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Experimental results from HERA on diffractive vector-meson production and their theoretical
interpretation within microscopic QCD are reviewed with an emphasis on the BFKL color dipole and
kr-factorization approaches.

DKCIIEPUMEHT JIbHbIE Pe3yNbT ThI 110 AU(P KIHMOHHOMY POXIEHUIO BEKTOPHBIX ME30HOB H YCKO-
purene HERA o6cyXn 10TcS B p MK X TeOpeTHUecKHX Mopenel, ocHOB HHbIX H KXJI. OcHoB-
HOe BHUM Hue yfaeneHo pe iau3 musiM BOKJI-opm mu3sM B p MK X MOJENTH LBETOBBIX JUIONCH H
k- xropus num.

1. INTRODUCTION

1.1. The Motivation. The Deep Inelastic Scattering (DIS) of leptons off
hadrons is interpreted as a knockout of one of the charged partons of the target by
hard Rutherford scattering followed by a complete shattering of the target nucleon
or nucleus. One of the major discoveries at the electron—proton collider HERA
at DESY was the observation that the large rapidity gap events, in which the
target nucleon emerges in the final state with a loss of a very small fraction of its
energy-momentum, constitute a substantial and approximately scaling fraction of
high-energy/small-z DIS of electrons and positrons on protons [1,2]. Although
the major features of such events and their cross sections have been correctly
predicted within perturbative QCD [3], the very existence of large rapidity gap
events for nuclear targets is nearly paradoxical: as is well known, the deposition
of dozen MeV energy is already sufficient to break up the target nucleus, still
the theory predicts that for a sufficiently heavy nucleus and for the Bjorken

*On leave from Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow,
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variable < 1072 the fraction of rapidity-gap DIS with retention of the target
nucleus in exactly the ground state must be exactly 50 per cent [4] and there is a
direct evidence for that from the E665 Fermilab experiment [5]. The discovery
of rapidity gaps at HERA has led to a renaissance of the physics of diffractive
scattering in an entirely new domain, in which the large momentum transfer from
leptons provides a hard scale. It also vindicated the early suggestions of Bjorken
to look for hard diffraction in hadronic interactions [6] and stimulated a revival
of the rapidity gap physics with hard triggers — large-p, jets, W bosons,
excitation of heavy flavors — at the proton—antiproton collider Tevatron (for the
recent review see [7-9] and references therein). Whether the existence of such
a hard scale makes the diffractive DIS tractable within the perturbative QCD or
not has been a subject of intense theoretical and experimental research during the
past decade or so. A good summary of the pre-1997 status of the vector-meson
production physics is found in the monograph of Crittenden [10], the pre-1999
status of theoretical ideas on diffractive DIS was reviewed by Hebecker [11]), for
the general introduction into the physics of diffractive scattering see the recent
books of Barone and Predazzi [12] and Forshaw and Ross [13].

The subject of this review is a special case of diffractive DIS — the ex-
clusive production of vector mesons. One disclaimer is in order: we focus on
the high-energy and/or very small-z regime dominated by the pQCD Pomeron
exchange and, facing the size limitations, don’t discuss very interesting low-
to-moderate energy data from the HERMES collaboration which are strongly
affected by the nonvacuum exchanges (for the review and references see [14]).
The past decade, the topic of high-energy diffraction has been dominated by new
fundamental data coming from the ZEUS and HI experiments at HERA. The
interest in the exclusive electroproduction of vector mesons is multifold. From
the purely experimental point of view, the HERA experiments offer a prime
example of diffractive scattering at energies much higher than were attainable
before. Furthermore, the self-analyzing decays of spin-1 vector mesons allow
one to unravel the mechanism of diffraction in full complexity. Specifically, the
HERA experiments for the first time gave an unequivocal proof that the s-channel
helicity nonconservation persists at the highest available energies [15,16]. On the
theoretical side, starting from the seminal papers on the color dipole approach by
Kopeliovich, Zakharov et al. [17-21] and the related momentum space approach
by Ryskin [22] and Brodsky et al. [23], it has been understood that the exclusive
diffractive production of vector mesons in DIS is a genuinely hard phenomenon,
whose major features can be described by pQCD. This can be understood in terms
of the shrinkage of the photon with the increase of the hard scale [17,18,24], and
because of this shrinkage the diffractive production probes the hadronic properties
of the photon and vector mesons at short distances. One of the direct manifesta-
tions of this shrinkage of the photon is a decrease of the diffraction slope with
the increase of the hard scale [25,26], which has for the first time been observed
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at HERA [27,28], for the earlier evidence from the NMC experiment see [29].
Finally, the presence of the hard scale enables one to test the modern theoretical
ideas on the mechanism of the ¢-channel exchange with vacuum quantum num-
bers, i.e., the QCD Pomeron. The way the QCD Pomeron is probed in diffractive
vector-meson production is similar to, but still different from, that in the conven-
tional inclusive DIS. For instance, large-¢ diffractive production of vector mesons
probes the QCD Pomeron in a hard regime [30] inaccessible in inclusive DIS.

1.2. From Inclusive DIS to DVCS to Exclusive Vector-Meson Production.
To this end recall the basics of inclusive DIS of leptons off nucleons

e(k) p(P) — e(k') X.

To the lowest order in QED it is treated in the one-photon exchange approxima-
tion. The leptons serve as a source of virtual photons of energy v and virtuality
Q? = —¢? (the scattering kinematics and the
4-momenta are shown in Fig. 1), and the fun-
damental process is the virtual photoabsorp-
tion

7(Q%) p(P) — X.

In the fully inclusive DIS only the scattered
lepton is detected and one sums over all the
hadronic final states X. Then the observed
inclusive DIS cross section is proportional to
the absorptive part of the forward, at vanish-
ing momentum transfer A, virtual Compton
scattering amplitude 7,,, (v, Q%, QF,, A = 0)
shown in Fig. 2

X
p(P) I 5

Fig. 1. The kinematics of DIS

7(Q%) p(P) — 7v*(Q*) p(P), (1)

and, invoking the optical theorem, can be cast in the form of the flux of virtual
transverse (7') and scalar (longitudinal) (L) photons times the total photoabsorp-
tion cross sections o and oy,.

0%=0° 05,=0° 0;=0°
> X
X
p(P) N«
/: =0

Fig. 2. The unitarity relation between DIS and forward Compton scattering

Now take a closer look at the Compton scattering amplitude as a func-
tion of the virtuality of the incident (in) and final (f) state photons, Q2 and
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Q(j}, respectively. In fully inclusive DIS this amplitude is accessible only for
Q3 = Q? = @? and at vanishing momentum transfer A = 0. When continued
analytically to Q% = 0 the amplitude 7,,, (v,0,Q?) will describe the exclusive
real photon production often referred to as the Deeply Virtual Compton Scattering
(DVCS) [31]

7(Q%) p(P) — v p(P"), (2)
while the further continuation to Q? = —m?, gives the amplitude of the exclusive
vector-meson production

Q%) p(P) — V(v) p(P). 3)

Both DVCS and exclusive vector-meson production can be studied experimen-
tally by selecting a special final state X = v p(P’) or X =V p(P’), respectively.
Furthermore, both reactions can be
studied at the nonvanishing momentum
transfer A, i.e., t = —A% % 0, for the
definition of the kinematical variables
see Fig. 3.

The point that inclusive DIS,
DVCS, and exclusive vector-meson
production are described by the same
analytic function taken at different val-
ues of Q% suggests from the very out-
set the complementary probe of high
energy pQCD in three reactions (1),
(2), and (3). For instance, in the
forward, A = 0, Compton scattering
probed in inclusive DIS, the helicity
Fig. 3. Schematic diagram of exclusive flip amplitudes vanish for the kinemat-
vector-meson production in ep interaction, jcal reason. In contrast to that, the
ep — eVp inclusive vector-meson production at

A # 0 enables one to determine the
full set of helicity-conserving and helicity-flip amplitudes and investigate the spin
properties of hard (generalized) Compton scattering to full complexity.

1.3. When Is Vector-Meson Production Dominated by Small Color Dipole
Interactions? The intimate relationship between inclusive DIS, DVCS, and ex-
clusive vector-meson production is still better seen in the lightcone color dipole
picture of small-z DIS which illustrates nicely the interplay of the scattering
mechanism and the (partonic) structure of particles. It is needless to recall the
outstanding role of the photon—matter interactions in the conception and formation
of the quantum mechanics and quantum field theory. In the early years of the
nonrelativistic quantum mechanics the photon has been regarded as structureless

e(k’)
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and the focus of the theory was on spectral lines, photo-effect and the related
phenomena. With the advent of the first quantum field theory — the Quantum
Electro Dynamics (QED) — it has become clear that the fundamental transition

= ete” 4)

between bare particles gives rise to a concept of a dressed physical photon that
contains all bare states to which it couples via (4) and still higher order QED
processes. At low energies, the virtual vacuum polarization gives rise to the well-
known Uehling—Serber radiative correction to the Coulomb potential; at higher
energies the familiar Bethe-Heitler e*e™ pair production in the Coulomb field
of a nucleus can be viewed as materialization of the e™e™ component of the
physical photon (see Bjorken, Kogut, Soper [32]). The Compton scattering which
is behind inclusive DIS at very small values of the Bjorken variable x can be
viewed as (i) the transition of the virtual photon to the ¢g pair (the color dipole)
at a large distance
1

myz’

I~ (5)
upstream the target (here my is the nucleon mass), (ii) interaction of the color
dipole with the target nucleon, and (iii) the projection of the scattered ¢g onto
the virtual photon (Fig. 4,a). Notice the very special choice of the stage (iii): if
one lets the scattered color dipole materialize as hadrons, one ends up with the
large rapidity gap DIS — the diffractive excitation v* p(P) — p(P’)X. Here
the production of continuum hadronic states X is modeled by the continuum ¢g¢

Y Y Contingum Q>/\V/\ Vdﬁ\
Qoo
P p Pe—Ne—p P p
¢

a b

Fig. 4. The unified picture of Compton scattering, diffraction excitation of the photon into
hadronic continuum states and into the diffractive vector-meson

states (Fig. 4, b), whereas the projection of the scattered qq color dipole onto the
vector-meson gives the exclusive (diffractive, elastic) vector-meson production,
and projection onto the real photon gives the so-called DVCS (Fig. 4,¢). The
amplitude of the transition of the photon into the ¢q state, alias the ¢g wave
function of the photon, and the amplitude of scattering the color dipole off the
target are the universal ingredients in all the processes. The wave function of the
virtual photon is well known [24], and different processes probe the color dipole
scattering amplitude at different dipole sizes [18].

For instance, irrespective of the photon’s virtuality (2, the inclusive diffrac-
tive DIS into the continuum states is controlled for the most part by interaction
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of large color dipoles [3]. The scaling violations in the proton structure function
(SF), 0Fy,(z,Q%)/01og Q?, come from small color dipoles of size

9 4

Q2 +4m2’
whereas the absolute value of Fb,(z, Q?) receives contributions from large to
small dipole sizes [33,34],

r

(6)

1
<rt < —. (7)
; m

In contrast to the inclusive DIS and inclusive diffractive DIS, the amplitude of the
exclusive vector-meson production is dominated by the contribution from small

dipoles of size [18,19]
6

VO +m3
often referred to as the scanning radius (formula (8) is applicable only if rg is
smaller than the typical hadron size). This exclusive vector-meson production
offers a cleaner environment for testing transition from soft to hard scattering.

The color dipole formalism is entirely equivalent to the BFKL formal-
ism of the (transverse) momentum-dependent gluon distributions in the leading
log 1/x approximation [35-37]. Within this formalism, often referred to as the
k) factorization, Eq. (8) suggests that the vector-meson production probes the
gluon density of the target at pQCD hard scale [19-22,38]

®)

r~Trs RN

_ 1 9
@~ 1@+ ) = . ©

which is large for heavy quarkonia (J/W,T,...) or for large Q2. In the hard
regime of small scanning radius, the vector-meson production amplitudes will only
depend on the wave function of vector mesons at a vanishing quark—antiquark
separation in the two-dimensional transverse, or impact-parameter, space. There
still remains a certain sensitivity to the separation of quarks in the longitudinal
direction, which nonrelativistically is conjugate to the longitudinal Fermi motion
of the quark and antiquark in the vector meson or the partition of the longitudinal
momentum of the vector meson between the quark and antiquark in the relativistic
lightcone language. As a result, the vector-meson production amplitude is not
calculable from the first principles of pQCD, still the sensitivity to the soft input
can to a large extent be constrained by the decay V — eTe™, which proceeds via
the short-distance annihilation g7 — eTe~. Then Eq. (8) suggests that, upon fac-
toring out the emerging V' — e e~ decay amplitude, the vector-meson production
amplitudes will depend on the hard scale @ in a universal manner. Finally, the
energy dependence of the vector-meson production amplitude offers a more local
probe of the properties of the hard pQCD Pomeron than the inclusive DIS.
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1.4. The Scale for the Onset of Hard Regime. Before opening the is-
sue of hard production of vector mesons, one needs to define the typical soft
production. Here a brief comment on the venerable Vector Dominance Model
(VDM) is in order. Because of the obvious dominance by the vector-meson
pole contribution, the point that at ch = —m?, the amplitude of the production
of the timelike virtual photon 7*(ch) will be proportional to the appropriate
vector-meson production amplitude times the v*(—m#,)V transition amplitude,
is a tautology. Experimentally, the timelike photons are produced in the eTe™
annihilation and the v*(—m%)V transition amplitudes are measured at the eTe™
colliders and, of course, in the decay V, — ete™. The assumption that the
ground state vector-meson pole contribution dominates the photoproduction am-
plitudes, and the fy*(ch)V transition amplitude does not vary substantially from
the vector-meson pole Q7 = —mj, down to Q% = 0, is the basis of the very
successful VDM as formulated by Sakurai [39], Gell-Mann, Zachariasen, Scharp,
and Wagner [40,41] (for the comprehensive review of foundations and tests of
the VDM, see Bauer et al. [42]).

From the color dipole point of view, the success of the VDM in real photo-
production derives from the proximity of the distribution of color dipoles g;gy in
the ground state vector mesons and in the real photon. So, the gygy component
of the physical photon can be approximated by the corresponding vector meson
(quarkonium) and the amplitude of interaction of the color dipole with the nu-
cleon can be approximated by the vector meson—nucleon scattering amplitude, for
an illustration see Fig. 5. From the naive quark
model viewpoint, the p meson is the hyperfine </ Qe—r—<_ >~~~
partner of the m meson and the 2-dimensional
charge radius, R, of the 7% sets the relevant
scale.

re—R« P

One comes to the same conclusion from gig 5. The VDM amplitude for the
the experimental observation that to a very vector-meson photoproduction
good accuracy the ¢ dependence of elastic TV
scattering, real Compton scattering vp — yp
and real photoptoduction yp — pp, is the same [42,43]. Indeed, within the VDM
which is a very good approximation for real photons, the differential cross sec-
tions of the latter two processes are proportional to the differential cross section
of elastic pV sacttering. Then the equal ¢ dependence of the 7N and p/V elastic
scattering entails an equality of the radii of the p meson.

Experimentally, the charge form factor of the pion is well described by the
VDM p-pole formula and [44,45]

2
(r2)V2 ~0.55 fm ~ —. (10)
Mp
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The onset of the hard regime in diffractive vector-meson production requires
that the scanning radius rg is smaller than any other hadronic scale. First place,
one needs rg < (r2) ~ (r2), ie.,

5
Q* > me, ~1 GeVZ. (11)

The corrections in the small parameter rg/(r?,)'/? depend on the wave func-
tion (WF) of the vector meson. With the soft, Gaussian, wave function, ¥y (r) ~
exp (—r?/(r})), in order for the WF-dependent corrections not to exceed
< (20—30)% one needs Q? > (2—4) GeV?. For the hard, Coulomb-like, wave
functions, 1y (1) ~ exp (—r/(r?)'/?), a still higher Q? > 10 GeV? is needed for
a similar insensitivity to the shape of the wave function, for the related discussion
of the onset of pQCD see [46]. Even for the heavy J/W the scanning radius at
Q? = 0 is large, ;
N — o (P2, N2 o

Ty R — (r7/9) /"~ 04 fm (12)
(for the charmonium parameters see [47-49]), so that for the onset of the short-
distance regime insensitive to the shape of the wave function of the J/¥ one needs
Q* 2 m3 . In the realistic QCD there is still another scale — the propagation
radius for perturbative gluons which is small, R, ~ (0.2—0.3) fm (for the lattice
QCD evaluations of R, see [50], for the origin of R. in the instanton models of
QCD vacuum see [51], the analysis of heavy quarkonia decays is found in [52]).
The color dipole cross section is of true pQCD origin only for dipoles r < R,
i.e., the full pQCD description of diffractive vector mesons requires rg < R, i.e.,

36

73 ~ (20-30) GeV2. (13)

2 2

Q" % Qpqcp =
One must not be discouraged, though: the r dependence of the dipole cross section
does not change any dramatically from the pure pQCD domain of r < R, to the
nonperturbative domain of » > R., and the fundamental concept of the scanning
radius remains viable up to s < 1 fm, see also the discussion in Subsubsec. 3.3.2.

~

The large momentum transfer, |t| > 1 GeV?, is still another way to probe
the structure of the photon and vector meson at short distances, r ~ 1/+/[t] >

1 GeV~1. It is generally believed [46,53] that |t| supersedes @2 as a hard scale if

|t] 2@2. The caveats of ¢ as large scale and of single BFKL Pomeron exchange
dominance will be discussed in more detail in Subsec. 4.11.

1.5. The Structure of the Review. In this review we focus on the onset of
hard pQCD regime in exclusive vector-meson production at HERA. The presen-
tation of the experimental data and of theoretical ideas goes in parallel, and an
intimate connection between the vector-meson production and the inclusive DIS
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will be repeatedly underlined. For this reason the presentation of the theoretical
ideas on vector-meson production will be heavily biased towards the color dipole
picture and its momentum-space counterpart — the so-called &k, factorization.

The brief description of the H1 and ZEUS detectors, the kinematics of DIS
and of the vector-meson production, the event selection, the definition of ma-
jor observables and of the spin density matrix of virtual photons is presented
in Sec. 2. The subject of Sec. 3 is an overview of basic theoretical ideas on
the vector-meson production. Here we discuss briefly the Regge theory of the
soft photon and hadron interactions, the QCD approach to the vacuum exchange
(the Pomeron), the flavor dependence, the connection between the vector-meson
production and the leptonic decay of vector mesons, the origin of s-channel he-
licity nonconservation (SCHNC) and the exclusive—inclusive duality connection
between inclusive diffractive DIS and vector-meson production. We also intro-
duce the color dipole approach to DIS and vector-meson production and explain
how the shrinkage of virtual photons makes the vector-meson production pQCD
tractable. The unified microscopic QCD approach to small-z DIS and diffractive
vector-meson production — the & -factorization approach, which is equivalent
to the color dipole approach, — is presented in more detail in Sec. 4. Here we
discuss both the small-¢ production within the diffraction cone and major ideas
on large-t proton dissociative reaction. This section can be skipped in the first
reading, but is essential for understanding the status of theoretical calculations of
the vector-meson production.

In Sec. 5 we start the presentation of the physics results with the helicity
structure of the vector-meson production. This includes the definition of the spin
observables, an introduction into the important subject of the s-channel helic-
ity nonconservation (SCHNC) and the comparison of the experimental data on
the spin density matrix of produced vector mesons with the theoretical expec-
tations from the color-dipole/k -factorization approach®. In Sec. 6 we discuss
the Q? dependence of the vector-meson production cross sections as well as
the longitudinal-to-transverse cross-sections ratios Ry = o /op. We put spe-
cial emphasis on the flavor dependence of cross sections, emphasize an impor-
tance of (Q? +m?) as the hard pQCD scale and comment on the sensitivity of
Ry = o, /or to the short-distance wave function of vector mesons. In Sec. 7 we
review the experimental data on the energy dependence of the cross sections and
its theoretical interpretation in terms of the Pomeron exchange. We show how the
change of the energy dependence from light to heavy flavors and from photopro-
duction to DIS is controlled by (Q%+m?,) as the hard pQCD scale. We comment
on tricky points in comparison of hard scales and energy dependence in inclusive

*Throughout this review, the numerical results shown for the k factorization are either taken
from the PhD thesis [54] or performed specially for this review [55].



14 IVANOV L.P., NIKOLAEV N.N., SAVIN A. A.

DIS and diffractive vector-meson production and on the impact of interplay of the
scanning radius rg and the position of the node of the radial wave function for the
¥ (2S) production cross section. The focus of Sec. 8 is on the ¢ dependence of
the cross sections, both in the low-t and high-t regimes. The discussion of low-¢
data centres on the Q2, my, and W dependence of the slope of diffraction cone.
The recurrent theme is a universality of diffraction slopes as a function of the
scanning radius and/or (Q? +m?,) as the hard pQCD scale. The properties of the
Pomeron trajectory «p(t) extracted from the vector-meson production data are
discussed in detail: the experimentally observed shrinkage of the diffraction cone
for the J/W¥ production gives a strong evidence for «jp(¢) which decreases with ¢
approximately linearly at |t| < 1 GeV?, but then starts rising up to ap(t) ~ 1.3
in the hard regime of large |t|. Finally, in Sec. 9, we summarize the principal
findings from HERA experiments on diffractive vector-meson production and list
open issues in the pQCD interpretation of these data.

It is important to mention here that not all currently available HERA data are
always shown in each plot where they may belong to. This is because sometimes
the published plots from HI1, ZEUS and other authors are used without any mod-
ifications. This is especially valid for the «preliminary» H1 and ZEUS plots, that
have been shown to the conferences and are not yet submitted in the form of «of-
ficial» papers. Such plots are just taken as they are. If for some compilation and
figures only very recent data are used it is explained in the correspondent caption.

2. THE EXPERIMENTAL OVERVIEW

2.1. HERA. HERA (Hadron Electron Ring Anlage) is the world’s first lepton—
proton collider located at the Deutsches Elektronen Synchrotron (DESY) site in
Hamburg, Germany (see, e.g., [56] and references therein). The HERA ring
has a circumference of about 6.3 km with two separated synchrotron rings for
electrons (positrons) and protons. It runs 10-30 m below ground level and has
four experimental areas. In two of them the beams are made to collide to provide
ep interactions for the HI and ZEUS experiments. The remaining two areas are
used by the fixed target experiments: HERMES [57], which scatters longitudinally
polarized electrons off stationary polarized targets, and HERA-B [58,59], which

investigated C'P violation in the BB’ system by scattering beam halo protons
off wire targets (was shut down in 2000). HERA was commissioned in 1991
with the first ep collision observed by H1 and ZEUS in the spring 1992. A major
HERA upgrade took place during 2000-2002 break. A significant luminosity
increase should be achieved by stronger focusing of both the electron and the
proton beams, see Table 1 where the design and achieved HERA values, as well
as the values of HERA after upgrade, are summarized. Further information about
HERA luminosity upgrade can be found in [60,61].
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Table 1. HERA parameters

HERA parameters Design 2000 Design after upgrade

p/e beam energy, GeV 820/30 | 920/27.5 920/30

p/e beam current, mA 160/58 | >100/>50 140/58
Number of bunches proton/electron 210 180/189 180/189

Time between crossings, ns 96

Proton 3 function x/y, m 10/1 7/0.5 2.45/0.18
Electron (3 function x/y, m 2/0.7 1/0.7 0.63/0.26
Specific luminosity, cm™2 -s™' - mA~2[3.4.10%| 8.10% 1.6-10%
Luminosity, cm™2 - s~} 1.5-103 | 2.10% 7-10%!

2.2. The Detectors H1 and ZEUS. The H1 and ZEUS are general purpose de-
tectors with nearly hermetic calorimetric coverage and a large forward-backward

asymmetry to accommodate the boost of the ep centre-of-mass in the direction of
the proton beam.

HERA experiment H1

Fig. 6. The H1 detector. The main components are: [, 7, /1 — beam, compensating and
muon toroid magnets; 2 — central tracking detector; 3 — forward tracking and transition
radiators; 4, 5 — liquid argon calorimeter; 6 — superconducting coil; 9 — muon chambers;
12, 13 — warm electromagnetic and plug calorimeters
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The H1 and ZEUS detectors are described in detail elsewhere [62,63]. The
detectors are shown in Figs. 6, 7. The main difference between the H1 and
ZEUS detectors is the choice of the calorimetry. In the H1 case the main
liquid argon calorimeter with different tracking detectors inside is surrounded
by a large diameter superconducting solenoid thus minimizing the amount of
inactive material in the path of the particles between the interaction point and
the calorimeter. In the ZEUS case only tracking chambers are placed inside a
superconducting solenoidal magnet, surrounded by a uranium-scintillator sampling
calorimeter with equal response to the electromagnetic and hadronic components.
Both detectors are surrounded by muon chambers. Some of the components most
relevant for the vector-meson analysis are outlined below.

Overview of the ZEUS detector
(longitudinal cut)

4m

-2m

o Uy b 7T A ] | —
A A WMMJMMMI

10 m 0 —Sm
Fig. 7. The ZEUS detector. The main components are: VXD — vertex detector, after
2000 upgrade silicon microvertex detector; CTD — central tracking detector; FDET —
forward detector; RTD — rear tracking detector; FF/RMUON — forward/rear muon cham-
bers; BMUOI/O — barrel muon inner/outer chambers; F/B/RCAL — forward/barrel/real
calorimeters; BAC — backing calorimeter

2.2.1. Tracking Detectors. Charged particles are measured both for HI and
ZEUS by the central tracking detectors operating in magnetic field of 1.15 and
1.43 T, respectively. Both trackers are build mainly of drift, jet, and proportional
chambers. The part closest to the beam pipe in H1 case uses silicon detectors
(Central Silicon Tracker). During 2000-2001 shutdown ZEUS has also installed
a Silicon Micro Vertex Detector that should significantly improve the resolution
of the tracking system and the vertex reconstruction.

The polar angle coverage is 15 < 6 < 164(165)° for H1(ZEUS), correspond-
ingly. The relative transverse-momentum resolution is o(pr)/pr ~ 0.006pr
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with pr in GeV for both experiments. Charged particles in the forward direc-
tion are detected in the forward tracking detector covering the polar angle range
7 <6 < 25°and 7 < 0 < 28° for the H1 and ZEUS, respectively, the backward
part (172 < 6 < 176°) is covered by the backward silicon tracker, BST in the
HI, and by the Small Rear Tracking Detector in the ZEUS cases.

Charged tracks measured by the tracking system are used to reconstruct the
interaction vertex for each event.

2.2.2. Calorimetry. The tracking detectors of H1 are surrounded by a liquid
argon calorimeter (LAr, 4 < 6 < 154°, ¢/F : 0.12/v/F and 0.50/v/E for elec-
tromagnetic and hadronic showers, correspondingly, E' in GeV) and a scintillating
fiber calorimeter (spaghetti calorimeter, SpaCal, 153 < 6 < 178°, 0.075/ V'E for
electromagnetic showers).

The central tracking detector of ZEUS is placed inside of a thin supercon-
ducting coil. Surrounding the solenoid is the high-resolution uranium-scintillator
calorimeter (CAL) which covers the angular range 2.6 < 6 < 176.2° with equal
response to the electromagnetic and hadronic components and with energy resolu-
tion of 0.18/v/E and 0.35/+/F for the electromagnetic and hadronic components,
correspondingly.

In 1998-2000 a Forward Plug Calorimeter (FPC, lead-scintillator sandwich
calorimeter [64]) was installed in the 20 x 20 cm beam hole of the forward
part of the CAL with only a small hole of radius 3.15 cm in the centre to
accommodate the beam pipe. It extended the pseudorapidity coverage of the
forward calorimeter from 1 < 4.0 to < 5.0. A similar device — Beam Pipe
Calorimeter (BPC) — was installed in the rear region of the ZEUS detector,
294 cm away from the nominal ep interaction point, mainly to measure the lepton
scattered at very small angle. Both these calorimeters were removed during
2000-2001 shutdown because of the changed beam-pipe geometry for the HERA
luminosity upgrade.

2.2.3. Muon Detectors. The Hl muon system consists of an instrumented
iron return yoke (Central Muon Detector, CMD, 4 < 6 < 171°) and a Forward
Muon Detector (FMD, 3 < 6 < 17°).

The ZEUS muon system covers the polar angles between 10 < 6 < 171°, in
addition the forward part has additional drift chambers for high-momentum muon
reconstruction for polar angles between 6 and 30°.

2.2.4. Forward Detectors and Proton Taggers. Both H1 and ZEUS have very
forward detectors, placed along the beam-line in the direction of the proton beam,
20-90 m away from the nominal interaction point.

Forward Proton Spectrometer (FPS in H1) and Leading Proton Spectrometer
(LPS in ZEUS) consist of movable «Roman Pots» forming together with the
magnets of HERA a kind of magnetic spectrometer. Scattered protons with a
different energy and/or angle compared to the nominal beam protons are separated
from the beam and are detected at appropriate positions.
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Also in the proton direction experiments have placed simple scintillation
counters (5.15 m and 23-24 m from the nominal interaction point in the ZEUS
case, five stations between 9 and 92 m in the HI1 case) that are used as Proton
Remnant Taggers (PRT). These taggers cover very high region of pseudorapidity
(e.g., 4.3 < n < 5.8 for ZEUS) and are used to tag the events where the proton
dissociates.

2.2.5. Luminosity Detectors and Electron Taggers. The luminosity is de-
termined from the rate of the Bethe—Heitler bremsstrahlung process ep — evyp,
where the high-energy photon is detected in a lead-scintillator calorimeter (LUMI)
located at Z = —107 m in the HERA tunnel in the ZEUS case or by a crystal
Cherenkov calorimeter (PD) located at Z = —103 m in the H1 case.

In the lepton direction the experiments have Photoproduction Taggers (PT) at
8 and 44 m from the nominal interaction point for ZEUS, Electron Taggers (ET)
in the H1 case. They detect leptons scattered under very small angle (less than
few mrads). The leptons measured in the PT (ET) are used to tag photoproduction
events, thus significantly reducing the background.

2.3. Kinematics and Cross Sections. 2.3.1. Kinematics of DIS. Because of
the small electromagnetic coupling aey, = 1/137, the deep inelastic scattering
of leptons off protons is treated in the one-photon exchange approximation. The
generic diagram for DIS e(k) p(P) — e(k’) X is shown in Fig. 1. The relevant
kinematic variables are:

e Q? = —¢®> = —(k — k'), the negative squared four-momentum of the
virtual photon;

o W? = (q+ P)* = 2myv +m2 — Q?, the squared centre-of-mass energy of
the photon—proton system;

e y=(P-q)/(P- k), the fraction of the positron energy transferred to the
photon in the proton rest frame.

e x = (Q?/2(P - q), the Bjorken variable, which in the parton model interpre-
tation of DIS has a meaning of the fraction of the proton’s lightcone momentum
carried by the struck charged parton.

2.3.2. The Flux and Polarization of Photons. The amplitude of DIS equals

4T e

T(e(k) p(P) — e(k') X) = Q2

(e(K)lule(k) gu (X[ Tu|p(P)),  (14)

where [, and J,, stand for the electromagnetic current of leptons and hadrons.
The leptons serve as a source of photons and the physical process is the virtual
photoabsorption

Y (g)p(P) — X.

The virtual photons have three polarization states: the two spacelike transverse
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ones with helicities Ay« = %1,

e(f) = —%(:I:em +ie,) eF?® (15)

and the timelike scalar state (often misnamed the longitudinal one, hereafter we
follow this tradition)

B Q? (Pq)
)=\ T [+ ]

For the purpose of future convenience, here we choose the z axis along the
photon’s 3-momentum, the x axis in the yp — Vp reaction plane, and & is the
azimuthal angle between the reaction and the (e, e’) scattering planes (for more
details see Subsec. 5.1 below). The complete set includes still another spacelike
vector

Making use of the expansion
g = €4(L)eu (L) — €} (+)ev(+) — €} (-eu(=) = €h(S)ew(S),

and of the current conservation, (¢(S)J) = 0, one can write down

(e(K)lule(k))gun (X1 Ju[p(P)) = (e(k)|lule(k))e), (L){X] T |p(P))es (L)~
= (e(K)ule(k))ey, (+)(X T |p(P))es (+)—
— (e(K)lle(k))ey, (=)(X|J|p(P))e,(=).  (16)

Now notice that

T(’V*(AW*;Q)p(P) - X) =V 47raem<X|JV|p(P)>eV(>"Y*) (17

is precisely an amplitude of the photoabsorption for the photon of polarization
My and (e(K') ule(k)) s (L), —(e(K )1 e(k) e (+), —(e(k') Ly e())e) () de-
fine the emission by leptons of photons of appropriate polarization, which is
quantified by the spin density matrix of the photon py/). Then, making use of the
expansion (16), the differential cross section for the leptoproduction of the specific
final state X can be expressed through the photoabsorption cross sections as

do(ep — €'X)

1074y drx =Tr(@Q%y) Y, pwadona(y'p — X), (18

N A=+,—,L
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where dryx is the element of the appropriate phase space,

doxa(v'p — X)=

1
= T (vap — X)T (vap — X)drx  (19)

44/(pg)* + Q*m3

and

em ]-
Pr(Q%y) = ;&Py (1 -y 5y2> (20)

is the flux of transverse photons. With this normalization the spin density matrix
of the photon equals

P++ P+- P+L
P—+ P— P-L | =
PL+ PL— PLL
1 1

) 1 .
5 _§€e2z<1> § /6(1+6)ez<1>

——e(l+ee |, 21

where
2

1—y -y
y—y 412 ~ 2(1-y)
_ 1 2Q_2 (1-y)?+1
AU e
is the longitudinal polarization of the virtual photon. We also indicated the
small-z approximation for ¢ which is appropriate for DIS at HERA.

Notice, that because of the current conservation one can define the longitu-
dinal photon interaction amplitude in terms of the current component J,, which
is customary in electronuclear physics, for instance, see [65-67]. It does not
affect the observed cross section (18) because the different normalization of the
amplitude (16) for longitudinal photons is compensated for by the change of the
relevant components of the spin density matrix of the photon.

2.3.3. The Transverse and Longitudinal Cross Sections for DIS. In the fully
inclusive DIS one integrates over the whole phase space of the state X and
sums over all states X. Then by virtue of the optical theorem one can relate

€ =

(22)
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the photoabsorption cross section to the absorptive part of the Compton forward
scattering amplitude

1
Y only'r—X) = ImTA(v'p—"p).  (23)
X 2,/(pa)* + Q°m3

The crucial point is that for the unpolarized target the helicity-flip, X' # A,

amplitudes vanish in the forward scattering. Then the virtual photon—proton cross

section, 0”7 P, can be determined from the measured positron—proton cross section:
x * x 1 d2ocP

VP =0} P+ eo] P = (24)

I'r(Q?,y) dQ?dy’

where 0.’ = 04 = o__ and o] ? are the transverse and the longitudinal virtual
photoproduction cross sections, respectively. The often discussed total inclusive

*

cross section, oy, = o). ¥ + o] ¥ can be determined from o7 ¥ through the

relation:
vp _ 1+ Bpis o7P

= 25
Jtot 1 4 GRDIS ) ( )
where i
o1'P
Rpis = == (26)
or

(Because R is heavily used for different ratios, we supply it by the subscript
DIS.) In the kinematic range of most of the discussed measurements, the value
of ¢ is close to unity, and because Rpyg is small, 077 differs from o[,” by less
than one per cent.

2.4. Kinematics of Diffractive Vector-Meson Production. Diffractive vector-
meson production corresponds to the special two-body final state which contains
only the vector meson and scattered proton

e(k)p(P) — e(K"\V (v)p(P),

where V' = {w, p, ¢, J/, ¥, T}; and k, k', P, P’, and v are the four-momenta
of the incident lepton (positron or electron), scattered lepton, incident proton,
scattered proton and vector meson, respectively, see Fig. 3.

The new kinematic variable is t = (P — P')? = (v — ¢)? = —A? + tin,
the squared four-momentum transfer at the proton vertex. At high energies the
longitudinal momentum transfer Az, = m,(Q% +m?.)/W? is small, tyin = —A%
can be neglected, and t ~ ' = —A?. Besides t, the new important variables
are the orientation of the production plane with respect to the electron scattering
plane and the appropriately defined polar and azimuthal angles of the decay pions,
which will be discussed in Sec. 5.
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The major background process is the proton-dissociative reaction ep —
eV'Y, and in addition to the above quantities, My, the mass of the diffractive
excitation of the proton, is used.

2.5. The Event Reconstruction. For the photoproduction events, Q2 ~ 0,
Q? ranged from the kinematic minimum, Q2 = M2y?/(1 —y) ~ 10~'2 GeV?,
where M, is the positron mass, up to Q2. ~ 1 GeV?, the value at which the
scattered positron starts to be observed in the calorimeter, with a median Q2 of
approximately 5- 1075 GeV? (differs slightly for ZEUS and H1 and from year to
year with modifications in calorimeter geometry). Since the typical Q2 is small,
it can be neglected in the reconstruction of the other kinematic variables.

For the DIS events the kinematic variables are reconstructed using the mo-
menta of the decay particles and the polar and azimuthal angles of the measured
scattered lepton. Neglecting the transverse momentum of the outgoing proton
with respect to its incoming momentum, the energy of the scattered positron can

be expressed as:
Eo ~ 2B, — (By — pZ)]/(1 — cos 0,

where E. is the energy of the incident lepton; Ey and p# are the energy and
longitudinal momentum of the vector-meson V, and 6./ is the polar angle of the
scattered lepton. The value of Q2 was calculated from:

Q* =2E E.(1 +cos 0).

The photon—proton centre-of-mass energy, W, can be expressed as W? ~
2E,(E—pz)v+Q?, where E, is the laboratory energy of the incoming proton and
(E —pz)v is the difference between the energy and the longitudinal momentum
of the vector meson. The fraction of the positron momentum carried by the
photon is calculated from y = (E — pz)y/2E.. The squared four-momentum
transfer at the proton vertex is given by [t| = (per + pv)% + (per + pv)%--

2.6. Data Samples and Event Selection. The kinematic region for each
particular data sample can be found in Tables 2, 3. The Tables summarize all the
recent data discussed in this paper, for the overview of the pre-1997 experimental
data, see [10].

3. AN OVERVIEW OF THEORETICAL APPROACHES TO
DIFFRACTIVE SCATTERING

3.1. The Rudiments of the Regge Theory of Strong Interactions. As Bjorken
has emphasized, the foundations of the Regge theory are as solid as QCD it-
self [91]. Because the physics of diffractive scattering is permeated by ideas and
concepts from the Regge theory of strong interactions, a brief introduction into
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this subject is in order. For the more rigorous treatment and for technicalities
one must consult the textbooks [12,13,92], the review papers [93-95] and the
collection of reprints [96].

3.1.1. The s-Channel Asymptotics from the t-Channel Exchanges: Spin and
Energy Dependence. There is a deep connection between the high-energy behavior
of a binary reaction ab — cd and the spin, J, of the elementary particle with
mass M exchanged in the ¢ channel:

2 4y Gac(D)gua(t) 1oy
Aabacd(W ,t) =T e (W ) , 27)

do(ab— cd)  gac(t)gpa(t) acr—1)
7 x (t — M2)2 w . (28)

Although it follows in a straightforward manner from the analysis of Feynman
diagrams, it is instructive to look at (27) from the t-channel point of view. In the
crossed channel

ac — bd

the total c.m.s. energy squared is t = (po + pe)? = (pa — pe)? = M?, the
momentum transfer squared is (p, — p;)? = s = (pa + pp)?, and the exchanged
particle emerges as a resonance at t = M? in the partial wave J. The angular
dependence of this contribution to the scattering amplitude is given entirely by
the Legendre polynomial

A2

Tt ea(W?,t) = Ay (t)Py(cos 0;) =
_ Gae(t)Gaa(t)

e Lot (=1)71Ps(=cos 61), (29)

where (for the sake of simplicity we take mg, = mpy = me = mq = )

22

0y =1+ ——.
cos 0 +t—4u2

(30)

The so-called signature o, = +1 separates the crossing-even and crossing-odd
amplitudes; for instance, in the crossing-even 7079 scattering oy = +1 and the
contribution from the odd-partial waves to (29) vanishes identically.

The amplitude (29) depends on W?2 only through the Legendre polynomial
and can readily be continued analytically into the high energy domain of W2 >>
M?, 12, |t|, which amounts to —cos 6; > 1 and Pj(— cos 6;) o< (—cos 6;)7 o
(W?)7, ie., we derived the asymptotics (27) by analytic continuation from the
t-channel to s-channel scattering.

3.1.2. The Regge Trajectories. On the one hand, the existence of high-spin
resonances is an ultimate truth of the physics of strong interactions; on the other
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hand, the exchange by elementary particles of spin J > 1 would conflict the
fundamental Froissart bound [97]

AW?2,t) < W2log® W. (31)

The sole known way out of this trouble is offered by the Regge theory: one
must improve upon the above mock-up analytic continuation going from the sum
over integer (or half integer) partial waves to the Sommerfeld—Watson integral
over the complex angular momentum J with which the analytic continuation
to —cos 6; > 1 must be complemented with the appropriate deformation of
the integration contour on the complex-J plane [98]. The key point is that the
asymptotic behaviour of the s-channel amplitude will be controlled by singularities
of the partial wave A ;(t) in the complex-J plane. If the singularity is the (Regge)
pole
1

Aj(t) oc T anl)’

(32)
then one obtains precisely the amplitude of the form (27) with J = ag(t). The
t-channel unitarity dictates [98,99] that the Regge pole must be a moving one, i.e.,
it must have a finite slope o/;(¢). Experimentally, the Regge trajectory ap(t) for
the s-channel scattering at ¢ < 0 can be extracted from the energy dependence of
the differential cross sections, and can be linked to the resonance mass spectrum
by extrapolation of the mass-dependence of the spin of ¢-channel resonances,
Jn = ar(M?). Such Chew-Frautschi plots are well approximated by straight
lines,

ar(M?) = ar(0) + a/zt. (33)

For instance, for the p,w, Ao, fo families of resonances with nonvacuum quantum
numbers such extrapolations suggest the intercept ag(0) ~ 0.45, in very good
agreement with the results from the scattering experiments. To cite few examples,
the p trajectory is best studied in the charge-exchange 7~ p — 7'n, the Ay
trajectory is probed in 7~ p — nmn, the w trajectory is probed in the regeneration
K; — Kg on the isoscalar target, the 7 trajectory is probed in the charge-
exchange np — pn, etc. For classic reviews on the Regge trajectories see [95],
a more recent discussion of the Chew—Frautschi plots is found in [100]. The
high-lying Pomeron, p,w, Ao, fo are the natural spin-parity exchanges, i.e., the
spin J and parity P of particles lying on the corresponding Regge trajectory are
related by P = (—1)”. The unnatural spin-parity 7, A; exchnages, P = —(—1)”,
have much lower intercepts, a-(0) = a4, (0) ~ 0.

3.1.3. The Universality Aspects of the Regge Exchange. The Ansatz (27)
bears all the salient features of the realistic reggeon-exchange amplitude:

1. The trajectory J = apr(t) is universal for all beam and target particles, it
only depends on the ¢-channel quantum numbers.
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2. Dependence on the initial and final state particles has a factorized form.
3. If one parameterizes the ¢ dependence of the near forward differential cross
section by the so-called slope parameter B,

do
T o exp (= Bt]), (4

then the factorization property entails
B(ab — ¢d) = By + Bya + Br, (35)

where B,. and By come from the form factors of the a — ¢ and b — d
transitions, and Br characterizes the exchanged reggeon.
4. Notice that

(W2)aR(t) — (W2)aR(O)(W2)o/Rt — (W2)QR(O) exp [_O/RM log (WQ)L (36)

what entails Gribov’s growth of the slope parameter with energy, alias the shrink-
age of the diffraction cone [99]:

w?
Br = 2d'y log (—) . 37)
50
The slope of all the nonvacuum Regge trajectories is about the same,
1
op & 2z~ ~ 0.9 GeV 2, (38)

for the recent summary see [100].

5. The phase of the reggeon-exchange amplitude is uniquely fixed by the
analytic continuation of the signature factor 7(coy,t) = o + (—1)*r") = g, —
exp [—im(ar(t) — 1)):

™ .
Re AW2,t) |t [5(aR(t) - 1)} , if or =41,

—L = 39
Im AW2,8) | cot [g(aR(t) - 1)} , ifoy =1 e

3.1.4. The Vacuum Exchange: the Pomeron Trajectory from Hadronic Scat-
tering. Elastic scattering is driven via unitarity by strongly absorptive inelastic
multiproduction processes, which is nicely illustrated by the impact parameter
representation — the high energy version of the partial wave expansion. In
high-energy elastic scattering the momentum transfer, A, is the two-dimensional
vector transverse to the beam momentum. The elastic scattering amplitude can
be cast in the form of the Fourier transform

WA (W2 A) = QZ/CF [1 — S(b)]exp (—ibA), (40)
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where S(b) = exp (2i§(b)) is the S matrix for elastic scattering at an impact
parameter b and the angular momentum ! = |p|-|b|. The total elastic and inelastic

cross sections equal
ou = /deu — S,

Oin = /de [1—[S(D)].

Strong absorption implies the predominantly imaginary scattering phase. One
often uses the so-called profile function I'(b) = 1 — S(b). The small momentum
transfer expansion in (40) gives

(41)

1
WA W2 A _21/d2b1“ [ 5(10A)2] =

1
= L aw20)(1-1pa 42
e (1-3a%), @)
so that the diffraction slope B is determined by the mean impact parameter

squared
1 1 [d*bb*I'(b
B:—<b2>:—f ( )
2 2 [d?bT(b)
The extreme case is the scattering on the absorbing black disc of radius R for
which |S(b)| = 8(R — |b|), which is a good approximation for the scattering of
nucleons off heavy nuclei. Then

(43)

Oel = Oin = 50tor = TR? (44)

and the diffraction slope equals
Be = -R2. (45)

Such a flat, energy-independent, elastic scattering must be contrasted to the two-
body reactions with the nonvacuum exchange which constitute a tiny fraction of
high energy inelastic collisions of hadrons and have cross sections that vanish at

high energy,
1 1

WAl —ar@) = W2
The importance of strong absorption for high-energy hadron interactions is

evident form the proximity of central partial waves of pp scattering to the unitarity
limit, T'(b) < 1, [101], although the periphery of the nucleon is still gray, and

o(ab — ed) x (46)



DIFFRACTIVE VECTOR-MESON PRODUCTION AT HERA: FROM SOFT TO HARD QCD 29

for all the hadrons o, is still substantially smaller than oy,, see the plots in
the Review of Particle Physics [102]. As emphasized first by Pomeranchuk, the
particle—antiparticle cross-section differences vanish at high energy, see [102], and
from the t-channel viewpoint the elastic scattering is dominated by the vacuum
exchange. In 1961, Chew and Frautschi conjectured that the vacuum channel
can also be described by the reggeon — first dubbed the Pomeranchukon, later
shortened to Pomeron, — exchange with an appropriate spin-2, C'-even, isoscalar,
positive parity resonance lying on the Pomeron trajectory (the early history of the
Pomeron is found in [96]).

If the Pomeron were a simple Regge pole, it would have been utterly distinct
from the nonvacuum reggeons:

e For all hadrons and real photons the total cross sections rise with energy
and the phenomenological Pomeron trajectory has ap(0) =1+ Ap ~ 1.1 > 1
(notice that from now on the A is still used for the four-momentum exchanged,
but Ajndex i used to define the variation of the intercept of the coorrespondent
index trajectory from unity). Such a rise of the vacuum component of the total
cross section,

Ovac = op o (W2)AP (47)

cannot go forever, though. At asymptotic energies it would conflict the Frois-
sart bound. Furthermore, the partial waves of elastic scattering would over-
shoot the unitarity bound. Indeed, in the often used exponential approximation,

1 1
WA(W2,A) X exp (—5BA2>, and neglecting the small real part of the
small-angle scattering amplitude, one finds

Oto b2
I'(b) = 4;; exp (—ﬁ> (48)

and with the unlimited growth of o one would run into I'(b) > 1. The unitarity
(absorption, multipomeron exchange, . . .) corrections, which must eventually tame
such a growth of T'(b) and of oy, with energy, were shown to be substantial
already at moderate energies [103—105]. The multipomeron absorption affects
substantially the determination of Ap: the first estimate

Ap ~0.13

with the perturbative treatment of absorption based on Gribov’s reggeon field
theory [106,107] goes back to the 1974-1975 papers by Capella, Tran Thahn Van,
and Kaplan [103, 104]. Within a more realistic model for absorption, the ITEP
group [105] found the equally good description of the hadronic cross-section data
with substantially larger Ap ~ 0.23. If one follows the Donnachie-Landshoff
suggestion [108] to ignore the absorption corrections altogether and stick to the
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simplified pole terms, then the Particle Data Group finds Ap = 0.095 [109].
However, according to the 2002 edition of the Review of Particle Properties [102],
still better fit to the experimental data is provided by the parameterization [110]

Ovac(ab) = Oyac(@b) = Zap + 2B log?(W/Wy), (49)

which is consistent with the Froissart bound, and from the Regge theory viewpoint
corresponds to the triple-pole singularity at j = 1, i.e., Ajp = 0!

e The shrinkage of the diffraction cone in elastic scattering suggests very
small slope of the Pomeron trajectory ayp(t): the combined analysis of the
experimental data on elastic pp, pp, 7+p, K*p scattering at the CERN SPS/FNAL
and CERN ISR energies gave o/p ~ 0.13 £0.025 GeV~2 ([111], for the review
see [112]). The extrapolation of these fits underpredicts the pp diffraction slope
at the Tevatron, which call for o/lp ~ 0.25 GeV~2. Incidentally, the last value of
a’lp has been used by theorists ever since 1974—1975 [103,104], but it must be
taken with the grain of salt: the observed growth of the diffraction cone can to
a large extent be due to the unitarity/absorption driven correlation, cf. Egs. (44)
and (45), between the total cross section and the diffraction slope so that the
Tevatron data can well be reproduced with the still smaller values of o/ [113].

To summarize, the Donnachie-Landshoff (DL) parameterization [108]

ot (1) = 1.1+ 0.25 GeV ™2 - ¢ (50)

must only be regarded as a convenient short-hand description of the local, W <
1 TeV, energy dependence of the vacuum component of the elastic scattering of
hadrons.

3.1.5. The Diffraction Slope: Variations from Elastic Scattering to Single to
Double Diffraction Excitation. The variation of the diffraction slope (35) from
elastic scattering to single (SD) to double (DD) diffraction excitation exhibits
certain universal features [93,94,114]. An excellent guidance is provided by a
comparison of elastic proton—nucleus, pA — pA, to quasi-elastic, pA — p’A*,
scattering. The latter reaction, in which one sums over all excitations and breakup
of the target nucleus without production of secondary particle, must be regarded
as diffraction excitation of the target nucleus.

The crucial point is that at a sufficiently large (p,p’) momentum transfer
such that the recoil energy exceeds the typical nuclear binding energy, which
can be viewed as hard scattering, the ¢ distribution of scattered protons in quasi-
elastic (nucleus-dissociative) pA — p’ A* is the same as in elastic pp scattering,
Baiss(pA — p'A*) = By, [115,116]. The quasi-elastic pA — p’A* becomes
a sort of a deep inelastic scattering with quasi-free bound nucleons behaving as
partons of a nucleus and quasi-free pN — p’N scattering being a counterpart of
the Rutherford scattering of leptons off charged partons in DIS off the proton. The
summation over breakup of a nucleus into all continuum excitations is important,
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for excitation of the specific discrete state A* of a target nucleus, pA — p’ A*,

the diffraction slope will still be large,

1
B+ ~ By ~ ZR?L}. (51)

Now define the ratio of differential cross sections

Ratio(diss/el)(t)

 douies(pA — p'A¥) / doa(pA — p'A)
o dt

7 . (52)

Elastic scattering: Ratio(diss/el)(¢t) < 1 is the dominant process within the
diffraction cone, R%|t| < 1. However, elastic scattering dies out rapidly for

R%|t| > 1, where quasi-elastic scatter-
ing takes over: Ratio(diss/el)(t) > 1.
This point is clearly illustrated by the
experimental data [117,118] on elastic
and nucleus-dissociative p'2C scatter-
ing shown in Fig. 8. Notice the dif-
fractive dip-bump structure, familiar
from optical diffraction, in the dif-
ferential cross section of pure elas-
tic scattering. For a sufficiently hard
scattering, [t| = A% > 0.06 GeV?,
the sum of the elastic and nucleus-
dissociative cross sections, dos. =
doe) + dogiss, 1s clearly dominated by
the nucleus-dissociative dogiss.

In the regime of strong absorption
the integrated cross section of quasi-
elastic or nucleus-dissociative scatter-
ing is small [115],

aiss (PA — /A7) <
1
< 0al(pA — p'A) ~ 5051;‘:. (53)
Exactly the same considerations apply
to elastic scattering and diffraction ex-
citation of hadrons and real photons,
a = p,m, K, on the free nucleon tar-

T\, =1 GeV — R=1.58fm
C a— B (exp) a=4.7(GeV/c)?
A 1ab o =43.8 mb
- do a=-0.33
0g
107! 2
1072
1073 |

0.1 0.2 0.3
A?, (GeV/c)?

Fig. 8. A comparison of elastic (@, /) and
combined elastic plus nucleus-dissociative
(A, 2) p'2C scattering data [117,118]. The
theoretical calculations are from Czyz et
al. [116]

get, b = p. Let By be the contribution to the diffraction slope of electric pp
scattering from the Pomeron—proton—proton vertex, so that

B =2BN + Bpp. (54)
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In the single or target-dissociative (SD) reaction, pp — pY’, and double dissoci-
ation (DD), pp — XY, one must distinguish the low-mass (LM = resonances,
low-mass continuum states, . ..) and high-mass (HM) states X, Y. The boundary
between the low-mass (exclusive low-mass states, resonances, . ..) and high-mass
continuum excitations is My y ~ 2 GeV. The case of small-mass excitation is
an exact counterpart of excitation of discrete nuclear states in pA — p’ A*. Then
(51) suggests that the contribution to the diffraction slope from the pY transition
B,y = By, so that for SD and DD into low-mass states we have

Bsp(LM) = Bpy + By + Bp =
= BDD(LM,LM) = pr+BpX + Bp = B, (55)

is in good agreement with the experimental data from the CERN ISR and
FNAL experiments [119-123]. The SD into high-mass (HM) continuum,
pp — pY (HM), corresponds to the complete breakup of the target proton and
the reaction can be viewed as elastic scattering of the beam proton on one of the
constituents of the target. Consequently, the dependence on the size of the target
proton vanishes, B,y =~ 0, and in SD into high-mass states (often referred to as
the triple-Pomeron region) and mixed low-and-high mass DD

1
Bsp(HM) ~ Bop (LM, HM) ~ By + Bjp ~ 5Ba ~6 GeV 2. (56)

In DD pp — X(HM)Y(HM) with excitation of high-mass states from both
the target and beam B,x ~ Bpy ~ 0 and only the ¢-channel exchange B

contributes to diffraction slope. Experimentally, this component is abnormally
small [122,123]

Bpp(HM,HM) ~ Bp ~ (1 —2) GeV 2. (57)

Finally, although in 7p, Kp, pp scattering only the central partial waves are close
to the strong absorption limit, and the ratios oe/otor ~ (0.15—0.25) are still
substantially smaller than 1/2 for the strongly absorbing nuclear target, the strong
inequality oqiss(pp — P'Y) < oa(pp — pp) holds in close similarity to (53).
Typically, in pp interactions R,,(diss/el) = osp/ca < 0.3, for the review
see [93,94,112].

3.2. The Regge Theory and QCD. In the realm of DIS the high-energy limit
amounts to the small-z limit. The SF’s of small-z DIS are related to the total
cross sections as )

Fr(z,Q%) = 9 oro(z, Q7).
A A2, Y
Instead of the transverse SF one usually discusses Fh(x,Q?) = Fr(x,Q?) +
Fr(x,Q?). The QCD parton model decomposition of the proton SF into the
valence and sea-quark contributions
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Fy(2,Q) =2y eflas(e, Q%) + @ (2, Q)] =
f

4 1
= goun(, Q%) + gt (@, Q%) + 2$Zf:e?@f($, Q% (58)

must be viewed as a decomposition of the photoabsorption cross section into
the nonvacuum (nonsinglet) and vacuum (singlet) components. From the view-
point of the QCD evolution, the valence component corresponds to slowing down
of the valence quarks to x < 1 and depends on the target. At small x, the
sea evolves from glue and will be the same for the proton and neutron as well
as antinucleon targets, i.e., it must be associated with the Pomeron exchange.
The density of small-x gluons exceeds greatly the density of charged partons,
which entails that (i) one can model high-energy inelastic interactions by pro-

1
duction of the multigluon final states and (ii) to the so-called leading-log — the
x

small-x evolution is driven by the splitting of gluons into gluons, with the split-
ting g — qq only at the last stage of the evolution. As a result, the QCD vacuum
exchange is modeled by the tower of color-singlet two-gluon exchange diagrams
of Fig. 9, which is described in terms of the so-called unintegrated or differential

gluon density
0G(x, k?)
2\ )
Fla,w7) = Ologk? ’

where k is the gluon transverse momentum.

q * * * e 5
V() p Y V) Y V(") y

=

P D XD /e

a b c

Fig. 9. a,b) The subset of two-gluon tower pQCD diagrams for the Pomeron exchange
contribution (c) to the Compton scattering (DIS) and diffractive vector-meson production.
Not shown are two more diagrams with g < ¢

At not so small z, the Q? dependence of the parton densities is governed
by the DGLAP evolution [124-126]. Here the evolution goes from smaller to
larger @2, so that once the boundary condition is taken at a sufficiently large
Q3, then one stays in the perturbative domain. However, in the language of
inelastic multiparticle states the DGLAP evolution amounts to summing only
the final states with strong ordering of transverse momentum and as such, it
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accounts to only a small part of the available transverse phase space. This
restriction on the transverse phase space becomes excessively prohibitive and must

1
be lifted at very small x. The practical method of summing the leading-log —
x

contributions to the unintegrated gluon density JF(z,x?2) without restrictions on
the transverse momenta of partons has been developed in 1975 by Fadin, Kuraev,
and Lipatov [35,36] and refined further by Balitsky and Lipatov ([37,127], for
the review see [128]). One has to pay a heavy price, though: the BFKL evolution
receives a substantial contribution from soft, nonperturbative transverse momenta
of final state partons, where the running strong coupling g is not small and the
sensitivity to models of infrared-regularization cannot be eliminated ([129-133]
and references therein). Although the fully satisfactory quantitative solution to this
problem is as yet lacking, many of the properties of the QCD vacuum exchange
must be regarded as well established:

e Discard the asymptotic freedom, i.e., make the approximation ag = const
and allow the infinite propagation range for gluons. Such a model is free of
a dimensional parameter and possesses the scale-invariance property, which al-
lows for an exact solution. The j-plane singularity of the model is a fixed cut
(branching point) [35-37] at

12log 2
0

—00<j<14+AppkL =1+

as (59)

with vanishing o/, = 0, which is natural in view of the lack of any dimensional
parameter in the model.

e One can cope with the asymptotic freedom within the BFKL approach only
at the expense of a certain regularization of the infrared growth of «g. One
only needs to account for the finite propagation length, R., of perturbative gluons
as suggested, for instance, by the lattice QCD studies [50-52]. In their 1975
paper Fadin, Kuraev, and Lipatov remarked that in this case the branching point
is superseded by a sequence of moving Regge poles [35]. The positions of the
poles were estimated in 1986 by Lipatov [127]

__ AprkL

T (60)

Herebelow, when discussing the pure Pomeron amplitudes, we shall refer to A,,
as the intercept, which must not cause a confusion. Within the color dipole
approach the poles differ by the number of nodes in the eigen-cross section as a
function of the dipole size r [134]. The rightmost pole has a node-free eigen-cross
section; the nodal structure of the eigen-cross sections and the n dependence of the
intercept of subleading vacuum poles found in [134] are very close to the quasi-
classical approximation results of Lipatov [127]. The intercept of the rightmost
pole Ap, the slopes of the emerging Regge trajectories and positions of nodes in
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the eigen-cross sections depend on the infrared regularization ([25,130,131] and
references therein).

3.3. Poor Man’s Approximations to the QCD Pomeron. 3.3.1. The Q2
Independence of the Pomeron Intercept. For each and every pole the intercept
does not depend on the probe. In application to DIS that means an independence
of intercepts on @ [129-131,135], only the residues can depend on @2, so that
the = dependence of structure functions will be of the form

1

Ay
R@Y = S PU@) (7)) A 61)

Examples of such a BFKL-Regge expansion for the proton and photon SF’s
with energy-independent soft contribution F5°f(Q?), i.e., A = 0, are found
in [134,136-138]. If one reinterprets the soft contribution in terms of the soft,
nonperturbative, unintegrated gluon density, then similar Regge-BFKL expan-
sions hold for the integrated gluon density, G(z, Q?), and the unintegrated gluon
density

0G(z, k2
F(l’al‘\'?) = W

An example of the decomposition of F(x, k2) into the soft and hard components
is found in [34,139] and is shown in Fig. 10.

From the viewpoint of the energy dependence, the Regge cut also can be
viewed as an infinite sequence of Regge poles. One can approximate the local x
dependence of the BFKL-Regge expansion (61) by

1\ 2@
Fy(z,Q%) = F(Q?) (—) , (62)

T

which must not be interpreted that the Pomeron is a Regge pole with
(QQ*-dependent intercept, for such a warning see, for instance, Bjorken [91]. An
example of how the effective intercept A(Q?) changes with the range of z is
found in [135, 143, 144], the variations of the effective intercept from the un-

7(k?)
integrated gluon density F(z, k?) (—) to the integrated gluon density
x

1\ @)
G(z,Q?) (—) and to the proton SF F(z,Q?) are found in [34,139],

x
see Fig. 11, where we show separately the intercept for the hard components
of F(z,k?),G(z,Q?), F»(z,Q?) and for the same quantities with the soft con-
tributions included. These intercepts parameterize the local x dependence for
1073 < o < 1075, The striking finding is that while Tharq(k?) and Apara(Q?)
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F(x, k%), D-GRV
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Fig. 10. The differential gluons structure function of the proton determined in [34,139]
from the k, -factorization analysis of the experimental data on Fb,(x, @?). Notice the
transition from the z-independent soft component at small k> < 1 GeV? (shown by
the dashed curve) to the hard component (the dotted curve), which converges to the
derivative 9GpgrLap(x, k?)/0log k? of the integrated gluon density determined from the
LO DGLAP fit to F, (2, @?). This particular example is for the GRV LO parameterization
[140], very similar results are found for the MRS [141] and CTEQ [142] parameterizations

exhibit a very strong scale dependence, i.e., the contributions form the sub-
leading BFKL poles are large, the Ap..q(Q?) is about QQ*-independent one,
Apara(Q?%) ~ 0.35—0.45.

3.3.2. The Contributions from the Soft Region beyond pQCD. Here one faces
three major questions: (i) is the rise of soft hadronic cross sections driven by small
dipoles in hadrons, (ii) what is the mechanism of interaction of nonperturbative
large dipoles, and (iii) is the soft contribution relevant to the large-Q? DIS?

The first question can be answered in the affirmative: the somewhat model-
dependent estimates suggest strongly that the rise of the hadronic and real pho-
toabsorption cross sections receive a large if not a predominant contribution from
the interaction of small-size color dipoles in hadrons [34,136]. This suggests a
weak energy dependence of the genuine soft vacuum exchange: Ago; ~ 0. The
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Effective intercepts D-GRV
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Fig. 11. The effective intercepts 7(x2), A\(Q?), A(Q?) of the local x dependence, 10™2 <
x < 107%, of F(z,k?),G(x,Q%), Fa(x, Q?), respectively for the k, -factorization analy-
sis [34,139] with the large-x? behavior of F(z, x?) tuned to the GRV LO parameteriza-
tion [140] as described in the text. In a—c the dashed lines are for the hard components,
the solid lines are found if the soft components are included; d shows how the intercepts
change from F(z,x?) to G(z,Q?) to Fa(x,Q?). The very close results are found for
intercepts of parameterizations tuned to converge at large Q* to the MRS LO [141] and
CTEQ LO [142]

discussion of the potential importance of hard contributions to hadronic cross
section was initiated in [113], for the recent work along these lines see [145].
From the color dipole viewpoint, the pure pQCD considerations stop at
the dipole size r > R. ~ (0.2—0.3) fm and cannot describe the bulk of the
hadronic cross sections. It is plausible that at such large dipole sizes the color
dipoles spanned between the constituent quarks do still remain the important
degrees of freedom, but the corresponding soft dipole cross section remains a
model-dependent phenomenological quantity, for which we only have constraints
from soft hadronic diffractive scattering or from real or moderate-Q? photoab-
sorption [24, 34,136, 138]. Such a soft dipole cross section can be modeled
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either by the nonperturbative two-gluon exchange [24,34,135,136] or within the
closely related model of the stochastic QCD vacuum suggested by the Heidel-
berg group [146]. Purely phenomenological attempts to guess the shape of this
soft cross section and its continuation into the hard region [147] should not be
disregarded as well.

From the practical point of view, the available models for the dipole cross
section suggest a smooth r dependence of the dipole cross section across r ~ R,
up to 7 ~ 1 fm. Because the pQCD BFKL component of the dipole cross
section rises with energy much faster than the energy-independent soft dipole
cross section, at higher energies the dominance of the pQCD component of
the dipole cross section will extend beyond r ~ R, for which reason the lower
boundary for the pQCD dominance will be lower than given by Eq. (13). One can
come to the same conclusions from the smooth x? dependence of the unintegrated
gluon density from soft to hard region and the dominance of the hard component

1
at large — which is clearly seen in Fig. 10.
x

Regarding the question (iii), even at very large Q? the virtual photons contain
the hadronic size gG components and the SF’s receive a nonvanishing, even
substantial at  ~ 10~2, contribution from the interaction of soft dipole. Within
the more familiar DGLAP approach such a contribution is hidden in the input
parton densities; the sensitivity of the DGLAP evolution to the input partons is
an old news, although eventually the rising perturbative QCD component would
take over at very large Q% [134-136]. Recently there were many suggestions
to start with the Regge parameterization of photoabsorption at small to moderate
Q? < Q7 and take FQ(Regge)(x, Q%) as a boundary condition at Q? = Q? for the
DGLAP evolution at large Qg ([148-150] and references therein).

3.3.3. The Two-Pomeron Approximation. The transition from the uninte-
grated gluon density, F(z,k?), to the conventional, integrated one, G(z, Q?),
involves an integration, G(z,Q?) = fQZ (dx?/k?)F(z,k?). Similarly, to the
DGLAP approximation the small-z SF involves an integration, F(x,Q?) o
Ik <’ (dk?/k*)G(z, k?). Each integration shifts the nodes to larger value of Q?
and, furthermore, enhances the relative contribution from the node-free rightmost
eigenfunction. The model-dependent estimates within the color dipole model
show that the QCD vacuum exchange contribution to DIS is numerically domi-
nated by the rightmost Pomeron pole plus the energy-independent soft exchange
contributions™ because the subleading Pomeron pole contributions have a node in
the practically important region of Q% ~ 10—40 GeV? [130, 135, 136, 138, 144].
This is the reason behind the remarkable flat Q2 dependence of Aparq(Q?) shown

*To this end it is instructive to recall the early doubts in the necessity of the hard Pomeron
contribution for description of the observed cross sections [151-153].
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in Fig. 11. Consequently, within the kinematical range of HERA, the hard con-
tribution to the proton SF can be well approximated by a simple Regge-pole
formula with the intercept Apaq ~ 0.35—0.45 [34,139]. This finding is a dy-
namical justification of the two-pole approximation [145,154,155]. The specific
models [34,136,138] give the concrete Q2 dependence of the residues; on gen-
eral grounds there are no reasons for decoupling of the effective hard Pomeron
from soft amplitudes, including the real photoproduction. We emphasize that the
two-Pomeron parameterization only holds in the limited range of x and should
not be extrapolated far beyond the kinematical range of HERA.

3.4. The Basics of the Theory of Diffractive Vector-Meson Production.
Here we comment briefly on properties of diffractive vector-meson production
starting with the nonrelativistic quark model in conjunction with the vector dom-
inance model. It offers a useful insight into such fundamental issues as the flavor
dependence, the relation between the vector-meson production and V9 — ete~
decay and the way the short-distance wave function of vector mesons is probed
in vector-meson production. Then we qualify those properties in the color dipole
approach.

3.4.1. The Flavor Dependence, the Relation to the Decay VO — ete™ and
VDM. On the one hand, the V° — ete™ decay amplitude can be parameterized
in terms of the matrix element of the electromagnetic current

(0)JulV) = =vVATaemgvev Vy, (63)

where V), is the vector-meson polarization vector, so that the decay width equals

dmal g3 c?
‘/0 + - emJVV
I( eten) = W (64)
the ch i in fact = —1 (ey —eq) = _1 _ 1 (
Here the charge-isospin factors ¢y are ¢ S ) Co €u +
£ b v ’ V2 ¢ V2 V2
) = 1_ —1 e =2 =ep = L One also often
€ » Cp =€ = —75, C =€ =5, Cr =€ = —7. € €
d 3.2 ¢ 3 J/U 3 T b 3

uses the parameter

1 gvey

fv o mi
On the other hand, in the nonrelativistic quark model the vector meson is the
weakly bound spin-triplet, S-wave ¢q state, and the decay V° — ete™ proceeds

via annihilation ¢g — eTe™,

_ _ _ 402 c?
T(V? —ete™) = [Rv(0)[*(vgqo(qq — eTe™)) = TV|RV(0)|27 (65)
v
where vyq is the relative velocity of the quark and antiquark in the vector meson
and Ry (0) is the radial wave function at the origin [156]. This gives a useful
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gv = Ry (0)y/ ?’mTV (66)

which amounts to the nonrelativistic calculation of the Feynman diagram of
Fig. 12.
Consequently, in the simplified VDM approximation, for transverse photons,

relationship

V 4f’/TOlemgVCV
T(v'p—Vp) —s 32 (Vp—Vp), (67)
Q? +m3
N(VO —ete) mi
= T —
\/ mydem Q> +mi Vp—=Vp), (©€8)
CvRv(O)\/ 12aemmv
= T ) 69

Precisely the same result is found if one computes the vector-meson production
amplitude through the diagrams of Fig. 13 and applies the additive quark model,

T(Vp—Vp)=T(qp — qp) + T (qp — qdp). (70)

In the case of the pp and wp final states
a very good parameter-free description of
_—\i/mf\ . the E401-FNAL measurements of the dif-

ferential cross section of photoproduction
Fig. 12. The decay of the vector me- is found if one takes isoscalar elastic 7N
son into the lepton pair via annihilation scattering amplitudes for 7(Vp — Vp)
qq —e'e” ([43,157] and references therein). The
sp, 5p amplitudes needed for the ¢p state can be extracted from the 7N, K N, K N
elastic scattering amplitudes

T(pp— ¢p) =T(K'p—>K'p)+T(K p— K p)—T(x p—n p), (7)

which gives a perfect description of the ¢ dependence of the E401-FNAL data
on photoproduction of ¢p [157]. Specifically, (71) correctly reproduces the ex-
perimentally observed change of the diffraction slope from B(yp — wp) =

q

<
<

Fig. 13. The Additive Quark Model approximation for the vector-meson production am-
plitude
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(12.6 £ 2.3) GeV~2 to B(yp — ¢p) = (6.8 & 0.8) GeV~2. In terms of the
discussion in Subsubsec. 3.1.3, see Eq. (35), this inequality of diffraction slopes
suggests that the spatial size of the ¢ made of the heavier strange quarks is
substantially smaller than the spatial size of the w made of the light u,d quarks.
However, the observed differential cross section is only a half of what is predicted
by (68) and (71). Within the color dipole approach the culprit is the oversimpli-
fied VDM approximation (71): the interaction of the quarkonium is controlled by
not the number and flavor of quarks in the state but rather its size [158].

3.4.2. Vector-Meson Production in the Color Dipole Approach. In the color
dipole approach, thanks to Lorentz dilation of time at high energies, the par-
tonic fluctuation (to the lowest order, gg pair) of the incident photon is frozen
in transverse (impact parameter) space during the interaction with the target.
This allows one to cast the photoproduction amplitude in a quantum-mechanical
form [17,19,21]

<T=<wvwmaww:1/dzfrw;uﬁomaar>wwm, 72)

where z and (1 — z) are fractions of the photon’s light-cone momentum carried by
the quark and antiquark, respectively. The basic quantity here, the cross section
of the color dipole interaction with the target Udip(r), can be calculated for the
forward scattering case through the unintegrated gluon distribution,

2
ogip(x,1) = 4% / Ciiff}'(sv, K) as[max (RQ, A/r2)] [1 — exp (ikr)], (73)

where
A~9-10 (74)
follows from the properties of Bessel functions [33]. Equations (72) and (73)
1
sum to the leading log — the towers of two gluon exchange diagrams of Fig. 9,
T

as manifested by the unintegrated glue F(z, k) in the integrand of (72). The z
dependence of the dipole cross section is governed by the color dipole BFKL
equation ([129, 159, 160], see also [161,162]), for the discussion of the choice

0 &+ my
W2

~

2= (75)
see Subsec. 4.6 below.

In due turn, the unintegrated glue of the proton can be extracted from the
experimental data on the proton structure function [34, 139], so that there is a
microscopic QCD link between inclusive DIS and vector-meson production, if
the vector meson is treated in the gq Fock-state approximation. For small dipoles
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there is a useful relationship to the integrated gluon structure function of the

proton [33,163]
2
(N A A
Udip(JT,r) = ?7" ags (7’_2> & (377 7’_2> . (76)

Now comes the crucial point: the light-cone wave function of the virtual photon
shrinks with @2, namely, ¥, (r) o exp (—er), where [17-19]

2 =2(1-2)Q%*+ m?c, 77)

where my is mass of the quark of the flavor f. Then, for a sufficiently large
Q)?, the dominant contribution to the virtual photoproduction amplitude will come
from r ~ rg = 3/e, so that

T « cyreoaip(zg,75) Wi (2,75) x r$as (%) G (xg, %) , (78)
s s
where in the integrand of (78) the z-dependent factors coming from the photon
wave function have been suppressed.

Note that the «quark mass» term mfc here must not be omitted even for
the light flavors. This «quark mass» serves as an effective parameter that
bounds from above the transverse size of the qg state in a real photon. One
can discuss the large-size properties of the photon only under certain assump-
tions on the color-dipole cross section for large dipoles or the unintegrated
gluon density for nonperturbative soft gluon momenta: the early choice has been
My,q ~ 0.15 GeV [134,135], the more recent k| -factorization analysis [34] of the
low-Q? Fy,, data suggests m, 4 ~ 0.22 GeV.

The result (78) has all the properties of the amplitude (69) subject to important
QCD modifications:

e The color-dipole cross section is flavor-independent, and the charge-isospin
factors are precisely the same as in the VDM.

e For rg < Ry the vector-meson production is obviously short-distance
dominated and tractable within pQCD ([17-19, 22,23], for refinements on the
applicability of pQCD see Collins [164]). The amplitude is proportional to the
vector meson wave function at vanishing transverse qg separation, U3 (z,0),
which is closely related to the so-called vector meson distribution amplitu-
de [165,166].

e To the nonrelativistic approximation, z ~ 1/2 and my ~ 2m,, one has

1
e~ Z(Q2 + m%), and the factor 1% oc 1/(Q? + mi) reproduces the Q2
dependence dictated by the vector meson propagator.

e However, oot (Vp — Vp) which enters (69), is substituted for

372 —2 —2

Udip('rgars) ~ gaS(Q )G(xgaQ )a (79)
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where we used (74) and (9) by which A/ r?g ~ @2. For large dipoles, rs ~ Ry,
which dominate in real photoproduction, cqip(Ryv) = otot(Vp — Vp), but for
small dipoles, rg < Ry, which dominate electroproduction, ogip(zg,rs) <
otot(Vp — Vp) and the simplified VDM is bound to fail.

e For small scanning radii, rs < Ry, such that ¥y (z,rg) & const, the
dependence on Q% and the mass of the vector meson my only enters through the
scanning radius rg. Hence the fundamental prediction [21] that cross sections for
different vector mesons taken at the same value of rg, i.e., the same value of
(Q? + m?,), must exhibit similar dependence on energy and (Q* + m$,).

e Vector-meson production probes the integrated gluon SF of the target proton
at hard scale @2 given by (8) ([20-22], for a more accurate definition of @2 for
light vector mesons see [38]).

e Notice an inapplicability of the simplified VDM to heavy quarkonia, for
which by virtue of small avg the Bohr radius

Ry =ap ~ >rg.

myaoags
e Finally, as far as the ¢ dependence is concerned, rg can be regarded as the
transverse size of the v* — V transition vertex, so that for the fixed value of x
the diffraction slope is predicted [25,26] to decrease with (Q* + m3,):

const
—-
Q?+mi,

Because the color dipole cross section and the unintegrated gluon SF are
related by the Fourier transform, all the above results can be rederived in the
momentum space representation, often referred to as the k£, factorization or impact
factor representation. The relevant formalism goes back to the 1978 seminal
paper by Balitsky and Lipatov [37], although the term «k, factorization» has
been coined much later on by several groups [167-169]. The detailed application
of the k, factorization to the vector-meson production is found in [54,170-172]
and will be reviewed in the following Sec. 4, the first momentum space derivation

B(Q*) ~ By + Crg ~ By + (80)

of the leading log @2 approximation is due to Ryskin [22] and Brodsky et al. [23],
some corrections to the leading log @2 approximation were discussed by Levin et
al. [173]. Referring to Sec. 4 for a detailed discussion of the helicity amplitudes
within &k, factorization, here we only cite the gross features of the longitudinal
and transverse cross sections:

1 — _ 2
QM) [0s(@")G(x,, Q)] 81)
’ 1 —2 _9.12
T Q) |0s(@)6(,, @) - (82)



44 IVANOV L.P., NIKOLAEV N.N., SAVIN A.A.

Here the factor ~ Q?/m#, in the o, is a generic consequence of the electromag-
netic gauge invariance, as has been understood in early 70’s [174, 175].

The Heidelberg group [176] starts with the soft color dipole cross section
evaluated within the stochastic QCD vacuum model [146]. It shares with other
color dipole models the predictions for the (Q? dependence, but the energy de-
pendence does not follow from the first principles of the model and needs to be
introduced by hand [177].

3.4.3. Production of Excited Vector Mesons. The p° w°, ¢°, and J/v are
the ground state vector mesons. The ¥'(3686) is the well-established radial
excitation 2S-state, the U”(3770) is a solid candidate for the orbital excitation
D-wave state [47,48], the radial vs. orbital excitation assignment in the p,w, ¢
family is not definitive yet [102].

The salient feature of the 25 radial excitations is a node of the radial wave
function, Wag(z,7), at r = rpede ~ R(1S) = Ry, which suppresses the V/(25)
production amplitude in comparison to the corresponding V' (1.5) production am-
plitude [17,18,49,178]. The strength of the node effect depends on the proximity
of the scanning radius rg to the node position 7,ode. At s K Thode (in the
under-compensation regime), which can take place at high Q? or for very heavy
mesons, the contr