EXACT RESULTS FOR 1D SIMPLE-EXCLUSION PROCESS WITH ORDERED-SEQUENTIAL DYNAMICS AND OPEN BOUNDARIES

J.G.Brankov

Institute of Mechanics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Abstract

An exact and rigorous calculation of the current and density profile in the steady state of the onedimensional fully asymmetric simple-exclusion process (FASEP) with open boundaries and forwardordered sequential dynamics is presented. An interpretation of the phase transitions between the different phases is given in terms of eigenvalue splitting from a bounded quasi-continuous spectrum.

1. INTRODUCTION

One-dimensional (1D) systems of particles, hopping stochastically to the nearest neighbors (with hard-core exclusion), provide examples of systems far from thermal equilibrium, which exhibit boundary-induced phase transitions and steady state phases with long-range correlations. Here we consider the current and density profile in the steady state of a 1D fully asymmetric simple-exclusion process (FASEP) on a chain of L sites, with open boundaries and forward-ordered sequential dynamics. Each site can be empty or occupied by exactly one particle. At each time step a particle is injected with probability α at the left end. Then each pair of nearest-neighbor sites is updated sequentially from the left to the right: a particle hops with probability p one site to the right, provided that site is empty. Finally, a particle is removed with probability β at the right end.

In the case of random-sequential dynamics, a matrix-product representation of the steady state probability distribution has been found by Derrida, Evans, Hakim, and Pasquier [1]. The representation involves two infinite-dimensional square matrices D and E, which act on the vectors of an auxiliary vector space \mathcal{S}, and satisfy a quadratic algebra known as the DEHP algebra. The open boundary conditions are taken into account by the action of the above matrices on two vectors, $|V\rangle \in \mathcal{S}$ and $\langle W| \in \mathcal{S}^{\dagger}$, the dual of \mathcal{S}. We make use of the mapping of the algebra for the ordered-sequential dynamics onto the DEHP algebra, suggested in [2]. Starting from one of the matrix representations of the DEHP algebra given in [1], we obtain matrices D and E with nonzero elements only on the main and the upper (for D), or lower (for E) next-to-the-main diagonal. These matrices solve the bulk algebra for the ordered-sequential update, $p D E=D+(1-p) E$, and
satisfy the left, $\langle W| E=\alpha^{-1}\langle W|$, and right, $D|V\rangle=\left(\beta^{-1}-1\right)|V\rangle$, boundary conditions. Crucial points for our method are: (i) the choice of the vectors $\langle W|=|V\rangle^{T}=(1,0,0, \ldots)$, and (ii) the representation of the 'lattice translation operator' $C \equiv E+D$ as a symmetric tri-diagonal matrix. By standard arguments, the expressions for the stationary current J_{L} and particle density $\rho_{L}(i)$ at site i are

$$
\begin{equation*}
J_{L}=Z_{L-1} / Z_{L}, \quad \rho_{L}(i)=Z_{L}^{-1}\langle W| C^{i-1} D C^{L-i}|V\rangle \tag{1}
\end{equation*}
$$

where $Z_{L}=\langle W| C^{L}|V\rangle$. In our representation J_{L} and $\rho_{L}(i)$ depend on the elements of the matrices D and C only in the first $[L / 2]+1$ rows and columns ($[x]$ denotes the entire part of $x \geq 0$). Therefore, for any finite L and a sufficiently large integer $M \geq[L / 2]+1$, we can use a truncated M-dimensional representation of the matrices and vectors involved. The truncated lattice propagator C_{M} is

$$
C_{M}(\xi, \eta)=\frac{d}{p}\left(\begin{array}{cccccc}
a+\xi+\eta & \sqrt{1-\xi \eta} & 0 & 0 & \ldots & \ldots \tag{2}\\
\sqrt{1-\xi \eta} & a & 1 & 0 & \ldots & \ldots \\
0 & 1 & a & 1 & \ldots & \ldots \\
\ldots & \ldots & \cdots & \cdots & \ldots & \ldots \\
\cdots & \cdots & \cdots & \cdots & a & 1 \\
\cdots & \cdots & \cdots & \cdots & 1 & a
\end{array}\right)
$$

where

$$
\begin{equation*}
d=\sqrt{1-p}, \quad a=d+d^{-1}, \quad \xi=\frac{p-\alpha}{\alpha d}, \quad \eta=\frac{p-\beta}{\beta d} \tag{3}
\end{equation*}
$$

In the limit $M \rightarrow \infty$ the results become exact for any size of the chain. Since the matrix C_{M} is (real or complex) symmetric, and has, as we have shown, a real nondegenerate spectrum, it can be diagonalized by a similarity transformation with an orthogonal matrix U_{M}. This makes possible the explicit calculation of the relevant scalar products. For details we refer the reader to [3].

2. SPECTRAL PROPERTIES OF C_{M}

Let $\lambda_{M}(k), k=1, \ldots, M$, be the eigenvalues of $C_{M}(\xi, \eta)$. For $p \neq 0,1$ we set $\lambda=(d / p)(a+2 x)$ and write the secular equation in the form

$$
\begin{equation*}
(1-\xi \eta) U_{M}(x)+(2 x \xi \eta-\xi-\eta) U_{M-1}(x)=0 \tag{4}
\end{equation*}
$$

where $U_{n}(x)$ is the Chebyshev polynomial of the second kind. After the substitution: $x=\cos \phi$, if $|x| \leq 1$, and $x=\cosh \phi$, if $|x| \geq 1$, by assuming first $|x| \leq 1$ and $\xi \eta \neq 1$, we rewrite (4) as an equation for ϕ

$$
\begin{equation*}
\sin [(M+1) \phi] / \sin (M \phi)=(\xi+\eta-2 \xi \eta \cos \phi) /(1-\xi \eta) \tag{5}
\end{equation*}
$$

We need to consider only the roots $\phi \in[0, \pi]$. The case of $|x| \geq 1$ is obtained by analytical continuation to imaginary ϕ. The condition $\xi \eta=1$, or $(1-\alpha)(1-\beta)=$ $1-p$, defines a line on which the mean-field approximation is exact. The analysis of Eq. (5) shows that there are four regions in the square $\alpha, \beta \in[0,1]^{2}$ with different spectral properties of C_{M}. Their boundaries involve the mean-field line, as well as the lines $\xi=1\left(\alpha=\alpha_{c} \equiv 1-d\right)$ and $\eta=1\left(\beta=\beta_{c} \equiv 1-d\right)$.

Region A: $\alpha_{c}<\alpha \leq 1$ and $\beta_{c}<\beta \leq 1$. For sufficiently large M Eq. (5) has exactly M simple real roots $\phi_{M}(k), k=1, \ldots, M$, in the interval $(0, \pi)$. The eigenvalues of the matrix C_{M} are

$$
\begin{equation*}
\lambda_{M}(k)=(d / p)\left[a+2 \cos \phi_{M}(k)\right], \quad k=1, \ldots, M \tag{6}
\end{equation*}
$$

A complete set of orthonormal eigenvectors of C_{M} is given by the column-vectors $\left|u_{M}(k)\right\rangle, k=1, \ldots, M$, with components

$$
\begin{gather*}
\left|u_{M}(k)\right\rangle_{1} \equiv u_{M}(1, k)=b_{M}(k) \frac{\sin \left[M \phi_{M}(k)\right]}{\sqrt{1-\xi \eta}} \\
\left|u_{M}(k)\right\rangle_{l} \equiv u_{M}(l, k)=b_{M}(k) \sin \left[(M+1-l) \phi_{M}(k)\right], \text { for } l=2, \ldots, M, \tag{7}
\end{gather*}
$$

where $b_{M}(k)$ is the normalization constant.
Region B: $(1-\alpha)(1-\beta)<1-p$ and $\alpha<\alpha_{c}$ or $\beta<\beta_{c}$. For sufficiently large M Eq. (5) has $M-1$ simple real roots $\phi_{M}(k), k=2, \ldots, M$, in the interval $(0, \pi)$. The missing eigenvalue of C_{M} is provided by the pair of complex conjugate imaginary solutions $\phi= \pm \mathrm{i} \phi_{M}(1)$ which yield the largest eigenvalue

$$
\begin{equation*}
\lambda_{M}(1)=(d / p)\left[a+2 \cosh \phi_{M}(1)\right] \tag{8}
\end{equation*}
$$

The remaining $M-1$ eigenvalues have the form (6).
Region C: $(1-\alpha)(1-\beta)>1-p$ and $\alpha>\alpha_{c}$ or $\beta>\beta_{c}$. Now the offdiagonal elements $\left(C_{M}\right)_{1,2}=\left(C_{M}\right)_{1,2}=\mathrm{i} \sqrt{\xi \eta-1}$, see Eq. (2), are imaginary. The largest eigenvalue of C_{M} has the same analytical form (8) as in regin B; the remaining $M-1$ eigenvalues have the form (6). The diagonalization problem in regions C and D (see below) differs from the one in regions A and B in that the matrix C_{M} is complex symmetric, and not Hermitian (or real symmetric).

Region D: $\alpha<\alpha_{c}$ and $\beta<\beta_{c}$. The essential difference from the previous case is that for sufficiently large M there are two large eigenvalues of the matrix C_{M}, which have the form (8) and map onto one another under the transformation $\xi \leftrightarrow \eta$. The remaining $M-2$ eigenvalues have the form (6). The case $\xi=\eta>1$ is a special one, since then the two large eigenvalues $\lambda_{M}(1,2)=(d / p)(a+$ $2 \cosh \xi) \pm O\left(\xi^{-M}\right)$ become degenerate in the limit $M \rightarrow \infty$.

In the thermodynamic limit region A corresponds to the maximum current phase; regions B, C and D for $\xi>\eta(\alpha<\beta)$ belong to the low-density phase,
and for $\xi<\eta(\alpha>\beta)$ belong to the high-density phase. The distinction between the latter three regions within a single phase is expeced to affect more subtle characteristics like density profile, correlation functions, rate of approach to the thermodynamic limit.

3. CALCULATION OF THE CURRENT

In region A we obtain in the limit $M \rightarrow \infty$ the exact result $(\xi \neq \eta)$

$$
\begin{equation*}
Z_{L}^{\mathrm{A}}(\xi, \eta)=\left(\frac{d}{p}\right)^{L}\left[\frac{\xi}{\xi-\eta} I_{L}(\xi)+\frac{\eta}{\eta-\xi} I_{L}(\eta)\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{L}(\xi)=\frac{2}{\pi} \int_{0}^{\pi} \mathrm{d} \phi \frac{(a+2 \cos \phi)^{L} \sin ^{2} \phi}{1-2 \xi \cos \phi+\xi^{2}} \tag{10}
\end{equation*}
$$

The expression for $Z_{L}^{\mathrm{A}}(\xi, \xi)$ can be obtained by taking the limit $\eta \rightarrow \xi$ in (9).
In regions B and C there is a contribution from the single largest eigenvalue:

$$
\begin{equation*}
Z_{L}^{\mathrm{B}, \mathrm{C}}(\xi, \eta)=\left(\frac{d}{p}\right)^{L} \frac{\xi-\xi^{-1}}{\xi-\eta}\left(a+\xi+\xi^{-1}\right)^{L}+Z_{L}^{\mathrm{A}}(\xi, \eta) \quad(\xi>\eta) \tag{11}
\end{equation*}
$$

The case $\eta>\xi$ follows from the above by exchanging places of ξ and η. In region $\mathrm{D}(\xi \neq \eta)$ there are separate contributions from the two large eigenvalues:

$$
\begin{equation*}
Z_{L}^{\mathrm{D}}(\xi, \eta)=\left(\frac{d}{p}\right)^{L}\left[\frac{\xi-\xi^{-1}}{\xi-\eta}\left(a+\xi+\xi^{-1}\right)^{L}+\frac{\eta-\eta^{-1}}{\eta-\xi}\left(a+\eta+\eta^{-1}\right)^{L}\right]+Z_{L}^{\mathrm{A}}(\xi, \eta) \tag{12}
\end{equation*}
$$

On the line $\xi=\eta$ in region D Eq. (12) yields

$$
\begin{equation*}
Z_{L}^{\mathrm{D}}(\xi, \xi)=\left(\frac{p}{d}\right)^{L}\left[\frac{L\left(\xi-\xi^{-1}\right)^{2}}{\xi\left(a+\xi+\xi^{-1}\right)}+1+\xi^{-2}\right]\left(a+\xi+\xi^{-1}\right)^{L}+Z_{L}^{\mathrm{A}}(\xi, \xi) \tag{13}
\end{equation*}
$$

The exact results for the current follow from Eq. (1) and the above expressions.
Current in the Maximum-Current Phase. By substituting the leading-order asymptotic form of the Laplace integral (10) in the expression for $Z_{L}^{\mathrm{A}}(\xi, \eta)$, we obtain the large- L asymptotic form of the current

$$
\begin{equation*}
J_{L}^{\text {m.c. }}=\frac{1-\sqrt{1-p}}{1+\sqrt{1-p}}\left[1+O\left(L^{-1}\right)\right] \tag{14}
\end{equation*}
$$

independently of the parameters α and β.

Current in the Low- and High-Density Phases. Due to the dominant contribution of the largest eigenvalue, we obtain that up to exponentially small in L corrections

$$
\begin{equation*}
J_{L}^{1 . \mathrm{d} .}(\xi, \eta) \simeq(p / d)\left(a+\xi+\xi^{-1}\right)^{-1}=\frac{\alpha(p-\alpha)}{p(1-\alpha)} \tag{15}
\end{equation*}
$$

The result for the high-density phase follows under the replacement $\xi \leftrightarrow \eta$ $(\alpha \leftrightarrow \beta)$:

$$
\begin{equation*}
J_{L}^{\mathrm{h.d.}}(\xi, \eta) \simeq(p / d)\left(a+\eta+\eta^{-1}\right)^{-1}=\frac{\beta(p-\beta)}{p(1-\beta)} \tag{16}
\end{equation*}
$$

Only on the line $\xi=\eta>1$ in region D the current $J_{L}^{\mathrm{D}}(\xi, \xi)$ has $O\left(L^{-1}\right)$ corrections to the thermodynamic limit, see Eq. (13). The limiting expressions for the current coincide with the mean-field results [4].

4. CALCULATION OF THE LOCAL DENSITY PROFILE

Here we present the large- L asymptotic forms only (for the exact results see [3]).

Local Density in the Maximum-Current Phase. To obtain the particle density profile on the macroscopic scale $r=i / L$, as $L \rightarrow \infty$, we assume that $i \gg 1$ and $L-i \gg 1$. Then, by using the assymptotic form of $Z_{n}(\xi, \eta)$ for $n \gg 1$, we obtain the density profile

$$
\begin{equation*}
\rho_{L}^{\text {m.c. }}(r L) \simeq \frac{\sqrt{1-p}}{1+\sqrt{1-p}}+\frac{L^{-1 / 2} \sqrt{d}}{\sqrt{\pi}(1+d)} \frac{1-2 r}{\sqrt{r(1-r)}} \quad(0<r<1) \tag{17}
\end{equation*}
$$

independently of the parameters α and β; it has the same shape as in the case of random-sequential dynamics, see Eq. (53) in [5].

Local Density in the Low-Density Phase. By neglecting terms which are uniformly in $i=1, \ldots, L$ exponentially small as $L \rightarrow \infty$, we obtain that the local density of the low-density phase in regions B and C is given by

$$
\begin{equation*}
\rho_{L}^{\mathrm{B}, \mathrm{C}}(i) \simeq \frac{\alpha(1-p)}{p(1-\alpha)}-\frac{\xi I_{L-i}(\xi)-\eta I_{L-i}(\eta)}{\left(a+\xi+\xi^{-1}\right)^{L-i+1}} \tag{18}
\end{equation*}
$$

One clearly sees that the shape of the density profile drastically changes on crossing the phase boundary. In the low-density phase the profile is constant (up to exponentially small in L terms) near the left end of the chain, and changes exponentially fast near the right end. The bending of the profile near the right
end is downward in region B and upward in region C. In the part of region D occupied by the low-density phase ($\xi>\eta>1$) we obtain

$$
\begin{gather*}
\rho_{L}^{\mathrm{D}}(i) \simeq \frac{\alpha(1-p)}{p(1-\alpha)}+\frac{\eta-\eta^{-1}}{a+\xi+\xi^{-1}}\left(\frac{a+\eta+\eta^{-1}}{a+\xi+\xi^{-1}}\right)^{L-i}- \\
-\frac{\xi I_{L-i}(\xi)-\eta I_{L-i}(\eta)}{\left(a+\xi+\xi^{-1}\right)^{L-i+1}} . \tag{19}
\end{gather*}
$$

A comparison with Eq. (18) reveals a new feature: the leading-order asymptotic form of the density profile changes on passing from region C to region D within the low-density phase.

Local Density in the High-Density Phase. By ignoring the uniformly in $i=1, \ldots, L$ exponentially small as $L \rightarrow \infty$ corrections, we obtain that the local density of the high-density phase in regions B and C is

$$
\begin{equation*}
\rho_{L}^{\mathrm{B}, \mathrm{C}}(i) \simeq 1-\frac{\beta}{p}+\frac{\eta I_{i-1}(\eta)-\xi I_{i-1}(\xi)}{\left(a+\eta+\eta^{-1}\right)^{i}} . \tag{20}
\end{equation*}
$$

The profile bends near the left end of the chain: upward in region B and downward in region C . In the part of region D occupied by the high-density phase $(\eta>\xi>$ 1)

$$
\begin{equation*}
\rho_{L}^{\mathrm{D}}(i) \simeq 1-\frac{\beta}{p}-\frac{\xi-\xi^{-1}}{a+\eta+\eta^{-1}}\left(\frac{a+\xi+\xi^{-1}}{a+\eta+\eta^{-1}}\right)^{i-1}+\frac{\eta I_{i-1}(\eta)-\xi I_{i-1}(\xi)}{\left(a+\eta+\eta^{-1}\right)^{i}} . \tag{21}
\end{equation*}
$$

As in region C, the profile bends downward near the left end of the chain. Its asymptotic form changes on passing from region C to region D within the highdensity phase.

The above asymptotic expressions are in excellent agreement with the results of computer simulations. The bulk densities coincide with the mean-field results [4].

Local Density on the Coexistence Line. The condition $\xi=\eta>1$ defines the coexistence line between the low- and high-density phases in region D. On the macroscopic scale of distance, i.e., when $r \equiv i / L=O(1)$ as $L \rightarrow \infty$, by ignoring the $O\left(L^{-1}\right)$ corrections, we obtain

$$
\begin{equation*}
\rho_{L}^{\text {coex }}(r L ; \xi, \xi) \simeq \frac{1}{a+\xi+\xi^{-1}}\left[d+\xi^{-1}+\left(\xi-\xi^{-1}\right) r\right] . \tag{22}
\end{equation*}
$$

The local density changes linearly between the bulk densities of the low- $(r=0)$ and high-density $(r=1)$ phase.

5. CONCLUSIONS

For the FASEP with ordered-sequential dynamics open boundary conditions we have calculated rigorously the current and the local particle density, both for finite chains and in the thermodynamic limit. For any finite L these quantities are real-analytic functions of the parameters; only in the thermodynamic limit different asymptotic forms appear. We have shown that the asymptotic form of the profile changes when α or β crosses the value $1-\sqrt{1-p}$ within the high- or lowdensity phase, respectively. This reflects the appearance of a second correlation length, related to the next-to-the-largest eigenvalue of the lattice propagator. A similar fact has been found in the case of random-sequential dynamics [6].

REFERENCES

[^0]
[^0]: 1. Derrida B., Evans M.R., Hakim V., Pasquier V. - J. Phys., 1993, v.A26, p. 1493.

 Rajewski N., Schadschneider A., Schreckenberg M. - J. Phys., 1996, v.A29, p.L305.
 Brankov J., Pesheva N., Valkov N. - submitted to Phys. Rev. E, 1999.
 Rajewsky N., Santen L., Schadschneider A., Schreckenberg M. - J. Stat. Phys., 1998, v.92, p. 151 .

 Derrida D., Domany E., Mukamel D. - J. Stat. Phys., 1992, v.69, p.667.
 Kolomeisky A.B., Schütz G.M., Kolomeisky E.B., Straley J.P. - J. Phys., 1998, v.A31, p. 6911.

