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We study the short-time behaviour of the survival probability in the framework of the N-level
Friedrichs model. We show that depending on initial conditions the decay can be considerably slowed
down or even stopped. By choosing proper parameters of the system, the Zeno time can also be
considerably extended.

INTRODUCTION

Since the very beginning of the quantum mechanics, the measurement process has been
a most fundamental issue. The main characteristic feature of the quantum measurement is
that the measurement changes the dynamical evolution. This is the main difference of the
quantum measurement compared to its classical analogue. On this framework, Misra and
Sudarshan pointed out [1] that repeated measurements can prevent an unstable system from
decaying (the quantum Zeno effect, QZE).

The QZE has been discussed for many physical systems including atomic physics [2, 3]
and mesoscopic physics [4, 5], and has been even proposed as a way to control decoherence
for effective quantum computations [6]. Recently, however, it has been found [7, 8] that
under some conditions the repeated observations could speed up the decay of the quantum
system (the quantum anti-Zeno effect). The anti-Zeno effect has been further analyzed
in [9Ä11].

While there exist experiments [12,13] demonstrating the perturbed evolution of a coherent
dynamics, the demonstration of the QZE for an unstable system with exponential decay, as
originally proposed in [1], has long been an open question. Only recently, both Zeno and
anti-Zeno effects have been observed in the experiment [14].

In order to analyze the short-time behaviour of an unstable system, we use here the
Friedrichs model [15], which is very appropriate for the discussion of the particle de-
cay and for the description of dressed unstable states [16, 17]. The analytical structure
of the N -level Friedrichs model has been widely discussed, see, e. g., [18,19] and references
therein.
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1. N -LEVEL FRIEDRICHS MODEL

The Hamiltonian of the Friedrichs model [15] generalized to N level is

H = H0 + λV, (1)

where

H0 =
N∑

k=1

ωk|k〉〈k| +
∞∫
0

dω ω|ω〉〈ω|,

V =
N∑

k=1

∞∫
0

dωf̂k(ω) (|k〉〈ω| + |ω〉〈k|).

(2)

Here, |k〉 represent states of the discrete spectrum with the energy ωk, ωk > 0. The vectors
|ω〉 represent states of the continuous spectrum with the energy ω; f̂k(ω) are the form factors
for the transitions between the discrete and the continuous spectrum, and λ is the coupling
parameter. The vacuum energy is chosen to be zero. The states |k〉 and |ω〉 form a complete
orthonormal basis:

〈k|k′〉 = δkk′, 〈ω|ω′〉 = δ(ω − ω′), 〈ω|k〉 = 0, k, k′ = 1, . . . , N, (3)

N∑
k=1

|k〉〈k| +
∞∫
0

dω |ω〉〈ω| = I, (4)

where δkk′ is the Kronecker symbol; δ(ω − ω′) is Dirac's delta function, and I is the unity
operator. The Hamiltonian H0 has the continuous spectrum on the interval [0,∞) and the
discrete spectrum ω1, . . . , ωk embedded in the continuous spectrum. As the interaction λV
is switched on, the eigenstates |k〉 become resonances of H as in the case of the one-level
Friedrichs model [15].

The total evolution leads to the decay of an initial unstable state

Φ =
∑

k

αk|k〉, 〈Φ|Φ〉 = 1. (5)

Decay is described by the survival probability p(t) to ˇnd, after time t, the initial state
evolving according to the evolution exp (−iHt) in the same state [3]:

p(t) ≡ |〈Φ| e−iHt|Φ〉|2 = |A(t)|2, (6)

where A(t) is the survival amplitude. The survival amplitude can be explicitly expressed in
terms of the form factors f̂k(ω) [19].

In order to calculate the short-time behaviour for the system (2), we will use the Taylor
expansion of the survival probability. We shall assume here the existence of all necessary
matrix elements, and denote 〈·〉 = 〈Φ| · |Φ〉. Then we ˇnd

p(t) = 〈e−iHt〉 = 1 − t2
(
〈H2〉 − 〈H〉2

)
+

+ t4
(

1
4
〈H2〉2 +

1
12

〈H4〉 − 1
3
〈H〉〈H3〉

)
+ O(t6) = 1 − t2

t2a
+

t4

t4b
+ O(t6). (7)
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The expressions for the times ta and tb can be deduced using the special structure of the
potential V (2):

1
t2a

=
∑

k

|αk|2ω2
k −

(∑
k

|αk|2ωk

)2

+ λ2Λ2R1, (8)

1
t4b

=
1
4

(∑
k

|αk|2ω2
k

)2

+
1
12

∑
k

|αk|2ω4
k − 1

3

∑
k

|αk|2ωk

∑
k

|αk|2ω3
k+

+ λ2Λ2

(
1
2
R1

∑
k

|αk|2ω2
k +

1
12

R3 −
1
3
R2

∑
k

|αk|2ωk

)
+ λ4Λ4

(
1
12

R4 +
1
4
R2

1

)
, (9)

where

R1 =
∑
ik

αiα
∗
kF 0

ik, (10)

R2 =
∑
ik

αiα
∗
k

(
(ωi + ωk)F 0

ik + ΛF 1
ik

)
, (11)

R3 =
∑
ik

αiα
∗
k

(
(ω2

i + ωiωk + ω2
k)F 0

ik + (ωi + ωk)ΛF 1
ik + Λ2F 2

ik

)
, (12)

R4 =
∑
ik

αiα
∗
k((F 0)2)ik. (13)

Here,

F p
ik =

∫ ∞

0

dxxpfi(x)fk(x),

where the dimensionless form factor fk(x) is expressed as

fk(x) =
1√
Λ

f̂k(Λx),

and the parameter Λ has the dimension of energy.

2. ZENO EFFECT AND ZENO TIME

The probability that the state Φ after N equally spaced measurements during the time
interval [0, T ] has not decayed, is given by [1]: pN (T ) = pN (T/N). We are interested in the
behaviour of pN (T ) as N → ∞ or, equally, when the time interval between the measurements
τ = T/N goes to zero:

lim
τ→0

pN (T ) = lim
τ→0

p(τ)T/τ =




0, when p′(0) = −∞,
e−cT , when p′(0) = −c,
1, when p′(0) = 0.

(14)

The results (14) are found in case of continuously ongoing measurements during the entire time
interval [0, T ]. Obviously, this is an idealization. In practice, we have a manifestation of the



56 Antoniou I. et al.

Zeno effect, if the probability pN (T ) increases as the time interval τ between measurements
decreases. Formula (14) may be accepted as an approximation for a short time interval τ � tb.
For longer times we cannot use the Taylor expansion, therefore, Eq. (14) is not valid.

As one refers in discussions about the Zeno effect to the Taylor expansion (7) of survival
probability for small times, and speciˇcally to the second term, we shall deˇne the Zeno time
tZ as corresponding to the region where the second term dominates. Hence, as in paper [11],
we introduce the Zeno time tZ as a natural boundary where the second and third terms have
the same amplitude:

t2Z
t2a

=
t4Z
t4b

, so tZ = t2b/ta. (15)

Expressions (8), (9) include many different parameters and can hardly be analyzed in
general case. We consider here few speciˇc representative cases IÄIII for the physically
motivated weak coupling model [11] with

λ2 � 1 and Λ � ω. (16)

I. The decay of one level. In this case, the only level l is initially occupied: αl = 1,
αk = 0 for k 	= l. Expressions (8), (9) become

1
t2a

= λ2Λ2F 0
ll ,

1
t4b

= λ2Λ2

(
1
12

ω2
l F 0

ll −
1
6
ΛωlF

1
ll +

1
12

Λ2F 2
ll

)
+ λ4Λ4

(
(F 0

ll)
2

4
+

1
12

((F 0)2)ll

)
.

It is not surprising that the expressions for ta and tb practically coincide with those for the
one-level Friedrichs model [11]. Therefore, the Zeno time tZ is also the same:

tZ ∼ 1
Λ

√
12F 0

ll

F 2
ll

.

The only difference in the last term (
∑

m F 0
lmF 0

ml instead of (F 0
ll)

2 for one-level model) does
not in�uence the results for the moderate number of levels N for λ2 � 1.

II. The completely degenerate case. In this case, all frequencies are identical, ωk = ω
for any k. Expressions (8), (9) become

1
t2a

= λ2Λ2〈F 0〉,

1
t4b

= λ2Λ2

(
1
12

ω2〈F 0〉 − 1
6
Λω〈F 1〉 +

1
12

Λ2〈F 2〉
)

+ λ4Λ4

(
〈F 0〉2

4
+

1
12

〈(F 0)2〉
)

,

where
〈F p〉 =

∑
ik

αiα
∗
kF p

ik.

The matrices F p are the Gramm matrices. For these matrices the following condition is
satisˇed:

〈F p〉 ≥ 0, 〈F p〉 = 0
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for some α̃ iff the form factors fk(x) are linearly dependent:

∑
k

mkfk(x) ≡ 0. (17)

This case resembles case I when all averages 〈·〉 are separated from zero, e. g., the form
factors fk(x) are linearly independent. The Zeno time is of the same order of magnitude:

tZ ∼ 1
Λ

√
12〈F 0〉
〈F 2〉 .

However, the situation may change for special initial conditions Φ. Assuming for the sake of
simplicity that the form factors are identical, we have in this approximation

1
t4b

≈ λ2Λ4

12
F 2|α|2, tZ ≈ 1

Λ

√
12F 0

F 2
, where α =

∑
k

αk. (18)

We can now see that the Zeno time tZ is independent of the initial conditions. However, both
ta and tb increase to the inˇnity when α goes to zero. This means that the state Φ with α = 0
does not decay, while the relation between ta and tb is unchanged. The same is true when
the form factors are not identical but linearly dependent: there also exists a nondecaying state
Φ̃ (17). In this sense, the Zeno time deˇnition (15) may not work for the N -level model and
should be modiˇed. We would like to notice that this problem does not exist for the one-level
model analyzed in [11].

III. N -level model with one different level. In this case, energy of one level differs from
the others: ωk = ω, k = 1, . . . , N − 1, ωN = ω + ∆, and the form factors are identical:
fk(x) = f(x). Then we have for the time ta

1
t2a

= ∆2(|αN |2 − |αN |4) + λ2Λ2F 0|α|2.

We ˇrst analyze the time tb on condition (16):

1
t4b

=
∆4

12
(|αN |2 − |αN |4) +

λ2Λ4

12
F 2|α|2.

Both these times and the Zeno time depend on the initial vector. One can easily see that the
Zeno time always has a maximum as the function of energy difference ∆. We can easily
estimate the position and the value of this maximum:

tZ

(
∆
Λ

≈
√

λ 4

√
F 2|α|2

|αN |2 − |αN |4

)
≈ 4

√
36(|αN |2 − |αN |4)

F 2|α|2
1

Λ
√

λ
. (19)

One can see that the Zeno time is increased by the factor ∼ 1/
√

λ with respect to the one-level
model. When conditions (16) are not satisˇed, the prolongation of the Zeno time still takes
place. We illustrate this prolongation in the ˇgure using exact expression (9) for the time tb.
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The Zeno time tZ as the function of the energy dif-
ference ∆ for two-level Friedrichs model. The pa-
rameters of the model are: Λ = 8.498 · 1018 s−1,
ω = 1.55 · 1016 s−1, λ2 = 6.43 · 10−9. From
above, the curves correspond to the initial condition
Φ: (α1, α2) = (1,−0.6), (1, 1), (1, 0.1) and (1, 0),
respectively

We use the parameters of the model associated with the hydrogen atom [2]. One can see
that for this system the maximum (19) cannot be reached. However, for small ∆ we can ˇnd

tZ

(
∆
Λ

)
≈ tZ(0)

(
1 +

|αN |2 − |αN |4
2λ2F 0|α|2

(
∆
Λ

)2
)

> tZ(0), (20)

therefore, a prolongation always takes place.

CONCLUSION

We have analyzed the short-time behaviour for the N -level Friedrichs model. Compared
to the one-level model, there exists one important difference: the speed of the decay depends
on initial conditions. As a result, there exist situations when the decay is considerably slowed
down or even stopped. By choosing proper parameters of the system, the Zeno time can also
be considerably extended.
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