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GENERALIZATION OF THE PEIERLSÄBOGOLIUBOV
INEQUALITY BY MEANS OF A

QUANTUM-MECHANICAL VARIATIONAL PRINCIPLE
A.V.Soldatov

V.A.Steklov Mathematical Institute, 117966, Moscow, Russia

The PeierlsÄBogoliubov inequality was generalized and a set of inequalities was derived instead,
so that every subsequent inequality in this set approximates the quantity in question with better
precision than the preceding one. These inequalities lead to a sequence of improving upper bounds to
the free energy of a quantum system if this system allows representation in terms of coherent states.

1. INTRODUCTION

It is well known that the following inequality

〈Ψ|e−tĤ |Ψ〉 ≥ e−t〈Ψ|Ĥ|Ψ〉 (1)

holds for any normalized quantum state |Ψ〉, self-adjoint Hamiltonian of a quan-
tum system Ĥ , and nonnegative parameter t. As a rule, this inequality is referred
to in the theoretical physics as the PeierlsÄBogoliubov inequality. It has been
widely used as an intermediate step in numerous schemes of mathematical rea-
soning and in proofs of various theorems. For instance, it plays an important role
in the proof of the left-hand side of the LiebÄBerezin inequality [1Ä3],∫

exp (−tQ(α, ᾱ)) dµ(α) ≤ Sp
(
exp(−tĤ)

)
≤

∫
exp (−tP (α, ᾱ)) dµ(α) (2)

which, in its turn, provides two-side bounds to the free energy of a quantum
system in case the Hamiltonian of the system allows representation in terms of
the set of coherent states |α〉. Here Q(α, ᾱ) and P (α, ᾱ) are the so-called Wick
and anti-Wick symbols of the Hamiltonian Ĥ , such that

Ĥ=
∫
P (α, ᾱ) |α〉〈α| dµ(α), Q(α, ᾱ)=〈α|Ĥ |α〉=

∫
e−|α−β|2P (β, β̄)dµ(β),

〈α|α〉 = 1, 〈α|β〉 = exp
(
−1

2
|α|2 − 1

2
|β|2 + ᾱβ

)
,
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dµ(α) =
1
π
dRe(α)dIm(α),

and the integration in (2) is carried out over the whole complex plane α. The left-
hand side of the inequality (2) is a direct consequence of the PeierlsÄBogoliubov
inequality:

Sp
(
e−tĤ

)
=

∫
〈α|e−tĤ |α〉dµ(α) ≥

∫
e−t〈α|Ĥ|α〉dµ(α) =

∫
e−tQ(α,ᾱ)dµ(α).

At the same time the inequality (1) is of considerable value itself because it
can be used to derive an upper bound to the ground state energy of a quantum
system:

Eg ≤ − lim
t→+∞

1
t

ln〈Ψ|e−tĤ |Ψ〉 ≤ 〈Ψ|Ĥ |Ψ〉. (3)

Thus it is worthy to ˇnd a regular algorithm allowing to strengthen the inequal-
ity (1) so as to improve existing upper bounds obtained by the conventional
variational method.

2. VARIATIONAL SCHEME

Assume that the Hamiltonian Ĥ is of the form

Ĥ =
∞∑

n=1

En|En〉〈En| +
∫ Emax

E′
1

dEE|E〉〈E|,

where E′
1 ≤ Emax ≤ +∞ and 〈E|En〉 = 0. Energy levels may be degenerate in

general case. Consider the Laplace transformation

f(s) =
∫ +∞

0

dte−st〈Ψ|e−tĤ |Ψ〉 =
〈

Ψ
∣∣∣∣ 1
s+ Ĥ

∣∣∣∣Ψ
〉
, (4)

where Re(s) > −min(E1, E
′
1). An identity transformation made of two subse-

quent steps

〈
Ψ

∣∣∣∣ 1
s+ Ĥ

∣∣∣∣Ψ
〉

=
1

s+ a1
−

〈
Ψ

∣∣∣∣∣ Ĥ − a1
(Ĥ + s)(s+ a1)

∣∣∣∣∣ Ψ

〉

and〈
Ψ

∣∣∣∣ 1
s+ Ĥ

∣∣∣∣ Ψ
〉

=
1

s+ a1
−

〈
Ψ

∣∣∣∣∣
[
Ĥ − a1

(s+ a1)2
+

(Ĥ − a1)2

(Ĥ + s)(s+ a1)2

]∣∣∣∣∣Ψ
〉

(5)
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can be applied n times to the right-hand side of Eq.(4) leading to the identity

f(s) ≡Wn(s, a1, ..., an) +Rn(s, a1, ..., an),

Wn(s, a1, ..., an) =

〈
Ψ

∣∣∣∣∣∣
n∑

k=1

[
1

s+ ak
− Ĥ − ak

(s+ ak)2

]
k−1∏
j=1

(Ĥ − aj)2

(s+ aj)2

∣∣∣∣∣∣ Ψ

〉
,

Rn(s, a1, ..., an) =

〈
Ψ

∣∣∣∣∣∣
1

s+ Ĥ

n∏
j=1

(Ĥ − aj)2

(s+ aj)2

∣∣∣∣∣∣Ψ
〉
,

where a1, ..., an is a set of arbitrary variational parameters chosen in such a way
that both, Wn and Rn exist. To my knowledge, similar identity transformation
was introduced ˇrstly in [4]. The inverse Laplace transformation L−1f(s) results
in the identity

F (t) = 〈Ψ|e−tĤ |Ψ〉 ≡ ρn(t, a1, ..., an) + Ωn(t, a1, ..., an), (6)

where

ρn(t, a1, ..., an)=L−1Rn(t, a1, ..., an), Ωn(t, a1, ..., an)=L−1Wn(t, a1, ..., an).

In case of real parameters a1, ..., an the following statements regarding the
properties of ρn(t, a1, ..., an) can be proved [5].

(1.) ρn(t, a1, ..., an) ≥ 0.
(2.) ρn(t, a1, ..., an) always has n! absolute minima as a function of real

parameters a1, ..., an and the location of these minima does not depend on t. All
these minima are equivalent up to the permutation of parameters.

(3.) The absolute minimum of ρn(t, a1, ..., an) is provided by the solution to
a system of equations

∂

∂ak
ρn(t, a1, ..., an) = 0

which can be effectively reduced to a polynomial equation of the nth order

Pn(x) = 0, where Pn(x) =
n∑

i=0

Aix
n−i. (7)

Here, A0 ≡ 1 and the other n coefˇcients are given by the solution to a system
of n linear equations

M �A+ �Y = 0,

where Yi =M2n−i, Mij =M2n−(i+j), i, j = 1, 2, ..., n, and Mn = 〈Ψ|(Ĥ)n|Ψ〉
are the moments of the Hamiltonian Ĥ . Roots (a(n)

1 , a
(n)
2 , ..., a

(n)
n ) of the poly-

nomial Pn(x) provide the absolute minimum for ρn(t, a1, ..., an).
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(4.) All roots (a(n)
1 , a

(n)
2 , ..., a

(n)
n ) are real, mutually disjoint, i.e., a(n)

i �= a(n)
j

if i �= j, (i, j = 1, 2, ..., n), and independent of the parameter t.
(5.) For any order n of approximation an inequality holds:

ρn+1(t, a
(n+1)
1 , ..., a

(n+1)
n+1 ) ≤ ρn(t, a(n)

1 , ..., a(n)
n ).

Moreover, if to take the statement (1.) into account, the limit

lim
n→∞

ρn(t, a(n)
1 , ..., a(n)

n ) = ρ(t)

exists for any t ≥ 0.
(6.) If Ĥ is a bounded operator or if it possesses a discrete spectrum only,

or the state |Ψ〉 can be expanded in the eigenstates corresponding to the discrete
spectrum of Ĥ exclusively, then ρ(t) = 0 for any t ≥ 0. The same strict equality
also holds if |Ψ〉 can be expanded in a set of eigenstates with bounded energies.

(7.) The following sequence of the upper bounds to the ground state energy
of the Hamiltonian Ĥ takes place

Eg ≤ min(a(n+1)
1 , ..., a

(n+1)
n+1 ) ≤ min(a(n)

1 , ..., a(n)
n ) ≤ a(1)1 , (8)

and the limit exists E0 = limn→∞ min(a(n)
1 , ..., a

(n)
n ), so that if the function |Ψ〉

is expanded in the eigenstates of Ĥ as

|Ψ〉 =
∞∑

i=1

Ci|Ẽi〉 +
∫ +∞

Ẽ′
1

dEC(E)|E〉,

then
Eg ≤ min(Ẽ1, Ẽ

′
1) ≤ E0,

and E0 = min(Ẽ1, Ẽ
′
1) in case of the bounded Ĥ . The same strict equality also

holds if |Ψ〉 can be expanded in a set of eigenstates with bounded energies.
In case when |Ψ〉 is only expanded in a set of eigenstates belonging to the

discrete spectrum of Ĥ , i.e.,

|Ψ〉 =
∞∑

i−1

Ci|Ei〉, (9)

then the set of roots (a(n)
1 , ..., a

(n)
n ) converges to the set of eigenvalues {Ei}

which are present in the expansion (9):

(a(n)
1 , ..., a(n)

n ) −→
n→∞

{Ei}.
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The same situation takes place in case of Ĥ possessing discrete eigenvalues only.
In case when the expansion (9) includes only the ˇnite number N of different
eigenvalues Ei, the proposed approximation algorithm stops at the order n = N .

At this point a(N)
1 = E1, a

(N)
2 = E2, ..., a

(N)
N = EN and the inequality (10)

becomes an equality. Of course, it is formally possible to apply the identity
transformation (5) several times more, thus introducing p additional parameters
aN+1, aN+2, ..., aN+p. In this case the function ρ(t, a1, a2,..., aN , aN+1,...,
aN+p), which is symmetric in its arguments {ai} by construction, has inˇnitely
degenerate equivalent absolute minima at points (E1, ..., EN , aN+1,..., aN+p)
and the corresponding points obtained by the permutation of arguments, where
this function is equal to zero. In effect, these minima are provided by only N
out of total N + p parameters {ai}, those which are equal to the eigenvalues
E1, ..., EN . Only these parameters will make sense and enter the right-hand side
of the inequality (10) transforming it into equality. The values of the remainder
p parameters are totally irrelevant and drop out of the ˇnal results automatically.

3. GENERALIZED PEIERLSÄBOGOLIUBOV INEQUALITY

As a consequence of statements (1.)Ä(5.), the following inequality holds

〈Ψ|e−tĤ |Ψ〉 ≥ Ωn(t, a(n)
1 , ..., a(n)

n ) ≥ e−t〈Ψ|Ĥ|Ψ〉, (10)

and the middle part of this inequality can be calculated explicitly at the point

(a(n)
1 , ..., a

(n)
n ):

Ω
(
t, a

(n)
1 , ..., a(n)

n

)
=

n∑
k=1

〈Ψ|


 n∏

j=1
j �=k

(
Ĥ − a(n)

j

)2

(
a
(n)
j − a(n)

k

)2


 |Ψ〉e−a

(n)
k t.

The case n = 1 with the only variational parameter a(1)1 = 〈Ψ|Ĥ |Ψ〉 corresponds
to the original PeierlsÄBogoliubov inequality (1) which can be written in the form

〈Ψ|e−tĤ |Ψ〉 ≥ Ω1(t, a
(1)
1 ) = e−ta

(1)
1 . (11)

It follows from Eqs. (6), (11) and the statements (1.) and (5.) that

Ω1(0, a
(1)
1 ) = Ω1(0, a

(2)
1 , a

(2)
2 ) = ... = Ω

(
0, a(n)

1 , ..., a(n)
n

)
= 1,

ρ1(0, a
(1)
1 ) = ρ1(0, a

(2)
1 , a

(2)
2 ) = ... = ρ

(
0, a(n)

1 , ..., a(n)
n

)
= 0.

Therefore, good approximation is guaranteed for small t in all orders n.
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4. GENERALIZED LIEBÄBEREZIN INEQUALITY

The LiebÄBerezin inequality can also be generalized straightforward if one
considers the coherent states |α〉 in Eq.(2) as the |Ψ〉 state and is able to calculate
explicitly the corresponding moments of Ĥ as functions of complex variables
α, ᾱ. This results in the inequality

Sp
(
e−tĤ

)
≥

≥
∫
dµ(α)

n∑
k=1

〈α|


 n∏

j=1
j �=k

(
Ĥ − a(n)

j (α, ᾱ)
)2

(
a
(n)
j (α, ᾱ) − a(n)

k (α, ᾱ)
)2


 |α〉e−a

(n)
k (α,ᾱ)t ≥

≥
∫
e−tQ(α,ᾱ)dµ(α)

which can be constructed explicitly up to n = 4. For n > 4 the polynomial
equation (7) cannot be solved analytically in general case.

5. CONCLUSION

It follows from Eqs.(3), (8), (11) that nearly any upper bound to the ground
state energy obtained by the conventional variational principle can be improved
by means of the proposed method. This can be done in two steps. First of all,
one should construct a trial state |Φ({ξ})〉 as a function of variational parameters
{ξ} and choose these parameters to minimize the average 〈Φ({ξ})|Ĥ |Φ({ξ})〉 as
usual. In terms of the outlined above scheme, this step provides one with the

ˇrst-order bound a(1)1 . Then the subsequent better bounds (8) can be derived as
it was shown if one takes the state |Φ({ξ})〉 with the optimal set of parameters
{ξ}, deˇned at the ˇrst step, as the |Ψ〉 state throughout all computations.

What is more, the roots (a(n)
1 , ..., a

(n)
n ) of Eq.(7) provide not only the upper

bound to the ground state energy but may also be used as estimations for the
excited energy levels at least in the case of Hamiltonians with purely discrete
spectrum.

It is worth noticing in conclusion that the proposed method of approximation
has nothing to do with any kind of perturbation approach because the whole set of

roots (a(n)
1 , ..., a

(n)
n ) of Eq. (7) is to be recalculated once again at any subsequent

order of approximation n.
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