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EXACT RESULTS FOR 1D SIMPLE-EXCLUSION
PROCESS WITH ORDERED-SEQUENTIAL
DYNAMICS AND OPEN BOUNDARIES

J.G.Brankov

Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Soˇa, Bulgaria

An exact and rigorous calculation of the current and density proˇle in the steady state of the one-
dimensional fully asymmetric simple-exclusion process (FASEP) with open boundaries and forward-
ordered sequential dynamics is presented. An interpretation of the phase transitions between the
different phases is given in terms of eigenvalue splitting from a bounded quasi-continuous spectrum.

1. INTRODUCTION

One-dimensional (1D) systems of particles, hopping stochastically to the
nearest neighbors (with hard-core exclusion), provide examples of systems far
from thermal equilibrium, which exhibit boundary-induced phase transitions and
steady state phases with long-range correlations. Here we consider the current
and density proˇle in the steady state of a 1D fully asymmetric simple-exclusion
process (FASEP) on a chain of L sites, with open boundaries and forward-ordered
sequential dynamics. Each site can be empty or occupied by exactly one particle.
At each time step a particle is injected with probability α at the left end. Then
each pair of nearest-neighbor sites is updated sequentially from the left to the
right: a particle hops with probability p one site to the right, provided that site is
empty. Finally, a particle is removed with probability β at the right end.

In the case of random-sequential dynamics, a matrix-product representation
of the steady state probability distribution has been found by Derrida, Evans,
Hakim, and Pasquier [1]. The representation involves two inˇnite-dimensional
square matrices D and E, which act on the vectors of an auxiliary vector space S,
and satisfy a quadratic algebra known as the DEHP algebra. The open boundary
conditions are taken into account by the action of the above matrices on two
vectors, |V 〉 ∈ S and 〈W | ∈ S†, the dual of S. We make use of the mapping of
the algebra for the ordered-sequential dynamics onto the DEHP algebra, suggested
in [2]. Starting from one of the matrix representations of the DEHP algebra given
in [1], we obtain matrices D and E with nonzero elements only on the main and
the upper (for D), or lower ( for E ) next-to-the-main diagonal. These matrices
solve the bulk algebra for the ordered-sequential update, pDE = D+(1−p)E, and
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satisfy the left, 〈W |E = α−1〈W |, and right, D|V 〉 = (β−1 − 1)|V 〉, boundary
conditions. Crucial points for our method are: (i) the choice of the vectors
〈W | = |V 〉T = (1, 0, 0, . . . ), and (ii) the representation of the `lattice translation
operator' C ≡ E+D as a symmetric tri-diagonal matrix. By standard arguments,
the expressions for the stationary current JL and particle density ρL(i) at site i
are

JL = ZL−1/ZL, ρL(i) = Z−1
L 〈W |Ci−1DCL−i|V 〉, (1)

where ZL = 〈W |CL|V 〉. In our representation JL and ρL(i) depend on the
elements of the matrices D and C only in the ˇrst [L/2] + 1 rows and columns
([x] denotes the entire part of x ≥ 0). Therefore, for any ˇnite L and a sufˇciently
large integerM ≥ [L/2]+1, we can use a truncatedM -dimensional representation
of the matrices and vectors involved. The truncated lattice propagator CM is

CM (ξ, η) =
d

p




a+ ξ + η
√

1 − ξη 0 0 . . . . . .√
1 − ξη a 1 0 . . . . . .

0 1 a 1 . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . a 1
. . . . . . . . . . . . 1 a



, (2)

where

d =
√

1 − p, a = d+ d−1, ξ =
p− α
αd

, η =
p− β
βd

. (3)

In the limit M → ∞ the results become exact for any size of the chain. Since
the matrix CM is (real or complex) symmetric, and has, as we have shown, a
real nondegenerate spectrum, it can be diagonalized by a similarity transformation
with an orthogonal matrix UM . This makes possible the explicit calculation of
the relevant scalar products. For details we refer the reader to [3].

2. SPECTRAL PROPERTIES OF CM

Let λM (k), k = 1, . . . ,M , be the eigenvalues of CM (ξ, η). For p �= 0, 1 we
set λ = (d/p)(a+ 2x) and write the secular equation in the form

(1 − ξη)UM (x) + (2x ξη − ξ − η)UM−1(x) = 0, (4)

where Un(x) is the Chebyshev polynomial of the second kind. After the substitu-
tion: x = cosφ, if |x| ≤ 1, and x = coshφ, if |x| ≥ 1, by assuming ˇrst |x| ≤ 1
and ξη �= 1, we rewrite (4) as an equation for φ

sin[(M + 1)φ]/ sin(Mφ) = (ξ + η − 2ξη cosφ)/(1 − ξη). (5)
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We need to consider only the roots φ ∈ [0, π]. The case of |x| ≥ 1 is obtained by
analytical continuation to imaginary φ. The condition ξη = 1, or (1−α)(1−β) =
1−p, deˇnes a line on which the mean-ˇeld approximation is exact. The analysis
of Eq. (5) shows that there are four regions in the square α, β ∈ [0, 1]2 with
different spectral properties of CM . Their boundaries involve the mean-ˇeld line,
as well as the lines ξ = 1 (α = αc ≡ 1 − d) and η = 1 (β = βc ≡ 1 − d).

Region A: αc < α ≤ 1 and βc < β ≤ 1. For sufˇciently large M Eq. (5)
has exactly M simple real roots φM (k), k = 1, . . . ,M , in the interval (0, π). The
eigenvalues of the matrix CM are

λM (k) = (d/p)[a+ 2 cosφM (k)], k = 1, . . . ,M. (6)

A complete set of orthonormal eigenvectors of CM is given by the column-vectors
|uM (k)〉, k = 1, . . . ,M , with components

|uM (k)〉1 ≡ uM (1, k) = bM (k)
sin[MφM (k)]√

1 − ξη
,

|uM (k)〉l ≡ uM (l, k) = bM (k) sin[(M + 1 − l)φM (k)], for l = 2, . . . ,M, (7)

where bM (k) is the normalization constant.
Region B: (1 − α)(1 − β) < 1 − p and α < αc or β < βc. For sufˇciently

large M Eq. (5) has M − 1 simple real roots φM (k), k = 2, . . . ,M , in the
interval (0, π). The missing eigenvalue of CM is provided by the pair of complex
conjugate imaginary solutions φ = ±iφM (1) which yield the largest eigenvalue

λM (1) = (d/p)[a+ 2 coshφM (1)]. (8)

The remaining M − 1 eigenvalues have the form (6).
Region C: (1 − α)(1 − β) > 1 − p and α > αc or β > βc. Now the off-

diagonal elements (CM )1,2 = (CM )1,2 = i
√
ξη − 1, see Eq. (2), are imaginary.

The largest eigenvalue of CM has the same analytical form (8) as in regin B; the
remaining M − 1 eigenvalues have the form (6). The diagonalization problem in
regions C and D (see below) differs from the one in regions A and B in that the
matrix CM is complex symmetric, and not Hermitian (or real symmetric).

Region D: α < αc and β < βc. The essential difference from the previous
case is that for sufˇciently large M there are two large eigenvalues of the matrix
CM , which have the form (8) and map onto one another under the transformation
ξ ↔ η. The remainingM −2 eigenvalues have the form (6). The case ξ = η > 1
is a special one, since then the two large eigenvalues λM (1, 2) = (d/p)(a +
2 cosh ξ) ±O(ξ−M ) become degenerate in the limit M → ∞.

In the thermodynamic limit region A corresponds to the maximum current
phase; regions B, C and D for ξ > η (α < β) belong to the low-density phase,
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and for ξ < η (α > β) belong to the high-density phase. The distinction between
the latter three regions within a single phase is expeced to affect more subtle
characteristics like density proˇle, correlation functions, rate of approach to the
thermodynamic limit.

3. CALCULATION OF THE CURRENT

In region A we obtain in the limit M → ∞ the exact result (ξ �= η)

ZA
L (ξ, η) =

(
d

p

)L [
ξ

ξ − η IL(ξ) +
η

η − ξ IL(η)
]
, (9)

where

IL(ξ) =
2
π

π∫
0

dφ
(a+ 2 cosφ)L sin2 φ

1 − 2ξ cosφ+ ξ2
. (10)

The expression for ZA
L (ξ, ξ) can be obtained by taking the limit η → ξ in (9).

In regions B and C there is a contribution from the single largest eigenvalue:

ZB,C
L (ξ, η) =

(
d

p

)L
ξ − ξ−1

ξ − η (a+ ξ + ξ−1)L + ZA
L (ξ, η) (ξ > η). (11)

The case η > ξ follows from the above by exchanging places of ξ and η. In
region D (ξ �= η) there are separate contributions from the two large eigenvalues:

ZD
L (ξ, η)=

(
d

p

)L [
ξ−ξ−1

ξ−η (a+ξ+ξ−1)L+
η−η−1

η−ξ (a+η+η−1)L

]
+ZA

L (ξ, η).

(12)

On the line ξ = η in region D Eq. (12) yields

ZD
L (ξ, ξ)=

(p
d

)L
[
L(ξ−ξ−1)2

ξ(a+ξ+ξ−1)
+1+ξ−2

]
(a+ξ+ξ−1)L+ZA

L (ξ, ξ). (13)

The exact results for the current follow from Eq. (1) and the above expressions.
Current in the Maximum-Current Phase. By substituting the leading-order

asymptotic form of the Laplace integral (10) in the expression for ZA
L (ξ, η), we

obtain the large-L asymptotic form of the current

Jm.c.
L =

1 −
√

1 − p
1 +

√
1 − p [1 +O(L−1)] (14)

independently of the parameters α and β.
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Current in the Low- and High-Density Phases. Due to the dominant con-
tribution of the largest eigenvalue, we obtain that up to exponentially small in L
corrections

J l.d.
L (ξ, η) � (p/d)(a+ ξ + ξ−1)−1 =

α(p− α)
p(1 − α)

. (15)

The result for the high-density phase follows under the replacement ξ ↔ η
(α↔ β):

Jh.d.
L (ξ, η) � (p/d)(a+ η + η−1)−1 =

β(p− β)
p(1 − β)

. (16)

Only on the line ξ = η > 1 in region D the current JD
L (ξ, ξ) has O(L−1)

corrections to the thermodynamic limit, see Eq. (13). The limiting expressions
for the current coincide with the mean-ˇeld results [4].

4. CALCULATION OF THE LOCAL DENSITY PROFILE

Here we present the large-L asymptotic forms only (for the exact results
see [3]).

Local Density in the Maximum-Current Phase. To obtain the particle
density proˇle on the macroscopic scale r = i/L, as L → ∞, we assume that
i � 1 and L − i � 1. Then, by using the assymptotic form of Zn(ξ, η) for
n� 1, we obtain the density proˇle

ρm.c.
L (rL) �

√
1 − p

1 +
√

1 − p +
L−1/2

√
d√

π(1 + d)
1 − 2r√
r(1 − r)

(0 < r < 1) (17)

independently of the parameters α and β; it has the same shape as in the case of
random-sequential dynamics, see Eq. (53) in [5].

Local Density in the Low-Density Phase. By neglecting terms which are
uniformly in i = 1, . . . , L exponentially small as L→ ∞, we obtain that the local
density of the low-density phase in regions B and C is given by

ρB,C
L (i) � α(1 − p)

p(1 − α)
− ξIL−i(ξ) − ηIL−i(η)

(a+ ξ + ξ−1)L−i+1
. (18)

One clearly sees that the shape of the density proˇle drastically changes on
crossing the phase boundary. In the low-density phase the proˇle is constant (up
to exponentially small in L terms) near the left end of the chain, and changes
exponentially fast near the right end. The bending of the proˇle near the right
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end is downward in region B and upward in region C. In the part of region D
occupied by the low-density phase (ξ > η > 1) we obtain

ρDL(i) � α(1 − p)
p(1 − α)

+
η − η−1

a+ ξ + ξ−1

(
a+ η + η−1

a+ ξ + ξ−1

)L−i

−

−ξIL−i(ξ) − ηIL−i(η)
(a+ ξ + ξ−1)L−i+1

. (19)

A comparison with Eq. (18) reveals a new feature: the leading-order asymptotic
form of the density proˇle changes on passing from region C to region D within
the low-density phase.

Local Density in the High-Density Phase. By ignoring the uniformly in
i = 1, . . . , L exponentially small as L→ ∞ corrections, we obtain that the local
density of the high-density phase in regions B and C is

ρB,C
L (i) � 1 − β

p
+
ηIi−1(η) − ξIi−1(ξ)

(a+ η + η−1)i
. (20)

The proˇle bends near the left end of the chain: upward in region B and downward
in region C. In the part of region D occupied by the high-density phase (η > ξ >
1)

ρDL(i) � 1 − β

p
− ξ − ξ−1

a+ η + η−1

(
a+ ξ + ξ−1

a+ η + η−1

)i−1

+
ηIi−1(η) − ξIi−1(ξ)

(a+ η + η−1)i
.

(21)

As in region C, the proˇle bends downward near the left end of the chain. Its
asymptotic form changes on passing from region C to region D within the high-
density phase.

The above asymptotic expressions are in excellent agreement with the re-
sults of computer simulations. The bulk densities coincide with the mean-ˇeld
results [4].

Local Density on the Coexistence Line. The condition ξ = η > 1 deˇnes
the coexistence line between the low- and high-density phases in region D. On
the macroscopic scale of distance, i.e., when r ≡ i/L = O(1) as L → ∞, by
ignoring the O(L−1) corrections, we obtain

ρcoex
L (rL; ξ, ξ) � 1

a+ ξ + ξ−1

[
d+ ξ−1 + (ξ − ξ−1)r

]
. (22)

The local density changes linearly between the bulk densities of the low- (r = 0)
and high-density (r = 1) phase.
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5. CONCLUSIONS

For the FASEP with ordered-sequential dynamics open boundary conditions
we have calculated rigorously the current and the local particle density, both for
ˇnite chains and in the thermodynamic limit. For any ˇnite L these quantities
are real-analytic functions of the parameters; only in the thermodynamic limit
different asymptotic forms appear. We have shown that the asymptotic form of the
proˇle changes when α or β crosses the value 1−

√
1 − p within the high- or low-

density phase, respectively. This rebects the appearance of a second correlation
length, related to the next-to-the-largest eigenvalue of the lattice propagator. A
similar fact has been found in the case of random-sequential dynamics [6].
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