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Phenomena related to the nonperturbative aspects of strong interactions at the LHC are discussed
with the emphasis on elastic and inelastic, soft and hard diffraction processes. Predictions for the
global characteristics and angular distributions in protonÄproton collisions with elastic and multiparticle
ˇnal states are given. Potential for discovery of the novel effects related to the increasing role of the
elastic scattering at the LHC energies and their physical implications in diffractive and multiparticle
production processes are reviewed.

� ¸¸³ É·¨¢ ÕÉ¸Ö Ö¢²¥´¨Ö, ¸¢Ö§ ´´Ò¥ ¸ ´¥¶¥·ÉÊ·¡ É¨¢´Ò³ ¸¥±Éµ·µ³ ¸¨²Ó´ÒÌ ¢§ ¨³µ¤¥°-
¸É¢¨°. �¸´µ¢´µ¥ ¢´¨³ ´¨¥ Ê¤¥²¥´µ Ê¶·Ê£¨³ ¨ ´¥Ê¶·Ê£¨³, ³Ö£±¨³ ¨ ¦¥¸É±¨³ ¤¨Ëp ±Í¨µ´´Ò³
¶·µÍ¥¸¸ ³. „ ´Ò ¶·¥¤¸± § ´¨Ö ¤²Ö £²µ¡ ²Ó´ÒÌ Ì · ±É¥·¨¸É¨± ¨ Ê£²µ¢ÒÌ · ¸¶·¥¤¥²¥´¨° ¢ ¶·µÉµ´-
¶·µÉµ´´ÒÌ ¸Éµ²±´µ¢¥´¨ÖÌ ¸ µ¡· §µ¢ ´¨¥³ Ê¶·Ê£¨Ì ¨ ³´µ£µÎ ¸É¨Î´ÒÌ ±µ´¥Î´ÒÌ ¸µ¸ÉµÖ´¨°. �¡-
¸Ê¦¤ ÕÉ¸Ö ¢µ§³µ¦´µ¸É¨ µÉ±·ÒÉ¨Ö ´µ¢ÒÌ ÔËË¥±Éµ¢, ¸¢Ö§ ´´ÒÌ ¸ ¢µ§· ¸É ÕÐ¥° ·µ²ÓÕ Ê¶·Ê£µ£µ
· ¸¸¥Ö´¨Ö ¶·¨ Ô´¥·£¨ÖÌ LHC, ¨ ¨Ì ¶·µÖ¢²¥´¨¥ ¢ ¤¨Ëp ±Í¨µ´´ÒÌ ¶·µÍ¥¸¸ Ì ¨ ¶·µÍ¥¸¸ Ì ³´µ¦¥-
¸É¢¥´´µ£µ ·µ¦¤¥´¨Ö.

INTRODUCTION

The knowledge of hadron structure and hadron interaction dynamics is the
ultimate goal of strong interaction theory. Nowadays quantum chromodynamics
(QCD) is generally accepted as such a theory. Perturbative QCD enables one
to successfully describe spin-averaged observables at short distances. However,
perturbative calculations cannot be applied already at the distances larger than
0.1 fm due to chiral symmetry breaking. Moreover, any real hadron hard interac-
tion process involves also long-range interaction at some stage. The fundamental
problems of the strong-interaction theory are well known and related to conˇne-
ment and chiral symmetry breaking phenomena. These phenomena have dealt
with collective, coherent properties of quarks and gluons. Closely related are the
problems of the spin structure of a nucleon and helicity nonconservation on the
quark and hadron levels.

From the phenomenological point of view all the above-mentioned phenome-
na take place in the region of diffractive physics. Thus understanding of the
diffractive interactions plays a fundamental role under the studies of high-energy
limit of QCD. Studies of diffractive processes are also important in the broad con-
text of hadron physics problems [6]. It was rather surprising that a high relative
probability of coherent processes at high energies was revealed in the experiments
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on hard diffraction at CERN [1] and diffractive events in the deep-inelastic scat-
tering at HERA [2,3]. Signiˇcant fraction of high-t events among the diffractive
events in deep-inelastic scattering and in hadronÄhadron interactions were also
observed at HERA [4] and Tevatron [5], respectively. These experimental results
renewed interest in the further experimental and theoretical studies of diffractive
processes and stimulated interest to the dedicated QCD experimental studies at
the LHC (cf. [7]).

Among the global problems of strong interactions the total cross-section
behaviour and its rise constitute the most important question. There are various
approaches which provide the total cross-section increase with energy but the
reason leading to such behaviour remains obscure. The nature of the total cross-
section rising energy dependence currently is not understood, since underlying
microscopic mechanism is dominated by the nonperturbative QCD effects and
even rather simple question on universality or nonuniversality of this mechanism
has no deˇnite answer. An important role here belongs to elastic scattering where
hadron constituents interact coherently. Single diffraction dissociation is the most
simple inelastic diffractive process, and studies of soft and hard ˇnal states in this
process could become the next step after the elastic scattering.

Multiparticle production and the global observables such as mean multi-
plicity and its energy dependence alongside with the total, elastic, and inelas-
tic cross sections provide a clue to the mechanisms of conˇnement and hadro-
nization.

General principles play an essential role in the nonperturbative sector of
QCD, and unitarity which regulates the relative strength of elastic and inelastic
processes is the most important one. Owing to the experimental efforts during
recent decades it has become evident that coherent elastic-scattering process will
survive at high energies and in particular at the LHC. However, it is not evident:
will hadron interaction remain to be dominated by multiparticle production? Or
at some distances elastic-scattering channel can become playing a dominant role
at the LHC energy. This question constitutes an important problem for the
background estimates for the LHC experiments. We give here arguments in favor
of the unorthodox point of view, i.e., we would like to discuss possible realization
of the new scattering mode where elastic scattering prevails at superhigh energies
and consider experimental signatures in the studies of hadronic interactions at the
LHC. Such experiments will be crucial for understanding of microscopic nature
of the driving mechanism which provides rising cross section, its possible parton
structure, high-energy limit of strong interactions and approach to the asymptotical
region.

Prevalent role of elastic scattering at very high energies has in some extent
been implied by the limitations for inelastic processes obtained on the basis of the
general principles. In particular, it has been shown that the effective interaction
radius of any inelastic process cannot be greater than the interaction radius of
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the corresponding (i.e., the process with the same particles in the initial state)
elastic-scattering process [8].

The appearance of antishadowing would be associated with signiˇcant spin
correlations of the produced particles. We brie�y mention some spin-related
experimental possibilities then.

In general we review here particular problems in hadron interactions which
in some cases closely or in other cases not so much but related to the phenomena
of antishadowing. Several original results have already been published in [9],
others are discussed here for the ˇrst time.

1. APPROACH TO ASYMPTOTICAL REGION
AND UNITARIZATION METHODS

It is always important to know how far the asymptotical region lies. Unfor-
tunately, at the moment the answer for the above question can be given in the
model-dependent way only and currently there is no universal criterion. There
are many model parameterizations for the total cross sections which use ln2 s
dependence for σtot(s). Such models were used widely since the ˇrst CERN ISR
results had appeared∗. This implies the saturation of the FroissartÄMartin bound,
however, with coefˇcient in front of ln2 s which is lower than the asymptotical
bound∗∗. On the other side, the power-like parameterizations of σtot(s) disre-
gard the FroissartÄMartin bound and consider it as a matter of the very distant
asymptopia. Both approaches provide successful ˇts to the experimental data
in the available energy range and even lead to similar predictions for the LHC
energies.

However, it is not clear whether the power-like energy dependence would
obey unitarity bound for the partial-wave amplitudes at the LHC energies and
beyond. Meanwhile, as is mentioned, unitarity is an important principle which is
needed to be fulˇlled anyway. The most straightforward way is to construct an
amplitude which ab initio satisˇes unitarity. But the most common way consists
in the use of a unitarization procedure of some input power-like ®amplitude¯.
Unitarization provides a complicated energy dependence of σtot(s) which can
be approximated by the various functional forms depending on particular energy
range under consideration. These forms providing a good description of the
experimental data in the limited energy range have nothing to do with the true

∗The ˇrst model which provides ln2 s dependence for the total cross section was developed by
Heisenberg [10].

∗∗It is a known but not often mentioned fact, that the amplitude which provides an exact
saturation of the FroissartÄMartin bound does correspond to pure elastic scattering.
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asymptotical dependence ln2 s. Of course, unitarization will lead to the ln2 s
dependence but only at s → ∞.

Unitarity of the scattering matrix SS+ = 1 implies, in principle, an existence
at high energies s > s0, where s0 is some threshold, of the new scattering
mode Å antishadow one. It has been revealed in [11] and described in some
detail (cf. [12] and references therein), and the most important feature of this
mode is the self-damping of the contribution from the inelastic channels.

We argue here that the antishadow scattering mode could be deˇnitely re-
vealed at the LHC energies and give quantitative and qualitative predictions based
on the rational unitarization, i.e., U -matrix unitarization method [13]. There is
no universal, generally accepted method to implement unitarity in high-energy
scattering and as a result of this fact a related problem of the role of absorptive
corrections and their sign has a long history (cf. [14] and references therein).
However, a choice of particular unitarization scheme is not just a matter of taste.
Long time ago the arguments based on analytical properties of the scattering am-
plitude were put forward [15] in favor of the rational form of unitarization. It
was shown that this form of unitarization reproduced correct analytical properties
of the scattering amplitude in the complex energy plane much easier compared to
the exponential form (simple eikonal singularities would lead to an essential sin-
gularities in the amplitude). In potential scattering the eikonal (exponential) and
U -matrix (rational) forms of unitarization correspond to two different approxi-
mations of the scattering wave function, which satisfy the Schréodinger equation
to the same order. Rational form of unitarization corresponds to an approximate
wave function which changes both the phase and amplitude of the wave. This
form follows from dispersion theory. It can be rewritten in the exponential form
but with completely different resultant phase function, and relation of the two
phase functions is given in [15].

2. UNITARITY: PARTICLE PRODUCTION
AND ELASTIC SCATTERING

In the impact parameter representation the unitarity relation written for the
elastic scattering amplitude f(s, b) at high energies has the form

Im f(s, b) = |f(s, b)|2 + η(s, b), (1)

where the inelastic overlap function η(s, b) is the sum of all inelastic channel
contributions. It can be expressed as a sum of n-particle production cross sections
at the given impact parameter

η(s, b) =
∑

n

σn(s, b). (2)
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The impact parameter b has a simple geometrical meaning as the distance in
the transverse plane between the centres of the two colliding hadrons. Unitarity
equation has two solutions for the case of pure imaginary amplitude:

f(s, b) =
i

2
[1 −

√
1 − 4η(s, b)], (3)

f(s, b) =
i

2
[1 +

√
1 − 4η(s, b)]. (4)

Almost everywhere the second solution is not taken into account, since f(s, b) →
0 and η(s, b) → 0 at b → ∞. However, there is nothing wrong with the second
solution in the limited region of impact parameters. Existence of the second
solution leads to interesting experimental predictions and should be taken into
account. Both solutions of unitarity are naturally reproduced by the rational (U
matrix) form of unitarization. In the U -matrix approach the form of the elastic
scattering amplitude in the impact parameter representation is the following:

f(s, b) =
U(s, b)

1 − iU(s, b)
. (5)

U(s, b) is the generalized reaction matrix, which is considered to be an input
dynamical quantity similar to an eikonal function. It is worth noting that transition
to antishadowing at small impact parameters can be incorporated into eikonal
unitarization, however, the latter should have a very peculiar form. Inelastic
overlap function is connected with U(s, b) by the relation

η(s, b) =
Im U(s, b)

|1 − iU(s, b)|2 . (6)

Construction of the particular models in the framework of the U -matrix
approach proceeds the common steps, i.e., the basic dynamics as well as the
notions on hadron structure being used to obtain a particular form for the U
matrix. U -matrix unitarization scheme and eikonal scheme lead to different
predictions for the asymptotical behaviour of inelastic cross section and for the
ratio of elastic-to-total cross section. This ratio in the U -matrix unitarization
scheme reaches its maximal possible value at s → ∞, i.e., growth of the elastic
cross-section is to be steeper than the growth of the inelastic cross section beyond
some threshold energy

σel(s) ∼ σtot(s) ∼ ln2 s, σinel(s) ∼ ln s, (7)

which re�ects in fact that the upper bound for the partial-wave amplitude in the
U -matrix approach (unitarity limit) is |fl| � 1, while the bound for the case of
imaginary eikonal is (black disk limit): |fl| � 1/2. When the amplitude exceeds
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the black disk limit (in central collisions at high energies), then the scattering
at such impact parameters turns out to be of an antishadow nature. In this
antishadow scattering mode the elastic amplitude increases with the decrease of
the inelastic-channels contribution.

It is worth noting that the shadow scattering mode is considered usually as
the only possible one. But as it was already mentioned, existence of the second
solution of unitarity in the limited range of impact parameters is completely lawful
and an antishadow scattering mode should not be excluded. Antishadowing can
occur in the limited region of impact parameters b < R(s) (while at large impact
parameters only shadow scattering mode can be realized). Shadow scattering
mode can exist without antishadowing, but the opposite statement is not valid.

Appearance of the antishadow scattering mode is consistent with the basic
idea that the particle production is the driving force for elastic scattering. Indeed,
the imaginary part of the generalized reaction matrix is the sum of inelastic
channel contributions:

Im U(s, b) =
∑

n

Ūn(s, b), (8)

where n runs over all inelastic states and

Ūn(s, b) =
∫

dΓn|Un(s, b, {ζn}|2, (9)

and dΓn is the n-particle element of the phase space volume. The functions
Un(s, b, {ζn}) are determined by the dynamics of 2 → n processes. Thus,
the quantity Im U(s, b) itself is a shadow of the inelastic processes. However,
unitarity leads to self-damping of the inelastic channels [16] and the increase of
the function Im U(s, b) results in the decrease of the inelastic overlap function
η(s, b) when Im U(s, b) exceeds unity.

Respective inclusive cross section [17,18] which takes into account unitarity
in the direct channel has the form

dσ

dζ
= 8π

∫ ∞

0

bdb
I(s, b, ζ)

|1 − iU(s, b)|2 . (10)

The function I(s, b, ζ) in Eq. (10) is expressed via the functions Un(s, b, ζ,
{ζn−1}) determined by the dynamics of the processes h1 + h2 → h3 + Xn−1:

I(s, b, ζ) =
∑
n�3

n

∫
dΓn|Un(s, b, ζ, {ζn−1})|2 (11)

and ∫
I(s, b, ζ)dζ = n̄(s, b) Im U(s, b). (12)
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Fig. 1. Impact parameter dependence of the inelastic overlap function in the standard
unitarization scheme (a) and in the unitarization scheme with antishadowing (b)

The kinematical variables ζ (x and p⊥, for example) refer to the produced
particle h3, and the set of variables {ζn−1} describes the system Xn−1 of n − 1
particles.

Let us consider now transition to the antishadow scattering mode, which was
revealed in [11]. With conventional parameterizations of the U matrix (which
provide rising cross sections) inelastic overlap function increases with energies
at modest values of s. It reaches its maximum value η(s, b = 0) = 1/4 at
some energy s = s0 and beyond this energy the antishadow scattering starts to
develop at small values of b ˇrst. The region of energies and impact parameters
corresponding to the antishadow scattering mode is determined by the conditions
Im f(s, b) > 1/2 and η(s, b) < 1/4. The quantitative analysis of the experimental
data [19] gives the threshold value of energy:

√
s0 � 2 TeV. This value is

conˇrmed by the other model considerations [20].

Thus, the function η(s, b) becomes peripheral when energy is increasing
beyond s = s0. At such energies the inelastic overlap function reaches its max-
imum value at b = R(s), where R(s) is the interaction radius. So, beyond
the transition energy there are two regions in impact parameter space: the cen-
tral region of antishadow scattering at b < R(s) and the peripheral region of
shadow scattering at b > R(s). The impact parameter dependence of the inelastic
channel contribution η(s, b) at s > s0 is represented in Fig. 1 for the case of stan-
dard unitarization scheme and for the unitarization scheme with
antishadowing.

The region of the LHC energies is the one where antishadow scattering mode
is to be presented. It will be demonstrated in the next section that this mode
can be revealed directly measuring σel(s) and σtot(s) and not only through the
analysis in impact parameter representation.
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3. APPROACH TO ASYMPTOTICS IN THE U -MATRIX MODEL

To get the numerical estimates we shall use the following ansatz for the
generalized reaction matrix

U(s, b) = ig

[
1 + α

√
s

mQ

]N

exp (−Mb/ξ) ≡ ig(s) exp (−Mb/ξ), (13)

where M =
∑N

q=1 mQ. Here mQ is the mass of constituent quark, which is
taken to be 0.35 GeV, N is the total number of valence quarks in the colliding
hadrons, i.e., N = 6 for pp scattering. The values for the other parameters were
obtained in [19] and are the following: g = 0.24, ξ = 2.5, α = 0.56 · 10−4.
With these values of parameters the model provides satisfactory description of
the available experimental data for the forward elastic pp scattering. To obtain
the above explicit form for the function U(s, b) we used chiral quark model
for U matrix [21], where U(s, b) is chosen as a product of the averaged quark
amplitudes

U(s, b) =
N∏

Q=1

〈fQ(s, b)〉 (14)

in accordance with the assumed quasi-independence of valence quark scattering.
The b dependence of the function 〈fQ〉 has a simple form 〈fQ〉 ∝ exp (−mQb/ξ)
which corresponds to quark interaction radius rQ = ξ/mQ.

For the LHC energy
√

s = 14 TeV we have

σtot � 230 mb (15)

and
σel/σtot � 0.67. (16)

Thus, the antishadow scattering mode could be discovered at the LHC by
measuring σel/σtot ratio which is greater than the black disc value 1/2 (cf. Fig. 2).

However, the LHC energy is not in the asymptotic region yet; the total,
elastic and inelastic cross sections behave like

σtot,el ∝ ln2

[
g

(
1 + α

√
s

mQ

)N
]

, σinel ∝ ln

[
g

(
1 + α

√
s

mQ

)N
]

. (17)

Asymptotical behavior

σtot,el ∝ ln2 s, σinel ∝ ln s (18)

is expected at
√

s > 100 TeV.
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Fig. 2. Total (a) and ratio of elastic-to-total cross sections (b) of pp interactions

Another prediction of the chiral quark model is the decreasing energy de-
pendence of the cross section of the inelastic diffraction at s > s0. Decrease of
diffractive production cross section at high energies (s > s0) is due to the fact
that η(s, b) becomes peripheral at s > s0, and the whole picture corresponds to
the antishadow scattering at b < R(s) and to the shadow scattering at b > R(s),
where R(s) is the interaction radius:

dσdiff

dM2
X

� 8πg∗ξ2

M2
X

η(s, 0). (19)

The parameter g∗ < 1 is the probability of the excitation of a constituent quark
during interaction. Diffractive production cross section has the familiar 1/M2

dependence which is related in this model to the geometrical size of excited
constituent quark.

At the LHC energy
√

s = 14 GeV the single diffractive inelastic cross section
is limited by the value σdiff(s) � 2.4 mb.

The above predicted values for the global characteristics of pp interactions at
the LHC differ from the most common predictions of the other models. First, the
total cross section is predicted to be twice as much of the common predictions
in the range 95Ä120 mb [22] and it even overshoots the existing cosmic-ray
data. However, extracting total protonÄproton cross sections from cosmic-ray
experiments is model-dependent and far from straightforward (see, e.g., [23] and
references therein). Those experiments measure the attenuation lengths of the
showers initiated by the cosmic particles in the atmosphere and are sensitive
to the model-dependent parameter called inelasticity. They do not provide any
information on elastic scattering channel.

4. ANGULAR STRUCTURE OF ELASTIC SCATTERING
AND DIFFRACTION DISSOCIATION

Elastic scattering amplitude F (s, t) is determined by the singularities in the
impact parameter complex plane Å β = b2 plane. It has poles which positions
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Fig. 3. Singularities of the scattering amplitude in
the complex β plane

are determined by the solutions of the following equation:

1 + U(s, β) = 0 (20)

and the branching point at β = 0 (cf. Fig. 3), i.e.,

F (s, t) = Fp(s, t) + Fc(s, t).

Contribution of the poles located at the points

βn(s) =
[
R(s) + i

ξ

M
πn

]2

, n = ±1,±3, . . . ,

where

R(s) =
ξ

M
ln g(s),

determines the elastic amplitude in the region |t|/s 
 1 (t �= 0). The amplitude
in this region can be represented in the form of series over the parameter τ(

√
−t):

F (s, t) = s

∞∑
k=1

τk(
√
−t)ϕk[R(s),

√
−t], (21)

where the parameter τ decreases exponentially with
√
−t:

τ(
√
−t) = exp

(
−2πξ

M

√
−t

)
.

This series provides diffraction peak and dip-bump structure of the differential
cross section in elastic scattering. In the region of moderate t it is sufˇcient to
keep few or even one of the terms of series Eq. (21). The differential cross
section in this region has the well-known Orear behavior. For elastic scattering
amplitude F (s, t) the pole and cut contributions are decoupled dynamically when
g(s) → ∞ at s → ∞. At large momentum transfer (s → ∞, |t|/s Å ˇxed) the
contribution from the branching point (β = 0) is a dominating one. The angular
distribution in this region has the power dependence

dσ

dt
∝

(
1
s

)N+3

f(θ). (22)
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There is a direct interrelation of the power law behavior of the differential cross
sections of large angle scattering with rising behavior of the total cross sections
at high energies.

Similarity between elastic and inelastic diffraction in the t-channel approach
suggests that the latter one would have similar to elastic scattering behavior of
the differential cross section. However, it cannot be taken for granted and, e.g.,
transverse momentum distribution of diffractive events in the deep-inelastic scat-
tering at HERA shows a power-like behavior without apparent dips [24]. Similar
behavior was observed also in the hadronic diffraction dissociation process at
CERN [1] where also no dip and bump structure was observed. Angular depen-
dence of diffraction dissociation together with the measurements of the differential
cross section in elastic scattering would allow one to determine the geometrical
properties of elastic and inelastic diffraction, their similar and distinctive features
and origin. In the U -matrix approach the impact parameter amplitude of diffrac-
tion dissociation Fdiff(s, b, MX) can be written in the pure imaginary case as a
square root of the cross section, i.e.,

Fdiff(s, b, MX) =
√

Udiff(s, b, MX)/[1 + U(s, b)], (23)

and the amplitude Fdiff(s, t, MX) is

Fdiff(s, t, MX) =
is

π2

∫ ∞

0

bdbJ0(b
√
−t)

√
Udiff(s, b, MX)/[1 + U(s, b)]. (24)

The corresponding amplitude Fdiff(s, t, MX) can be calculated analytically. To do
so we continue the amplitudes Fdiff(s, β, MX), β = b2, to the complex β plane,
and then Fdiff(s, t, MX) can be represented as a sum of the pole contribution and
the contribution of the cut [25]:

Fdiff(s, t, MX) = Fdiff,p(s, t, MX) + Fdiff,c(s, t, MX). (25)

The situation is different in the case of diffraction production. Instead of
dynamical separation of the pole and cut contribution discussed above we have a
suppression of the pole contribution at high energies since at ˇxed t

Fdiff,p = O
(
s[g(s)]−MX/(2M) ln1/2 g(s)

)
, Fdiff,c = O

(
s[g(s)]−1/2

)
. (26)

Therefore, at all t values we will have

Fdiff(s, t, MX) � Fdiff,c(s, t, MX), (27)

where

Fdiff,c(s, t, MX) � ig∗g−1/2(s)
(

1 − t

M̄2
X

)−3/2

, (28)
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where M̄X = (MX − M − 1)/2ξ. This means that the differential cross section
of the diffraction production will have smooth dependence on t with no apparent
dips and bumps

dσdiff

dtdM2
X

∝
(

1 − t

M̄2
X

)−3

. (29)

It is interesting to note that at large values of MX � M the normalized differential

cross section
1
σ0

dσ

dtdM2
X

(σ0 is the value of cross section at t = 0) will exhibit

scaling behavior
1
σ0

dσ

dtdM2
X

= f(−t/M2
X), (30)

and explicit form of the function f(−t/M2
X) is the following

f(−t/M2
X) = (1 − 4ξ2t/M2

X)−3. (31)

This dependence is depicted in Fig. 4.
The above scaling has been obtained in the model approach, however, it

might have a more general meaning.
The angular structure of diffraction dissociation processes given by Eq. (29)

takes place at high energies, where g(s) > 1, while at moderate and low energies,
where g(s) � 1, both the contributions from poles and cut are signiˇcant. In this
region

Fdiff(s, t, M2
X) = s

∞∑
k=1

τk(
√
−t)ϕdiff,k[R(s),

√
−t, M2

X ], (32)

Fig. 4. Scaling behavior of the normalized differential cross section
1

σ0

dσ

dtdM2
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where the parameter τ(
√
−t) is the same as it is in the elastic scattering. Thus

at low energies the situation is similar to the elastic scattering, i.e., diffraction
cone and possible dip-bump structure should be present in the region of small
values of t, and the overall behaviour of the differential cross section will be
rather complicated and incorporate diffraction cone, Orear-type and power-like
dependences.

However, at high energies a simple power-like dependence on t (Eq. (29))
is predicted. It was shown that the normalized differential cross section has a
scaling form and depends only on the ratio −t/M2

X at large values of M2
X .

In fact, our particular comparative analysis of the poles and cut contributions
has very little with the model form of the U matrix. This is why it has a more
general meaning.

At the LHC energies the diffractive events with the masses as large as 3 TeV
could be studied. It would be interesting to check this prediction at the LHC where
the scaling and simple power-like behavior of diffraction dissociation differential
cross section should be observed. Observation of such behavior would conˇrm the
diffraction mechanism based on excitation of the complex hadron-like object Å
the constituent quark.

5. ANGULAR DISTRIBUTIONS OF LEADING PROTONS
IN CENTRAL PRODUCTION PROCESSES

It was proposed in [26] to study the in�uence of centrally produced particles
on the angular distribution of leading protons in the processes with two rapidity
gaps, which are also known as double Pomeron exchange (dpe) processes:

p + p → p + X + p. (33)

In what follows we will consider symmetrical case t1 = t2 = t. It is interesting
to study how the diffractive pattern observed in elastic scattering will be changed
in the corresponding processes with centrally produced particles.

First of all, elastic scattering and the process (33) are very different from
the point of view of unitarity equation (1). The process (33) is one of the many
contributing processes to the function η(s, b) and consequently into the amplitude
of elastic scattering f(s, b). In the U -matrix approach the impact parameter
amplitude of the process (33) Fdpe(s, b, ζ) can be written in the pure imaginary
case according to (10) as a square root of the cross section, i.e.,

Fdpe(s, b, ζ) =
√

I(s, b, ζ)/[1 + U(s, b)], (34)



1046 TROSHIN S. M., TYURIN N. E.

and the amplitude Fdpe(s, t, ζ) is

Fdpe(s, t, ζ) =
is

π2

∞∫
0

bdbJ0(b
√
−t)

√
I(s, b, ζ)/[1 + U(s, b)]. (35)

The variable t is the momentum transfer to one of the protons, while the variable
ζ is related to the system of particles X or to one particle from this system.
Using relation (12) we can represent I(s, b, ζ) in the form

I(s, b, ζ) = Φ(s, b, ζ) Im U(s, b), (36)

where ∫
Φ(s, b, ζ)dζ = n̄(s, b). (37)

For the mean multiplicity we suppose that the multiplicity of the centrally pro-
duced particles is given by the following expression

n̄(s, b) = βN0(s)DC(b), (38)

where the function DC(b) describes distribution of two hadron condensate clouds
in the overlapping region. Arguments in favor of such a form and assumed
hadron structure are desribed in the next section. The corresponding amplitude
Fdpe(s, t, ζ) can be calculated analytically, and calculations are similar to the
case of elastic scattering amplitude and amplitude of diffraction dissociation. It
is necessary to continue the amplitudes Fdpe(s, β, ζ) (β = b2) to the complex
β plane and transform the FourierÄBessel integral over impact parameter into
the integral in the complex β plane over the contour C which goes around the
positive semiaxis. The amplitude Fdpe(s, β, ζ) has the poles and a branching
point at β = 0. Therefore it can be represented as a sum of the pole contributions
and the contribution of the cut:

Fdpe(s, t, ζ) = Fdpe,p(s, t, ζ) + Fdpe,c(s, t, ζ). (39)

Then, using relation (37) and assuming

Φ(s, b, ζ) = n̄(s, b)φ(ζ),

we obtain that

Fdpe,p ∼ s
∑

n=±1,±3,...

[n̄(s,
√

βn)φ(ζ)]
√

βnK0(
√

tβn), (40)

i.e., diffractive pattern of leading protons will depend on the distribution of mean
multiplicity in impact parameter of the centrally produced particles. Using the
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mean multiplicity results described in Sec. 6, the amplitude (40) can be rewritten
in the form

Fdpe,p ∼ ss1/4(1−MCξ/mQ)φ(ζ)×

×
∑

n=±1,±3,...

exp
(

iπn
MCξ

2M

) √
βnK0(

√
tβn). (41)

Thus, the presence of oscillating factor exp
(

iπn
MCξ

2M

)
would lead to signiˇcant

differences in the diffractive patterns of leading protons in the process (33) and
in elastic scattering. Indeed, at small values of t all terms of the series (41) are
important. In elastic scattering the summation over all n leads to the exponential
behavior of the differential cross section [21]:

dσ

dt
∝ exp (B(s)t), B(s) ∝ ln2 s. (42)

However, for the process (33) the terms with large values of n will be sup-
pressed due to the oscillation factor. Thus, we expect that the Orear-type
behaviour will take place already at low values of t, and differential cross
section would have the following t dependence already at small and moderate
values of t:

dσ

dtdζ
∝ exp

(
−2πξ

M

√
−t

)
. (43)

6. MULTIPARTICLE PRODUCTION AND ANTISHADOWING

The region of the LHC energies is the one where a new, antishadow scat-
tering mode can be observed. Immediate question arises on consistency of the
antishadowing with the growth of mean multiplicity in hadronic collisions with
energy. Moreover, many models and the experimental data suggest a power-like
energy dependence of mean multiplicity∗, and a priori the compatibility of such
dependence with antishadowing is not evident.

Now we turn to the mean multiplicity and consider ˇrst the corresponding
quantity in the impact parameter representation. As follows from (11) and (12),
the n-particle production cross section σn(s, b)

σn(s, b) =
Ūn(s, b)

|1 − iU(s, b)|2 . (44)

∗Recent discussions of the problems of multiparticle production processes and rising mean
hadronic multiplicity dependence can be found in [27, 28].
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Then the probability

Pn(s, b) ≡ σn(s, b)
σinel(s, b)

=
Ūn(s, b)

Im U(s, b)
. (45)

Thus, we observe the cancellation of unitarity corrections in the ratio of the
cross sections σn(s, b) and σinel(s, b). Therefore the mean multiplicity in the
impact parameter representation

n̄(s, b) =
∑

n

nPn(s, b)

is not affected by unitarity corrections and therefore cannot be proportional to
η(s, b). This conclusion is consistent with Eq. (12). The above-mentioned pro-
portionality is a rather natural assumption in the framework of the geometrical
models, but it is in con�ict with the unitarity. Because of that, the results [30]
based on such assumption should be taken with precaution. However, the above
cancellation of unitarity corrections does not take place for the quantity n̄(s)
which we address now.

We use a model for the hadron scattering described in [21] which is based
on the ideas of chiral quark models. The picture of a hadron consisting of
constituent quarks embedded into quark condensate implies that overlapping
and interaction of peripheral clouds occur at the ˇrst stage of hadron interac-
tion (Fig. 5). Nonlinear ˇeld couplings could transform then the kinetic energy

Fig. 5. Schematic view of the initial stage of
the hadron interaction

to the internal energy, and mecha-
nism of such transformation was dis-
cussed by Heisenberg [10] and Car-
ruthers [31]. As a result, massive vir-
tual quarks appear in the overlapping
region and some effective ˇeld is gen-
erated. Valence constituent quarks lo-
cated in the central part of hadrons are
supposed to scatter simultaneously in
a quasi-independent way by this effec-
tive ˇeld.

Massive virtual quarks play a role
of scatterers for the valence quarks in
elastic scattering and their hadroniza-
tion leads to production of secondary
particles in the central region. To es-
timate number of such scatterers one

could assume that a part of hadron energy carried by outer condensate clouds
is being released in the overlap region to generate massive quarks. Then this
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number can be estimated by:

Ñ(s, b) ∝ (1 − 〈kQ〉)√s

mQ
Dh1

c ⊗ Dh2
c ≡ N0(s)DC(b), (46)

where mQ is the constituent quark mass; 〈kQ〉 is the average fraction of hadron
energy carried by the constituent valence quarks. Function Dh

c describes conden-
sate distribution inside the hadron h, and b is an impact parameter of the colliding
hadrons.

Thus, Ñ(s, b) quarks appear in addition to N = nh1 + nh2 valence quarks.
In elastic scattering those quarks are transient ones: they are transformed back
into the condensates of the ˇnal hadrons. Calculation of elastic scattering am-
plitude has been performed in [21]. However, valence quarks can excite a part
of the cloud of the virtual massive quarks, and these virtual massive quarks will
subsequently fragment into the multiparticle ˇnal states. Such mechanism is re-
sponsible for the particle production in the fragmentation region and should lead
to strong correlations between secondary particles. It means that correlations exist
between particles from the same (short-range correlations) and different clusters
(long-range correlations) and, in particular, the forward-backward multiplicity
correlations should be observed. This mechanism can be called as a correlated
cluster production mechanism. Evidently, similar mechanism should be signif-
icantly reduced in e+e−-annihilation processes, and therefore large correlations
are not to be expected there.

As was already mentioned, simple (not induced by interactions with valence
quarks) hadronization of massive Ñ(s, b) quarks leads to formation of the multi-
particle ˇnal states, i.e., production of the secondary particles in the central region.
The latter should not provide any correlations in the multiplicity distribution.

Remarkably, existence of the massive quark-antiquark matter in the stage
preceding hadronization seems to be supported by the experimental data obtained
at CERN SPS and RHIC (see [32] and references therein).

Since the quarks are constituent, it is natural to expect direct proportional-
ity between a secondary-particle multiplicity and the number of virtual massive
quarks appeared (due to both mechanisms of multiparticle production) in collision
of the hadrons with given impact parameter:

n̄(s, b) = α(nh1 + nh2)N0(s)DF (b) + βN0(s)DC(b), (47)

with constant factors α and β and

DF (b) ≡ DQ ⊗ DC ,

where the function DQ(b) is the probability amplitude of the interaction of valence
quark with the excitation of the effective ˇeld, which is in fact related to the
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quark matter distribution in this hadron-like object called the valence constituent
quark [21]. The mean multiplicity n̄(s) can be calculated according to the formula

n̄(s) =

∞∫
0

n̄(s, b)η(s, b)bdb

∞∫
0

η(s, b)bdb

. (48)

It is evident from Eq. (48) and Fig. 1 that the antishadow mode with the peripheral
proˇle of η(s, b) suppresses the region of small impact parameters, and the main
contribution to the mean multiplicity is due to peripheral region of b ∼ R(s).

To make explicit calculations we model for simplicity the condensate distri-
bution DC(b) and the impact parameter dependence of the probability amplitude
DQ(b) of the interaction of valence quark with the excitation of the effective
ˇeld by the exponential forms, and thus we use exponential dependences for the
functions DF (b) and DC(b) with the different radii. Then the mean multiplicity

n̄(s, b) = α̃N0(s) exp (−b/RF ) + β̃N0(s) exp (−b/RC). (49)

After calculation of the integrals (48) we arrive to the power-like dependence
of the mean multiplicity n̄(s) at high energies

n̄(s) = asδF + bsδC , (50)

where

δF =
1
2

(
1 − ξ

mQRF

)
and δC =

1
2

(
1 − ξ

mQRC

)
.

There are four free parameters in the model, α̃, β̃ and RF , RC , and the
freedom in their choice is translated to a, b and δF , δC . The value of ξ = 2 is
ˇxed from the data on angular distributions [21] and for the mass of constituent
quark the standard value mQ = 0.35 GeV was taken. However, ˇt to experimental
data on the mean multiplicity leads to approximate equality δF � δC and actually
Eq. (50) is reduced to the two-parametric power-like energy dependence of mean
multiplicity

n̄ = asδ,

which is in good agreement with the experimental data (Fig. 6). Equality δF � δC

means that variation of the correlation strength with energy is weaker than the
power-like one and could be described, e.g., by a logarithmic function of energy.
From the comparison with the data on mean multiplicity we obtain that δ � 0.2,
which corresponds to the effective masses, which are determined by the respective
radii (M = 1/R), MC � MF � 0.3mQ, i.e., MF � MC � mπ.
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Fig. 6. Energy dependence of mean multi-
plicity; theoretical curve is given by the equa-
tion n̄(s) = asδ (a = 2.328, δ = 0.201);
experimental data are taken from Refs. 33

The value of mean multiplicity expected at the LHC energy (
√

s = 14 TeV)
is about 110. It is not surprising that it is impossible to differentiate contributions
from the two mechanisms of particle production at the level of mean multiplicity.
The studies of correlations are necessary for that purpose.

Multiplicity distribution Pn(s, b) and mean multiplicity n̄(s, b) in the impact
parameter representation have no absorptive corrections, but since antishadowing
leads to suppression of particle production at small impact parameters and the
main contribution to the integral multiplicity n̄(s) comes from the region of
b ∼ R(s). Of course, this prediction is to be valid for the energy range where
antishadow scattering mode starts to develop and is therefore consistent with the
®centrality¯ dependence of the mean multiplicity observed at RHIC [35].

It is also worth noting that no limitations follow from the general princi-
ples for the mean multiplicity, besides the well-known one based on the energy
conservation law. Having in mind relation (49), we could say that the ob-
tained power-like dependence which takes into account unitarity effects could
be considered as a kind of a saturated upper bound for the mean multiplicity
growth.

Elastic scattering domination at the LHC and the appearance of the anti-
shadow scattering mode implies a somewhat unusual scattering picture. At high
energies the proton should be represented as a very loosely bounded composite
system and it appears that this system has a high probability to reinstate itself only
in the central collisions where all of its parts participate in the coherent interac-
tions. Therefore the central collisions are responsible for elastic processes, while
the peripheral ones where only few parts of weekly bounded protons are involved
result in the production of the secondary particles. This leads to the peripheral
impact parameter proˇle of the inelastic overlap function. Such evolution could
be accomplished with spin correlations of the produced particles.
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7. POLARIZATION MEASUREMENTS

In soft hadronic interactions signiˇcant single-spin effects could be expected
since the helicity conservation does not work for interactions at large distances,
once the chiral SU(3)L × SU(3)R symmetry of the QCD Lagrangian is spon-
taneously broken in the real world. Thus, studies of the p⊥ dependence of the
one-spin asymmetries can be used as a way to reveal a transition from the nonper-
turbative phase (P �= 0) to the perturbative one (P = 0). The essential point here
is an assumption that at short distances the vacuum is perturbative. However,
the very existence of the above transition cannot be taken for granted since the
vacuum, even at short distances, could be ˇlled up with the �uctuations of gluon
and quark ˇelds. The measurements of the one-spin transverse asymmetries and
polarization is an important probe of the chiral structure of the effective QCD
Lagrangian.

At the same time we can note that polarization effects as well as some other
recent experimental data demonstrate that hadron interactions have a signiˇcant
degree of coherence. Experimentally, spin asymmetries increase at high transverse
momentum in elastic scattering and are �at in inclusive processes.

It is interesting to note that on the base of the model in [36] one should
expect a zero polarization in the region where quark-gluon plasma (QGP) has
been formed, since chiral symmetry is restored and there is no room for qua-
siparticles such as constituent quarks. Thus, the absence or strong diminishing,
e.g., of transverse hyperon polarization, can be used as a signal of QGP for-
mation in heavy-ion collisions. This prediction should also be valid for the
models based on conˇnement, e.g., the Lund and Thomas precession model. We
could use a vanishing polarization of, e.g., Λ hyperons in heavy-ion collisions
as a sole result of QGP formation, provided the corresponding observable is
nonzero in protonÄproton collisions. The prediction based on this observation
would be a decreasing behavior of polarization of Λ with the impact parameter
in heavy-ion collisions in the region of energies and densities where QGP was
produced:

PΛ(b) → 0 at b → 0, (51)

since the overlap is maximal at b = 0. The value of the impact parameter can
be controlled by the centrality in heavy-ion collisions. The experimental program
could therefore include measurements of Λ polarization in pp interactions ˇrst,
and then, if a signiˇcant polarization would be measured, the corresponding
measurements could be a useful tool for the QGP detection. Such measurements
seem to be experimentally feasible at RHIC and LHC provided it is supplemented
with forward detectors.
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CONCLUSION

The possibility of revealing a new scattering mode at the LHC is an in-
triguing one. It would signiˇcantly change our picture of hadron scattering and
lead to better understanding of the nonperturbative region of QCD. Diffraction
and related processes are very important for studies of collective, coherent phe-
nomena in hadronic interactions. Predictions for the experimental observables in
these processes presented in this review and their experimental veriˇcations will
certainly increase the scope of strong interaction studies at the LHC.
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