symmetry breaking for the equilibrium state.

Let us seek the solution of self-consistent Eqs. (1), (2) in the form of functions
periodic in x with the period X = 2π/q

ε(�r, �p) ≡ ε(x, p) = ε0(p) + ε̃(x), (7)

where
ε0(p) = 〈ε(x, p)〉, 〈ε̃(x)〉 = 0 (8)

and the angle brackets 〈...〉 denote the averaging over periods. Consequently,
Eqs. (1), (2) can be written in the form:

ε0(p) = εp + F0〈n(β, µ − ε̃(x))〉, (9)

ε̃(x) =
∫
dx′F (x−x′){n(β, µ− ε̃(x′))−〈n(β, µ− ε̃(x′′))〉}, ε̃(�p, x) ≡ ε̃(x),

(10)
where

F0 =
∫ ∞

−∞
dxF (x) (11)

and the function n(β, µ) is deˇned by the expression:

n(β, µ) =
2
V

∑
�p

1

eβ(ε0(p) − µ) + 1
. (12)

Let us now go over to the solution of Eq. (10) near the phase transition point
(the transition to the states with spatially periodic structure), when the quantity
ε̃(x) describing the order parameter is small. Noting that the quantity F (x− x′)
has a sharp peak at x = x′ (X 	 r0;F (x − x′) ≈ 0 at x − x′ � r0) and also
considering that the quantity ε̃(x) varies slowly on the account of the large lattice
period, we can write Eq. (10) in the form

ε̃(x) = F0{n(β, µ− ε̃(x)) − 〈n(β, µ − ε̃(x))〉} + F2
∂2n(β, µ− ε̃(x)

∂x2
, (13)
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where

F2 =
1
2

∫
dx′F (x− x′)(x− x′)2 (14)

(while deriving Eq. (13), we assumed that the function F (x−x′) is even). Carry-
ing out the power expansion in ε̃(x) and (β − β0) in Eq. (13) (β0-corresponds to
the transition temperature for q = 0) and taking into account that in accordance
with (8) 〈ε̃(x)〉 = 0 we have

ε̃(x)
(

1 + F0
∂n(β0, µ)
∂µ

)
= 0, (15)

F0

{
−(β − β0)

∂2n(β0, µ)
∂β∂µ

ε̃(x) +
1
2
∂2n(β0, µ)
∂µ2

(ε̃2(x) − 〈ε̃2(x)〉)
}
− (16)

−F2
∂n(β0, µ)
∂µ

∂2ε̃(x)
∂x2

= 0.

The Eq. (15) determines the transition temperature β0. Carrying out in this equa-
tion the low-temperature expansion for the function n(β0, µ) we obtain

T 2
0 = − 6

π2

1 + F0ν(µ)
F0ν′′(µ)

. (17)

Since ν′′(µ) < 0, it can be easily seen that the inequality T 2
0 > 0 holds only

when the relation (6) reSecting the violation of the criterion of stability of the
equilibrium state of a normal Fermi liquid is valid.

Equation (16) used for deˇning the quantity ε̃(x) can be written in another
form more convenient for the subsequent analysis. For this purpose, we introduce
the quantity ε(x) = −ε̃(x) that can be regarded as a correction to chemical
potential (see (9) and (10)). Then Eq. (16) assumes the form

∂2ε(x)
∂x2

+ g(ε(x)) = 0, g(ε(x)) = Aε(x) +B(ε2(x) − 〈ε2(x)〉), (18)

where

A = −F
2
0

F2
(β − β0)

∂2n(β0, µ)
∂β0∂µ

, B = −1
2
F 2

0

F2

∂2n(β0, µ)
∂µ2

. (19)

We shall seek periodic solutions of Eq. (18) which gives

ε′ = ±
√

2(E − U(ε)), x = ±
∫ ε dε√

2(E − U(ε))
, (20)

where

U(ε) =
∫ ε

0

g(ε)dε =
1
3
Bε3 +

1
2
Aε2 −Bd2ε, d2 = 〈ε2(x)〉
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and E is the integration constant. The cubic polynomial E−U(ε) can be written
in the form

E−U(ε) = E− 1
3
Bε3− 1

2
Aε2+Bd2ε = −1

3
B(ε−ε1)(ε−ε2)(ε−ε3) > 0. (21)

The points of extrema of the function U(ε) are deˇned as

ε± = − A

2B
±

√
A2

4B2
+ d2, ε+ > 0, ε− < 0.

Since E − U > 0, periodic solutions of Eq. (18) correspond to the region ε2 <
ε < ε1, and since 〈ε〉 = 0, we have ε2 < 0, ε1 > 0. Consequently we have

x(ε) = −
∫ ε1

ε

dε√
2(E − U(ε))

, −X
2
< x < 0, (22)

x(ε) =
∫ ε1

ε

dε√
2(E − U(ε))

,
X

2
> x > 0.

The period of the function ε(x) is deˇned by the formula

X = 2
∫ ε1

ε2

dε√
2(E − U(ε))

= 2x(ε2). (23)

Substituting expression (21) for E − U(ε) into the formula (22) for x(ε) for
X
2 > x > 0 and transforming the corresponding integral, we obtain

x(ε) =

√
6
B

1√
ε1 − ε3

∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

, k2 =
ε1 − ε2
ε1 − ε3

,

ϕ = arcsin
√
ε1 − ε
ε1 − ε2

.

Taking into account the deˇnition of the ˇrst-order elliptical integral

F(k, ϕ) =
∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

, (24)

we can write x(ε) in the form

x(ε) =

√
6
B

1√
ε1 − ε3

F(k, ϕ). (25)

In accordance with (23), in this case we have

X =

√
6
B

2√
ε1 − ε3

F(k), F(k) ≡ F(k, π/2). (26)
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Let us now determine the quantities ε1, ε2, and ε3. For this purpose, we note
that

〈ε(x)〉 =
1
X

∫ X/2

0

ε(x)dx +
1
X

∫ X

X/2

ε(x)dx =
2
X

∫ X/2

0

ε(x)dx,

or, going over to integration with respect to ε

〈ε(x)〉 =
2
X

∫ ε1

ε2

ε
dε√

2(E − U)
. (27)

Equation (18) implies that 〈ε〉 = 0. Transforming the integral appearing in (27)
and taking into account (21), we obtain∫ π/2

0

dϕ
ε1 − (ε1 − ε2) sin2 ϕ√

1 − k2 sin2 ϕ
= 0, k2 =

ε1 − ε2
ε1 − ε3

.

Using the deˇnition of the second-order elliptical integral

E(k) =
∫ π/2

0

dϕ

√
1 − k2 sin2 ϕ, (28)

we obtain

E(k) +
(
k2 ε1
ε1 − ε2

− 1
)
F(k) = 0.

This expression can also be written in the form

ε1
ε1 − ε2

=
F(k) − E(k)
k2F(k)

,
ε1

ε1 − ε3
=

F(k) − E(k)
F(k)

. (29)

These formulas indicate that the ratios ε1/ε2, ε1/ε3, ε2/ε3 can be expressed only
in terms of the parameter k. Let us now ˇnd the expression for the quantity ε1
in terms of k. For this purpose, we note that, according to (20)

ε1 + ε2 + ε3 = −3
2
A

B
≡ γ(β − β0), (30)

where

γ = −3
∂2n(β0, µ)
∂β∂µ

/
∂2n(β0, µ)
∂µ2

, (31)

in accordance with (19). Using further formulas (29), we obtain the following
expression for the quantity ε1:

ε1 =
γ(β − β0)

3 − (1 + k2)
F(k)

F(k) − E(k)

. (32)
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Taking into account this relation and (29), we can easily determine the quantity
1/

√
ε1 − ε3 appearing in the expression (26) for the period:

1√
ε1 − ε3

=
((

3
F(k) − E(k)

F(k)
− k2 − 1

)/
γ(β − β0)

)1/2

. (33)

Noting that k2 =
ε1 − ε2
ε1 − ε3

and introducing the new variable ε ≡ ε1 − ε3, we
obtain

ε1 − ε2 = εk2, ε1 = ε
F(k) − E(k)

F(k)
,

or

ε1 = ε

(
1 − E(k)

F(k)

)
, ε2 = ε

(
1 − k2 − E(k)

F(k)

)
, ε3 = −εE(k)

F(k)
. (34)

Since ε > 0 and γ(β−β0) < 0 (see (30), (31)), the inequality 3
F−E
F −k2−1<0,

must hold in accordance with (33), which gives k < k0 ≈ 0.95.
The period X of the function ε(x) is connected with the quantity q through

the formula

X =
2π
q

= 2

√
6
B

1√
ε
F(k). (35)

The variables k and ε can be taken as independent thermodynamic variables
instead of β and q.

Expression for the ε(x) can be expressed in the terms of Jacobi functions

ε(x) = ε

(
1 − E(k)

F(k)
− k2sn2

(
2F(k)

x

X
, k

))
, (36)

where the quantity X is deˇned by (35). Formula (36) determines the long-
periodic structure of the system under investigation at temperatures close to the
transition temperature T0.
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