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This is the second paper on the path-integral approach of superintegrable systems on Darboux
spaces, spaces of nonconstant curvature. We analyze in the spaces Dyyr and Dy five and, respec-
tively, four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate
the path integral in most of the separating coordinate systems, leading to expressions for the Green
functions, the discrete and continuous wave functions, and the discrete energy-spectra. In some cases,
however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order
polynomial equation. We also show that the free motion in Darboux space of type III can also contain
bound states, provided the boundary conditions are appropriate. We can state the energy spectrum
and the wave functions, respectively.

DT0 BTOp 5 CT Thd, IOCBAIIECHH s NPUOIIKEHNAI0 WHTETp JIOB MO IMyTSM JUIS CyepHHTErpupye-
MBIX CHCTEM H mpocTp HCTB X [l pOy, mpocTp HCTB X HepeMeHHOI KpuBu3Hbl. H mpocTp HCTB X
I p6y Diyr u Dry TpOBOOMTCS H JIM3 IATH H, COOTBETCTBEHHO, UYETHIPEX CYNEpPUHTErPUPYEMbIX
MOTEHIU JIOB, KOTOpbIe BliepBble ObUIN HpencT BieHbl K maHuHCOM M Ap. H M yA JIOCh BBIUHCIHTDH
HHTErp JI IO MyTSIM B H HOoJiee p 3eMIOIXC CHCTeM X KOOPAHH T, YTO HPHBOAUT K BBIP KEHUIM
1 yHKimil pHH , BOTHOBBIM (pyHKLHSAM AMCKPETHOTO M HENpPEpPHIBHOIO CHEKTPOB M JHCKPETHOMY
creKkTpy ®Hepruil. OIH KO B HEKOTODBIX CIy4 sIX IMCKPETHBIH CIIEKTp YCT HOBUTbH He yI eTcs, T K K K
OH oIpefernsdeTcs IOIMHOMH JIbHBIM yp BHeHHeM Ooliee BhICOKOro mopsuk . ITok 3 Ho, 4To cBoGOx-
Hoe aBikeHue B mpoctp Here [I pOy Il Tm T KXe MOXET COepX Thb CBS3 HHBIC COCTOSHHUS IPU
OIIpefieNIeHHBIX TP HUYHBIX YcIoBHAX. COOTBETCTBEHHO, JUIS HHX MOXKHO YCT HOBHUTBH CHEKTp DHEpruid
U BOJIHOBBIE (DYHKIIMH.

PACS: 02.30.Jr, 45.05.4x, 02.40.-k

1. INTRODUCTION

In the previous publication [21] we have started to study superintegrable
systems on spaces of nonconstant curvature, i.e., Darboux spaces. These spaces
were introduced by Kalnins et al. [26,28]. In the first paper we have studied
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the Darboux spaces D and Drj, and we continue our study by considering
the two other Darboux spaces Diyr and Dry with five and, respectively, four
superintegrable potentials as determined in [26].

We find a rich structure of the spectrum of these potentials yielding bound
and continuous states. As it turns out, already the free motion on Dy can give
a positive continuous and an infinite negative discrete spectrum. This situation is
similar to that for the quantum motion on the SU(1, 1) manifold [2], respectively,
on the SU(2,2) [6] and SO(2,2) manifold [30].

The notion of superintegrable systems was introduced by Winternitz and
co-workers in [9,47], Wojciechowski [48], and was developed further later on
also by Evans [7]. Superintegrable potentials have the property of finding addi-
tional constants of motion. In two dimensions one has in total three functional
independent constants of motion and in three dimensions one has four (mini-
mal superintegrable) and five (maximal superintegrable) functional independent
constants of motion. Well-known examples are the Coulomb potential with its
Lenz—Runge vector and the harmonic oscillator with its quadrupole moment.
Another property of superintegrable potentials is that usually the corresponding
equations in classical and quantum mechanics separate in more than one coordi-
nate system.

Similar studies of the quantum motion on spaces with and without curva-
ture have been investigated in [17] for two- and three-dimensional flat space,
in [18] for the two- and three-dimensional sphere, and in [19] and [20] for
the two- and three-dimensional hyperboloid. In all these cases the path in-
tegral method [8, 22, 39, 45] was applied to find the bound and continuous
states, i.e., wave functions and the explicit form of the spectrum. We have
not considered complexified spaces as in [37] for the two-dimensional com-
plex sphere or in [34-36] for the two-dimensional complex Euclidean space. In
particular, in [34] coordinate systems on the two-dimensional complex sphere
and corresponding superintegrable potentials, and in [36] coordinate systems
on the two-dimensional complex plane and corresponding superintegrable po-
tentials were discussed. The goal of [34,36] was to extend the notion of
superintegrable potentials of real spaces to the corresponding complexified
spaces. The findings were that there are, in addition to the four coordinate
systems on the real two-dimensional Euclidean plane, three more coordi-
nate systems and also three more superintegrable potentials. Similarly, in ad-
dition to the two coordinate systems on the real two-dimensional sphere there
are three more coordinate systems on the complex sphere and four more su-
perintegrable potentials. This is not surprising because the complex plane con-
tains not only the Euclidean plane but also the pseudo-Euclidean plane
(10 coordinate systems [13,23,24]), and the complex sphere contains not only
the real sphere but also the two-dimensional hyperboloid (9 coordinate sys-
tems [13,24,29,43]).
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However, a complexified space is an abstract object. In order to obtain the
actual spectrum of a given potential formulated in a coordinate system one has
to consider a real version of the complexified space, e.g., the complex sphere:
One has to determine whether one considers the potential on the real sphere or
on the real hyperboloid. The complexification serves only as a tool for a unified
investigation.

Further studies on superintegrability in spaces with constant curvature are
due to [31,33] (hyperboloid with new potentials), [32] (sphere and Euclidean
space), [37] and [38] with a general theory about the connection of separation
in nonsubgroup coordinate systems of superintegrable systems and quasi-exactly-
solvable problems [46].

An extension of the study of path integration on spaces of constant curvature
is the investigation of path integral formulations in spaces of nonconstant cur-
vature. Kalnins et al. [26,28] denoted four types of two-dimensional spaces of
nonconstant curvature, labeled by D;—Drvy, which are called Darboux spaces [40].
In terms of the infinitesimal distance they are described by (the coordinates (u, v)
will be called the (u,v) system; the (z,y) system in turn can be called light-cone
coordinates):

(1) ds* = (z +y)dzdy =

= 2u(du® + dv?) (z=u+iv,y =u—iv), (1.1)
i ds2=(L+b)da¢d =
(IT) T y

_bu2—a

1 1
2 2 _ 2 ; — (v —i
3 (du® + dv?) (x— 2(v+zu),y 2(v zu)), (1.2)
(III) ds* = (a e~ (THv)/2 4 be " Y)dxdy =
=e (b4 ae")(du® + dv?) (z=u—iv,y =u+iv), (1.3)

a(e(m—y)/2 + e(y—ﬂﬁ)/2) +b

V) ds® = —
(V) (elw=v)/2 — e(y—z)/z)2

dxdy =

:<a—§+ — )(du2+du2) (€ =utivy=u—iv), (14

sinu  cos?u

where a and b are additional (real) parameters (a+ = (a =+ 2b)/4). These sur-
faces are also called surfaces of revolution [5,25,26]. Kalnins et al. [26, 28]
studied not only the solution of the free motion, but also placed emphasis on the
superintegrable systems in these spaces.
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The Gaussian curvature in a space with metric ds? = g(u,v)(du? + dv?) is
given by (g = det g(u,v))

1/0* &

Equation (1.5) will be used to discuss shortly the curvature properties of the
Darboux spaces, including their limiting cases of constant curvature.

In the following sections we discuss superintegrable potentials in each of
the two Darboux spaces Diyip and Diyy, respectively. We set up the classical
Lagrangian and Hamiltonian, the quantum operator, and formulate and solve (if
possible) the corresponding path integral. We also discuss some of the limiting
cases of the Darboux spaces, i.e., where we obtain a space of constant (zero
or negative) curvature. For the Darboux space Dryr the zero-curvature case R?
emerges. In Dry we find a hyperboloid.

In the last section we summarize our results, where we also include the
findings of our previous paper which dealt with superintegrable potentials on Dj
and DH.

In the first two appendices we add some additional material about the path
integral evaluation of the free motion in Dyy in degenerate elliptic coordinates. In
the third appendix we summarize briefly the path integral investigation of some
remaining superintegrable potentials on the two-dimensional Euclidean plane.
Finally, in the fourth appendix an example of a potential on the two-dimensional
complex sphere will be given.

2. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dy

The coordinate systems to be considered in the Darboux space Dy are as
follows:

((u,v) system) z=v+iu, y=0v—iu, (2.1)
(Polar:) & =pcosp, n=opsing (0>0,¢¢€]0,27]), (2.2)

(Parabolic:) ¢ = 2e %2 cos g, n= 2e""/?gin g,

4 . 2n
w=1In—— v=arcsin —2_ (£ €R,n>0), (2.3
(Elliptic:) ¢ = dcosh wcos ¢, n = dsinh wsin ¢ (w > 0, p€[—m, 7]),

2.4)

(Hyperbolic:) € = 2%4—\/;3, nzi(i/j% - W) (w,v>0). (2.5)
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For the line element we get (we also display where the metric is rescaled in such
a way that we set a = b =1 [26]):

=e (b4 ae")(du® + dv?) = (e + e ") (du® + dv?), (2.6)
(Polar:) = (a + -0 ) (do? + 0*dy*)= <1+392> (do® + 0%*dy?), (2.7)
(Parabolic:) ( (€2 +1n )) (de? +dn?) =

= (1 + i(sz +n2)) (A€ +dn*),  (238)

b
(Elliptic:) = (a + ZdQ(sinh2 w + cos” w)) d*x

x (sinh? w + sin? @) (dw? + dp?), (2.9)
b dp?  dv?
(Hyperbolic:) = (a + §(M - 1/)) (u+v) (N—MQ - V—V2> . (2.10)
For the Gaussian curvature we find
—3u
G- abe : @2.11)

(be=2u 4+ ge~u)4

For, e.g., a = 1,b = 0 we recover the two-dimensional flat space with the
corresponding coordinate systems. To assure the positive definiteness of the
metric (1.3), we can require a,b > 0. We introduce the following constants of
motion on Drpr:

1 2u 2 1
1=Zach SV - P2 — 4%00311']754-56"8111@'%%, (2.12)
1 e 1 2 1
Xy = g sinypl - Zea(iibtu)smmi + 5" cosv-pupy, (213)
K = p,. (2.14)

These operators satisfy the Poisson relations
(K, X1} =X, {K,Xo}=X1, (X1, Xe}=KHy, (219
and the functional relation

X2+ X2 —H2 —HoK?=0. (2.16)
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Table 1. Constants of motion and limiting cases of coordinate systems on Dir

. Constant Es
Metric of motion D (a=1,b=0)
e 2%(b+ ae)(du® + dv?) K? (u,v) system Cartesian
(a + e > (do® + 0°dp? X2 Polar Polar
( ~(&+n )) (d€* + dn?) X1 Parabolic Parabolic
(a + —d*(sinh® w + cos gp)) d*x
x (sinh® w + sin® p)(dw® + dp?) | d*X:1 +2K?|  Elliptic Elliptic

The operators K, X1, X2 can be used to characterize the separating coordinate
systems on Dry, as indicated in Table 1. The corresponding quantum operators

are given by

1 [ U u
X, =—¢" © COSU~83— < cosv - 02+
la+bev a+be
+(251nv~8u8v+cosv~8u—|—sinv~8v)], 2.17)
1 [ AU o3 u
Xy = sou| SISV 5o CTHZ 2
la+bev a+bet
— (2cosv - 0,0, —sinv~8u+cosv-3v)}, (2.18)
K =0, (2.19)
These operators satisfy the commutation relations
(K, X:] =X, [K,Xs]=X:, [X1,Xs]=KHy, (2.20)
and the relation
~ ~ ~ N 1~
X{+ X3 - Hi — HoK? + 1o =0. (2.21)

(Let us note that by H, the classical Hamiltonian without the 1 /2m factor is

meant.
algebra is simpler.)

Keeping this factor is no problem, however, in the present form the
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We now state the superintegrable potentials on Dryy:
2k e " cos v/2 4 2ko e Usinv/2 + k3

Vi(u,v) = , (2.22)
a+ 1 e v
Bk —1/4 k2—1/4
Va(u,0) = ——— |—a et (A 1 , 2.23
2(u,v) a+bed [ ate 8m(cos2v/2 + COSQ’U/2>:| (2.23)
1 K2 ) .
Valu,v) = ——r [—a + et (cf e — 26, e_m”ﬂ , (2.24)

Table 2. Separation of variables for the superintegrable potentials on Dir

Separating
Potential Constants of motion coordinate
system
2k16(2 + n?) — 2kan(2 + €2) + ks (n® — €2)
R = X1 + Parabolic
Vi 4a +b(€2 +n?)
kin(n® — €2 +4) + ka£(€2 — 0 +4) — 22k
Ry = X 4 (n” — & +4) + k2£(§7 —m” +4) — 2aksén Translated
da +b(&% +1?)
Parabolic
(&m—énto)
R = X1+
Rn?/m((k} —1/9)n*(n* +2) — (k3 — 1/4)§%(€* +2)) — a(n” — £7)
Voo |+ (u,v) system
da +b(&% +1?) e
h2 2 2
Ro= K24 2 (62 — 1/ 4+ (2 — 1/0)%) Polar
8m 52 7]2
Parabolic
Can?? 4+ 2y — 2e0(1 _
Ri— Xy 4+ iXs — ap‘ve + cipv ca(l4+p—v) Polar
Vs (a+b/2(p—v))(p+v)
_ N2
Ro = K? — c? rzv + co u Hyperbolic
nZ n2v?
Ri = X1 +iXs — K?—
Va pv(dy(v —2) + da(p + 2) + mw?(v — p + pv)) .
— Hyperbolic
(a+b/2(p—v))(n+v) -
Ry = X1 —iXo—
L (p ) (= )t daw) =P 2 ) |
4(a+b/2(p —v))(u+v)
h202 n? — €2
Ri =X ‘o — , ) syst
1 1+ Sm o T b/ 1) (u,v) system
F202
Ve [Ra=X) - 0 o Polar
4m  a+b/4(&% +n?)
Rs = K =py Parabolic
Elliptic

Hyperbolic
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1 m
Va(p,v) = ; [dm + oy + SW(p® =%, (2.29)
(a+ §<u—u>) (u+v)
1 h?v?

In Table 2 we list the properties of these potentials on Dyyr, where the coordi-
nate systems, where an explicit path integral solution is possible, are underlined.
We see that V5 is a special case, and it has three integrals of motion. We will
threat this case in some more detail as in the other spaces, because on Dy the
free quantum motion can give bound state solutions (provided the constants are
chosen properly). This feature has not been discussed in [14].

2.1. The Superintegrable Potential V; on Dy, We state the potential V; in
the respective coordinate systems

2k1e " cos v/2 + 2kg e " sin v/2 + k3

Vi(u,v) = (2.27)
a+ 1 e "
_ kg #{; kan + k3 ’ (2.28)
a+ 1(52 +1%)
_ k1§~t-kg?7+(k1c—k;26+k;3)7 (2.29)

at S(E+eP + (- c))

and V7 is also separable in translated parabolic coordinates £ — £+ c¢,7 — n—c.
The translated parabolic coordinates just modify the solution of a shifted harmonic
oscillator, and this case we do not discuss separately.

2.1.1. Separation of Vi in Parabolic Coordinates. The classical Lagrangian
and Hamiltonian in parabolic coordinates on Dyyp are given by

) b )
cleémi) =y (o4 3) @+ PN@ P -Vien. @30
H(E, pe,mspe) = %;(pﬁ +pi)+V(En). (2.31)

b
a+7 € +n?
The canonical momenta are given by

h o b h o b
pe="2 S S L (A —

% at 2@ )
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and for the quantum Hamiltonian (product ordering) we find

2 2 2
HZ_%%(%*%) + V(& n), (2.33)
a+ 1(52 +1%) K
1 1 1
= |G 1) FVED). @3

b b
a+ (€ +n%) a+ (€ +n°)

Therefore we obtain for the path integral formulation for V;

£(t")=¢" n(t")=n"
b
ket = [ oo [ooi (ar e )

bia | 2 2 .2 k1§ + kon + ks ] -
<a+1(£ +77)>(£ +n)—(a+%(§2+n2)) dt o =

_ [ dE —iET/h r " i k2 + k3N )
= / —27The /ds exp 7 aF — k3 CT s | X
—00 0

x KW ¢ 0" /s s"), (2.35)

with the time-transformed path integral K (s”) given by

e(s")=¢" n(s
K(Vl)(gl/7£l7n//7n/;sll) _ / Dg(s)
3 n(

//):,’]//
Dn(s)x
£(0)= )=’

0

1"
S

xeond o [5(€@ ) - Fo2@ei)|asp. 20

0

The transformed variables &, 7 are given by £ = & + ki /mw?, 7 = 0 + ko /mw?,
and w? = —bE/2m. Similarly as in [14] we can determine the Green function to
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have the form

GV ¢ " E) =
m m 1 & m 1 £ m
= /dg—wh2b\/_ﬁr<§ * E\/_E>F<§ * %\/‘E)X
af SmEb2 af SmEb2
XD—%-F% = < £>> __+% = <_ £<>
SmED? 8mEb?
XDﬁﬂi—%<V‘?_‘>DJnh %(‘ T < >(“”

The~Dl,(z) are parabolic cylinder-functions [10, p. 1064], and the € is defined
by £ = aE — k3 — (k? + k3)/bE — €. On the other hand, we can insert for the
discrete part of the Green function the harmonic oscillator wave functions and
obtain

e’} 00 N2
\% neny,
GL (" € " s E) = > E{ig_Ex
ng=0n,=0 TgMn

(HO) [ &1\, (HO) [ &1\, (HO) ¢ 11\, (HO) 1,/
x THO () wHO) (&) WHO) (i )y wHO) (). (2.38)

The wave functions for the harmonic oscillator are given by the well-known form
in terms of Hermite-polynomials [10]

(HO) mw\ 1 \Y? mw mw o
UL (z) = — S H, Sor)exp| - 5w (2.39)

Epen, is determined by the equation

k2 + k2 bE
o - 1 = 2.40
¢ T omw? (ng + 7y +1) " om 0, (2.40)
which is actually an equation of the fourth order in E
B bh? 2 2k
R bl A i
k% + k2 kg 2 k2 + k2 (k% + k%)2

_ (2 ab — a_ Engn" + 2k3 b Engn" - W = 0. (241)

We dot not solve this equation. Note that for k; = ky = k3 = 0 a discrete
spectrum emerges for the free motion on Dyyy, a feature which will be discussed
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in more detail in the subsection for V5. For the special case ky = ko = 0 we
obtain the solution (N = ng +n, + 1)

Engnnzl: = - k§ (2.42)

4ma? a  a 4am 2am

BREN? k| 1 \/(bh2N2)2_bk3h2N2

Note that wy,.,,, must be taken on wy,pn, = \/—b0En.n, /2m. The normalization
Nyn, is determined by the residuum in GV (E). If one fixes the parameters
a and b and the specific surface of revolution, a more detailed investigation can
be performed (special cases, limiting cases, which sign of the square-root gives a
positive definite Hilbert space, etc.). Because we do not fix these parameters, we
keep both signs of the square-root expression (recall that the free motion on Dipy
allows already a discrete spectrum reaching to —oo). ~

Note that for the translated parabolic coordinates, the variables &, 7] are trans-
lated by +c, respectively; and the quantity £, by an additional Ebc?/2.

2.2. The Superintegrable Potential 5 on Dy;. We state the potential V5 in
the respective coordinate systems

2 2 2
Vg(u,v)zil {—a%—e“h—(kl 1/4+k1 1/4)], (2.43)

a+be v 8m \ cos?v/2  cos?v/2
1 n? (k¥ —-1/4 k3—1/4
- — {—a+2 2( L \2/ + %,Q/H, (2.44)
CH_ZQQ me? \ cos? ¢ sin® ¢

2 2 _ 2 _
_ b1 {_th_(/ﬁ 14, K 1/4)]’ (2.45)
2, 2 2m &2 7>
G+Z(§ +17)

{—a%— h? ( k?—1/4 k3—1/4 )]
a+be v 2md? \ cosh® wcos? ¢ sinh?wsin®p /|’
(2.46)

V5 is obviously separable in elliptic coordinates, but the corresponding path inte-
gral is not solvable, so this case will be omitted.

2.2.1. Separation of Vs in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

L(w, 1,0, ) = %b t;ie (0% + 92) — V(u,v), (2.47)
1 e2u 9 9
H(t, pu, v, py) (Pu +p3) + V(u,0). (2.48)

- 2m b + a et
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The canonical momenta are given by

h(d lae ®+2be 2 h o0
k(o 1 D e 2.49
b z(@u 2 ae—“+be—2“> b i Ov (2.49)

and for the quantum Hamiltonian we find

h? 1 2 92
- _%m<au2 9 2) + V(u,v), (2.50)

1

/ 1 N 1
— _— . 2.51
2m \ ae~% 4 be—2u (p“ + p”) ae v 4 be2u +V(w,v) (2.5

Therefore we obtain for the path integral (f(u) = (

ae "+ be2u))

u(tll):u// v(tll):v//
K(Vz)(u//’ W T) = Dul(t) Do(t)(ae ™™ + be 2%)x

u(t)=u’ v(t)=v’

T
X exp (% / {(ae“ +be ") (i 4 v?)—
0

B k2-1/4  k2—1/4
ater 8_m<cos2v/2 * COSQ’U/2> dt | =

[f( / // 1/4 Z(I) ) ( )CI)(k2’k1) (2) %

1
a+be v

u(t’)=u" T
/ Du(t)(ae ™ +be 2") /2 exp (%/{(ae_“+be_2“)u2—
u(t)=u 0
1 B2 T dE
- - “— (20 + 1+ |k k dt | = [ == e iET/h
a+be v ate Sm( 1+ ] + | 2|) } > /27rhe x

— 00

o0 . h2
X /ds” exp [— %8— (204 1+ |k | + |k2|)28//:| Kl(vz)(u”,u’; s"), (2.52)
m
0
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with the time-transformed path integral K;(s”) given by

KZ(VQ) (u//’ u/; S//) _

"
9 s’

/ Du(s) exp %/(%iﬁ—&-EbeQ“ + (aE —a)e” )ds . (2.53)

O =u’ 0

The @%kl’kﬁ(ﬁ) are the wave functions of the Poschl-Teller potential, which are

given by
2 2 2
V(z) = L (O‘ 21/4 B 1/4>’ (2.54)

2m \  sin“zx cos?

IM(a+pB+1+1) 1Y?
@A) (z) = |2 2 +1
(@) [(O‘+ﬂ+ Y Py gy

x (sin2)* T2 (cos z)P 12 PP (cos 22).  (2.55)

Equation (2.53) is a path integral for the Morse potential. Inserting the corre-
sponding solution [22] we obtain

GV (" ' v V' E) —i@kal v pk2:k1) v X
B 2) ! 2

=
1 aF — « m
F(T“T\/‘ﬁ)X

2BE AD(1 4 2X) e(w/+u")/2

W V—8mbE o ) M V—8mbE .
aEﬁ—a \/7%’>\ h aE—a\/ %) h .

(2.56)

Inserting the bound state wave functions for the Morse potential gives the bound
state contribution of G(V2)(E)

0 /
G(Vz) . E) (I> (k2,k1) (I)(kz,kl) v
disc (U u' U U ; 1 5 X

ZE FUD @MW), (257)

nl_
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X

abp —a T
S o e
_ hQ

aF, — a m
><< h \/_QbEnl_2n_1>

r aF, — a _2m o
h bE,,;

) Lgﬂﬁ#\/ﬁﬂnfﬁ (M e“> - (258)

h

\I,;MP)(H) = N,,; (

1/2

The L%‘*)(z) are Laguerre polynomials [10]. Here, the spectrum E,; is deter-
mined by

bE,,
- 2m
which is a quadratic equation in E,; with solution (N = 2n+ 2]+ |k1| + |k2| + 2)

1 bh? bh? 8aam
Eyi=—|—|—N?-2 j:—N2\/1—
=T 02 [ <2m aa) 2m bh2 N2
and the normalization constants [V,; are determined by the residuum of (2.56).
For large n,l we have

aFE,; —a—h

(2n + 20 + | k1| + | k2| + 2), (2.59)

, (2.60)

h
(2n 4 21 + [k | + k2| + 2)2, (2.61)

2
B o =2
m

ma2

2bh2(2n 4 20 + |k | + |ka| + 2)2°

By ~ (2.62)
with E,,;+ showing a Coulomb-like behavior.

2.2.2. Separation of Vo in Polar Coordinates. In the coordinates (o, ) the
classical Lagrangian and Hamiltonian take on the form

. . m b . )
L(0,0,0,9) = 5 (a -+ 192> (0% + 0*¢*) — V(0. ¢), (2.63)
1 1 , 1,
H(0, o> 5 Pyp) = o o\ Pet 3P | F Ve, ¢). (2.64)
a—+ —92 e

4



PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1023

The canonical momenta are given by

h( 0 bo 1 h 0
_ - = - 2.65
Pe i<89+4a+b92+29)’ Py =73 (2.63)
Therefore the quantum Hamiltonian is given by

R 1 2 10 1 9
‘%m@?ﬁm*%—sﬁ)”(“@‘ (260

4
1 1 , 1,
b (pg 2@)
2m adt 2o 0

49

b\ " R
- - S 2.
+V(o, ) <a+ 4g> g (2.67)

and in this case we have an additional quantum potential oc A2. This gives for

the path integral (f(g) =a+ 292 = \/g)
o(t")=e" e(t")=¢"
KM (", d,¢", ¢ T) Do(t) Di(t) f(0)ox
o(t")=¢' e(t)=¢’
T
) m 9 9 .9 1
X exp —/ —J(o)(o” + o — —X
<ho SO + )~
R (k}—-1/4 k3—-1/4 1
X —a+2mg2< o + sin _Z> dt | =
. . o(t")=e"
_ (k?z,k?l) 1 (k?z,k?l) / 1/2
= P o Dol(t o)X
l; C ) [(¢/0")2f (&) f")]M/* 07
o(t")=¢’
f 1 h? A% —1/4
i m . -
XeXp{ﬁ/[Ef(Q)Q2—m<—a+2m 92 )]dt}:
0

1 X o (kak ko k
= Q/Q// Zq)l( ’ 1)(90//)(1)[( ’ 1)(<p/)><
v 1=0

E prm [ '
X / d—e_lET/h/ds”exp z(aE—a)s” Kl(v2)(g",gl;s”), (2.68)
2mh h
0

— 00
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with the time-transformed path integral K;(s”) given by (A = 21+ |kq|+|k2|+1))

o(s")=e"
K= [ Do)
0(0)=¢
P B Wy |
X exp h/<29+4g o &2 ds| =
0

mw+/¢' 0" mw ;2 12 7 mwe'o"
= ihemws P T an @ Ot | DG ) G0

Performing the s” integration yields the Green function

G2 (g", o " ¢ E) = 3 ) ()@ M) ()

=0
1 |
om r {5 (1 + A= %(aE—oz) —2m/bE>]
~Bb OSSN Mesce /g3

m bE m bE 4
X(E ‘%&) Megee /754 (E\/_%Q>>' @70

Inserting the expansion into Laguerre polynomial yields the discrete contribution
of the Green function

1 Ko,k Ko,k
Gl (€0 ¢ &5 B) =~ 3 i ()0 (o)
1=0
= N2l (RHO,N) ( 11\; (RHO, ) [/
) gt @), 27D
ne0 nl

R? A\2—-1/4
@uﬂ__i/

The wave functions for the radial harmonic oscillator V' (r) = 5

have the form [22,44]

2 2m r

\I/glRHO,)\) (7’) —

2m n! mw \? mw o mw
SR ot S LAY (i _ (2,2
\/ 5 F(n—&—)\—&—l)r( " 7") exp( on " )Ln ( T ) (2.72)
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The spectrum F,,; is determined by

bE,
aFEn —a—hy/— ml (2n + 20 + k1| + |ka2| +2), (2.73)
L . . (RHO,)) .
which is the same as in (2.60). In the wave functions ¥y, (o) the quantity

w has to be taken on w = /—bFE,,;/2m, and the normalization constants N,,; are
determined by the residuum of (2.69).

2.2.3. Separation of Vo in Parabolic Coordinates. We insert the potential V5
b
into the path integral and obtain (f =a + 1(52 +1°))

g(t")=¢" n(t")=n"
KO, ¢ s T) = / DE(t) Dn(t) (€. m) %
&(t)=¢’ n(t")=n’
T

P [{sene -

0

2 2 _ 2 _
o (SR ) -

X exp

1
f(&mn)

o0

_ / dE e_iET/h/dS// exp 1(&E—O¢)S” K(VQ)(g//’gl’77//’77/;8//)’ (2.74)
2mh h
0

with the time-transformed path integral K (V2)(s") given by (w? = —bE/2m)
£(s")=¢" n(s")=

KW ¢ " 5 8") = / D¢(s) /
3 n(0)=

£(0)=
cepd 1 [ 2@+ i) - e+ )
0

”7//
Dn(s)x

0)=n’

1h sin ws”

- h_2<k% ~1/4 K- 1/4>]d8 mw/TE

om £2 2 =

mw 12 "2 " mwg'¢" mwv/n'n"
- t I
e { ih sin ws” (€7 + ¢ cot ws )} F2 (ih sin ws” ) ih sin ws”
mw 9 9 mwn'n"’
X exp [‘ s w1 T ot ”S'”] T (m - @79
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Performing the s” integration yields the Green function (£ = aE — a — &)

{ (1 + k1] 5\/—2m/bE/h)]
aWV2) (¢ _Zr
(€850, B) /dgv bE (1 + [ki|)VEE" )

m bE
WeyZmmpssanimiz \ 7\ "2m & ) %

M m bE
Ey/—2m/bE/2hk1|/2 \ ] _%& X

5T B + |ka| — 5\/—2m/bE/h}
bE RU(1 + [ka|)v/n'n”

[ bE
\/mmh\kglm (E - m77>>><
m bE o
\/T/I)E/%sz(h\/ —mﬁ<>~ (2.76)

On the other hand, we insert the expansion of the bound states of the radial
harmonic oscillator and obtain for the discrete spectrum contribution of the Green
function:

G(VZ)(f//af/aﬂ//aﬂ/§E Z Z "& n_n E

neg= OTL»,,—O nE Mn

) (¢ \qy (RHO, | k2]) [ ¢/\\qy (RHO, | k2|) (o, \y (RHO, | k1]) [,/
(€)W, (g v (")), (277)

(RHO, |k1
X \I!n5 iy

where the energy E,,, ., is determined by the equation

afE‘ng,n77 -« 2m

h bEn n,’

2n§+2nn+\k1\+\k2\+2= (2.78)

which is equivalent with (2.60). The normalization constants Nngnn are deter-

mined by the residuum of (2.56), and w in the \IIQHO"MD\I/Q:HO"MD has to be
taken on wy n, = \/—bEn, n, /2m.



PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1027

2.3. The Superintegrable Potential V3 on Dy;. First we state the potential
V3 in the respective coordinate systems

1 12 , _
Vau,v) = ——r [—a + gl (ci e — 26y e—2“’)] , (2.79)
1 12 , ‘
- o+ 4(c§ 2% _ 9¢, e*‘w) , (2.80)
b 4 2mo?
a+ ZQ
+v 22
—alp+v)+ 3t — ek

i prve (2.81)
b
(a4 5059 e

In hyperbolic coordinates no closed solution can be obtained due to the invol-
ved mixture of linear, quadratic, inverse-linear and inverse-quadratic terms. In
polar coordinates the path integral in ¢ turns out to be a path integral for the
radial harmonic oscillator. Note that the (u,v) system is equivalent to polar
coordinates.

2.3.1. Separation of V3 in Polar Coordinates. We insert the potential V3 into

b
the path integral and get (f(o0) = a + ZQQ =./9)

o(t")=¢" e(t")=¢"

KY9) (0", o ", ¢/;T) = / Do(t) D(t) f(0)ox

o(t")=e’ et )=¢’

T
X exp /{ 0)(6® + 0**)—
0

1 ﬁ2 : C2 ; 1
e 9 2 —4190_2_ —2ip _ — dt —
i [ gt (=23 )]

Z (01,02 // @(61,62) ( /) 1 %
[cMP], i [cMP],I\P 2 1/4
— [(0'¢")2 f () f(2")]Y

8
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Q(t//)zg// ) T
1 m .
< [ Do ewd s [ |08 -
o(t)=¢ 0
2, 1\° 1
B +h_2<”?+5> i
f(o) 2m 0?

1 > (e1,c2) (c1,c2)
= /o ol Z(I)[cli/[Pz] l( //)cb[cli/[Pz] l(‘p/)x
o0
dE o [ :
x| 5= e iET/h / ds” exp [%(aE - a)s”] KM (0", dss"), (2.82)
0

with the time-transformed path integral K;(s”) given by

K" (", d;s") =

" " 202 1 2 1
o(s")=e +=4 ) =
Sy e
N s h 2 2m 0? N
0(0)=¢’ 0
mw/0' 0" mw, ,2 1,2 . mwo o
= - — t I, 2 — ). (2.83
ih sin ws” xp 2ih (€7 + 0" cot ws ”2 >+3 \ ih sin ws” ( )

By @Egﬁ/i;”])l(cp) we denote the wave functions of the complex periodic Morse

1\2

potential in the variable ¢ with spectrum F; = K2 (Z + 22—2 + 5) /2m [1,3,36,
1

42,50,51], c.f. Appendix C:

(46—2 —2n — 1) n! c 4°_§i_2n_1

cy,C C1 2 ¢

@) () = (42) S
r (4—2 - 2n>

C1

1 ) 422 _op—1 )
X exp [— 2i (20—2 —n— §><p —2¢; ez“"] Li )(4c1e*2’¢). (2.84)
1
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Performing the s” integration gives the Green function
G5 = W)
r (142213 Yup—a)/“2mE
= =4+ - ——(aE —a)y/—2m
2m 2 ca 2 h

Eb r<z+zzﬁ+§)w
1

[ VE
XMa,L;;a\/W 1(Z+2F2+ ) ( Q<> X
[oF
aE a _i_‘rEn, %(l+2 ) ( Q>> . (285)

Inserting the expansion into Laguerre polynomials yields the discrete contribution

2 1
of the Green function ()\ =10+ 2 + 2)

X

\% c1,c c1,c
G((iljc) (‘Q Q SO 90 7 - / // Z é(cli/[Pz] l ! éfcﬁ/ﬂf])l (80/) X
x Z LS HON () ON (), (286)

and the normalization constants N,,; are determined by the residuum of (2.85).
Here, the spectrum F,,; is determined by

bE,
0Bt — o — g/ — l<2n+2l+c—2+1>, (2.87)
2m c1

which is quadratic equation in F,,; with solution (N =2n+ 2+ e + 1)
c1

1 bh? bh? 8aam
Et=—|—(—N%?2-2 + — N? — . 2.
T 942 [ <2m ao‘) am't V1 bR ] (2.88)
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In the wave functions \IJSLRHO’/\)(Q) the quantity w has to be taken on w =

—bE,;/2m. For large n,l we have

bh? 9
B~ ma? (2.90)
M T bR (2n + 20+ 1)2] '
with F,;4 showing a Coulomb-like behavior.
2.4. The Superintegrable Potential V; on Dy,
1 m o, 2 2
VZ;(M,I/) = b d1M+d2V—|‘5W (,u -V ) ) (291)
(a4 50a-0) e
1

T utbeu [2(d1 + dz)(cos 2¢ — cosh 2w)+

+ 2(dy — d3)(2i sin 2¢ + sinh 2w) + 2d3(2i sin 2 + sinh 4w)]. (2.92)

We can evaluate the path integral in hyperbolic coordinates (application of the
Morse potential); in elliptic coordinates no closed solution can be found.

2.4.1. Separation of Vy in Hyperbolic Coordinates. The classical Lagrangian
and Hamiltonian have the form

o.m b [
ﬁ(ﬂ?/‘L?V? V) - E <a+ 5(/”” - V)) (/”L—’_V) (F - ﬁ) - V(:U’vl/)v (2.93)
1 12y — vip;
H(p P> Vs v = 5— L +V(p,v). (2.94)

(=) ko)

The canonical momentum operators are given by

h| O 1 1 b 1
pu:;{a——FQ(—F +V+ 2 ——)], (2.95)

g P et g

h| O 1 1 b 1
n=t a2t i - ) e
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and the quantum Hamiltonian has the form

K2 1
<a+§(M—V)> (n+v)
02 19 2 19
2 ~z - N 2 o 10
8 {N <3u2 u@u) v (3,/2 V@,/)] + Vi, v), (2.97)
1 I ; p

+V(p,v). (2.98)

_ \/ (a+ 306-0) . \/ (a4 50 o0

Note that from each coordinate there comes a quantum potential AV = h?/8m,
however they are canceling each other due to the minus-sign in the metric in v.

We insert the potential V into the path integral which has the form (f (1, v)=
b
(a+30=0)(u+v)

M(t"):l},,, V(t//):V/I
K(V4)(/,L//,/,L/,I///,I//;T) — / Du(t) / Dv(t)f(//j;/y) >
(=g V()=

T
. .2 .2
rpm LA T
< exp h/Lf(u,V)(MQ y
0

1 m
T (dl,u + dov + 5w2(u2 - 1/2)>]dt =

(oo}

_ / dE e_iET/h/dS//K(V4)(M//’M/’V//’V/;S//)’ (2.99)
2mh
0

— 00
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and the path integral K (Y4 (s”) is given by

l/(s”):l/”

1
KV (W i " s s") = / Dpu(s) / Dr(s)— X

Uy
w(0)=p’ v(0)=v’

. -2 -2
4 m ([ v 1 9 9
X exp %/ [5 (F - ﬁ) +ClE(,u+I/) + §bE(/J, -V )_

- (dlu + dov + %cﬂ(;ﬂ - 1/2))] ds S . (2.100)

Each of the last path integrals has a similar form as the one discussed in [14].
One can perform the transformation 1 = e”, v = eY. Then the path integration
in (i, v) gives a path integration in (x,y) of the following form:

.’L‘(S”):.’E”

K(V4)(x”,x',y”,y'; s//) _ / Dx(s)x

z(0)=xz’
s . y(s")=y"
X exp % / {%iQ—ﬁ(mwQ —bE)e** —(dy — aE) em} ds / Dy(s)x
0 y(0)=y’
. S 1
X exp —%/ [%gf—i(muﬂ —bE)e*Y—(dy + aF) ey] ds p, (2.101)
0

and we find the product of two path integrals for the Morse potential. This can
be evaluated now as follows. We introduce the abbreviations

_dipgFak

2 _m 2
= — —bE oy = ——————.
Vi = s (m? = bE), au, = - 12T

5 (2.102)

We expand each path integral first into the discrete spectrum contribution by
means of the known solution of the Morse potential in terms of Laguerre poly-
nomials with the quantum numbers n and [, respectively, and the corresponding
energy spectra. The s” integration gives the energy spectrum

B, - mw? m  (dy + do)?

_ 2.103
: b AR (n+l+1)2 (2.103)
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together with the wave functions (NN, ; is determined by the corresponding
residuum)

U (@,y) = Ny UM (2) - 0P (), (2.104)

_ _ 1/2
\I/](CMP)(Z) _ <2an0 2k 1)

KT (20 Vo — k)

X (2‘/0)(12\/0—]6—1/2 e((szO—k—l/Q)z—Vo ezL’(cQanO*2k*1) (2‘/0 ez)’ (2105)

for z = z,y with k = n,l. The continuous spectrum is examined in an analogous
way yielding

h2 2
E==- (2.106)
2m
with the wave functions
Uy a(z,y) = U (@) - 5P (), (2.107)

. 1/2
(MP) [ p+sinh 27py
\I/p,/\ (Z) - ( 2’/T2Vb ) X

. 1
F<ij:_az+§>

with pL = p+ X for z = z,y. The entire Green function has the form

x ¢ Wavi.ips (2Vo ), (2.108)

\Ijn //’ /! \I/n /’ /
NN D V) nalsV)

n,l En,l —E
i} //,l/// P /7]//
+/@/wp“ﬁ%jﬂw‘),@m%
2m

together with the replacement u = e*, v = e¥. This concludes the discussion.
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2.5. The Superintegrable Potential 5 on D1, We display the potential V;
in the respective coordinate systems

1 K202
Va(u:v) = e o (2.110)
1 2,2
_ v 2.111)
a—|—9 2 2m
10
- 1 g (2.112)
b o o 2m’
a+ 1(5 +n7)
=— ! h;”g, (2.113)
a+ ZaZQ(sinh2 w + cos? @) m
- ! h2g (2.114)

2m

(o 20a—0)) (4 )

We discuss the path integral solution of V5 in some extend, where the case of
elliptic coordinates is omitted due to intractability of this system in the path
integral. Provided that b > 0, there is in the case of the free motion a discrete
spectrum

h% b

En=—o—

2mﬁ(2N+1)2, (2.115)

with the principal quantum number NV € IN.
2.5.1. Separation of Vs in the (u,v) System. We insert the potential V5 into

the path integral for the (u,v) system and obtain

u(t//):u// v(t”):v”

KV (" ! " ' T) = Duft) / Du(t)(ae ™ 4+ be ") x
u(t)=u’ v(t)=v’
- 1 h2 2
i m 0
_ o —u b —2u\ (2 2\ 0 dt _
X exp h/{Q(ae +be ") (4" + %) T bo 2m
0

= [ B e g mi OO ), @016)
2mh
s 0
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with the time-transformed path integral K (V5)(s") given by

u(S//):uII U(SII):U//
KW (0" /0" 0 8") = / Du(s) / Du(s)x
w(0)=u’ v(0)=v’
X ex 17 a2 4 2) 4 B ez g (CEZIE02mY a1y
Pl 2 Eb -
0
u(sll):ull
o0 Lil(v" =) ) y
— € e—zhl25 /2m / DU(S)X
P 2w
- u(0)=u’
- E — 1*0}/2
X exp %/{%uQ +Eb {e% n (W) e“} } ds | . @117
0

The path integral in v is a path integral for the Morse potential. Performing
the s” integration gives, c.f. [14], the Green function as follows (£ = [Ea —

(h?v3/2m)]\/—2m/bE/2h):
1
00 eil(vu—vl) mF (5 + l - g)
G(Vs) //7 /7 //’ /;E — e(u’+u11)/2><
(u",u' 0" E) Z 2 h/=2mbET (1 + 21)

V—8mbE V—8mbE
XWg7l<$e_“<>M&l<$e_“>>. (2.118)

The corresponding continuous part of the Green function is evaluated as [14]

eil('u"fv')

2

Vs),mm 1 11, u' +u'") /2
Gcont(u y U,V ,U,E): Z e( )/ X
l=—00
2

1 )
X]C P2dp ’F<§+l+zp
h?p? > 272(1 + 20)

2m

Mip/2,l ( — 22p e_“/) M—ip/2,l (22;0 e_“”) .

(2.119)

In addition, we have a discrete spectrum. This is found by analyzing the poles of
the Green function (2.118):

om 2m
- — 2.12
2 2 bE,, " (2.120)
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In the case of vy = 0 this simplifies to

1 a 2m

I+ — —/— = 2.121
nrlt s =g om0 (2.121)
with the solution 2
Ey=——02n+2+1)? 2.122
: 2m a? (2n+20+1) ( )

yielding for b > 0 an infinite number of bound states. For vy # 0, the equation
for E,,; is a quadratic equation in F with solution

B2 1
Bpe = ———
I+ 2m 2a? %
x |b(2n+21+1)2—2av] + b(2n+21+1)%[1 — _davg (2.123)
0 b(2n+20+1)2 |’ '
B, M b (2n + 21 +1)2 — 2242 (2.124)
mE T 2m a? b Oy '
2 4
B, (n,l):—>oo h Vo (2.125)

C2bm (2n 4 20+ 1)2°

For vg = 0, there is only E,;,. For (2n+2l+1)? < 4av? /b, there are semibound
states located approximately around Ey = —h%v3 /2ma.
Therefore we have for the discrete spectrum contribution

G(Vs)(u”,u’,v”,v’; E) _

disc

& eil(v”—u’) 0o 1 r
=Y 5 Xl W), @126
l=—o00 n—o M

with the functions \IlgL‘l/S)(u) given by (£ as in (2.118))

) () = Ny

nl

(26 — 20— Ot (VIERBE T
['(2€ — n) B

1 8mbE,;
X exp 5—n—§ U — —Te

V=8mbE,
x L(2€-2n-1) (% e“) . (.127)
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The constant N,,; is determined by taking the Green function at the residuum
E,;. The wave functions vanish for ©« — oo due to e~ V—8mbEme"/h —
e 2n(2n+2i4+)e"/a () provided b/a > 0 for all n € IN, which shows that
the discrete spectrum is indeed infinite. The feature that an homogeneous space
with curvature has at the same time a discrete and a continuous spectrum is
already known from the path integration on the SU(1,1) group manifold [22].
Actually, this property allows the analysis of the modified Poschl-Teller potential
with its continuous and (finite) discrete spectrum.

2.5.2. Separation of V5 in Polar Coordinates. We insert the potential V5 into
the path integral in polar coordinates and obtain

Q(t//):Q// t//):
KY9) (0", o, ¢",¢/;T) = / Do(t) / <a+—g2> o

o(t)=¢' w(t")
/T D (a2 (@20 + (atle? S ) b =
B Q o TP 49 m Vo 402 =
0

_/ dE —zET/hG(Vs)(Q” o, 0", ¢ E), (2.128)
2rh I

X exXp

St .

— 00

E—R%*v2/2
and the Green function is evaluated to have the form [14] (5 :%,
w

w? = —bE/Qm)

1
00 . " ’ F —(1+l—5)
il(e"=¢") 1 2m [2 }
V) (o oW o E © 4
G (Qa@v@v@v ); ! Al 2 F(1+l) X

2mbE 2mbE
X Wg/z% ( T Q>> Mg/QV% (\/—7 Q<> . (2.129)

The Green function has poles which are determined by

1 v3h? 2m
2 1——|aF, — =0. 2.1
nldl- o (a -2 ) =0 (2.130)

In the case of vy = 0 this simplifies to

2
@n+i1+1)— 2 m

—1/— = 2.131
T ED 0, (2.131)
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with the solution )

K2 b ,

yielding for b > 0 an infinite number of bound states. For vy # 0 the equation
for E,,; is a quadratic equation in F with solution

o1
Fnts = o 342
x [b(2n + 14+ 1)? — 2av £ b(2n + 1+ 1)? 1—4a7”3 (2.133)
0 b(2n +1+1)2 :
The limit of N,l — oo yields
R b V2
Buy~—|=0@2n+1+1)2+2 2.134
I+ 2m[a2<n++)+a}, (2.134)
2 2
By~ Y% (2.135)

C2mAb(2n+ 1+ 1)

and E,;4 corresponds in this limit to the spectrum of the free motion.
2.5.3. Separation of Vs in Parabolic Coordinates. We insert the potential V5
into the path integral in parabolic coordinates and obtain

£(t")=¢" n(t")=n" )
KW\ & ' n/sT) = / DE(t) Dn(t) (a +1E+ 772)> X
gt)=¢ n(t)=n’
7 T m b 9 9 9 .9 1 h2’l)g
X exp i ) a—&—z(f—&-n) (& +n7) — 5 5 dt y =
0 a+ (€ +n°)
T dE .
— / Rt eszT/hG(Vs)(gl/’5/777//’77/; E), (2.136)
27h

with the time-transformed path integral K (s”) given by

£(s")=¢" n(s
Ko\ ¢ " 05 s") = / DE(s)
& n(

//):,’]//
Dn(s)x
£(0)= )=’

0

"
S

@ mogo .2 bia o @ _h2v(2)
X exp h/ [2 (&7 )+E4(§ +n )]ds+h<aE o ds y. (2.137)
0
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The only difference in comparison with the result in [14] is the the additional
h2v}

term in the s” integration. In order to find the discrete spectrum we insert
m
the solution for the harmonic oscillator and get

G ¢ " s E) =

= & N
=D > 7O eI ("), (2.138)
TLg:O'fL»,,ZO ngnn

where E,,n, is determined by the equation

1 K202\ [ bE

which is (up to a different counting in the quantum numbers) identical with
(2.131). The normalization Ny, is determined by the residuum in GV (E).
We do not state the continuous spectrum part, it can be derived from [14] by the
replacement aE — aF — h?v3 /2m.

2.5.4. Separation of V5 in Hyperbolic Coordinates. We insert the potential
V5 into the path integral in hyperbolic coordinates and obtain: The path integral
has the form

A= (g G ) k)
- D Du(t

p(t) v(t) T x

(e = v(t)=v'
i r 2 1/2

X exp %/ <a+—(u—l/)>(u+v)<—2—ﬁ>—

0

1 h*vg
D lath =

_<a+g(u—'/)> (h+v)

_ / dE e_iET/h/dS//[((Vs)(MH’Iu/’l///’l//;su)7 (2.140)
2mh
0

— 00
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and the path integral K (Y3)(s") is given by

l/(s”):l/”

1
KV (W, " /5 6") = / Dpu(s) / Dy (s)— X
uv

;o ») > 2,,2
i m ([ v h*vg
Z SR (R E—
e h/[?(xﬂ v2>+(“+y)<a 2m>+
0

+%bE(u2—1/2)] ds 3. (2.141)

Each of the last path integrals has a similar form as the one discussed in [11].
One can perform the transformation 1 = e*, v = e¥ yielding

K(V"’)(:E”,x’,y”,y’; s//) _

:c(s”):m” §
; b h2 2 7
= / Dx(s) exp %/ [%ﬁ + <E5 e + (aE - 2:;) eI> ds p
z(0)=z' 0 )
y(s")=y" s’
i m b h2v? ]
D — [ |=P+Eze® - [aE - —2) e
X / y(s) exp h/{Qy +< 5¢ (a 2m)e)_ds
y(0)=y’ 0

(2.142)

and we find the product of two path integrals for the Morse potential, however
more complicated as in [14]. The continuous part of the spectrum can be analyzed
similarly as in [14] yielding products of M-Whittaker functions. Analyzing the
discrete spectrum contribution from the Morse potential we find the quantization

condition
1 B2 4m
1) — = E — 0 — = 2.143
(ng +my +1) h (a 2m > V. E.b 0, ( )

which is up to a different counting in the quantum numbers equivalent with
(2.131). This concludes the discussion.
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3. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dyy

Finally, we consider the Darboux space Diy. We have the coordinate sys-
tems:

((u,v) system:) z=v+iu, y=v—iu (u€ (0,7/2),v€eR), (3B.1)

(Equidistant:) u = arctan (), v = g (e e R, 5 €R), (3.2)

(Horospherical:) x = log %, y = log % (v >0), (3.3)

1w =2e"cosu, v=—2e"sinu, (3.4)
(Elliptic:) = d cosh w cos ¢, v =d sinh w sin ¢
(w>0,p€(0,7/2)). (3.5)
We obtain the following forms of the line-element (¢ > 2b, ay. = (a £ 2b)/4):

_ 2b cosu+a

ds® = du® + dv*) =
3 4 sin®u (du o)
a+ a— 2 2
= d d
(sinQu * cosQu) (du + dv™)
(rescaling u/2 — w :), (3.6)
— 2b tanh
(Equidistant:) = %(da2 + cosh? ad3?), (3.7
(Horospherical:) = (a—; + a_2> (dp? + dv?), (3.8)
v
C . a— a4
Elliptic:) = + X
(Elliptic:) (cosh2 wcos?p  sinh?wsin? cp)

x (cosh? w — cos? ) (dw? + dp?),

a4 a— a4 a—
N T oo T 5z, 7. ) %
sin“p  cos®¢  sinh“w  cosh”®w

x (dw? + dp?), (3.9)
1 1 1 1
Degenerate elliptic I:) = |a_ +———] —a —— | X
(Deg ptic I [ (sinh2 ©  sin? ¢> * (cosh2 @ cos? <,0>]
x (do* +dg?) (y=1), (3.10)

1 _

(Degenerate elliptic II:) = — (ai% + %) (do® 4+ dp?) (v =2). 3.11)
4 \sinh“® sin“¢

We observe that the diagonal term in the metric corresponds in most cases to a

combination of a Pdschl-Teller potential and a modified Pdschl-Teller, respec-

tively. In particular, the (u,v) and the equidistant systems are the same, they
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just differ in the parameterization. The limiting cases a = 2b and b = 0 give
particular cases for the metric on the two-dimensional hyperboloid. We have also
displayed two versions of degenerate elliptic coordinates. They come from the
observation that for the representatives

K2, Xo, vXo+ K2, Xi+ Xo+~K? (3.12)

one can distinguish the cases v = 0, v = 2, and v # 0,2. For v # 0,2, one
has coordinate systems which can be explicitly formulated in terms of the elliptic
functions sn(a, k), cn(8, k), and only for a special choice of the parameter k
they can be simplified in trigonometric and hyperbolic functions. Then the line
element has the form

ds* = i[a+k4sn2(a, k) —sn?(B, k) + k*a_](da* + dB?), (3.13)

and separated equations are versions of Lame’s equation, if we assume an Ansatz
of the form ¥ = A(«)B(3) [28]:

0?A(o 4
(2 ) + (——1 k4Ea+sn2(a,k) - >\1> A(a) =0, (3.14)
9?°B(p 1
(2 ) + (——4k4Ea+sn2(ﬂ, k) — Az) B(B) =0, (3.15)

where \; — Ao = —Fa_k? /4. k denotes the modulus of the elliptic functions.

In particular, for the potential V> one has the possibilities of taking v = 0,
and v = 2. For v = 0, the modulus k of the elliptic functions equals k¥ = —1.
We do not treat V5 in these elliptic coordinates, but only the degenerate case of
v =2.

For the potential V3, however, the elliptic systems with v = 1 can be explicitly
worked out. We have stated the respective line elements for these two cases. Note
that for v = 2 the coordinate transformation can be put into

2=l [tan(gz) - w)} y=1ln [tan@ + Zw)} (@> 0,5 € (0,7/4)). (3.16)

We do not dwell into a discussion of elliptic systems any further, for details we
refer to [26]. Let us finally note that the notion elliptic is also used for the (w, )
system, and they must not be confused with the general elliptic coordinates just
discussed.

Because we have not worked out the path integral for the free motion in
these two further coordinate systems, this will be done in an appendix. For the
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Gaussian curvature we obtain, e.g., in the (u,v) system

a? a’ a_ay
sin® u i cosbu  sin*wcostu
G=— . (3.17)

a a 3
+ -
5 T
s~ u COS“ U

The case a = 2b yields a_ = 0, and

G=—- (3.18)

1
37
and therefore again a space of constant curvature, the hyperboloid A is given
for b > 0. We have set the sign in the metric (1.4) in such a way that from
a = 2b > 0 the hyperboloid A®) emerges. We could also choose the metric
(1.4) with the opposite sign, then a = 2b < 0 would give the same result. In the
following it is understood that we make this restriction of positive definiteness of
the metric and we do not dwell into the problem of continuation into nonpositive
definiteness. Because the (u,v) coordinates and the equidistant system are the
same, we do not evaluate the path integral in the equidistant system. In the
following we assume a4 > 0 and ay > a_.
We introduce the following three constants of motion on Dry:

X, = e2”(—7:[0 + cos 2u - p2 + sin 2u - pupy), (3.19)
Xo = 62”(—7:[0 + cos 2u - p2 — sin 2u - pupy), (3.20)
K =p,. 3.21)

These integrals of motion satisfy the Poisson relations
{K, X1} =2X1, {K,Xo}=-2Xo, {X1,Xo}=—-K%—4aKH,, (3.22)
and satisfy the relation
XXy — K* —aK?Hy — H? = 0. (3.23)

The corresponding quantum operators have the form

= sin? 2u 9 9

°= Feoszuran o) (324
X, = 62”(—ﬁ0 +cos2u - (92 4+ 9,) + sin2u - (9,0, + 0u), (3.25)
X, = 62”(—ﬁ0 +cos2u - (92 — 9,) — sin2u - (9,0, — 0u), (3.26)

and the commutation relations read

(K, X1] = 2X,, [K,X,5] = —2X,, [X1,X2] = —8K® —4aKHy — 4K (3.27)
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and satisfy the operator relation

1 ~ =~ ~ ~ o~ ~ ~ ~
§{)(1,)(2} — K*—aHoK? - 5K? — HZ —aHy = 0.

(3.28)

In Table 3 we list the connection with these operators and the corresponding

coordinate systems on Dry.

Table 3. Constants of motion and limiting cases of coordinate systems on Drv

. Constants A® A®
Metric of motion Drv (@a=2b | =0
2b cos
M(diﬁ + dv?) K? (u, v) system | Equidistant | Equidistant
4sin2 u
(a% + a%) (d;f + dy2) Xo Horospherical | Horicyclic | Semicircular
v 2
parabolic
( o= + o+ ) x | K?+d%x, Elliptic | Elliptic- | Hyperbolic-
cosh? w cos? ¢ sinh? wsin? ¢
x (cosh? w — cos? ) (dw? + dp?) parabolic | parabolic
[a+k2 (sn2(a, k) — sn2(8, k)) + a,] x | X1 + X2 +vK?|  Elliptic Elliptic | Elliptic
2
X (d*a + d*B)
We state the superintegrable potentials on Dryy:
a a -1
+ —_
Vi(u,v) = <—2 5 ) X
sin“u  cosu
R (k2 —1/4 k?—1/4
X | — - / + /4 4ae?® 4+ 8mw?e? |, (3.29)
2m \  cos*u sin” u
a a -1
+ —_
V2(u,v):<#+ 5 ) X
sin“u  cosu
R (k}-1/4 k3-1/4 al 1 N 1 (330)
X | — - - — — .
2m \ sinh®v cosh? v 4 \sin®y  cos?u )|’
h? a4 ay a a -1
Vg(UJ,SO): T 12 ~ 5 ~ .2~+ 3 ~ X
2m \sinh*® cosh®® sin“® cos*y
Cc3 Co C3 C2
X | == 5=~ o= 5 3.3
sin“p cos“¢ sinh®@ cosh®w
ar . a— I 9 1 1 1
Vilp,v) = | 5 + — — | kg — = —+— |- 3.32)
(:U’v ) 2 M2 2m 0 4 /1'2 2
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Table 4. Separation of variables for the superintegrable potentials on D1y

Separating
Potential Constants of motion coordinate
system
) 2 2 mo2, 2 2 e
Vi |Ri=K°—oa(p*+v°)+ Tv (p* +v7) (u, v) system

2
—2a(ayp® —a_v?) 4+ 8(k? — 1/4)— + 2mw?(agp* —a_v?)
m

R =Xz + i fau? Horospherical
Elliptic
k2 2 2 1
Vo |R1= X1+ X2+ (2cosu + a) . ki + k5 — 5)~ (u, v) system
ooy W, U) Sy
, 1 k2 —1/4 kI -—1/4
—2( k3 — = ) cosh 2v + (cos 4u + 2a cos 2u + 3) — — > Degenerate
2 sinh? v cosh® v 76111 i I
R — K 4 h2 <k§71/4 k§71/4> e -
2= 2m \| sinh? v cosh? v
) B2 at a -1
Vi |[Ri=X1i+Xe+2K°+aH+ — | —5==+ —>5— X Degenerate
2m \ sinh? 2@ sinh? @

elliptic I & II

at C3 C1 a— C3 Cc2
x |:sinh2 20 (sin2 @ + sin2 gﬁ) sinh? 25 (sinh2 & cos? C))
RZ:X17X2+L2<Q7++L>_1X
2m \ sinh? 2@ sinh? &

X |:a7+ (cl cosh 2& tan? @ — c2CcOs2¢p—
sinh? 2%
c3(2cos? @(sinh® @ — sin? @) + 1)
a sin? @ >+

t— <02 cos 2@ tanh? @ + c¢1 cosh 20—
sin? 2¢
c3(2 cosh? LD(sinh2 @ — sin? @)+ 1
sinh? ©
B2 o 2 2
2— (kg —1/4) (" +v7)
Vi |Ri=X 4+ P (u, v) system
atp? +a_v? A Y Sy

32 n (k2 —1/4)

—(ky —

Ro=Xo4+ 11 Horospherical
(1+;L2 + U._D2 _

R3 = upu + vpy Elliptic

In Table 4 we list the properties of these potentials on Dry. We see that

V, is a special case, and it has three integrals of motion. The variables w, ¢ are
defined by

x = log [tan (¢ — iw)], vy = log[tan (P + iD)]. (3.33)

In terms of these coordinates the line element is given by

a—+2b a+2b  ay a4+ a_ a_

2

d52:_2~ — - = 5 — s — T35t 5=
sinh“2w  sin“2¢  sinh“°® cosh®@ sin“¢p cos“p

(3.34)
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3.1. The Superintegrable Potential 1, on Diy. We start by stating the
potential V7 in the respective coordinate systems

-1
Vl(u,v)=< a; +a__> X

sinu  cos?u

[h? (k2 —1/4 Kk2—-1/4
X | =— / + .2/ — 40e? 4 8mw?et?| | (3.35)
12m \ cos?u sin? u
—1
a4 a_
:<§+F> :
I K2 (K2—1/4 K2—1/4\ m o, 5
x —a+%< e 0z >+5w (u +1/)}, (3.36)

~1
= e + — x
sinh?wsin? ¢ cosh? wcos? ¢

. _a+h_2< o1/4 k-1 >+
2m \sinh® wsin? ¢ cosh? wcos? ¢
m o5 2 .2
+ Ew d*(cosh” w — sin“ ) | . 3.37)

The path integral for the potential V; can be solved in the (u,v) system and in
horospherical coordinates. We also keep the parameters k; and ko different in
comparison with Kalnins et al.

3.1.1. Separation of Vi in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

m 2bcos2u + a

L(u, 1, v,0) = > — (0? + %) 4+ V(u,v), (3.38)
Sin u
1 sin® 2u
H(u, pu,v,po) = %m(pi + ) + V(u,v). (3.39)

The canonical momentum operators are given by

h( o 2bsin2u h O
w ==\ = 2 cot 2 - | v = T 5 3.40
P [ <8u+ b 2b0052u+a> P 1 Ov (340)
and the Hamiltonian operator has the form
B2 sin?2u 0? 0?
H=——"F7r—""—"7—"|—S+— v 3.41
2m 2bcos2u + a (8u2 * 81)2) V() 34D
1 sin 2u 9 9 sin 2u
=——(p: +p) ——— + V(u,v). 3.42
2mx/2bc032u+a(p b )\/2b0032u+a () (.42)
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We insert V; into the path integral and obtain (f = a /sin® u + a_ /cos® u)
u(tll):u// v(tll):v//

KW @" o/ " ' T) = / Du(t) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
i @ .9 .2 _l h_2 k%—1/4_k%—1/4
xexp(h/{Qf(u +07) f[Qm( cos? u sin? u -
0

+ 8mw? <e4” - 272;2 e2”>] }dt) . (343)

We see that the v dependence has the form of a Morse potential:

VMP) () = wve (e** — 2ae"), (3.44)
2M
where the (finite) discrete energy spectrum is given by
2
El:—% (d—l—%) . (3.45)
Proceeding in the usual way we obtain for the time-transformed path integral
u(s")=u"" v(s")=v"
KWV @" o " ' s") = / Du(s) / Du(s)x
u(0)=u’ v(0)=v’

T
ifme o B (M -1/4 A3 -1/4N\
xexp{h/lQ(u +97) 2m< cos? u sin? u

0
— 8mw? <e4” - 277:;2 e2">] ds} =

. h2
_ Z(P%Az)\l)(u//)q)glAg,Al)(ul) exp {_ 1_()\1 + Ao+ 2n + 1)28//] «

h2m

% {/dﬁ@éMP)(v//)@gMp)*(u/) efihNQS”/Qm_F

1 * !/ ] h2 ~ 1 2
+ ;W;MP) (v )@l(MP )(u )] exp {%% (a —1- 5) } } (3.46)

Here, A}, = ki, — 2ma_ (E/h?, and in the variable v we have used the
solution of the Morse potential and in the variable u the solution of the Pdschl—
Teller potential, respectively. This form of the solution is convenient to obtain
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the bound state solutions. The bound state energy levels are determined by

2(n+l+1)+)\1+/\2—%:0. (3.47)

By denoting
2
Noi= (2(n +1+1)— %) — (k¥ +K3) (3.48)

the quadratic equation in E can be solved to give (with the further abbreviation
Ko = 4(ask? +a_k3))

En,l =

h2
= Imb? {i\/(aNnvl + K,)? — 4b2(N2 | — 4k$k3) — (aNny + Ka)} . (3.49)

We keep the £-sign to allow for different boundary conditions which may depend
on the parameters a and b. For instance, for a = 2b we get the limiting case:

K2 a\?
For ko = £1/2 it has the form of the usual zero-energy on the two-dimensional
hyperboloid.

In order to obtain the continuous spectrum, the formulation in (u, v) coordi-
nates is inconvenient. Following [12] we perform the coordinate transformation
cosu = tanh 7, and additionally we make a time-transformation with the time-
transformation function f = a, /sin®u + a_/cos’u. Due to the coordinate
transformation cos u = tanh 7 additional quantum terms appear according to

exp (ﬂ (Au(j))Q ) .

2¢h cos uli—1) cos ul#)
m N2 h 1
= — (A Gy ;2 1 ] 51
exp {M( ) —ig - ( + cosh27(j)>] (3.51)
We get for the path integral (3.43)

o0

dE _,
VO (o " V=T :/ —iET/h
K (u”,u' 0", 0" T) 5.7 X

— 00

r i h2k3
x /dS// exp |:ﬁ <a+E _ 5 2>:| K(VI)(TH,T/,’U//,v/;sl/), (3.52)
m
0
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and the time-transformed path integral K (V1) (s”) is given by

KW (" ' " 5 6") = (cosh 7’ cosh 7)™/ 2%
< [ 3w e K7+
+ / drUMP) (Y UMD () K (7, 7 s“)] , (3.53)
7(s")

KZ(ZI)(T” 7’5" / Dr(s

7(0)="7'

i 1[m o PPN -1/4 Vi, —1/4
X - - = ds . (3.54
Py / [ T 2m ( sinh? 7 cosh? 7 § (354

The parameters \; o are the same as in the previous paragraph and v is given by

’2[ +1- —‘ (discrete), v, =ik (continuous), (3.55)

where discrete and continuous means the discrete and continuous contribution of
the Morse potential. Of course, the analysis of the discrete spectrum gives the

same result as before. The kernel K l()‘,?)(s” ) now allows us to write down the

entire kernel K (V1)(T') in terms of Morse wave functions and modified Pschl—
Teller wave functions in the following form:

KW ' 0" ', T) = (cosh 7’ cosh 7)1/ 2 x

{ ZNln MP)* )\II(MP)( //)\Ijgl)\l,w)*(T/)\I/%/\l,lq)(T//)efiElnT/h_F

/deNlp\I,(MP V) (MP)( ”)\Ilg‘l’w)*(T/)\Ifg‘l’"l)(T”) o~ iBpT/h

/dp/dﬂN2 \II(MP ( )\:[/Ing:’)(,U//)\IIZ())\l,iH)*(7_1)\:[/1(7)\1,1';-@)(,7_//)e—iE,,T/h}7
(3.56)

with the proper normalization constants Ny, N;,, Ny, where, e.g., Ny, is deter-
mined by the residuum corresponding to FEj, in the Green function, and with the

continuous spectrum
2

I
E, = ma, ——(p* + k3). (3.57)
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Note that for ko = 1/2 we obtain the well-known zero energy on the two-
dimensional hyperboloid, which appears here in a natural way after performing
the coordinate transformation cosw = tanh 7.

The ") (w) are the modified Péschl-Teller functions, which are given by

\Ifgﬁ’”) (r) = N,(L"’”) (sinh r)Qk”_% (cosh r)_2k1+% X
X oF1(—=k1 + ko + Kk, —k1 + ko — k + 1; 2ko; — sinh? T), (3.58)
1/2
(nw) _ 1 2(2H — 1)F(k‘1 + ko — H)F(kl + ko + K — 1) / . (3.59)
" I'(2k2) D(ky — ks + k)(k1 — ke — K+ 1)
The scattering states are given by

Vi) = h_2<772—1/4 - 1/2—1/4>’

2m \_ sinh?r cosh? r

\IIZ(,""’) (r) = NI(,""’) (cosh T)2k1 -3 (sinh T)ri% X

X 2F1(]€1 +]€2 —;‘ﬁl,k‘l+k’2+f€— 1;2k‘2;—$iﬂh27"), (360)

1 [psinh Tp
(mv) — _ _
N, T(27s) 52 [F(k‘l + ko — k)D(—k1 + ko + k)X

1/2
 T(k1 + ko + k — DD(—k1 + ko — & + 1)} : (3.61)

1 1
k1, ko defined by: ky = 5(1 +v), ky = 5(1 + 7)), where the correct sign depends

on the boundary conditions for » — 0 and » — oo, respectively. The number

1
Ny denotes the maximal number of states with 0,1,..., Ny < k1 — ko — 2

1
k = k1 — ko —n for the bound states and xk = 5(1 +ip) for the scattering states;
2F (a, b;¢; z) is the hypergeometric function [10, p. 1057].
3.1.2. Separation of V1 in Horospherical Coordinates. We evaluate the path
integral for V7 in horospherical coordinates. The classical Lagrangian and Hamil-
tonian are given by

. . m(a a— . .
L(ps fv,0) = 5 (V—§ + F) (*+0%) = V(pv),  (3.62)

1 e (pp 4 p})

om anZ4a e TV (3.63)

H(:U’vpuv v, pl/) =

For the canonical momentum operators we have

h({ o via_/u

h(o wray v
Pv =~ (5 - 7a+ﬂ2 Ta2) (3.65)
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and for the quantum Hamiltonian we get

h2 M2V2 82 32
H - _%7a+/ﬂ + a,zﬂ (a—/u’? + W) + V(/Jv V)v (366)
22 2p2
B Rt —E i vy).  (3.67)

ayp?+a_ 1/2 a2+ a_v?

We insert V; into the path integral and obtain (f = a /v? + a_/u? and keeping
to constants ki 2)

H(t” FL V(t”):V”
KW (" V' V5 T) / Dy(t) / Du(t) f (p, )%

n(t)=p' v(t)=v’

Flu,v)(* +0%)—

h2 k‘2— k2_
_ f(/iy) (%wQ(MQ—H/Q) a—|—%< 1 ,u21/4_|_ 3 l/21/4>>]dt} =

_ [ 22 v /d/K<> o

K(VI)(/J//a/i/a l///, l//; s//) _ / ’D,u(s)x

i m, . B2 k? —2ma_E/R? —1/4
/[—(MQ—W2M2)—% 1 u2/ /:|d

- - 2 1.2 2
X / Du(s) exp %/{%(02—w2u2)—h—k2 2ma E/h 1/4]ds =

2m V2

2.2 ST T T T
:%exp —m—(u + +l/2+1/”2) cot ws” | x
12h2 sin” ws” 2ih

mwp! 1" mwr' V"
1 1 3.69
X (zh sin ws” )\ i sin ws” )’ (3.69)
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where A1 2 = ki 5 — 2mazE/h?. We can extract the bound state wave functions
for the bound state contribution of the Green function according to:

G(Vl) "o /'E n,my
W =YY e

n,, =0 nV—O

% \II(RHO /\1)( )\II(RHO /\1)(/14 )\IlglRHO,)\g)(V/)\II%RHO,/\Q)(V//). (3.70)

m m

The bound states are determined by the equation

Q@ _ 5 2ma_FE 5  2maiE
%—2(nft+nu+1)—\/k1—7+ ky — = —

This quadratic equation in E' is identical with (3.47).
3.2. The Superintegrable Potential 1, on Diy. We state the potential in the
respective coordinate systems

3.71)

-1 32 2 2
_ —1/4 —1/4
‘/Q(U,U) = (—a; a ) h l:k / k2 / +

sinu  cos?u 2m | sinhZv cosh? v
(=) (S (3.72)
34 sinfw  cos?u /|’ ’
-1 39
ay a_ I3 5 1 1 1 )
=4 + > | (k7 + +
(sinh2 20 sin? 2@) 2m [ ( 3 4) (sinh2 20 sin?2¢
k2 —-1/4 k?—-1/4
+<22/~—12/~>. (3.73)
cos® 2¢ cosh” 20

It is possible to evaluate the path integral for V5 in the (u,v) and the degenerate
elliptic system with v = 2. The elliptic system with v = 0 is not treated.
3.2.1. Separation of Vs in the (u,v) System. We insert Vo into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)
w(t”)=u" o(t")=0v"
KW (" o/ " 0 T) = / / Dot

u(t)=u’ v(t)=v’

T

i [ m e gy P (K14 -1
X e - —Jf(u”+v7)—
Xp{ho/[Qf( ) 2mf< sinh? v cosh® v

, 1 1 1
+ <k3 - Z) (—Sin2 ~+ —0032u>>1 dt}. (3.74)
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This formulation in (u,v) coordinates is inconvenient. Following the procedure
as for V; in the (u,v) system we perform the coordinate transformation cosu =
tanh 7, and get for the path integral (3.74)

oo

K(VQ)(u”,u’,v”,v’;T) — / d_E e—z‘ET/h><
2mh

— 00

Vi i 1242
X /ds” exp {— <a+E - >:|K(TH,T/,’UN,’U/;SH), (3.75)
0

and the time-transformed path integral K (V2)(s") is given by

Va I/ N/ SN /AN
K )(T,T,’U,’U,S)—

Nmax
= (cosh 7’ cosh 7")~1/? Z \I/gfj’k?)(v’)\lfg?’k”)(v”)x
N, =0
R i T m , R (A2—-1/4 A2—1/4
X Dr(s)exp — —7° - — — ds p +
/ () exp hO/[Q 2m<sinh27 cosh27>}
7(0)=7'

+ (cosh 7/ cosh 7)~1/2 / dk, U (0 )R (0

T(S”):T” s

i TIm., K [(M2—1/4 —k2—1/4
D - "2 2 _ v d
8 / 7(s) exp h / [ 2" " om ( sinh? 7 cosh? 7 )] s

7(0)=r" 0

(3.76)
(A2 = (2n, + k1| — |k2| + 1)%, A3 = k3 — 2ma_E/R?).

The v-path integration gives a discrete and continuous spectrum, thus two
different parts for the 7-path integration. We therefore find for the Green function

GV (" 7' 0" v E) = (cosh 7’ cosh 7)1/ 2x

N,
-l T'(my — Ly, )T(Lx, +mq + 1)
% \I/(kl,k'z) ,Ul \I/(kl,kg) 'UH ﬂ 1 1
H;O Ny ( ) Ny ( )h2 F(ml +maq + 1)F(m1 — ma + 1)

x (cosh 7’ cosh 7)™ (F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
><2F1<—LA1+m1,L>\l+m1+l;m1—m2+1;72>x
cosh” 7~
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X 2F1<—L)\1 +TTL1,L,\1 +mq + 1;m1 + mo +1;tanh27'>>+

+ (cosh 7/ coshT”)*l/z/de\I/,(JZl’kZ)(U')\I/gZ“M)(v”)><
m I'(mq — Ly, )T (L, +m1 + 1)
R T(mi+me+ 1)T(my —ma+1)

x (cosh 7’ cosh 7/)~(F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
X 2F1<—Lk,u +mq, L, + m1 + 1;my —mo +1;72>><
cosh” 7~

x 2 F ( — L, +ma, Ly, + m1 +1;m1 +mae + 1; tanh? T>> 3.77)

1 1 1
(M2 = 5(>\2 +V2mé/h), Ly, = 5(>\1 —1), L, = 5(z‘kv -1),=a FE—
h2k3/2m).
A discrete spectrum is only possible for the first summand in (3.76). First,
we can analyze the discrete spectrum by looking at the poles in (3.77) which
gives the equation

2(nr +ny) + Ay + A+ k2| — |k1| =0 (3.78)

(0% = k2 — 2ma+E/h?). This gives a quadratic equation in E with solution
(N =2n,; — 2n, — ‘kl‘ + ‘kQ‘)

2N} 402 (K3
Enn, = ="k <1¢\/1+—<W—1)>. (3.79)

The entire Green function in terms of the wave functions is given by

N2
GV (" 7' 0" v E) = (cosh 1’ cosh ") ~1/2 dpE E/dk X

~ \I/gzl,k'z)(vl)\p(kl,k'z)(,U//)\Ij()\g,ik:u)(T/)\Ij()\g,zk:u) (7_//)_|_

ko P

+ (cosh 7’ cosh 7)) ~1/2 Z Z Wk (3 )@ Rk (/1)

nr=0mn,=0

Nmax 2
« Z Nn‘rn'n \Ij()\g)q)(T/)\II(AQ,Al)(T//)+
Lo n,

NrMNy
n,=0 TNy

N2
dpE P :E\IJI(])\Q,M)(T’)\I,;MJH*(T”)}, (3.80)
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where Ny,_p,, Nk n, is determined by the residuum in (3.77). The continuous

spectrum has the form
2

> = Sman (p? + k3). (3.81)
For ks = £1/2 we obtain the usual zero-point energy on the two-dimensional
hyperboloid. Reinserting cosu = tanhv gives the Green function in the (u,v)
system.

3.2.2. Separation of V5 in Degenerate Elliptic Coordinates. We insert the
potential V5 in degenerate elliptic coordinates into the path integral and obtain
(f(@,¢) = 4(ay / sinh? 20 4 a_ / sin® 23))

KD (@" & ", ¢ T) = Di(t) DE(t) f(&, @)%

sinh?20  cosh?20  sin? 2 cos? 2¢

2 2 2 2
y <k1—1/4_ k2—1/4+k3—1/4+k2_1/4>]dt}_ (3.82)

The calculation is similar as in the case of the (u,v) system: First, we rescale
20 — w,2p — @, then we perform the transformation cos¢ = tanh 7. Finally,
we perform a time transformation in the path integral with the time transformation
f(@,9) — f(@,7) yielding

GV (7 70" &' E) =

2m

= " 3 " _ h2k§ (Vo) (mlt ~1 ~11 ~1. 1
= [ ds" exp 5 Ea_ — — )| K\, 70", 0" 8")  (3.83)
0

with the transformed path integral K (V2)(s”) given by

2m \ sinh? 7 cosh? 7\ sinh? & cosh’® 4

2 2 _ 2 _ 2 _
G 1/4+ 1 <)‘+ 1/4 k3 1/4+1>>]d3}. (3.84)
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Again we evaluate this path integral by a successive w- and 7-path integration.
Performing finally the s integration we obtain

G2 (7 7 & &' E) = (cosh 7' cosh 7)) 71/2x

{/dp /dk‘ \If (k1,ikg ) ) (kl)ika))*(%//)\I/](ﬁl’kﬂ(CD/)\IJI(:EIJW)*(CD//)+
N!I)ax k k
+ [ Z T T W @R @)+

RLISRALIN n,.nw (k €ng ) (k €ng )
+ D0 D el (F) W ()W) (@) ) (@ )}.

TL ne
nz=0mng=0 T

(3.85)

The normalization constants Ny, Nk, p, Nn,n, are determined by the respective
residuum in G(2)(E) and the discrete spectrum is determined by the quadratic
equation (3.78). The continuous spectrum has the form

2

=5 — (p* + k3). (3.86)
The difference of E, in comparison to the (u,v) system can be resolved by
making in the (u,v) system the transformation sinu = tanh 7 which changes the
sign in the energy term. This concludes the discussion of V2 on Dry.

3.3. The Superintegrable Potential V3 on D1y. We state the potential in the
respective coordinate systems

h2 4a+ 4Cl_ )1
Va(@,9) = — + X
2 2m<sinh2 25 ' sinhZ @

x| —2 42 4 ( ! ! ) (3.87)
= |\ ————-——==]| @G
cos? ¢ cosh®@ *\ sin? ¢ sinh?@
i (s~ ws) o (e v vs)]
2m | "\cosh®w cos? @ sinh2¢ | sin® ¢

C3 C2 1 1
« + +ec —— ). (3.88
Linh2 & cosh?® 8 <51n2 $  cos? 90)1 ( )

It is possible to evaluate the path integral for V3 in both separating coordinate
systems. However, due to the similarity in the evaluations, only the degenerate
elliptic II case will be presented.
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3.3.1. Separation of V3 in Degenerate Elliptic Coordinates II. We insert the
potential V3 in the path integral formulation for degenerate elliptic coordinates on
Dry and obtain f(@, @) = 4(a./sinh? 20 + a_ / sin” 2¢))

KY)(@" & ", o5 T) = Di(t) D) f(@, )%

FL2 C1 C2 ( 1 1 >
- —— ~ + +ce3| ——— ——— dt p. (3.89
2mf (@, @) <0082 ¢ cosh®m ° \sin? ¢ sinh®@ (-89

In order to obtain a convenient form to evaluate (3.89) we perform the coordinate
transformation cos ¢ = tanh7 in the same way as for V5. Performing also the
corresponding time transformation gives

oo

dE  _,
K@ 27,751 = [ 5o e BT/
r i (B
« [asresn |55 )| K0G8 7, G0
m a__

and the time-transformed path integral K (V3)(s”) is given by

KW (" & 7 76" = Da(s) D7 (s) cosh Tx

) m .o 2 .19 h2 A1a+_ N 1/4
X exp - 5(7 +COSh TW )—%W—
2 Noo-1/4 N -1/4
+ +
< - —= + - ds 391
2m cosh? 7 sinh? @ cosh? & 4 31)

1

(N = vk 2mayE/h?, i = 1,2,3). The latter path integral has the
Zai

form of two successive modified Poschl-Teller path integrations in @ and 7. In

the w-path integration we get a contribution from the continuous and discrete
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spectrum. The continuous contribution gives in the 7-path integration only a
continuous part, whereas the other gives a discrete and continuous contribution
in 7. We denote the continuous parameter in @ by pg, the discrete parameter in
w by €, = 2ngy + )\3;+ — )\2“_+ — 1, the continuous parameter in 7 by p, the

discrete parameter in 7 by €,,. =on; + A+ — €ng — 1, therefore:

K(V3)(c~u//,d)/,7~'//,7~'/; SH) _

= (cosh 7/ cosh 7))~ 1/2 [ d \I,(/\3;+’/\2;+) ~1 \I,(/\3;+’>\2;+)* ~ 11
= (cosh 7 cosh 7") D0 ¥ps, (@)W, (@) x
0

7»;(5//):71 s )\2 _1/4
i m., R [ "1k pi+1/4
X D7(s) exp{ — —7 - - + == dsy +
/ (s) exp h/ 2 2m sinh? 7 cosh? 7
#(0)=7" 0
Nmax Pg= A=) (A= 2 A— )
+ (cosh 7 cosh 7)™ 1/2 Z N (Vi | A (L P
n;,:O
7~_(S//):{—H ) s’ 9 /\2+ _1/4 9 1 4
X D7 (s) exp 3/ mfj—h— =E 5. €”°°_2/ dsy =
h 2 2m sinh” 7 cosh™ 7
7(0)=+" 0

s Al A ) e A )
= (cosh 7 Cosh%”)*l/Q/dptw\llp;‘”r @, e (@)%
0

7 A+ +ips) (A + ipa) * o
% /dp\Ilp la_ (J)/)\ij la_ ((;}//) e is hp2/2m+
0
Nmax A= A=) (A= A— )
+ (cosh 7 cosh 7)™ 1/2 Z A (Vi | A (L P

ne =0

(A1j7 JEng ) *

T (Alj ’6”5)) M2
% /dp\:[/p - ((,{N)/)\I/p ((;}/l) e s hp /2m+
0

Nmax ()\13__ ’E"LD) ()\1+ 75715,)

+ ) Un, (F)¥n, (%”)e—m”fiﬂm}. (3.92)

n,=0

Performing the s” integration gives the spectrum. For the continuous spectrum
we obtain

E, = U 2+1—c (3.93)
P 9ma_ p 4 3) ’
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The discrete spectrum is determined by
Q(TL@ + ’I”L;—) + )\12—7 + )\3;+ — )\2;7 —2= )\3:7 . (3.94)

This is an equation in E in the eighth order which we will not solve.

3.4. The Superintegrable Potential 1V, on D1y. We state the potential in the
respective coordinate systems

—1 ;9
[ as a_ h . 1 1 1
Valu, v) = (sin2u+cos2u> 2m (ko 4) (sin2u+0052u (395
—1 ;9
ay  a_ I 9 1 1 1
(2 +) (-2 )(s+= 3.96
(+32) m(6-5) (7). 699
R [ a+20  a—20\"'[, 1
= 2\ 52 + - ko — )
2md? \ sinh” 2w’  sin® 2¢’ 4

1 1
X + . 3.97
(cosh2 wcos? ¢ sinh? wsin? cp) 397)

It is possible to evaluate the path integral for V, in all the separating coordinate
systems. However, we evaluate the path integral for V4 only in the (u,v) system
because V} is trivial.

3.4.1. Separation of V4 in the (u,v) System. We insert Vj into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)

u(t//):u// 'U(t//):'u//
K" ' 0" 0 T) = Duft) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
. 2 1.2
X exp %/[%f(u)(am?) L 1/4( o )}dt . (3.98)
0

C2m f(u) \sinfu cos?u

We proceed similarly as in [14]. Because the formulation in (u,v) coordi-
nates is inconvenient, we perform following [12] the coordinate transformation
cosu = tanh7. Further, we separate off the wv-path integration, and addi-
tionally we make a time transformation with the time-transformation function
f =ay /sin®u+a_/cos? u. Due to the coordinate transformation cos u = tanh 7
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additional quantum terms appear according to

im (Au0)? N
P\ 2eh cosuG—D cosul) |

= exp [%(ATU))Q i (1 + éﬂ . (3.99)

8m cosh? 7(9)

We get for the path integral (3.98)

o0

K" v 0" v;T) = / %e‘“ﬂ/hx
™
1 3 _fLng "ot mno 0. M
x [ ds" exp N ar F 5 K", 70" 0" 8"), (3.100)
m
0

and the time-transformed path integral K (s”) is given by

et
K(T 7T7U 7U;S):

v ’Lk’v(v”—v’) -,—(s”):T//
_ dk € b cosh 7)1/ »
= UT(COS 7' cosh ) ()
—00 o
i [m. K (M-1/4 )
T T B dsp. (3.101
Xp f},/ |:2 T 2m ( Sinh27- Cosh27- ( )
0

Inserting the solution for the modified Poschl-Teller potential and evaluating the
Green function on the cut yields for the path integral solution on Diy as follows
(K (", /"0, T) = K (7,7 0" 05 T

K(u”,u',v”,v’; T) _

= / dk, / dpe™ TE /My o (77 0"V L (7,0)), (3.102)
—00 O
eikvv ik
Uy, (1,0) = ——= T (7), (3.103)
V/2may cosh
B =" (p* + k) (3.104)
P 2ma+ 0)» .
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where A3 = k2 — 2ma.E/h? and the wave functions for the modified Poschl—
Teller functions. Reinserting cosu = tanh 7 gives the solution in terms of the
variable u.

We also see from this example that the introduction of a third variable
w, say, to a three-dimensional version of Darboux space Dy allows separa-
tion of variables, where the additional quantum number kg corresponds to the
motion in w.

4. SUMMARY AND DISCUSSION

In this paper we have finished the discussion of superintegrable potentials
on spaces of nonconstant curvature. The results are very satisfactory. There are
two potentials on Dj, four potentials on Dy, five potentials on Dyyr, and four
potentials on Dry, respectively. We could solve many of the emerging quantum
mechanical problems. To give an overview, we summarize our results in Table 5.
We list for each space the corresponding potentials including the general form of
the solution (if explicitly possible). We omit the trivial potentials here, because
they are separable in all corresponding coordinate systems.

In the first Darboux space Dj the superintegrable potentials were related to
the Holt potential and a shifted isotropic harmonic oscillator in two-dimensional
Euclidean space. Whereas the solution in the coordinate v can be expressed in
terms of the wave functions for the radial harmonic oscillator (Laguerre polyno-
mials) and the shifted harmonic oscillator (Hermite polynomials), the solution in
the coordinate u was determined by a boundary condition for u. This gave wave
functions in terms of parabolic cylinder functions and a transcendental equation
for the bound state energy levels. The corresponding solution in the rotated
(r,q) system was similar. An explicit solution in parabolic coordinates could not
be found.

In the second Darboux space there were three nontrivial superintegrable po-
tentials. The potentials were related to the Hold potential, the isotropic singular
oscillator, and the Coulomb potential in two-dimensional Euclidean space. We
found combinations of polynomial wave functions for the discrete states and com-
binations of polynomials and Whittaker functions for the scattering states. The
discrete energy spectrum for the oscillator-related potentials was usually given
by a quadratic equation in the energy. For the Coulomb-related potential we
found an equation in eight order in the energy, which could be studied in a
special case. Also, in the semiclassical limit, we found that the energy spec-
tra indeed had the behavior of a harmonic oscillator and a Coulomb potential,
respectively.

On D1 we had potentials related to a linear potential, a Coulomb potential,
and a shifted oscillator in two-dimensional flat space. We found for the first po-
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Table 5. Solutions of the path integration for superintegrable potentials in Darboux

spaces
Space and potential Solution in terms of the wave functions
Dr
Vi: (u,v) Hermite polynomials x Parabolic cylinder functions
Parabolic No explicit solution
Va: (u,v) Hermite polynomials x Parabolic cylinder functions
(r,q) Hermite polynomials x Parabolic cylinder functions
D
Vi: (u,v) Hermite polynomial x Whittaker functions®
Parabolic No explicit solution
Va: (u,v) Laguerre polynomial x Whittaker functions®
Polar Gegenbauer polynomial x Whittaker functions™
Elliptic No explicit solution
V3: Polar Gegenbauer polynomials x Bessel functions
Parabolic Product of Whittaker functions™
Elliptic No explicit solution
D
Vi: Parabolic Product of Hermite polynomials/Parabolic cylinder functions
Translated parabolic | Product of Hermite polynomials/Parabolic cylinder functions
Va: (u,v) Gegenbauer polynomials x Whittaker functions®
Polar Gegenbauer polynomials x Whittaker functions™
Parabolic Product of Whittaker functions™
V3: Polar Gegenbauer polynomials x Whittaker functions™
Hyperbolic No explicit solution
Vi: Hyperbolic Product of Whittaker functions™
Elliptic No explicit solution
Dy
Vi: (u,v) system Product of hypergeometric functions
Horospherical Product of Whittaker functions™
Elliptic No explicit solution
Va: (u,v) Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
V3: Elliptic Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
*The notion Whittaker functions means for a disrete spectrum Laguerre polynomials and for
a continuous spectrum Whittaker functions W, (), respectively.




PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1063

tential an equation in the fourth order in the energy £, and quadratic equations in
the energy E for the second and third potentials. The Coulomb-related potential
showed again in the semiclassical limit the behavior of a Coulomb potential. Of
some special interest was the feature of the complex periodic Morse potential
for the separation of V3 in polar coordinates. Such complex potentials have at-
tracted in the recent years some attention, because the involved P7 symmetry in
these potentials has the consequence that they, nevertheless, have a real spectrum,
e.g., [3,4,42,49-51]. Such kind of potentials also appear as subsystems in the
list of superintegrable potentials on the complex Euclidean plane [36].

A special feature in Dy was that for the free motion there are already
positive continuous and negative infinite discrete spectra. A similar feature
also exists for the free quantum motion on the SU(1,1) and SO(2,2) hyper-
boloid.

In the fourth Darboux space we found potentials which were related to the
Morse and Poschl-Teller potential, and combined modified Péschl-Teller poten-
tials. The modified Poschl-Teller potentials had, of course, solutions in terms of
hypergeometric functions, respectively: Jacobi polynomials (discrete spectrum)
and Jacobi functions (scattering states).

We were able to solve the various path integral representations, because we
have now to our disposal not only the basic path integrals for the harmonic
oscillator, the linear oscillator, the radial harmonic oscillator, and the (modi-
fied) Poschl-Teller potential, but also path-integral identities derived from path
integration on harmonic spaces like the elliptic and spheroidal path-integral rep-
resentations with their more complicated special functions. This includes also
numerous transformation techniques to find a particular solution based on one of
the basic solutions. Various Green-function analysis techniques can be applied to
find an expression not only for the Green function but also for the wave functions
and the energy spectrum. Usually, we stated in all cases the solution for the dis-
crete spectrum contribution, i.e., the energy spectrum and the bound-states wave
functions. However, not in all cases we stated explictly the scattering states.
In the cases where we omitted the explicit representation, this can be done in
a straightforward way by inserting the corresponding solution by the potential
problem in question and inserting the various coupling constants and scattering
quantum numbers.

Let us also note that our solutions are often on a more or less formal level.
Neither have we specified an embedding space, nor have we specified boundary
conditions on our spaces. For instance, in D; boundary conditions the signature
of the ambient space is very important, because choosing a positive or negative
signature of the ambient space changes the boundary conditions, and hence the
quantization conditions [21]. The same line of reasoning is, of course, valid in
the other three Darboux spaces. We have not discussed in detail special cases of
the parameters (say a and b), including the limiting cases to flat spaces or spaces
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with constant (negative) curvature. Such a discussion would go far beyond the
scope of this paper.

Let us finally mention an important observation due to [26]. At the end
of their paper Kalnins et al. gave a list of superintegrable potentials on the
two-dimensional complex plane and complex sphere. As it turns out, all of the
potentials on Darboux spaces can be generated by taking a two-dimensional line
element and dividing this line element by a superintegrable potential belonging
to a specific class [27]. Not every class generates a new potential on a Darboux
space, some are simply related by a coordinate transformation, and some potentials
can be generated from the Euclidean plane as well as the complex sphere. The
appearance of the complex sphere is especially obvious in the general elliptic
coordinate system on Dry. Some of the various different potentials coming from
the complex plane and sphere are also related by the so-called «coupling constant
metamorphosis». Coupling constant metamorphosis always comes into play if
the energy E of the quantum system appears in the form of E - metric terms.
This observation leads to the notion that every nondegenerate superintegrable
system in two dimensions is «Stdckel equivalent» to a superintegrable system in
a two-dimensional space of constant curvature [27].

In the language of path integrals coupling constant metamorphosis comes
from «time-» or «space-time» transformations (also called Duru—Kleinert trans-
formations [39]). Here the most important example is the Coulomb problem,
where by means of a space-time transformation the Coulomb coupling « just be-
comes a constant and the emerging harmonic oscillator problem has the frequency
w? = —2E/m, i.e., the negative energy of the Coulomb problem appears as a
harmonic oscillator frequency. As we have seen, this kind of coupling constant
metamorphosis or space-time transformation, respectively, had been indispensable
tools in the path integral evaluations of the free motion and for the superintegrable
potentials, and we can use both notions as synonymously.

We did not go into details of three-dimensional generalization of the Darboux
spaces [15]. Of course, it is possible to extend the notion of superintegrability
to three-dimensional Darboux spaces. In particular, in three dimensions there
are more of such potentials. In total, there are five maximally superintegrable
potentials [17], the first four of them are also superintegrable, including the
singular harmonic oscillator, the Holt potential and the Coulomb potential. New
features will arise due to the fact that on three-dimensional generalization of the
more complicated Darboux spaces Dryr and Diy, coordinate systems from the
three-dimensional complex sphere come into play [30]. Studies along such lines
will be performed in future investigations.
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Appendices

A. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v =1)

We start by considering the metric in elliptic coordinates (y = 1):

ds* = |- sna ) ——— — ——— | | (d&® +d¢?). (A1
’ [a (sinhQ(J) +sin2¢> a+<cosh2® ) @)]( w7 +dp7). (A1)

We formulate the path integral in the usual way. We perform the space-time
transformation with the coordinate transformation cos ¢ = tanh 7 yielding

w(t”):w”
K", o' ¢" @ T) = Di(t)x
(t)=a"
B(t")=¢" ) ) 1 1
X Dot)la| ——+ —— | —a _ _ X
() [ (sinh2d) sin? cﬁ) +<Cosh2&) cos? gp)]
()=

T
m a_ a4 a— a4 X2 42
X exp | — - + - 5 ) (@7 +@7)dt| =
P l?h / (sinthJ cosh?&  sin®*¢  cos? <P>( ?) ]
0

T dE _pr [ ; B2
= / ﬁeﬂET/h/ds” exp {% (aE— %>s”] x
—00 0

x K(@" & #",#:5") (A2)
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with the transformed path integral given by

7/;(8//):_7_// LZJ(S”):L:)”
K" o' #" %8 = / D7(s) D(s) cosh 7x
#(0)=+" @(0)=a"

i m o 5.9, N 1 <A2+1/4 AT +1/4 1)
xXe — — (7" 4cosh” 70 ) — — - +— |-
P (ﬁ o/ { 2 * ) 2m [cosh2 7\ sinh?®  cosh?® 4

A +1/4
_ ALl }ds) (A3)
sinh” 7

1
where A2 = 1 —2may E/h%. The successive path integrations are of the modified
Poschl-Teller type. Therefore the solution can be written as follows:

K@",&',¢",957) = [[db [ pul 0@l @)

x \I/ék_'_,ik) (%//)\Ij](j)\+7ik) * (7_/) e—ith2/2m (A4)

with the energy spectrum

2
B,= " <p2+1), (A5)

~ 2ma_ 4
and we can reinsert tanh7 — cos . The difference of the energy spectra in

degenerate elliptic and elliptic coordinates (interchanging of a4 and a_) can be
removed by a shift of the coordinates ¢ and ¢ by /2, respectively.

B. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v = 2)

We start by considering the metric in degenerate elliptic coordinates (y = 2):

1 a a_
ds® = = +r 4 do? + dg?). B.1
° <smh2 25 T amtag ) @A) (B.1)

We formulate the path integral in the usual way. We scale both variables by the
factor 2 and perform the space-time transformation with the coordinate transfor-
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1
mation cos ¢ = tanh 7 yielding (A\? = 1~ 2may E/h?):

B(t")=a" F()=5
K@@' &, ¢ 3 T) =~ Dis(t) Do) — 4
@@, T) = @ PO et 525 )"
sinh“@ sin* @
B(t)=ar B(t)=¢"
T dE
o~ iET/h

— 00

T
m a a_ < L
o [2_/<~7+~+~T><“’2“02)dt1 -/
0

o0 . h2
x/ds” exp |2 (a B — —— )" | K(&",&,7",7;s") (B2)
h 8m

F(s")=F" B(s")=0"
K@", o' 7,75 = D7(s) Do(s) cosh 7x
#(0)=+" @(0)=a"
X exp i’/{Q(Tiz—i-cosmﬁfﬂ)— - 2~<>\2+21/~4+1>} ds p =
h ) 2 2m cosh” 7 \ cosh“@w 4
dk k sinh 7k

= (cosh 7 cosh 7/)~1/2 / X
( ) g J cosh? A + sinh? 7k

X Pg\“_lm(:ﬁ: tanhw“)PZ_}flm(:ﬂ: tanh @) x
d inh
D
= cosh® wk + sinh” 7mp

(+tanh 7/)P 7, , (£ tanh 7) e~ "TP/2m (B3

ip
X P10

Therefore we obtain the wave functions and the energy spectrum, respectively,

1/2

oo 1 k sinh 7k p sinh 7p

\IjkW(T?w) = = 2 ) 2 ) X
v2cosh 7 \ cosh” mA 4 sinh” 7k cosh® 7k + sinh” 7p

X P p(£tanh w) P, ,(+tanh 7) (B.4)

K2 5 1 . s -
+ — |, and we can reinsert tanh 7 — cos .

dE, =
and Ep 2ma_ 4
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C. SUPERINTEGRABLE POTENTIALS ON E(2,C)

In this appendix we shortly discuss the path integral representation of su-
perintegrable potentials on the two-dimensional complex Euclidean plane. A
thorough path integral discussion on the real two-dimensional complex Euclidean
plane has been done in [17], and therefore these solutions will not be repeated
here, only some new due to the appearance of three more potentials Vs-V7. In
Table 6 we list the seven coordinate systems on the complex plane F(2,C).
As usual Py = —ihd, and P» = —ihd, denote the momentum operators, and
M = yP, — zP, is the angular momentum. The potentials now read as fol-
lows [27,34-36]:

B
Vs = 5(96 —iy) Cartesian
Semihyperbolic
Light Cone
@
Vo = -—F—— Parabolic
2v/x — 1y . (C.1)
Semihyperbolic
Light Cone
1 22442 Jé] ) )
Vo= Sl = + — +y(z° + Polar
T2 (x+iy)*  (z+1iy)? i y)| Polar
Hyperbolic

In the underlined cases we give a (formal) path integral representation.
The Potential V5. For the potential V5 the corresponding Lagrangian has

the form

L= %(ﬂ +9?) — g(aj —1y). (C.2)

Thus, we identify two linear potentials [13,45]
K(VE,)(:E//’ x/’ y//7 y/; T) _

I(t”):x” y(t”):y” n

BT
- T('r/ +z — iy/ _ iy”))} 7 (C.3)
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Table 6. Coordinate systems on the complex plane E(2,C)

Coordinate system Integrals of motion Coordinates
1. Cartesian, I=7p? T,y
(z,y €R)
2. Polar I=m? T = 0 Cos
(0> 0,9 €0,m)) r=gsin g
3. Light cone I= (P +iP)? T=x—1y
(z,y €R) g=x+1y
4. Elliptic I=M?—a?P} z = coshwcosa
(w>0,a€0,2m))|a #0 y = sinhw sin «
5. Parabolic I={M,P} z= %(52 —n%)
(&,n>0) y=¢&n

6. Hyperbolic

I=M?*+ (P +iP,)?

_ u2—|—u2v2—|—vz

2uv
(u,v > 0) y = ZW
7. Semihyperbolic I ={M,Pi+iP:}+(Pi—iP,)? |z = %(w—z)z—i—i(w—i—z)
(w, 2 € R) y = —%(w—z)Q—i(w—kz)

Am 4/3 )
= <%> /dEe”ET/h/d)\x
R R
2B+ X (mB\' 2B XY (mB\Y
k h? k h?
(2B =)\ (mB\"? (1, 2B=)\\(mB\'’
YTk 12 "\Y 2 12

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant.

For V5 in the semihyperbolic coordinates we obtain for the corresponding
Lagrangian (v = dw/dt)

x Ai Ai

X

x Al Ai

, (C4)

—(w — 2)(w? — 2?) — g(w +2)+E, (C.5)
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which gives after a time transformation (w = dw/ds, 2 = dz/ds and dt =
(w — z)ds) a transformed Lagrangian

Lo =T~ )~ D —2) + Blw - 2). (©6)

Therefore the potential vs has been transformed into the problem of a shifted
harmonic oscillator, whose solution is well known. In order to determine the path
integral solution we consider the Green function of the harmonic oscillator [22],
use the convolution formula for the kernel in terms of a product of two Green
functions

K(Vs)(w//7w/7Z//’Z/;T) _ / d_E e~ iET/h
2mh
X /ds”Kw(u)H7w/;Sl/) . KZ(ZI/7 Z/;s//) —
0
T dE _,ppy B
= / —e_zET/h—,/dSGw(E;w",w';—E)GZ(E;Z”,Z';E), (C.7)
27h 271

and obtain therefore
w(t//):wll
KV (" ', 2", 2, T) = / Dw(t)x
w(t)=w’

Z(t”):Z” "

) B
x Dz (t) exp 1/[E(w—z)(w2—z2)——(w+z)}dt -
h 2 2
z(t")==z' t
1 7 m |/m 1 E+A
= E = ==~
A2 /d /d)\wh?’ ' B (2 hw )X
2 E 2 E
XD%+%\[ ﬁva<w>—€>] D7%+% [— ﬁ\/mB<w<—z> X
2 E 2 E
XD;+%\[ ﬁva <Z>_€>‘| D7%+% [— ﬁva<Z<—€> )
(C.8)

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant. The Green function may be evaluated in terms of even and odd parabolic

cylinder functions B (z) and ES" (2), e.g., [14,17,22,41], which is omitted here.
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The Potential V5. Let us consider the two Lagrangians of the potential Vg
expressed in parabolic and semihyperbolic coordinates, respectively,

m 9, .

Lp =5 E+n)E +i )+¢50¢€2+ B, (C.9)
_E . .2 22 \/5&
= 2(u} z)(w” —2%) +1 w—z+E (C.10)

which gives after a time transformation (¢ = d¢/ds, 7 = dn/ds and dt =
(€2 +n?)ds in parabolic coordinates; W = dw/ds, ¢ = dz/ds and dt = (w — z)ds
in semihyperbolic coordinates) the transformed Lagrangians

Lp— §<$2+ﬁ2>+ﬂa<s—m>+<s2 +1%), (C.11)
_ %(fﬁ — ) +iV2a+ BEw-—2). (C.12)

In parabolic coordinates we have a shifted harmonic oscillator and in semihyper-
bolic coordinates a linear potential plus a constant. The solution is consequently
almost identical to the corresponding solutions for the potential V5 with appropri-
ate replacement of the coupling constants. See also [14,17,22,41] for more details.

The Potential V7. Let us consider the last potential V7. In polar coordinates
we have the effective Lagrangian (note the additional h2-potential [22])

m, .o 2.9 2 h? —4igp —2i 1
i — — -2 Y ——. 1
L 5 (0% + 0°¢° — w?) 53 (ae Be 1 (C.13)

In the variable ¢ we have a complex periodic Morse potential, the same kind of
potentials we have encountered on Dyyr for V3 in polar coordinates. We identify
a = 4c? and 3 = cy/c;. Furthermore we see that the remaining path integral in
the variable p is just a radial harmonic oscillator path integral. Putting everything
together yields

Q(t”):gll t//):
K(V7) "ol o T = D
(Q 9 Q 790 7%0 ) ) - Q

o(t)=e' P(t)=¢’

T
) h2 —4ip —2ip 1
X exp 7 Q + 0% —w?0?) — Smg? ae —20e ~1 dt p =
0

_ Z(I)(Cl,cz 1 @(61,62) ((pl) mw

jente] (P7) Ppente) (F) 35 = ¢
e ) ) mWQ/Q//
X exp {— %(9/ + 0" ) cot WT} Il+2§—f+% (m , (C14)
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with the well-known expansion by means of the Hille-Hardy formula in terms of
Laguerre polynomials for p. We leave the result as it stands.

D. SUPERINTEGRABLE POTENTIALS ON S(2,C)

Let us shortly enumerate the superintegrable potentials on the complex sphere.
On the real two-dimensional sphere there are two superintegrable potentials, a
feature which has been already investigated, e.g., [18]. On the complex two-
dimensional sphere there are four more potentials which are listed in (D.4) [27,
30,34]. In the underlined cases we give a path integral representation. These
representations remain, however, on a formal level, because the complex sphere
is an abstract space and serves just as a tool to find the relevant potentials. Going
to the corresponding real spaces, i.e., the sphere and the hyperboloid, respectively,

Table 7. Coordinate systems on the complex sphere S(2,C)

Coordinate system

Integrals of motion

Coordinates

1. Spherical
(¥ €[0,7),¢ €[0,27)

L=J3

s1 = sin ¥ cos @
so = sin ¥ sin ¢, s3 = cos ¥

2. Elliptic

L=J-124rJ3

$2 (ru—1)(rv—1)

1—r
53 = rw—He-1) 1), 2% = ruv
1—r
. S i y? -1
3. Horospherical L= (J1+1iJ2) s1=g v+
v
. 2
_ & y -1 .
8272(1}4— ” ),83723]/’1)
1
4. D t L= (J1 +ii)? — 2J2 g — &
egenerate (J1 4+ ij2)* — c*J5 | s1+is3 cosh T cosh 72
. . cosh7e  coshm
Elliptic 1 S0 — 1S3 = —
cosh 7 cosh 7
_ 1
cosh 71 cosh 1
(11,2 € R) s3 = tanh 71 tanh 72
5. Degenerate L=Js(Ji —iJ)? s1+ise = fi
n
1 (€2 — )2
Elliptic 2 o1 4isy — L& )
4 £&n
1 2 + 2
(€n>0) sy = 28T

2 &n
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requires the real representation of the coordinate system in question, including
the corresponding path integral representation.

In Table 7 we list the five coordinate systems on the complex sphere S(2,C)
according to [27,30,34]. Let us note that we can also use v = ie i as a
parameterization in the horospherical system (z,y € R). As usual, Ji,Jo,J — 3
are the angular momentum operators in three dimensions.

The Potential V5. Let us start superintegrable potential on the two-dimensio-
nal complex sphere. It has the form

« I6] (81 + 189

Va(s) = = + 4 2 (D.1)
3(s) 53 (s1—1is2)? 7(81 —is9)3

a 6721‘@ ef4itp

= — D.2

cos? 192 + ﬁsinQ 9 Wsin2 9’ 02
—2ix & —4dix

=e 2 <7y2+?+ﬂ>—7e diz (D.3)

and we have inserted spherical and horospherical coordinates on the (complex)
sphere, respectively,

«o 3 1 + 189

Va(s) = = Spherical
3(s) s3 + (s1 —is2)? (s1 —isg)3 >prered
Horospherical
Degenerate
elliptic I
o Bss
V =
1(s) (51 —i52)? + T e +
1y .
+ Spherical
V(s1+is2)(s1 —is2)?
Degenerate
elliptic II
2 (D.4)
Vs(s) = ary etz Elliptic
V(22 — 24)2 — 4c22
Blar — o )(zrz +20) | iz
23/ (P2 — 24)% — 4c2z 23
1
(zi =51 +isg, 23 =4/1 —s7—53, ? = 1—3) Degenerate
elliptic I
! 03 1 — 452 .
Ve(s) = Horospherical
5(s) (51— i59)? + (x —iy)® +7(51 Tsg)l  —roSPENCd
Degenerate
elliptic 11
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This potential has now in spherical coordinates in the ¢ dependence the same
structure as the potential V7 on the complex plane, thus the solution is the same
(c1,2 in the complex Morse potential appropriately). In the 1 dependence we
obtain after the separation of ¢ a Pdschl-Teller potential. In comparison to V7

with the complex plane, we must therefore replace the wave functions in p in terms
al+252+
of Laguerre polynomials by the Poschl-Teller wave functions (I>( 2) (9)

(62 = 2ma/R* + Z) and we have done. Summarizing we obtain

ﬂ(tll):’ﬁll t”):
VS)(19//,’I9/,QO//,QO/;T) _ / / ) sin ¥

I(t =0 o(t')

tll
i meg2, o 29:2y X 1 —2ip . —dip
xexp{h/ lQ (9% +sin® ) - Sin219<ﬂe e 4)]dt}

t/
(22+1.a)

(bln’ﬂ/bln’ﬂu 1/222@[3/[,?) Eccﬁ/if;j?l(‘pl)@" c1 (ﬂ//)x
n=0 1=0
+222+%.a i h? 3\?
o2t Vyexp| - 1o (2m+1422 4+ 2)' 7] D5
h2m c1 2

In horospherical coordinates we have in the variable y a radial harmonic oscillator
1
(set v = mw?/2, G* = 2ma/h* + Z) and in the same way (c; 2 in the complex

Morse potential appropriately)

I(t//):I// y(t,,):yll
K(VS)(aj",x/, v,y T) = / Dax(t) / Dy(t) %" x

x(t)==z' y()=y’

t//
7 m ; ; « ;
% exp{ﬁ/ [E(i+e2zry2) _e—2zr <7y2 + E +ﬁ> _ve—4z:c‘| dt} _

t

—ilz +z" RHO,& RHO,& c1,C ci,c
= o7t ) NN GO (g RO () pled) (MBI (o)
n=0 [=0
X exp | — 1—(n+20—2+1) 7|, (D6
h2m c1

and the \IIZ(RHO’&) (y) are the wave functions of the radial harmonic oscillator [22].
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The Potential V5. As the last potential we consider V5. We have (set
v = —mw?/8)
a Bss3 1 — 4s2

Vo(s) = (s1 —i82)? + (x —iy)3 + 7(51 —i89)% (D.7)

. 2 2
—imm —2ix —4dix
=e 2 5w ( +m—g2> —e? <a+2£7>—7e4 , (D)

and we have inserted horospherical coordinates. This potential is, in the variable
y, a shifted harmonic oscillator, however, the shift is a complex one. In the
variable  we have the complex periodic Morse potential. Again, we encounter a
complex potential, this time a P7 -symmetric harmonic oscillator with spectrum
E; = hw(l+1/2), e.g., [49]. Consequently, we have in a similar way as before
(1,2 in the complex Morse potential appropriately, set xk = i3/mw?):

a:(t”):z” y(tll):yll

K(VG)(x”, x/, y//’ y/; T) = / Da(t) / Dy(t) o 21T 5

2(t)=a’ Y=y’
t//
1
X exp {E /

. 2
m. .o 2iz 2y [T 2 i
2(33 +e*7y%) (2 <y+mw2>+
t/

5> - -
+ (Oé + 2mw2> e—2zr _ ,Ye—4z:c dt —

—i(x +a2” HO HO c1,c c1,c
DR DE A O Z@[C;AP” PG ()
=0

)
X €xp [— 1h—(n+ 22 4 1)2T}, (D.9)
h2m c1
and the \I/l(HO’F”)(y) are the wave functions of the shifted harmonic oscillator [22].
The representations of the potentials V; and V5 in the separating coordinate sys-
tems lead to intractable powers in the various coordinates, respectively, powers of
cosh 7y 9, i.e., highly anharmonic terms which cannot be treated. The same holds
for V3 and Vj in the remaining separating coordinate systems. This concludes the
discussion.
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This is the second paper on the path-integral approach of superintegrable systems on Darboux
spaces, spaces of nonconstant curvature. We analyze in the spaces Dyyr and Dy five and, respec-
tively, four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate
the path integral in most of the separating coordinate systems, leading to expressions for the Green
functions, the discrete and continuous wave functions, and the discrete energy-spectra. In some cases,
however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order
polynomial equation. We also show that the free motion in Darboux space of type III can also contain
bound states, provided the boundary conditions are appropriate. We can state the energy spectrum
and the wave functions, respectively.

DT0 BTOp 5 CT Thd, IOCBAIIECHH s NPUOIIKEHNAI0 WHTETp JIOB MO IMyTSM JUIS CyepHHTErpupye-
MBIX CHCTEM H mpocTp HCTB X [l pOy, mpocTp HCTB X HepeMeHHOI KpuBu3Hbl. H mpocTp HCTB X
I p6y Diyr u Dry TpOBOOMTCS H JIM3 IATH H, COOTBETCTBEHHO, UYETHIPEX CYNEpPUHTErPUPYEMbIX
MOTEHIU JIOB, KOTOpbIe BliepBble ObUIN HpencT BieHbl K maHuHCOM M Ap. H M yA JIOCh BBIUHCIHTDH
HHTErp JI IO MyTSIM B H HOoJiee p 3eMIOIXC CHCTeM X KOOPAHH T, YTO HPHBOAUT K BBIP KEHUIM
1 yHKimil pHH , BOTHOBBIM (pyHKLHSAM AMCKPETHOTO M HENpPEpPHIBHOIO CHEKTPOB M JHCKPETHOMY
creKkTpy ®Hepruil. OIH KO B HEKOTODBIX CIy4 sIX IMCKPETHBIH CIIEKTp YCT HOBUTbH He yI eTcs, T K K K
OH oIpefernsdeTcs IOIMHOMH JIbHBIM yp BHeHHeM Ooliee BhICOKOro mopsuk . ITok 3 Ho, 4To cBoGOx-
Hoe aBikeHue B mpoctp Here [I pOy Il Tm T KXe MOXET COepX Thb CBS3 HHBIC COCTOSHHUS IPU
OIIpefieNIeHHBIX TP HUYHBIX YcIoBHAX. COOTBETCTBEHHO, JUIS HHX MOXKHO YCT HOBHUTBH CHEKTp DHEpruid
U BOJIHOBBIE (DYHKIIMH.

PACS: 02.30.Jr, 45.05.4x, 02.40.-k

1. INTRODUCTION

In the previous publication [21] we have started to study superintegrable
systems on spaces of nonconstant curvature, i.e., Darboux spaces. These spaces
were introduced by Kalnins et al. [26,28]. In the first paper we have studied

*E-mail: pogosyan@theor.jinr.ru
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the Darboux spaces D and Drj, and we continue our study by considering
the two other Darboux spaces Diyr and Dry with five and, respectively, four
superintegrable potentials as determined in [26].

We find a rich structure of the spectrum of these potentials yielding bound
and continuous states. As it turns out, already the free motion on Dy can give
a positive continuous and an infinite negative discrete spectrum. This situation is
similar to that for the quantum motion on the SU(1, 1) manifold [2], respectively,
on the SU(2,2) [6] and SO(2,2) manifold [30].

The notion of superintegrable systems was introduced by Winternitz and
co-workers in [9,47], Wojciechowski [48], and was developed further later on
also by Evans [7]. Superintegrable potentials have the property of finding addi-
tional constants of motion. In two dimensions one has in total three functional
independent constants of motion and in three dimensions one has four (mini-
mal superintegrable) and five (maximal superintegrable) functional independent
constants of motion. Well-known examples are the Coulomb potential with its
Lenz—Runge vector and the harmonic oscillator with its quadrupole moment.
Another property of superintegrable potentials is that usually the corresponding
equations in classical and quantum mechanics separate in more than one coordi-
nate system.

Similar studies of the quantum motion on spaces with and without curva-
ture have been investigated in [17] for two- and three-dimensional flat space,
in [18] for the two- and three-dimensional sphere, and in [19] and [20] for
the two- and three-dimensional hyperboloid. In all these cases the path in-
tegral method [8, 22, 39, 45] was applied to find the bound and continuous
states, i.e., wave functions and the explicit form of the spectrum. We have
not considered complexified spaces as in [37] for the two-dimensional com-
plex sphere or in [34-36] for the two-dimensional complex Euclidean space. In
particular, in [34] coordinate systems on the two-dimensional complex sphere
and corresponding superintegrable potentials, and in [36] coordinate systems
on the two-dimensional complex plane and corresponding superintegrable po-
tentials were discussed. The goal of [34,36] was to extend the notion of
superintegrable potentials of real spaces to the corresponding complexified
spaces. The findings were that there are, in addition to the four coordinate
systems on the real two-dimensional Euclidean plane, three more coordi-
nate systems and also three more superintegrable potentials. Similarly, in ad-
dition to the two coordinate systems on the real two-dimensional sphere there
are three more coordinate systems on the complex sphere and four more su-
perintegrable potentials. This is not surprising because the complex plane con-
tains not only the Euclidean plane but also the pseudo-Euclidean plane
(10 coordinate systems [13,23,24]), and the complex sphere contains not only
the real sphere but also the two-dimensional hyperboloid (9 coordinate sys-
tems [13,24,29,43]).
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However, a complexified space is an abstract object. In order to obtain the
actual spectrum of a given potential formulated in a coordinate system one has
to consider a real version of the complexified space, e.g., the complex sphere:
One has to determine whether one considers the potential on the real sphere or
on the real hyperboloid. The complexification serves only as a tool for a unified
investigation.

Further studies on superintegrability in spaces with constant curvature are
due to [31,33] (hyperboloid with new potentials), [32] (sphere and Euclidean
space), [37] and [38] with a general theory about the connection of separation
in nonsubgroup coordinate systems of superintegrable systems and quasi-exactly-
solvable problems [46].

An extension of the study of path integration on spaces of constant curvature
is the investigation of path integral formulations in spaces of nonconstant cur-
vature. Kalnins et al. [26,28] denoted four types of two-dimensional spaces of
nonconstant curvature, labeled by D;—Drvy, which are called Darboux spaces [40].
In terms of the infinitesimal distance they are described by (the coordinates (u, v)
will be called the (u,v) system; the (z,y) system in turn can be called light-cone
coordinates):

(1) ds* = (z +y)dzdy =

= 2u(du® + dv?) (z=u+iv,y =u—iv), (1.1)
i ds2=(L+b)da¢d =
(IT) T y

_bu2—a

1 1
2 2 _ 2 ; — (v —i
3 (du® + dv?) (x— 2(v+zu),y 2(v zu)), (1.2)
(III) ds* = (a e~ (THv)/2 4 be " Y)dxdy =
=e (b4 ae")(du® + dv?) (z=u—iv,y =u+iv), (1.3)

a(e(m—y)/2 + e(y—ﬂﬁ)/2) +b

V) ds® = —
(V) (elw=v)/2 — e(y—z)/z)2

dxdy =

:<a—§+ — )(du2+du2) (€ =utivy=u—iv), (14

sinu  cos?u

where a and b are additional (real) parameters (a+ = (a =+ 2b)/4). These sur-
faces are also called surfaces of revolution [5,25,26]. Kalnins et al. [26, 28]
studied not only the solution of the free motion, but also placed emphasis on the
superintegrable systems in these spaces.
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The Gaussian curvature in a space with metric ds? = g(u,v)(du? + dv?) is
given by (g = det g(u,v))

1/0* &

Equation (1.5) will be used to discuss shortly the curvature properties of the
Darboux spaces, including their limiting cases of constant curvature.

In the following sections we discuss superintegrable potentials in each of
the two Darboux spaces Diyip and Diyy, respectively. We set up the classical
Lagrangian and Hamiltonian, the quantum operator, and formulate and solve (if
possible) the corresponding path integral. We also discuss some of the limiting
cases of the Darboux spaces, i.e., where we obtain a space of constant (zero
or negative) curvature. For the Darboux space Dryr the zero-curvature case R?
emerges. In Dry we find a hyperboloid.

In the last section we summarize our results, where we also include the
findings of our previous paper which dealt with superintegrable potentials on Dj
and DH.

In the first two appendices we add some additional material about the path
integral evaluation of the free motion in Dyy in degenerate elliptic coordinates. In
the third appendix we summarize briefly the path integral investigation of some
remaining superintegrable potentials on the two-dimensional Euclidean plane.
Finally, in the fourth appendix an example of a potential on the two-dimensional
complex sphere will be given.

2. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dy

The coordinate systems to be considered in the Darboux space Dy are as
follows:

((u,v) system) z=v+iu, y=0v—iu, (2.1)
(Polar:) & =pcosp, n=opsing (0>0,¢¢€]0,27]), (2.2)

(Parabolic:) ¢ = 2e %2 cos g, n= 2e""/?gin g,

4 . 2n
w=1In—— v=arcsin —2_ (£ €R,n>0), (2.3
(Elliptic:) ¢ = dcosh wcos ¢, n = dsinh wsin ¢ (w > 0, p€[—m, 7]),

2.4)

(Hyperbolic:) € = 2%4—\/;3, nzi(i/j% - W) (w,v>0). (2.5)
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For the line element we get (we also display where the metric is rescaled in such
a way that we set a = b =1 [26]):

=e (b4 ae")(du® + dv?) = (e + e ") (du® + dv?), (2.6)
(Polar:) = (a + -0 ) (do? + 0*dy*)= <1+392> (do® + 0%*dy?), (2.7)
(Parabolic:) ( (€2 +1n )) (de? +dn?) =

= (1 + i(sz +n2)) (A€ +dn*),  (238)

b
(Elliptic:) = (a + ZdQ(sinh2 w + cos” w)) d*x

x (sinh? w + sin? @) (dw? + dp?), (2.9)
b dp?  dv?
(Hyperbolic:) = (a + §(M - 1/)) (u+v) (N—MQ - V—V2> . (2.10)
For the Gaussian curvature we find
—3u
G- abe : @2.11)

(be=2u 4+ ge~u)4

For, e.g., a = 1,b = 0 we recover the two-dimensional flat space with the
corresponding coordinate systems. To assure the positive definiteness of the
metric (1.3), we can require a,b > 0. We introduce the following constants of
motion on Drpr:

1 2u 2 1
1=Zach SV - P2 — 4%00311']754-56"8111@'%%, (2.12)
1 e 1 2 1
Xy = g sinypl - Zea(iibtu)smmi + 5" cosv-pupy, (213)
K = p,. (2.14)

These operators satisfy the Poisson relations
(K, X1} =X, {K,Xo}=X1, (X1, Xe}=KHy, (219
and the functional relation

X2+ X2 —H2 —HoK?=0. (2.16)
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Table 1. Constants of motion and limiting cases of coordinate systems on Dir

. Constant Es
Metric of motion D (a=1,b=0)
e 2%(b+ ae)(du® + dv?) K? (u,v) system Cartesian
(a + e > (do® + 0°dp? X2 Polar Polar
( ~(&+n )) (d€* + dn?) X1 Parabolic Parabolic
(a + —d*(sinh® w + cos gp)) d*x
x (sinh® w + sin® p)(dw® + dp?) | d*X:1 +2K?|  Elliptic Elliptic

The operators K, X1, X2 can be used to characterize the separating coordinate
systems on Dry, as indicated in Table 1. The corresponding quantum operators

are given by

1 [ U u
X, =—¢" © COSU~83— < cosv - 02+
la+bev a+be
+(251nv~8u8v+cosv~8u—|—sinv~8v)], 2.17)
1 [ AU o3 u
Xy = sou| SISV 5o CTHZ 2
la+bev a+bet
— (2cosv - 0,0, —sinv~8u+cosv-3v)}, (2.18)
K =0, (2.19)
These operators satisfy the commutation relations
(K, X:] =X, [K,Xs]=X:, [X1,Xs]=KHy, (2.20)
and the relation
~ ~ ~ N 1~
X{+ X3 - Hi — HoK? + 1o =0. (2.21)

(Let us note that by H, the classical Hamiltonian without the 1 /2m factor is

meant.
algebra is simpler.)

Keeping this factor is no problem, however, in the present form the
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We now state the superintegrable potentials on Dryy:
2k e " cos v/2 4 2ko e Usinv/2 + k3

Vi(u,v) = , (2.22)
a+ 1 e v
Bk —1/4 k2—1/4
Va(u,0) = ——— |—a et (A 1 , 2.23
2(u,v) a+bed [ ate 8m(cos2v/2 + COSQ’U/2>:| (2.23)
1 K2 ) .
Valu,v) = ——r [—a + et (cf e — 26, e_m”ﬂ , (2.24)

Table 2. Separation of variables for the superintegrable potentials on Dir

Separating
Potential Constants of motion coordinate
system
2k16(2 + n?) — 2kan(2 + €2) + ks (n® — €2)
R = X1 + Parabolic
Vi 4a +b(€2 +n?)
kin(n® — €2 +4) + ka£(€2 — 0 +4) — 22k
Ry = X 4 (n” — & +4) + k2£(§7 —m” +4) — 2aksén Translated
da +b(&% +1?)
Parabolic
(&m—énto)
R = X1+
Rn?/m((k} —1/9)n*(n* +2) — (k3 — 1/4)§%(€* +2)) — a(n” — £7)
Voo |+ (u,v) system
da +b(&% +1?) e
h2 2 2
Ro= K24 2 (62 — 1/ 4+ (2 — 1/0)%) Polar
8m 52 7]2
Parabolic
Can?? 4+ 2y — 2e0(1 _
Ri— Xy 4+ iXs — ap‘ve + cipv ca(l4+p—v) Polar
Vs (a+b/2(p—v))(p+v)
_ N2
Ro = K? — c? rzv + co u Hyperbolic
nZ n2v?
Ri = X1 +iXs — K?—
Va pv(dy(v —2) + da(p + 2) + mw?(v — p + pv)) .
— Hyperbolic
(a+b/2(p—v))(n+v) -
Ry = X1 —iXo—
L (p ) (= )t daw) =P 2 ) |
4(a+b/2(p —v))(u+v)
h202 n? — €2
Ri =X ‘o — , ) syst
1 1+ Sm o T b/ 1) (u,v) system
F202
Ve [Ra=X) - 0 o Polar
4m  a+b/4(&% +n?)
Rs = K =pyv Parabolic
Elliptic

Hyperbolic
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1 m
Va(p,v) = ; [dm + oy + SW(p® =%, (2.29)
(a+ §<u—u>) (u+v)
1 h?v?

In Table 2 we list the properties of these potentials on Dyyr, where the coordi-
nate systems, where an explicit path integral solution is possible, are underlined.
We see that V5 is a special case, and it has three integrals of motion. We will
threat this case in some more detail as in the other spaces, because on Dy the
free quantum motion can give bound state solutions (provided the constants are
chosen properly). This feature has not been discussed in [14].

2.1. The Superintegrable Potential V; on Dy, We state the potential V; in
the respective coordinate systems

2k1e " cos v/2 + 2kg e " sin v/2 + k3

Vi(u,v) = (2.27)
a+ 1 e "
_ kg #{; kan + k3 ’ (2.28)
a+ 1(52 +1%)
_ k1§~t-kg?7+(k1c—k;26+k;3)7 (2.29)

at S(E+eP + (- c))

and V7 is also separable in translated parabolic coordinates £ — £+ c¢,7 — n—c.
The translated parabolic coordinates just modify the solution of a shifted harmonic
oscillator, and this case we do not discuss separately.

2.1.1. Separation of Vi in Parabolic Coordinates. The classical Lagrangian
and Hamiltonian in parabolic coordinates on Dyyp are given by

) b )
cleémi) =y (o4 3) @+ PN@ P -Vien. @30
H(E, pe,mspe) = %;(pﬁ +pi)+V(En). (2.31)

b
a+7 € +n?
The canonical momenta are given by

h o b h o b
pe="2 S S L (A —

% at 2@ )
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and for the quantum Hamiltonian (product ordering) we find

2 2 2
HZ_%%(%*%) + V(& n), (2.33)
a+ 1(52 +1%) K
1 1 1
= |G 1) FVED). @3

b b
a+ (€ +n%) a+ (€ +n°)

Therefore we obtain for the path integral formulation for V;

£(t")=¢" n(t")=n"
b
ket = [ oo [ooi (ar e )

bia | 2 2 .2 k1§ + kon + ks ] -
<a+1(£ +77)>(£ +n)—(a+%(§2+n2)) dt o =

_ [ dE —iET/h r " i k2 + k3N )
= / —27The /ds exp 7 aF — k3 CT s | X
—00 0

x KW ¢ 0" /s s"), (2.35)

with the time-transformed path integral K (s”) given by

e(s")=¢" n(s
K(Vl)(gl/7£l7n//7n/;sll) _ / Dg(s)
3 n(

//):,’]//
Dn(s)x
£(0)= )=’

0

1"
S

xeond o [5(€@ ) - Fo2@ei)|asp. 20

0

The transformed variables &, 7 are given by £ = & + ki /mw?, 7 = 0 + ko /mw?,
and w? = —bE/2m. Similarly as in [14] we can determine the Green function to
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have the form

GV & 0 E) =

- Joesin e (o5 ) i )
D, _%< v 8mEb2 £>> . (_ v 8mEb2 £<>
XD—;%@(V‘MTEW )D—lm 2";(‘ e ) 237

The~Dl,(z) are parabolic cylinder-functions [10, p. 1064], and the € is defined
by £ = aE — k3 — (k? + k3)/bE — €. On the other hand, we can insert for the
discrete part of the Green function the harmonic oscillator wave functions and
obtain
W) o) [ee] N2
dlslc(g//gﬂ an/;E): Z Z ﬁx
nEgNN

ng=0nn=0
(HO) [ &1\, (HO) [ &1\, (HO) ¢ 11\, (HO) 1,/
X W ()W (E) W, ()W, P (). (2.38)

The wave functions for the harmonic oscillator are given by the well-known form
in terms of Hermite-polynomials [10]

(HO) mw\ 1 \Y? mw mw o
UL (z) = — S H, Sor)exp| - 5w (2.39)

Engn, is determined by the equation

k? + k2 bE
E—ks— —h 1 = 2.40
a 37 o2 (ng +ny +1) “om =0 (2.40)
which is actually an equation of the fourth order in E
bh? 2k
4 2 3\ 3
Engnn + (W(nﬁ + Ny + 1) a )Engnn
kI+k3 K3\ o ki + k3 (k? + k3)?
- (2 ab a2 B eng + 2k = a2b Engnn = a2 0. 24D

We dot not solve this equation. Note that for k; = ky = k3 = 0 a discrete
spectrum emerges for the free motion on Dyyy, a feature which will be discussed
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in more detail in the subsection for V5. For the special case ky = ko = 0 we
obtain the solution (N = ng +n, + 1)

Engnnzl: = - k§ (2.42)

4ma? a  a 4am 2am

BREN? k| 1 \/(bh2N2)2_bk3h2N2

Note that wy,,,,, must be taken on wyen, = \/—bEngn,/2m. The normalization
Npgn,, is determined by the residuum in GV (E). If one fixes the parameters
a and b and the specific surface of revolution, a more detailed investigation can
be performed (special cases, limiting cases, which sign of the square-root gives a
positive definite Hilbert space, etc.). Because we do not fix these parameters, we
keep both signs of the square-root expression (recall that the free motion on Dipy
allows already a discrete spectrum reaching to —oo). ~

Note that for the translated parabolic coordinates, the variables &, 7] are trans-
lated by +c, respectively; and the quantity £, by an additional Ebc?/2.

2.2. The Superintegrable Potential 5 on Dy;. We state the potential V5 in
the respective coordinate systems

2 2 2
Vg(u,v)zil {—a%—e“h—(kl 1/4+k1 1/4)], (2.43)

a+be v 8m \ cos?v/2  cos?v/2
1 n? (k¥ —-1/4 k3—1/4
- — {—a+2 2( L \2/ + %,Q/H, (2.44)
CH_ZQQ me? \ cos? ¢ sin® ¢

2 2 _ 2 _
_ b1 {_th_(/ﬁ 14, K 1/4)]’ (2.45)
2, 2 2m &2 7>
G+Z(§ +17)

{—a%— h? ( k?—1/4 k3—1/4 )]
a+be v 2md? \ cosh® wcos? ¢ sinh?wsin®p /|’
(2.46)

V5 is obviously separable in elliptic coordinates, but the corresponding path inte-
gral is not solvable, so this case will be omitted.

2.2.1. Separation of Vs in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

L(w, 1,0, ) = %b t;ie (0% + 92) — V(u,v), (2.47)
1 e2u 9 9
H(t, pu, v, py) (Pu +p3) + V(u,0). (2.48)

- 2m b + a et
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The canonical momenta are given by

h(d lae ®+2be 2 h o0
k(o 1 D e 2.49
b z(@u 2 ae—“+be—2“> b i Ov (2.49)

and for the quantum Hamiltonian we find

h? 1 2 92
- _%m<au2 9 2) + V(u,v), (2.50)

1

/ 1 N 1
— _— . 2.51
2m \ ae~% 4 be—2u (p“ + p”) ae v 4 be2u +V(w,v) (2.5

Therefore we obtain for the path integral (f(u) = (

ae "+ be2u))

u(tll):u// v(tll):v//
K(Vz)(u//’ W T) = Dul(t) Do(t)(ae ™™ + be 2%)x

u(t)=u’ v(t)=v’

T
X exp (% / {(ae“ +be ") (i 4 v?)—
0

B k2-1/4  k2—1/4
ater 8_m<cos2v/2 * COSQ’U/2> dt | =

[f( / // 1/4 Z(I) ) ( )CI)(k2’k1) (2) %

1
a+be v

u(t’)=u" T
/ Du(t)(ae ™ +be 2") /2 exp (%/{(ae_“+be_2“)u2—
u(t)=u 0
1 B2 T dE
- - “— (20 + 1+ |k k dt | = [ == e iET/h
a+be v ate Sm( 1+ ] + | 2|) } > /27rhe x

— 00

o0 . h2
X /ds” exp [— %8— (204 1+ |k | + |k2|)28//:| Kl(vz)(u”,u’; s"), (2.52)
m
0
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with the time-transformed path integral K;(s”) given by

KZ(VQ) (u//’ u/; S//) _

"
9 s’

/ Du(s) exp %/(%iﬁ—&-EbeQ“ + (aE —a)e” )ds . (2.53)

O =u’ 0

The @%kl’kﬁ(ﬁ) are the wave functions of the Poschl-Teller potential, which are

given by
2 2 2
V(z) = L (O‘ 21/4 B 1/4>’ (2.54)

2m \  sin“zx cos?

IM(a+pB+1+1) 1Y?
@A) (z) = |2 2 +1
(@) [(O‘+ﬂ+ Y Py gy

x (sin2)* T2 (cos z)P 12 PP (cos 22).  (2.55)

Equation (2.53) is a path integral for the Morse potential. Inserting the corre-
sponding solution [22] we obtain

GV (" ' v V' E) —i@kal v pk2:k1) v X
B 2) ! 2

=
1 aF — « m
F(T“T\/‘ﬁ)X

2BE AD(1 4 2X) e(w/+u")/2

T vV—=8mbE _, _ Y vV—=8mbE _,
aEﬁ—a\/i%’)\ 7 e aEﬁ—a\/ ng‘E’ h e .

(2.56)

Inserting the bound state wave functions for the Morse potential gives the bound
state contribution of G(V2)(E)

0 /
G(Vz) . E) (I> (k2,k1) (I)(kz,kl) v
disc (U u' U U ; 1 5 X

ZE FUD @MW), (257)

nl_
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X

2mbE,, aEnﬁl_m\/fzbEm*”*1/2
S )

aF, — a m
><< h \/_QbEnl_2n_1>

r aF, — a _2m o
h bE,,;

WG e (M) . @58)

h

\I,;MP)(H) = N,,; (

1/2

The L%‘*)(z) are Laguerre polynomials [10]. Here, the spectrum E,; is deter-
mined by

bE,,
- 2m
which is a quadratic equation in E,; with solution (N = 2n+ 2]+ |k1| + |k2| + 2)

1 bh? bh? 8aam
Eyi=—|—|—N?-2 j:—N2\/1—
=T 02 [ <2m aa) 2m bh2 N2
and the normalization constants [V,; are determined by the residuum of (2.56).
For large n,l we have

aFE,; —a—h

(2n + 20 + | k1| + | k2| + 2), (2.59)

, (2.60)

h
(2n 4 21 + [k | + k2| + 2)2, (2.61)

2
B o =2
m

ma2

2bh2(2n 4 20 + |k | + |ka| + 2)2°

By ~ (2.62)
with E,,;+ showing a Coulomb-like behavior.

2.2.2. Separation of Vo in Polar Coordinates. In the coordinates (o, ) the
classical Lagrangian and Hamiltonian take on the form

. . m b . )
L(0,0,0,9) = 5 (a -+ 192> (0% + 0*¢*) — V(0. ¢), (2.63)
1 1 , 1,
H(0, o> 5 Pyp) = o o\ Pet 3P | F Ve, ¢). (2.64)
a—+ —92 e

4
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The canonical momenta are given by

h( 0 bo 1 h 0
_ - = - 2.65
Pe i<89+4a+b92+29)’ Py =73 (2.63)
Therefore the quantum Hamiltonian is given by

R 1 2 10 1 9
‘%m@?ﬁm*%—sﬁ)”(“@‘ (260

4
1 1 , 1,
b (pg 2@)
2m adt 2o 0

49

b\ " R
- - S 2.
+V(o, ) <a+ 4g> g (2.67)

and in this case we have an additional quantum potential oc A2. This gives for

the path integral (f(g) =a+ 292 = \/g)
o(t")=e" e(t")=¢"
KM (", d,¢", ¢ T) Do(t) Di(t) f(0)ox
o(t")=¢' e(t)=¢’
T
) m 9 9 .9 1
X exp —/ —J(o)(o” + o — —X
<ho SO + )~
R (k}—-1/4 k3—-1/4 1
X —a+2mg2< o + sin _Z> dt | =
. . o(t")=e"
_ (k?z,k?l) 1 (k?z,k?l) / 1/2
= P o Dol(t o)X
l; C ) [(¢/0")2f (&) f")]M/* 07
o(t")=¢’
f 1 h? A% —1/4
i m . -
XeXp{ﬁ/[Ef(Q)Q2—m<—a+2m 92 )]dt}:
0

1 X o (kak ko k
= Q/Q// Zq)l( ’ 1)(90//)(1)[( ’ 1)(<p/)><
v 1=0

E prm [ '
X / d—e_lET/h/ds”exp z(aE—a)s” Kl(v2)(g",gl;s”), (2.68)
2mh h
0

— 00
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with the time-transformed path integral K;(s”) given by (A = 21+ |kq|+|k2|+1))

o(s")=¢"
K= [ Do)

0(0)=¢

P (mp Bb BN\
X exp h/<29+4g o &2 ds| =

0

mw+/¢' 0" mw ;2 12 7 mwe'o"
= ihemws P T an @ Ot | DG ) G0

Performing the s” integration yields the Green function

G2 (g", o " ¢ E) = 3 ) ()@ M) ()
=0

1 1
Fiz({1+XA—=(aF —a)\/—2m/bE
2m 2 h M o
- aE—o 2m A

Eb 1+ M) Vo' o"” 57 VT bE

m bE m bE 4
X(E ‘%&) Magze 28 (E\/_%Q>>' @70

Inserting the expansion into Laguerre polynomial yields the discrete contribution
of the Green function

1 Ko,k Ko,k
Gl (€0 ¢ &5 B) =~ 3 i ()0 (o)
1=0
= N2l (RHO,N) ( 11\; (RHO, ) [/
) gt @), 27D
ne0 nl

R? A\2—-1/4
@uﬂ__i/

The wave functions for the radial harmonic oscillator V' (r) = 5

have the form [22,44]

2 2m r

\I/glRHO,)\) (7’) —

2m n! mw \? mw o mw
SR ot S LAY (i _ (2,2
\/ 5 F(n—&—)\—&—l)r( " 7") exp( on " )Ln ( T ) (2.72)
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The spectrum F,,; is determined by

bE,
aFEn —a—hy/— ml (2n + 20 + k1| + |ka2| +2), (2.73)
L . . (RHO,)) .
which is the same as in (2.60). In the wave functions ¥y, (o) the quantity

w has to be taken on w = /—bFE,,;/2m, and the normalization constants N,,; are
determined by the residuum of (2.69).

2.2.3. Separation of Vo in Parabolic Coordinates. We insert the potential V5
b
into the path integral and obtain (f =a + 1(52 +1°))

g(t")=¢" n(t")=n"
KO, ¢ s T) = / DE(t) Dn(t) (€. m) %
&(t)=¢’ n(t")=n’
T

P [{sene -

0

2 2 _ 2 _
o (SR ) -

X exp

1
f(&mn)

o0

_ / dE e_iET/h/dS// exp 1(&E—O¢)S” K(VQ)(g//’gl’77//’77/;8//)’ (2.74)
2mh h
0

with the time-transformed path integral K (V2)(s") given by (w? = —bE/2m)
£(s")=¢" n(s")=

KW ¢ " 5 8") = / D¢(s) /
3 n(0)=

£(0)=
cepd 1 [ 2@+ i) - e+ )
0

”7//
Dn(s)x

0)=n’

1h sin ws”

- h_2<k% ~1/4 K- 1/4>]d8 mw/TE

om £2 2 =

mw 12 "2 " mwg'¢" mwv/n'n"
- t I
e { ih sin ws” (€7 + ¢ cot ws )} F2 (ih sin ws” ) ih sin ws”
mw 9 9 mwn'n"’
X exp [‘ s w1 T ot ”S'”] T (m - @79
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Performing the s” integration yields the Green function (£ = aE — a — &)

{ (1 + k1] 5\/—2m/bE/h)]
aWV2) (¢ _Zr
(€850, B) /dgv bE (1 + [ki|)VEE" )

m bE
WeyZmmpssanimiz \ 7\ "2m & ) %

M m bE
Ey/—2m/bE/2hk1|/2 \ ] _%& X

5T B + |ka| — 5\/—2m/bE/h}
bE RU(1 + [ka|)v/n'n”

[ bE
\/mmh\kglm (E - m77>>><
m bE o
\/T/I)E/%sz(h\/ —mﬁ<>~ (2.76)

On the other hand, we insert the expansion of the bound states of the radial
harmonic oscillator and obtain for the discrete spectrum contribution of the Green
function:

G(VZ)(SN,S/,W”,W; E Z Z nE "_n =

ng= =0 'an—O nE n

X \Ing];{Hov‘kl

) (¢ \qy (RHO, | k2]) [ ¢/\\qy (RHO, | k2|) (o, \y (RHO, | k1]) [,/
(€)W V(€)W Y () Wy RV ('), (2.77)

where the energy Ey ., is determined by the equation

aBpg n, — _2m
h bEne ny’

2n§+2nn+\k1\+\k2\+2= (2.78)

which is equivalent with (2.60). The normalization constants Ny, are deter-

mined by the residuum of (2.56), and w in the \II%EHO"MD\I/%HO"MD has to be
taken on Wng n, = \/—0Eng n, /2m.
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2.3. The Superintegrable Potential V3 on Dy;. First we state the potential
V3 in the respective coordinate systems

1 12 , _
Vau,v) = ——r [—a + gl (ci e — 26y e—2“’)] , (2.79)
1 12 , ‘
- o+ 4(c§ 2% _ 9¢, e*‘w) , (2.80)
b 4 2mo?
a+ ZQ
+v 22
—alp+v)+ 3t — ek

i prve (2.81)
b
(a4 5059 e

In hyperbolic coordinates no closed solution can be obtained due to the invol-
ved mixture of linear, quadratic, inverse-linear and inverse-quadratic terms. In
polar coordinates the path integral in ¢ turns out to be a path integral for the
radial harmonic oscillator. Note that the (u,v) system is equivalent to polar
coordinates.

2.3.1. Separation of V3 in Polar Coordinates. We insert the potential V3 into

b
the path integral and get (f(o0) = a + ZQQ =./9)

o(t")=¢" e(t")=¢"

KY9) (0", o ", ¢/;T) = / Do(t) D(t) f(0)ox

o(t")=e’ et )=¢’

T
X exp /{ 0)(6® + 0**)—
0

1 ﬁ2 : C2 ; 1
e 9 2 —4190_2_ —2ip _ — dt —
i [ gt (=23 )]

Z (01,02 // @(61,62) ( /) 1 %
[cMP], i [cMP],I\P 2 1/4
— [(0'¢")2 f () f(2")]Y

8
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Q(t//)zg// ) T
1 m .
< [ Do ewd s [ |08 -
o(t)=¢ 0
2, 1\° 1
B +h_2<”?+5> i
f(o) 2m 0?

1 > (e1,c2) (c1,c2)
= /o ol Z(I)[cli/[Pz] l( //)cb[cli/[Pz] l(‘p/)x
o0
dE o [ :
x| 5= e iET/h / ds” exp [%(aE - a)s”] KM (0", dss"), (2.82)
0

with the time-transformed path integral K;(s”) given by

K" (", d;s") =

" " 202 1 2 1
o(s")=e +=4 ) =
i ][50 me g L)),
N s h 2 2m 0? N
0(0)=¢’ 0
mw/0' 0" mw, ,2 1,2 . mwo o
= - — t I, 2 — ). (2.83
ihsin ws” P QiH(Q + o) cot ws g2 +5\ Gk sin ws” (2.83)

By @Egﬁ/i;”])l(cp) we denote the wave functions of the complex periodic Morse

1\2

potential in the variable ¢ with spectrum F; = K2 (Z + 22—2 + 5) /2m [1,3,36,
1

42,50,51], c.f. Appendix C:

(46—2 —2n — 1) n! c 42—?—2n—1

cy,C C1 2

@) () = (42) S
r (4—2 - 2n>

C1

1 ) 422 _opn—1 )
X exp [— 2i (20—2 -n— §><p —2¢y ez“"] Ly '(dere29). (2.89)
1
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Performing the s” integration gives the Green function
G5 = W)
r (142213 Yup—a)/“2mE
= =4+ - ——(aE —a)y/—2m
2m 2 ca 2 h

Eb r<z+zzﬁ+§)w
1

bE
S m;(z+2°2+)< V72 92<>X
| bE
) ( gi) . (2.85)

Inserting the expansion into Laguerre polynomials yields the discrete contribution

2 1
of the Green function ()\ =10+ 2 + 2)

X

_2m 1
bE °2

\% c1,c c1,c
G((iljc) (‘Q Q SO 90 7 - / // Z é(cli/[Pz] l ! éfcﬁ/ﬂf])l (80/) X
x Z LS HON () ON (), (286)

and the normalization constants N,,; are determined by the residuum of (2.85).
Here, the spectrum F,,; is determined by

bE,
0Bt — o — g/ — l<2n+2l+c—2+1>, (2.87)
2m c1

which is quadratic equation in F,,; with solution (N =2n+ 2+ e + 1)
c1

1 bh? bh? 8aam
Et=—|—(—N%?2-2 + — N? — . 2.
T 942 [ <2m ao‘) am't V1 bR ] (2.88)
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In the wave functions \IJSLRHO’/\)(Q) the quantity w has to be taken on w =

—bE,;/2m. For large n,l we have

bh? 9
B~ ma? (2.90)
M T bR (2n + 20+ 1)2] '
with F,;4 showing a Coulomb-like behavior.
2.4. The Superintegrable Potential V; on Dy,
1 m o, 2 2
VZ;(M,I/) = b d1M+d2V—|‘5W (,u -V ) ) (291)
(a4 50a-0) e
1

T utbeu [2(d1 + dz)(cos 2¢ — cosh 2w)+

+ 2(dy — d3)(2i sin 2¢ + sinh 2w) + 2d3(2i sin 2 + sinh 4w)]. (2.92)

We can evaluate the path integral in hyperbolic coordinates (application of the
Morse potential); in elliptic coordinates no closed solution can be found.

2.4.1. Separation of Vy in Hyperbolic Coordinates. The classical Lagrangian
and Hamiltonian have the form

o.m b [
ﬁ(ﬂ?/‘L?V? V) - E <a+ 5(/”” - V)) (/”L—’_V) (F - ﬁ) - V(:U’vl/)v (2.93)
1 12y — vip;
H(p P> Vs v = 5— L +V(p,v). (2.94)

(=) ko)

The canonical momentum operators are given by

h| O 1 1 b 1
pu:;{a——FQ(—F +V+ 2 ——)], (2.95)

g P et g

h| O 1 1 b 1
n=t a2t i - ) e
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and the quantum Hamiltonian has the form

K2 1
<a+§(M—V)> (n+v)
02 19 2 19
2 ~z - N 2 o 10
8 {N <3u2 u@u) v (3,/2 V@,/)] + Vi, v), (2.97)
1 I ; p

+V(p,v). (2.98)

_ \/ (a+ 306-0) . \/ (a4 50 o0

Note that from each coordinate there comes a quantum potential AV = h?/8m,
however they are canceling each other due to the minus-sign in the metric in v.

We insert the potential V into the path integral which has the form (f (1, v)=
b
(a+30=0)(u+v)

M(t"):l},,, V(t//):V/I
K(V4)(/,L//,/,L/,I///,I//;T) — / Du(t) / Dv(t)f(//j;/y) >
(=g V()=

T
. .2 .2
rpm LA T
< exp h/Lf(u,V)(MQ y
0

1 m
T (dl,u + dov + 5w2(u2 - 1/2)>]dt =

(oo}

_ / dE e_iET/h/dS//K(V4)(M//’M/’V//’V/;S//)’ (2.99)
2mh
0

— 00
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and the path integral K (Y4 (s”) is given by

l/(s”):l/”

1
KV (W i " s s") = / Dpu(s) / Dr(s)— X

Uy
w(0)=p’ v(0)=v’

. -2 -2
4 m ([ v 1 9 9
X exp %/ [5 (F - ﬁ) +ClE(,u+I/) + §bE(/J, -V )_

- (dlu + dov + %cﬂ(;ﬂ - 1/2))] ds S . (2.100)

Each of the last path integrals has a similar form as the one discussed in [14].
One can perform the transformation 1 = e”, v = eY. Then the path integration
in (i, v) gives a path integration in (x,y) of the following form:

.’L‘(S”):.’E”

K(V4)(x”,x',y”,y'; s//) _ / Dx(s)x

z(0)=xz’
s . y(s")=y"
X exp % / {%iQ—ﬁ(mwQ —bE)e** —(dy — aE) em} ds / Dy(s)x
0 y(0)=y’
. S 1
X exp —%/ [%gf—i(muﬂ —bE)e*Y—(dy + aF) ey] ds p, (2.101)
0

and we find the product of two path integrals for the Morse potential. This can
be evaluated now as follows. We introduce the abbreviations

_dipgFak

2 _m 2
= — —bE oy = ——————.
Vi = s (m? = bE), au, = - 12T

5 (2.102)

We expand each path integral first into the discrete spectrum contribution by
means of the known solution of the Morse potential in terms of Laguerre poly-
nomials with the quantum numbers n and [, respectively, and the corresponding
energy spectra. The s” integration gives the energy spectrum

B, - mw? m  (dy + do)?

_ 2.103
: b AR (n+l+1)2 (2.103)
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together with the wave functions (NN, ; is determined by the corresponding
residuum)

U (@,y) = Ny UM (2) - 0P (), (2.104)

_ _ 1/2
\I/](CMP)(Z) _ <2an0 2k 1)

KT (20 Vo — k)

X (2‘/0)(11\/0—]6—1/2 e(aZVO—k—l/Q)z—Vo eZL’(cQaZVO*2k*1) (2‘/0 ez)’ (2105)

for z = z,y with k = n,l. The continuous spectrum is examined in an analogous
way yielding

h2 2
E==- (2.106)
2m
with the wave functions
Uy a(z,y) = U (@) - 5P (), (2.107)

. 1/2
(MP) [ p+sinh 27py
\I/p,/\ (Z) - ( 2’/T2Vb ) X

. 1
F<ij:_az+§>

with pL = p+ X for z = z,y. The entire Green function has the form

x ¢ Wa,voips (2Vo %), (2.108)

\Ijn //’ /! \I/n /’ /
NN D V) nalsV)

n,l En,l —E
i} //,l/// P /7]//
+/@/wp“ﬁ%jﬂw‘),@m%
2m

together with the replacement u = e*, v = e¥. This concludes the discussion.
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2.5. The Superintegrable Potential 5 on D1, We display the potential V;
in the respective coordinate systems

1 K202
Va(u:v) = e o (2.110)
1 2,2
_ v 2.111)
a—|—9 2 2m
10
- 1 g (2.112)
b o o 2m’
a+ 1(5 +n7)
=— ! h;”g, (2.113)
a+ ZaZQ(sinh2 w + cos? @) m
- ! h2g (2.114)

2m

(o 20a—0)) (4 )

We discuss the path integral solution of V5 in some extend, where the case of
elliptic coordinates is omitted due to intractability of this system in the path
integral. Provided that b > 0, there is in the case of the free motion a discrete
spectrum

h% b

En=—o—

2mﬁ(2N+1)2, (2.115)

with the principal quantum number NV € IN.
2.5.1. Separation of Vs in the (u,v) System. We insert the potential V5 into

the path integral for the (u,v) system and obtain

u(t//):u// v(t”):v”

KV (" ! " ' T) = Duft) / Du(t)(ae ™ 4+ be ") x
u(t)=u’ v(t)=v’
- 1 h2 2
i m 0
_ o —u b —2u\ (2 2\ 0 dt _
X exp h/{Q(ae +be ") (4" + %) T bo 2m
0

= [ B e g mi OO ), @016)
2mh
s 0
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with the time-transformed path integral K (V5)(s") given by

u(S//):uII U(SII):U//
KW (0" /0" 0 8") = / Du(s) / Du(s)x
w(0)=u’ v(0)=v’
X ex 17 a2 4 2) 4 B ez g (CEZIE02mY a1y
Pl 2 Eb -
0
u(sll):ull
o0 Lil(v" =) ) y
— € e—zhl25 /2m / DU(S)X
P 2w
- u(0)=u’
- E — 1*0}/2
X exp %/{%uQ +Eb {e% n (W) e“} } ds | . @117
0

The path integral in v is a path integral for the Morse potential. Performing
the s” integration gives, c.f. [14], the Green function as follows (£ = [Ea —

(h?v3/2m)]\/—2m/bE/2h):
1
00 eil(vu—vl) mF (5 + l - g)
G(Vs) //7 /7 //’ /;E — e(u’+u11)/2><
(u",u' 0" E) Z 2 h/=2mbET (1 + 21)

V—8mbE V—8mbE
XWg7l<$e_“<>M&l<$e_“>>. (2.118)

The corresponding continuous part of the Green function is evaluated as [14]

eil('u"fv')

2

Vs),mm 1 11, u' +u'") /2
Gcont(u y U,V ,U,E): Z e( )/ X
l=—00
2

1 )
X]C P2dp ’F<§+l+zp
h?p? > 272(1 + 20)

2m

Mip/2,l ( — 22p e_“/) M—ip/2,l (22;0 e_“”) .

(2.119)

In addition, we have a discrete spectrum. This is found by analyzing the poles of
the Green function (2.118):

om 2m
- — 2.12
2 2 bE,, " (2.120)
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In the case of vy = 0 this simplifies to

1 a 2m

I+ — —/— = 2.121
nrlt s =g om0 (2.121)
with the solution 2
Ey=——02n+2+1)? 2.122
: 2m a? (2n+20+1) ( )

yielding for b > 0 an infinite number of bound states. For vy # 0, the equation
for E,,; is a quadratic equation in F with solution

B2 1
Bpe = ———
I+ 2m 2a? %
x |b(2n+21+1)2—2av] + b(2n+21+1)%[1 — _davg (2.123)
0 b(2n+20+1)2 |’ '
B, M b (2n + 21 +1)2 — 2242 (2.124)
mE T 2m a? b Oy '
2 4
B, (n,l):—>oo h Vo (2.125)

C2bm (2n 4 20+ 1)2°

For vg = 0, there is only E,;,. For (2n+2l+1)? < 4av? /b, there are semibound
states located approximately around Ey = —h%v3 /2ma.
Therefore we have for the discrete spectrum contribution

G(Vs)(u”,u’,v”,v’; E) _

disc

& eil(v”—u’) 0o 1 r
=Y 5 Xl W), @126
l=—o00 n—o M

with the functions \IlgL‘l/S)(u) given by (£ as in (2.118))

) () = Ny

nl

(26 — 20— Ot (VIERBE T
['(2€ — n) B

1 8mbE,;
X exp 5—n—§ U — —Te

V=8mbE,
x L(2€-2n-1) (% e“) . (.127)
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The constant N,,; is determined by taking the Green function at the residuum
E,;. The wave functions vanish for u — oo due to e~V —8mbEnie"/h _
e 2bh@@n+2l+D)e/a 0 provided b/a > 0 for all n € IN, which shows that
the discrete spectrum is indeed infinite. The feature that an homogeneous space
with curvature has at the same time a discrete and a continuous spectrum is
already known from the path integration on the SU(1,1) group manifold [22].
Actually, this property allows the analysis of the modified Poschl-Teller potential
with its continuous and (finite) discrete spectrum.

2.5.2. Separation of V5 in Polar Coordinates. We insert the potential V5 into
the path integral in polar coordinates and obtain

Q(t//):Q// t//):
KY9) (0", o, ¢",¢/;T) = / Do(t) / <a+—g2> o

o(t)=¢' w(t")
/T D (a2 (@20 + (atle? S ) b =
B Q o TP 49 m Vo 402 =
0

_/ dE —zET/hG(Vs)(Q” o, 0", ¢ E), (2.128)
2rh I

X exXp

St .

— 00

E—R%*v2/2
and the Green function is evaluated to have the form [14] (5 :%,
w

w? = —bE/Qm)

1
00 . " ’ F —(1+l—5)
il(e"=¢") 1 2m [2 }
V) (o oW o E © 4
G (Qa@v@v@v ); ! Al 2 F(1+l) X

2mbE 2mbE
X Wg/z% ( T Q>> Mg/QV% (\/—7 Q<> . (2.129)

The Green function has poles which are determined by

1 v3h? 2m
2 1——|aF, — =0. 2.1
nldl- o (a -2 ) =0 (2.130)

In the case of vy = 0 this simplifies to

2
@n+i1+1)— 2 m

—1/— = 2.131
T ED 0, (2.131)
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with the solution )

K2 b ,

yielding for b > 0 an infinite number of bound states. For vy # 0 the equation
for E,,; is a quadratic equation in F with solution

o1
Fnts = o 342
x [b(2n + 14+ 1)? — 2av £ b(2n + 1+ 1)? 1—4a7”3 (2.133)
0 b(2n +1+1)2 :
The limit of N,l — oo yields
R b V2
Buy~—|=0@2n+1+1)2+2 2.134
I+ 2m[a2<n++)+a}, (2.134)
2 2
By~ Y% (2.135)

C2mAb(2n+ 1+ 1)

and E,;4 corresponds in this limit to the spectrum of the free motion.
2.5.3. Separation of Vs in Parabolic Coordinates. We insert the potential V5
into the path integral in parabolic coordinates and obtain

£(t")=¢" n(t")=n" )
KW\ & ' n/sT) = / DE(t) Dn(t) (a +1E+ 772)> X
gt)=¢ n(t)=n’
7 T m b 9 9 9 .9 1 h2’l)g
X exp i ) a—&—z(f—&-n) (& +n7) — 5 5 dt y =
0 a+ (€ +n°)
T dE .
— / Rt eszT/hG(Vs)(gl/’5/777//’77/; E), (2.136)
27h

with the time-transformed path integral K (s”) given by

£(s")=¢" n(s
Ko\ ¢ " 05 s") = / DE(s)
& n(

//):,’]//
Dn(s)x
£(0)= )=’

0

"
S

@ mogo .2 bia o @ _h2v(2)
X exp h/ [2 (&7 )+E4(§ +n )]ds+h<aE o ds y. (2.137)
0
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The only difference in comparison with the result in [14] is the the additional
h2v}

term in the s” integration. In order to find the discrete spectrum we insert
m
the solution for the harmonic oscillator and get

G ¢ " s E) =

= & N
=D > OO (e ("), (2.138)
TLEZOTLnZO nEnn

where Fy,.p, is determined by the equation

1 K202\ [ bE

which is (up to a different counting in the quantum numbers) identical with
(2.131). The normalization N, is determined by the residuum in G(Y3)(E).
We do not state the continuous spectrum part, it can be derived from [14] by the
replacement aE — aF — h?v3 /2m.

2.5.4. Separation of V5 in Hyperbolic Coordinates. We insert the potential
V5 into the path integral in hyperbolic coordinates and obtain: The path integral
has the form

A= (g G ) k)
- D Du(t

p(t) v(t) T x

(e = v(t)=v'
i r 2 1/2

X exp %/ <a+—(u—l/)>(u+v)<—2—ﬁ>—

0

1 h*vg
D lath =

_<a+g(u—'/)> (h+v)

_ / dE e_iET/h/dS//[((Vs)(MH’Iu/’l///’l//;su)7 (2.140)
2mh
0

— 00
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and the path integral K (Y3)(s") is given by

l/(s”):l/”

1
KV (W, " /5 6") = / Dpu(s) / Dy (s)— X
uv

;o ») > 2,,2
i m ([ v h*vg
Z SR (R E—
e h/[?(xﬂ v2>+(“+y)<a 2m>+
0

+%bE(u2—1/2)] ds 3. (2.141)

Each of the last path integrals has a similar form as the one discussed in [11].
One can perform the transformation 1 = e*, v = e¥ yielding

K(V"’)(:E”,x’,y”,y’; s//) _

:c(s”):m” §
; b h2 2 7
= / Dx(s) exp %/ [%ﬁ + <E5 e + (aE - 2:;) eI> ds p
z(0)=z' 0 )
y(s")=y" s’
i m b h2v? ]
D — [ |=P+Eze® - [aE - —2) e
X / y(s) exp h/{Qy +< 5¢ (a 2m)e)_ds
y(0)=y’ 0

(2.142)

and we find the product of two path integrals for the Morse potential, however
more complicated as in [14]. The continuous part of the spectrum can be analyzed
similarly as in [14] yielding products of M-Whittaker functions. Analyzing the
discrete spectrum contribution from the Morse potential we find the quantization

condition
1 B2 4m
1) — = E — 0 — = 2.143
(ng +my +1) h (a 2m > V. E.b 0, ( )

which is up to a different counting in the quantum numbers equivalent with
(2.131). This concludes the discussion.
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3. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dyy

Finally, we consider the Darboux space Diy. We have the coordinate sys-
tems:

((u,v) system:) z=v+iu, y=v—iu (u€ (0,7/2),v€eR), (3B.1)

(Equidistant:) u = arctan (), v = g (e e R, 5 €R), (3.2)

(Horospherical:) x = log %, y = log % (v >0), (3.3)

1w =2e"cosu, v=—2e"sinu, (3.4)
(Elliptic:) = d cosh w cos ¢, v =d sinh w sin ¢
(w>0,p€(0,7/2)). (3.5)
We obtain the following forms of the line-element (¢ > 2b, ay. = (a £ 2b)/4):

_ 2b cosu+a

ds® = du® + dv*) =
3 4 sin®u (du o)
a+ a— 2 2
= d d
(sinQu * cosQu) (du + dv™)
(rescaling u/2 — w :), (3.6)
— 2b tanh
(Equidistant:) = %(da2 + cosh? ad3?), (3.7
(Horospherical:) = (a—; + a_2> (dp? + dv?), (3.8)
v
C . a— a4
Elliptic:) = + X
(Elliptic:) (cosh2 wcos?p  sinh?wsin? cp)

x (cosh? w — cos? ) (dw? + dp?),

a4 a— a4 a—
N T oo T 5z, 7. ) %
sin“p  cos®¢  sinh“w  cosh”®w

x (dw? + dp?), (3.9)
1 1 1 1
Degenerate elliptic I:) = |a_ +———] —a —— | X
(Deg ptic I [ (sinh2 ©  sin? ¢> * (cosh2 @ cos? <,0>]
x (do* +dg?) (y=1), (3.10)

1 _

(Degenerate elliptic II:) = — (ai% + %) (do® 4+ dp?) (v =2). 3.11)
4 \sinh“® sin“¢

We observe that the diagonal term in the metric corresponds in most cases to a

combination of a Pdschl-Teller potential and a modified Pdschl-Teller, respec-

tively. In particular, the (u,v) and the equidistant systems are the same, they
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just differ in the parameterization. The limiting cases a = 2b and b = 0 give
particular cases for the metric on the two-dimensional hyperboloid. We have also
displayed two versions of degenerate elliptic coordinates. They come from the
observation that for the representatives

K2, Xo, vXo+ K2, Xi+ Xo+~K? (3.12)

one can distinguish the cases v = 0, v = 2, and v # 0,2. For v # 0,2, one
has coordinate systems which can be explicitly formulated in terms of the elliptic
functions sn(a, k), cn(8, k), and only for a special choice of the parameter k
they can be simplified in trigonometric and hyperbolic functions. Then the line
element has the form

ds* = i[a+k4sn2(a, k) —sn?(B, k) + k*a_](da* + dB?), (3.13)

and separated equations are versions of Lame’s equation, if we assume an Ansatz
of the form ¥ = A(«)B(3) [28]:

0?A(o 4
(2 ) + (——1 k4Ea+sn2(a,k) - >\1> A(a) =0, (3.14)
9?°B(p 1
(2 ) + (——4k4Ea+sn2(ﬂ, k) — Az) B(B) =0, (3.15)

where \; — Ao = —Fa_k? /4. k denotes the modulus of the elliptic functions.

In particular, for the potential V> one has the possibilities of taking v = 0,
and v = 2. For v = 0, the modulus k of the elliptic functions equals k¥ = —1.
We do not treat V5 in these elliptic coordinates, but only the degenerate case of
v =2.

For the potential V3, however, the elliptic systems with v = 1 can be explicitly
worked out. We have stated the respective line elements for these two cases. Note
that for v = 2 the coordinate transformation can be put into

2=l [tan(gz) - w)} y=1ln [tan@ + Zw)} (@> 0,5 € (0,7/4)). (3.16)

We do not dwell into a discussion of elliptic systems any further, for details we
refer to [26]. Let us finally note that the notion elliptic is also used for the (w, )
system, and they must not be confused with the general elliptic coordinates just
discussed.

Because we have not worked out the path integral for the free motion in
these two further coordinate systems, this will be done in an appendix. For the
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Gaussian curvature we obtain, e.g., in the (u,v) system

a? a’ a_ay
sin® u i cosbu  sin*wcostu
G=— . (3.17)

a a 3
+ -
5 T
s~ u COS“ U

The case a = 2b yields a_ = 0, and

G=—- (3.18)

1
37
and therefore again a space of constant curvature, the hyperboloid A is given
for b > 0. We have set the sign in the metric (1.4) in such a way that from
a = 2b > 0 the hyperboloid A®) emerges. We could also choose the metric
(1.4) with the opposite sign, then a = 2b < 0 would give the same result. In the
following it is understood that we make this restriction of positive definiteness of
the metric and we do not dwell into the problem of continuation into nonpositive
definiteness. Because the (u,v) coordinates and the equidistant system are the
same, we do not evaluate the path integral in the equidistant system. In the
following we assume a4 > 0 and ay > a_.
We introduce the following three constants of motion on Dry:

X, = e2”(—7:[0 + cos 2u - p2 + sin 2u - pupy), (3.19)
Xo = 62”(—7:[0 + cos 2u - p2 — sin 2u - pupy), (3.20)
K =p,. 3.21)

These integrals of motion satisfy the Poisson relations
{K, X1} =2X1, {K,Xo}=-2Xo, {X1,Xo}=—-K%—4aKH,, (3.22)
and satisfy the relation
XXy — K* —aK?Hy — H? = 0. (3.23)

The corresponding quantum operators have the form

= sin? 2u 9 9

°= Feoszuran o) (324
X, = 62”(—ﬁ0 +cos2u - (92 4+ 9,) + sin2u - (9,0, + 0u), (3.25)
X, = 62”(—ﬁ0 +cos2u - (92 — 9,) — sin2u - (9,0, — 0u), (3.26)

and the commutation relations read

(K, X1] = 2X,, [K,X,5] = —2X,, [X1,X2] = —8K® —4aKHy — 4K (3.27)
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and satisfy the operator relation

1 ~ =~ ~ ~ o~ ~ ~ ~
§{)(1,)(2} — K*—aHoK? - 5K? — HZ —aHy = 0.

(3.28)

In Table 3 we list the connection with these operators and the corresponding

coordinate systems on Dry.

Table 3. Constants of motion and limiting cases of coordinate systems on Drv

. Constants A® A®
Metric of motion Drv (@a=2b | =0
2b cos
M(diﬁ + dv?) K? (u, v) system | Equidistant | Equidistant
4sin2 u
(a% + a%) (d;f + dy2) Xo Horospherical | Horicyclic | Semicircular
v 2
parabolic
( o= + o+ ) x | K?+d%x, Elliptic | Elliptic- | Hyperbolic-
cosh? w cos? ¢ sinh? wsin? ¢
x (cosh? w — cos? ) (dw? + dp?) parabolic | parabolic
[a+k2 (sn2(a, k) — sn2(8, k)) + a,] x | X1 + X2 +vK?|  Elliptic Elliptic | Elliptic
2
X (d*a + d*B)
We state the superintegrable potentials on Dryy:
a a -1
+ —_
Vi(u,v) = <—2 5 ) X
sin“u  cosu
R (k2 —1/4 k?—1/4
X | — - / + /4 4ae?® 4+ 8mw?e? |, (3.29)
2m \  cos*u sin” u
a a -1
+ —_
V2(u,v):<#+ 5 ) X
sin“u  cosu
R (k}-1/4 k3-1/4 al 1 N 1 (330)
X | — - - — — .
2m \ sinh®v cosh? v 4 \sin®y  cos?u )|’
h? a4 ay a a -1
Vg(UJ,SO): T 12 ~ 5 ~ .2~+ 3 ~ X
2m \sinh*® cosh®® sin“® cos*y
Cc3 Co C3 C2
X | == 5=~ o= 5 3.3
sin“p cos“¢ sinh®@ cosh®w
ar . a— I 9 1 1 1
Vilp,v) = | 5 + — — | kg — = —+— |- 3.32)
(:U’v ) 2 M2 2m 0 4 /1'2 2
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Table 4. Separation of variables for the superintegrable potentials on D1y

Separating
Potential Constants of motion coordinate
system
) 2 2 mo2, 2 2 e
Vi |Ri=K°—oa(p*+v°)+ Tv (p* +v7) (u, v) system

2
—2a(ayp® —a_v?) 4+ 8(k? — 1/4)— + 2mw?(agp* —a_v?)
m

R =Xz + i fau? Horospherical
Elliptic
k2 2 2 1
Vo |R1= X1+ X2+ (2cosu + a) . ki + k5 — 5)~ (u, v) system
ooy W, U) Sy
, 1 k2 —1/4 kI -—1/4
—2( k3 — = ) cosh 2v + (cos 4u + 2a cos 2u + 3) — — > Degenerate
2 sinh? v cosh® v 76111 i I
R — K 4 h2 <k§71/4 k§71/4> e -
2= 2m \| sinh? v cosh? v
) B2 at a -1
Vi |[Ri=X1i+Xe+2K°+aH+ — | —5==+ —>5— X Degenerate
2m \ sinh? 2@ sinh? @

elliptic I & II

at C3 C1 a— C3 Cc2
x |:sinh2 20 (sin2 @ + sin2 gﬁ) sinh? 25 (sinh2 & cos? C))
RZ:X17X2+L2<Q7++L>_1X
2m \ sinh? 2@ sinh? &

X |:a7+ (cl cosh 2& tan? @ — c2CcOs2¢p—
sinh? 2%
c3(2cos? @(sinh® @ — sin? @) + 1)
a sin? @ >+

t— <02 cos 2@ tanh? @ + c¢1 cosh 20—
sin? 2¢
c3(2 cosh? LD(sinh2 @ — sin? @)+ 1
sinh? ©
B2 o 2 2
2— (kg —1/4) (" +v7)
Vi |Ri=X 4+ P (u, v) system
atp? +a_v? A Y Sy

32 n (k2 —1/4)

—(ky —

Ro=Xo4+ 11 Horospherical
(1+;L2 + U._D2 _

R3 = ppu +vpy Elliptic

In Table 4 we list the properties of these potentials on Dry. We see that

V, is a special case, and it has three integrals of motion. The variables w, ¢ are
defined by

x = log [tan (¢ — iw)], vy = log[tan (P + iD)]. (3.33)

In terms of these coordinates the line element is given by

a—+2b a+2b  ay a4+ a_ a_

2

d52:_2~ — - = 5 — s — T35t 5=
sinh“2w  sin“2¢  sinh“°® cosh®@ sin“¢p cos“p

(3.34)
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3.1. The Superintegrable Potential 1, on Diy. We start by stating the
potential V7 in the respective coordinate systems

-1
Vl(u,v)=< a; +a__> X

sinu  cos?u

[h? (k2 —1/4 Kk2—-1/4
X | =— / + .2/ — 40e? 4 8mw?et?| | (3.35)
12m \ cos?u sin? u
—1
a4 a_
:<§+F> :
I K2 (K2—1/4 K2—1/4\ m o, 5
x —a+%< e 0z >+5w (u +1/)}, (3.36)

~1
= e + — x
sinh?wsin? ¢ cosh? wcos? ¢

. _a+h_2< o1/4 k-1 >+
2m \sinh® wsin? ¢ cosh? wcos? ¢
m o5 2 .2
+ Ew d*(cosh” w — sin“ ) | . 3.37)

The path integral for the potential V; can be solved in the (u,v) system and in
horospherical coordinates. We also keep the parameters k; and ko different in
comparison with Kalnins et al.

3.1.1. Separation of Vi in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

m 2bcos2u + a

L(u, 1, v,0) = > — (0? + %) 4+ V(u,v), (3.38)
Sin u
1 sin® 2u
H(u, pu,v,po) = %m(pi + ) + V(u,v). (3.39)

The canonical momentum operators are given by

h( o 2bsin2u h O
w ==\ = 2 cot 2 - | v = T 5 3.40
P [ <8u+ b 2b0052u+a> P 1 Ov (340)
and the Hamiltonian operator has the form
B2 sin?2u 0? 0?
H=——"F7r—""—"7—"|—S+— v 3.41
2m 2bcos2u + a (8u2 * 81)2) V() 34D
1 sin 2u 9 9 sin 2u
=——(p: +p) ——— + V(u,v). 3.42
2mx/2bc032u+a(p b )\/2b0032u+a () (.42)
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We insert V; into the path integral and obtain (f = a /sin® u + a_ /cos® u)
u(tll):u// v(tll):v//

KW @" o/ " ' T) = / Du(t) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
i @ .9 .2 _l h_2 k%—1/4_k%—1/4
xexp(h/{Qf(u +07) f[Qm( cos? u sin? u -
0

+ 8mw? <e4” - 272;2 e2”>] }dt) . (343)

We see that the v dependence has the form of a Morse potential:

VMP) () = wve (e** — 2ae"), (3.44)
2M
where the (finite) discrete energy spectrum is given by
2
El:—% (d—l—%) . (3.45)
Proceeding in the usual way we obtain for the time-transformed path integral
u(s")=u"" v(s")=v"
KWV @" o " ' s") = / Du(s) / Du(s)x
u(0)=u’ v(0)=v’

T
ifme o B (M -1/4 A3 -1/4N\
xexp{h/lQ(u +97) 2m< cos? u sin? u

0
— 8mw? <e4” - 277:;2 e2">] ds} =

. h2
_ Z(P%Az)\l)(u//)q)glAg,Al)(ul) exp {_ 1_()\1 + Ao+ 2n + 1)28//] «

h2m

% {/dﬁ@éMP)(v//)@gMp)*(u/) efihNQS”/Qm_F

1 * !/ ] h2 ~ 1 2
+ ;W;MP) (v )@l(MP )(u )] exp {%% (a —1- 5) } } (3.46)

Here, A}, = ki, — 2ma_ (E/h?, and in the variable v we have used the
solution of the Morse potential and in the variable u the solution of the Pdschl—
Teller potential, respectively. This form of the solution is convenient to obtain
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the bound state solutions. The bound state energy levels are determined by

2(n+l+1)+)\1+/\2—%:0. (3.47)

By denoting
2
Noi= (2(n +1+1)— %) — (k¥ +K3) (3.48)

the quadratic equation in E can be solved to give (with the further abbreviation
Ko = 4(ask? +a_k3))

En,l =

h2
= Imb? {i\/(aNnvl + K,)? — 4b2(N2 | — 4k$k3) — (aNny + Ka)} . (3.49)

We keep the £-sign to allow for different boundary conditions which may depend
on the parameters a and b. For instance, for a = 2b we get the limiting case:

K2 a\?
For ko = £1/2 it has the form of the usual zero-energy on the two-dimensional
hyperboloid.

In order to obtain the continuous spectrum, the formulation in (u, v) coordi-
nates is inconvenient. Following [12] we perform the coordinate transformation
cosu = tanh 7, and additionally we make a time-transformation with the time-
transformation function f = a, /sin®u + a_/cos’u. Due to the coordinate
transformation cos u = tanh 7 additional quantum terms appear according to

exp (ﬂ (Au(j))Q ) .

2¢h cos uli—1) cos ul#)
m N2 h 1
= — (A Gy ;2 1 ] 51
exp {M( ) —ig - ( + cosh27(j)>] (3.51)
We get for the path integral (3.43)

o0

dE _,
VO (o " V=T :/ —iET/h
K (u”,u' 0", 0" T) 5.7 X

— 00

r i h2k3
x /dS// exp |:ﬁ <a+E _ 5 2>:| K(VI)(TH,T/,’U//,v/;sl/), (3.52)
m
0
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and the time-transformed path integral K (V1) (s”) is given by

KW (" ' " 5 6") = (cosh 7’ cosh 7)™/ 2%
< [ 3w e K7+
+ / drUMP) (Y UMD () K (7, 7 s“)] , (3.53)
7(s")

KZ(ZI)(T” 7’5" / Dr(s

7(0)="7'

i 1[m o PPN -1/4 Vi, —1/4
X - - = ds . (3.54
Py / [ T 2m ( sinh? 7 cosh? 7 § (354

The parameters \; o are the same as in the previous paragraph and v is given by

’2[ +1- —‘ (discrete), v, =ik (continuous), (3.55)

where discrete and continuous means the discrete and continuous contribution of
the Morse potential. Of course, the analysis of the discrete spectrum gives the

same result as before. The kernel K l()‘,?)(s” ) now allows us to write down the

entire kernel K (V1)(T') in terms of Morse wave functions and modified Pschl—
Teller wave functions in the following form:

KW ' 0" ', T) = (cosh 7’ cosh 7)1/ 2 x

{ ZNln MP)* )\II(MP)( //)\Ijgl)\l,lq)*(T/)\I/%/\l,lq)(T//)efiEmT/h_'_

/deNlp\I,(MP V) (MP)( ”)\Ilg‘l’y')*(T/)\Ifg‘l’"')(T”) o~ BT /h

/dp/dﬂN2 \II(MP ( )\:[/Ing:’)(,U//)\IIZ())\l,iH)*(7_1)\:[/1(7)\1,1';-@)(,7_//)e—iEpT/h}7
(3.56)

with the proper normalization constants Ny, N;,, Ny, where, e.g., Ny, is deter-
mined by the residuum corresponding to FEj, in the Green function, and with the

continuous spectrum
2

I
E, = ma, ——(p* + k3). (3.57)
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Note that for ko = 1/2 we obtain the well-known zero energy on the two-
dimensional hyperboloid, which appears here in a natural way after performing
the coordinate transformation cosw = tanh 7.

The ") (w) are the modified Péschl-Teller functions, which are given by

\Ifgﬁ’”) (r) = N,(L"’”) (sinh r)Qk”_% (cosh r)_2k1+% X
X oF1(—=k1 + ko + Kk, —k1 + ko — k + 1; 2ko; — sinh? T), (3.58)
1/2
(nw) _ 1 2(2H — 1)F(k‘1 + ko — H)F(kl + ko + K — 1) / . (3.59)
" I'(2k2) D(ky — ks + k)(k1 — ke — K+ 1)
The scattering states are given by

Vi) = h_2<772—1/4 - 1/2—1/4>’

2m \_ sinh?r cosh? r

\IIZ(,""’) (r) = NI(,""’) (cosh T)2k1 -3 (sinh T)ri% X

X 2F1(]€1 +]€2 —;‘ﬁl,k‘l+k’2+f€— 1;2k‘2;—$iﬂh27"), (360)

1 [psinh Tp
(mv) — _ _
N, T(27s) 52 [F(k‘l + ko — k)D(—k1 + ko + k)X

1/2
 T(k1 + ko + k — DD(—k1 + ko — & + 1)} : (3.61)

1 1
k1, ko defined by: ky = 5(1 +v), ky = 5(1 + 7)), where the correct sign depends

on the boundary conditions for » — 0 and » — oo, respectively. The number

1
Ny denotes the maximal number of states with 0,1,..., Ny < k1 — ko — 2

1
k = k1 — ko —n for the bound states and xk = 5(1 +ip) for the scattering states;
2F (a, b;¢; z) is the hypergeometric function [10, p. 1057].
3.1.2. Separation of V1 in Horospherical Coordinates. We evaluate the path
integral for V7 in horospherical coordinates. The classical Lagrangian and Hamil-
tonian are given by

. . m(a a— . .
L(ps fv,0) = 5 (V—§ + F) (*+0%) = V(pv),  (3.62)

1 e (pp 4 p})

om anZ4a e TV (3.63)

H(:U’vpuv v, pl/) =

For the canonical momentum operators we have

h({ o via_/u

h(o wray v
Pv =~ (5 - 7a+ﬂ2 Ta2) (3.65)
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and for the quantum Hamiltonian we get

h2 M2V2 82 32
H - _%7a+/ﬂ + a,zﬂ (a—/u’? + W) + V(/Jv V)v (366)
22 2p2
B Rt —E i vy).  (3.67)

ayp?+a_ 1/2 a2+ a_v?

We insert V; into the path integral and obtain (f = a /v? + a_/u? and keeping
to constants ki 2)

H(t” FL V(t”):V”
KW (" V' V5 T) / Dy(t) / Du(t) f (p, )%

n(t)=p' v(t)=v’

Flu,v)(* +0%)—

h2 k‘2— k2_
_ f(/iy) (%wQ(MQ—H/Q) a—|—%< 1 ,u21/4_|_ 3 l/21/4>>]dt} =

_ [ 22 v /d/K<> o

K(VI)(/J//a/i/a l///, l//; s//) _ / ’D,u(s)x

i m, . B2 k? —2ma_E/R? —1/4
/[—(MQ—W2M2)—% 1 u2/ /:|d

- - 2 1.2 2
X / Du(s) exp %/{%(02—w2u2)—h—k2 2ma E/h 1/4]ds =

2m V2

2.2 ST T T T
:%exp —m—(u + +l/2+1/”2) cot ws” | x
12h2 sin” ws” 2ih

mwp! 1" mwr' V"
1 1 3.69
X (zh sin ws” )\ i sin ws” )’ (3.69)
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where A1 2 = ki 5 — 2mazE/h?. We can extract the bound state wave functions
for the bound state contribution of the Green function according to:

GO ) = 3 3

Tl T
nu=0n,=0 KtV

xwﬁHO’“(wwsﬁHO’m<u“>w£f§HO’*2>(u/)wg%HW(u“). (370
The bound states are determined by the equation

Q@ _ 5 2ma_FE 5  2maiE
%—2(nft+nu+1)—\/k1—7+ ky — = —

This quadratic equation in E' is identical with (3.47).
3.2. The Superintegrable Potential 1, on Diy. We state the potential in the
respective coordinate systems

3.71)

-1 32 2 2
_ —1/4 —1/4
‘/Q(U,U) = (—a; a ) h l:k / k2 / +

sinu  cos?u 2m | sinhZv cosh? v
(=) (S (3.72)
34 sinfw  cos?u /|’ ’
-1 39
ay a_ I3 5 1 1 1 )
=4 + > | (k7 + +
(sinh2 20 sin? 2@) 2m [ ( 3 4) (sinh2 20 sin?2¢
k2 —-1/4 k?—-1/4
+<22/~—12/~>. (3.73)
cos® 2¢ cosh” 20

It is possible to evaluate the path integral for V5 in the (u,v) and the degenerate
elliptic system with v = 2. The elliptic system with v = 0 is not treated.
3.2.1. Separation of Vs in the (u,v) System. We insert Vo into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)
w(t”)=u" o(t")=0v"
KW (" o/ " 0 T) = / / Dot

u(t)=u’ v(t)=v’

T

i [ m e gy P (K14 -1
X e - —Jf(u”+v7)—
Xp{ho/[Qf( ) 2mf< sinh? v cosh® v

, 1 1 1
+ <k3 - Z) (—Sin2 ~+ —0032u>>1 dt}. (3.74)
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This formulation in (u,v) coordinates is inconvenient. Following the procedure
as for V; in the (u,v) system we perform the coordinate transformation cosu =
tanh 7, and get for the path integral (3.74)

2mh

— 00

K(VQ)(U”,U',U”,U’;T)Z/ e e Ty

" 1 _ h2k?2) "1 00
x [ ds" exp N ar F K(r", 70", 4" "), (3.75)
0

and the time-transformed path integral K (V2)(s") is given by

KOl af ) =
= (cosh 7’ cosh 7")~1/? Z WLk () (Faok) ()
ny=0

T(S”):T” s

i m B2 (A3 —1/4 N —-1/4
D v m., hT (A Al
. / T(s) exp ho/ [2 T om ( sinh? 7 cosh? 7 )} ds i+

+ (cosh 7/ cosh 7)~1/2 / dk, U (0 )R (0

T(S”):T” s

i TIm., K [(M2—1/4 —k2—1/4
D - "2 2 _ v d
8 / 7(s) exp h / [ 2" " om ( sinh? 7 cosh? 7 )] s

7(0)=r" 0

(3.76)

(A2 = (2ny + |k1| — |ko| + 1)2, A3 = k2 — 2ma_E/h?).
The v-path integration gives a discrete and continuous spectrum, thus two
different parts for the 7-path integration. We therefore find for the Green function

GV (" 7' 0" v E) = (cosh 7’ cosh 7)1/ 2x

Nmax

« Z \I/(kl,kg pkka) u)ﬁ L(m1 — Ly )D(Ly, +m1 +1)
h2 F(TTL1 + mo + 1)F(m1 — ma + 1)

ny=0

x (cosh 7’ cosh 7)™ (F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
><2F1<—LA1+m1,L>\l+m1+l;m1—m2+1;72>x
cosh” 7~
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X 2F1<—L)\1 +TTL1,L,\1 +mq + 1;m1 + mo +1;tanh27'>>+

+ (cosh 7/ coshT”)*l/z/de\I/,(fll’kZ)(v')\Iléﬁl’k”(v”)><
m I'(mq — L, )T (L, +m1 + 1)
R T(mi+me+ 1)T(my —ma+1)

x (cosh 7’ cosh 7/)~(F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
><2F1<—Lkv+m1,Lkv+m1+1;m1—m2+1;72 >><
cosh” 7~

X oy ( — Ly, +m1, L, + my + 1;my + mg + 1; tanh? T>> (3.77)

1 1 1
(M2 = 3o £ V2méE/h), Ly, = 5 = 1), Li, = 5(iky = 1), € = ay E —
h2k3/2m).
A discrete spectrum is only possible for the first summand in (3.76). First,
we can analyze the discrete spectrum by looking at the poles in (3.77) which
gives the equation

2(nr +ny) + Ay + A+ k2| — |k1| =0 (3.78)

(0% = k2 — 2ma+E/h?). This gives a quadratic equation in E with solution
(N =2n,; — 2n, — ‘kl‘ + ‘kQ‘)

2N} 402 (K3
Eneny = ="k <1¢\/1+—<W—1)>. (3.79)

The entire Green function in terms of the wave functions is given by

N2
GV (" 7' 0" v E) = (cosh 1’ cosh ") ~1/2 dpE E/dk X

> \I/g\il,kz))(vl)\p’(cﬁl,kﬁ(,U//)\Ij()\g,ik:v)(T/)\Ij()\g,zk:v) (7_//)_|_

+ (cosh 7’ cosh 7)) ~1/2 Z Z Wk ()@ (F1ok2) (/1)

nt=0ny=0

Nmax 2
" Z Ny on, \II()\Q,Al)(T/)\II(AQ,Al)(T//)+
= Enrnv _ E nt nt

N2
dpE p VE\IJI(J)\QJ\l)(T/)\I/I(])\Zv)‘l)*(7-”)}’ (380)
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where Ny n,, Nkon, 18 determined by the residuum in (3.77). The continuous

spectrum has the form
2

> = Sman (p? + k3). (3.81)
For ks = £1/2 we obtain the usual zero-point energy on the two-dimensional
hyperboloid. Reinserting cosu = tanhv gives the Green function in the (u,v)
system.

3.2.2. Separation of V5 in Degenerate Elliptic Coordinates. We insert the
potential V5 in degenerate elliptic coordinates into the path integral and obtain
(f(@,¢) = 4(ay / sinh? 20 4 a_ / sin® 23))

KD (@" & ", ¢ T) = Di(t) DE(t) f(&, @)%

sinh?20  cosh?20  sin? 2 cos? 2¢

2 2 2 2
y <k1—1/4_ k2—1/4+k3—1/4+k2_1/4>]dt}_ (3.82)

The calculation is similar as in the case of the (u,v) system: First, we rescale
20 — w,2p — @, then we perform the transformation cos¢ = tanh 7. Finally,
we perform a time transformation in the path integral with the time transformation
f(@,9) — f(@,7) yielding

GV (7 70" &' E) =

2m

= " 3 " _ h2k§ (Vo) (mlt ~1 ~11 ~1. 1
= [ ds" exp 5 Ea_ — — )| K\, 70", 0" 8")  (3.83)
0

with the transformed path integral K (V2)(s”) given by

2m \ sinh? 7 cosh? 7\ sinh? & cosh’® 4

2 2 _ 2 _ 2 _
G 1/4+ 1 <)‘+ 1/4 k3 1/4+1>>]d3}. (3.84)
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Again we evaluate this path integral by a successive w- and 7-path integration.
Performing finally the s integration we obtain

G2 (7 7 & &' E) = (cosh 7' cosh 7)) 71/2x

{/dp kmp /dk‘ \If k:l,zk:w) ) (k:l,ikg,)*(%//)\I/I(Czhkz)(@/)\Ijl(czhkz)*(a)//)+

Nmax
s fany o gt T e W @R @)+
ne=0

Nmax

RS nrnm (k Enm) ~ (k vEnm
FY D e T ) T R @) e @ )}.

nt=0ne= O

(3.85)

The normalization constants Ny, Niop, Nnene are determined by the respective
residuum in G(2)(E) and the discrete spectrum is determined by the quadratic
equation (3.78). The continuous spectrum has the form

2

=5 — (p* + k3). (3.86)
The difference of E, in comparison to the (u,v) system can be resolved by
making in the (u,v) system the transformation sinu = tanh 7 which changes the
sign in the energy term. This concludes the discussion of V2 on Dry.

3.3. The Superintegrable Potential V3 on D1y. We state the potential in the
respective coordinate systems

h2 4a+ 4Cl_ )1
Va(@,9) = — + X
2 2m<sinh2 25 ' sinhZ @

x| —2 42 4 ( ! ! ) (3.87)
= |\ ————-——==]| @G
cos? ¢ cosh®@ *\ sin? ¢ sinh?@
i (s~ ws) o (e v vs)]
2m | "\cosh®w cos? @ sinh2¢ | sin® ¢

C3 C2 1 1
« + +ec —— ). (3.88
Linh2 & cosh?® 8 <51n2 $  cos? 90)1 ( )

It is possible to evaluate the path integral for V3 in both separating coordinate
systems. However, due to the similarity in the evaluations, only the degenerate
elliptic II case will be presented.
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3.3.1. Separation of V3 in Degenerate Elliptic Coordinates II. We insert the
potential V3 in the path integral formulation for degenerate elliptic coordinates on
Dry and obtain f(@, @) = 4(a./sinh? 20 + a_ / sin” 2¢))

KY)(@" & ", o5 T) = Di(t) D) f(@, )%

FL2 C1 C2 ( 1 1 >
- —— ~ + +ce3| ——— ——— dt p. (3.89
2mf (@, @) <0082 ¢ cosh®m ° \sin? ¢ sinh®@ (-89

In order to obtain a convenient form to evaluate (3.89) we perform the coordinate
transformation cos ¢ = tanh7 in the same way as for V5. Performing also the
corresponding time transformation gives

oo

dE  _,
K@ 27,751 = [ 5o e BT/
r i (B
« [asresn 550 )| K0G8 7, G0
m a_

and the time-transformed path integral K (V3)(s”) is given by

KW (" & 7 76" = Da(s) D7 (s) cosh Tx

X ex 1/ @(7’2 + cosh? 70?) — _hQ /\1;—7_1/4_
g 2 2m  sinh? 7

2 2

K2 )\Sa_+ —1/4 )\2a_+ —1/4

1
— + - ds 3.91
2m cosh? 7 sinh? @ cosh? @ 4 (3:91)

1

(N = vk 2mayE/h?, i = 1,2,3). The latter path integral has the
Zai

form of two successive modified Poschl-Teller path integrations in @ and 7. In

the w-path integration we get a contribution from the continuous and discrete
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spectrum. The continuous contribution gives in the 7-path integration only a
continuous part, whereas the other gives a discrete and continuous contribution
in 7. We denote the continuous parameter in @ by pg, the discrete parameter in
w by €p, = 2ngp + )\3;+ — )\2;+ — 1, the continuous parameter in 7 by p, the

discrete parameter in 7 by €,, = 21z + A+ — €, — 1, therefore:
=

K(V3)(c~u//,d)/,7~'//,7~'/; SH) _

® Age Ay ) [CYRES VR
= (cosh 7 cosh%")_l/Q/dpu\I/pm at Tt (@)W, T AT (@)%
0
F(s'")=F ; s " h2 )\er _1/4 p2 +1/4
X D7(s) exp ] — —7? - - + & dsp +
/ (s) exp h/ 2 2m sinh? 7 cosh? 7
#(0)=+" 0
Nmax Pg= A=) (A= 2 A— )
+ (cosh 7 cosh 7)™ 1/2 Z N (70 ) L (U P
n,;,:O
=" A2, —1/4
DH(s) z/ m., h? 11 e —1/4 J
X T(S) ex - —_— T = - sy =
PR 2 2m | sinh?7 cosh? 7
7(0)=7" 0

CYP Y Aye Ay )
3 2+ 3a+ 2+

= (cosh 7 coshi'”)*l/Q/dptw\Ilpa, at et (@)W, at (@)%
0

oo

A+ ipa) A+ ipe) * -
« /dp\ij la_ ((;}/)\ij la_ ((I)”) e is hp2/2m+
0
Nimax A= A=) (A= A— )
+ (cosh 7 cosh 7)™ 1/2 Z N (70 ) S (L P
na,:O

T s seng) (A4 seng)*
xQ [avw, S @, T @ ey
0

Nmax ()‘ + ,En(:)) ()‘ + ,En(:)) e
Y w @ e m G)
N =0

Performing the s” integration gives the spectrum. For the continuous spectrum
we obtain

E, = U 2+1—c (3.93)
P 9ma_ p 4 3) ’
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The discrete spectrum is determined by
Q(TL@ + ’I”L;—) + )\1;—7 + )\Sa—+ — )\2;7 —2= )\3;—7 . (3.94)

This is an equation in E in the eighth order which we will not solve.

3.4. The Superintegrable Potential 1V, on D1y. We state the potential in the
respective coordinate systems

—1 ;9
[ as a_ h . 1 1 1
Valu, v) = (sin2u+cos2u> 2m (ko 4) (sin2u+0052u (395
—1 ;9
ay  a_ I 9 1 1 1
(2 +) (-2 )(s+= 3.96
(+32) m(6-5) (7). 699
R [ a+20  a—20\"'[, 1
= 2\ 52 + - ko — )
2md? \ sinh” 2w’  sin® 2¢’ 4

1 1
X + . 3.97
(cosh2 wcos? ¢ sinh? wsin? cp) 397)

It is possible to evaluate the path integral for V, in all the separating coordinate
systems. However, we evaluate the path integral for V4 only in the (u,v) system
because V} is trivial.

3.4.1. Separation of V4 in the (u,v) System. We insert Vj into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)

u(t//):u// 'U(t//):'u//
K" ' 0" 0 T) = Duft) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
. 2 1.2
X exp %/[%f(u)(am?) L 1/4( o )}dt . (3.98)
0

C2m f(u) \sinfu cos?u

We proceed similarly as in [14]. Because the formulation in (u,v) coordi-
nates is inconvenient, we perform following [12] the coordinate transformation
cosu = tanh7. Further, we separate off the wv-path integration, and addi-
tionally we make a time transformation with the time-transformation function
f =ay /sin®u+a_/cos? u. Due to the coordinate transformation cos u = tanh 7



1060 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

additional quantum terms appear according to

im (Au0)? N
P\ 2eh cosuG—D cosul) |

= exp [%(ATU))Q i (1 + éﬂ . (3.99)

8m cosh? 7(9)

We get for the path integral (3.98)

o0

K" v 0" v;T) = / %e‘“ﬂ/hx
™
1 3 _fLng "ot mno 0. M
x [ ds" exp N ar F 5 K", 70" 0" 8"), (3.100)
m
0

and the time-transformed path integral K (s”) is given by

et
K(T 7T7U 7U;S):

s iky (v —v") reh)=r"
_ dk € h7' cosh ")~ 1/2 D
= UT(COS 7' cosh ) T(s)%
—0o0 7(0)="7'
i fm., R (A—1/4 —k2 —1/4)}
X e - —7° = — — ds p. (3.101
Y7 / [ 2" " 2m ( sinh? 7 cosh? 7 ( .
0

Inserting the solution for the modified Poschl-Teller potential and evaluating the
Green function on the cut yields for the path integral solution on Diy as follows
(K (", /"0, T) = K (7,7 0" 05 T

K(u”,u',v”,v’; T) _

= / dk, / dpe™ TE/ My (7 0"V (7)), (3.102)
—00 0
i, (T,0) = o W (Nosik) (1) (3.103)
AT \/2ma; cosht 7 ’ '
B =1 (p* + kJ) (3.104)
P 2may 0/ '



PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1061

where A3 = k2 — 2ma.E/h? and the wave functions for the modified Poschl—
Teller functions. Reinserting cosu = tanh 7 gives the solution in terms of the
variable u.

We also see from this example that the introduction of a third variable
w, say, to a three-dimensional version of Darboux space Dy allows separa-
tion of variables, where the additional quantum number kg corresponds to the
motion in w.

4. SUMMARY AND DISCUSSION

In this paper we have finished the discussion of superintegrable potentials
on spaces of nonconstant curvature. The results are very satisfactory. There are
two potentials on Dj, four potentials on Dy, five potentials on Dyyr, and four
potentials on Dry, respectively. We could solve many of the emerging quantum
mechanical problems. To give an overview, we summarize our results in Table 5.
We list for each space the corresponding potentials including the general form of
the solution (if explicitly possible). We omit the trivial potentials here, because
they are separable in all corresponding coordinate systems.

In the first Darboux space Dj the superintegrable potentials were related to
the Holt potential and a shifted isotropic harmonic oscillator in two-dimensional
Euclidean space. Whereas the solution in the coordinate v can be expressed in
terms of the wave functions for the radial harmonic oscillator (Laguerre polyno-
mials) and the shifted harmonic oscillator (Hermite polynomials), the solution in
the coordinate u was determined by a boundary condition for u. This gave wave
functions in terms of parabolic cylinder functions and a transcendental equation
for the bound state energy levels. The corresponding solution in the rotated
(r,q) system was similar. An explicit solution in parabolic coordinates could not
be found.

In the second Darboux space there were three nontrivial superintegrable po-
tentials. The potentials were related to the Hold potential, the isotropic singular
oscillator, and the Coulomb potential in two-dimensional Euclidean space. We
found combinations of polynomial wave functions for the discrete states and com-
binations of polynomials and Whittaker functions for the scattering states. The
discrete energy spectrum for the oscillator-related potentials was usually given
by a quadratic equation in the energy. For the Coulomb-related potential we
found an equation in eight order in the energy, which could be studied in a
special case. Also, in the semiclassical limit, we found that the energy spec-
tra indeed had the behavior of a harmonic oscillator and a Coulomb potential,
respectively.

On D1 we had potentials related to a linear potential, a Coulomb potential,
and a shifted oscillator in two-dimensional flat space. We found for the first po-
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Table 5. Solutions of the path integration for superintegrable potentials in Darboux

spaces
Space and potential Solution in terms of the wave functions
Dr
Vi: (u,v) Hermite polynomials x Parabolic cylinder functions
Parabolic No explicit solution
Va: (u,v) Hermite polynomials x Parabolic cylinder functions
(r,q) Hermite polynomials x Parabolic cylinder functions
D
Vi: (u,v) Hermite polynomial x Whittaker functions®
Parabolic No explicit solution
Va: (u,v) Laguerre polynomial x Whittaker functions®
Polar Gegenbauer polynomial x Whittaker functions™
Elliptic No explicit solution
V3: Polar Gegenbauer polynomials x Bessel functions
Parabolic Product of Whittaker functions™
Elliptic No explicit solution
D
Vi: Parabolic Product of Hermite polynomials/Parabolic cylinder functions
Translated parabolic | Product of Hermite polynomials/Parabolic cylinder functions
Va: (u,v) Gegenbauer polynomials x Whittaker functions®
Polar Gegenbauer polynomials x Whittaker functions™
Parabolic Product of Whittaker functions™
V3: Polar Gegenbauer polynomials x Whittaker functions™
Hyperbolic No explicit solution
Vi: Hyperbolic Product of Whittaker functions™
Elliptic No explicit solution
Dy
Vi: (u,v) system Product of hypergeometric functions
Horospherical Product of Whittaker functions™
Elliptic No explicit solution
Va: (u,v) Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
V3: Elliptic Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
*The notion Whittaker functions means for a disrete spectrum Laguerre polynomials and for
a continuous spectrum Whittaker functions W, (), respectively.
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tential an equation in the fourth order in the energy £, and quadratic equations in
the energy E for the second and third potentials. The Coulomb-related potential
showed again in the semiclassical limit the behavior of a Coulomb potential. Of
some special interest was the feature of the complex periodic Morse potential
for the separation of V3 in polar coordinates. Such complex potentials have at-
tracted in the recent years some attention, because the involved P7 symmetry in
these potentials has the consequence that they, nevertheless, have a real spectrum,
e.g., [3,4,42,49-51]. Such kind of potentials also appear as subsystems in the
list of superintegrable potentials on the complex Euclidean plane [36].

A special feature in Dy was that for the free motion there are already
positive continuous and negative infinite discrete spectra. A similar feature
also exists for the free quantum motion on the SU(1,1) and SO(2,2) hyper-
boloid.

In the fourth Darboux space we found potentials which were related to the
Morse and Poschl-Teller potential, and combined modified Péschl-Teller poten-
tials. The modified Poschl-Teller potentials had, of course, solutions in terms of
hypergeometric functions, respectively: Jacobi polynomials (discrete spectrum)
and Jacobi functions (scattering states).

We were able to solve the various path integral representations, because we
have now to our disposal not only the basic path integrals for the harmonic
oscillator, the linear oscillator, the radial harmonic oscillator, and the (modi-
fied) Poschl-Teller potential, but also path-integral identities derived from path
integration on harmonic spaces like the elliptic and spheroidal path-integral rep-
resentations with their more complicated special functions. This includes also
numerous transformation techniques to find a particular solution based on one of
the basic solutions. Various Green-function analysis techniques can be applied to
find an expression not only for the Green function but also for the wave functions
and the energy spectrum. Usually, we stated in all cases the solution for the dis-
crete spectrum contribution, i.e., the energy spectrum and the bound-states wave
functions. However, not in all cases we stated explictly the scattering states.
In the cases where we omitted the explicit representation, this can be done in
a straightforward way by inserting the corresponding solution by the potential
problem in question and inserting the various coupling constants and scattering
quantum numbers.

Let us also note that our solutions are often on a more or less formal level.
Neither have we specified an embedding space, nor have we specified boundary
conditions on our spaces. For instance, in D; boundary conditions the signature
of the ambient space is very important, because choosing a positive or negative
signature of the ambient space changes the boundary conditions, and hence the
quantization conditions [21]. The same line of reasoning is, of course, valid in
the other three Darboux spaces. We have not discussed in detail special cases of
the parameters (say a and b), including the limiting cases to flat spaces or spaces
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with constant (negative) curvature. Such a discussion would go far beyond the
scope of this paper.

Let us finally mention an important observation due to [26]. At the end
of their paper Kalnins et al. gave a list of superintegrable potentials on the
two-dimensional complex plane and complex sphere. As it turns out, all of the
potentials on Darboux spaces can be generated by taking a two-dimensional line
element and dividing this line element by a superintegrable potential belonging
to a specific class [27]. Not every class generates a new potential on a Darboux
space, some are simply related by a coordinate transformation, and some potentials
can be generated from the Euclidean plane as well as the complex sphere. The
appearance of the complex sphere is especially obvious in the general elliptic
coordinate system on Dry. Some of the various different potentials coming from
the complex plane and sphere are also related by the so-called «coupling constant
metamorphosis». Coupling constant metamorphosis always comes into play if
the energy E of the quantum system appears in the form of E - metric terms.
This observation leads to the notion that every nondegenerate superintegrable
system in two dimensions is «Stdckel equivalent» to a superintegrable system in
a two-dimensional space of constant curvature [27].

In the language of path integrals coupling constant metamorphosis comes
from «time-» or «space-time» transformations (also called Duru—Kleinert trans-
formations [39]). Here the most important example is the Coulomb problem,
where by means of a space-time transformation the Coulomb coupling « just be-
comes a constant and the emerging harmonic oscillator problem has the frequency
w? = —2E/m, i.e., the negative energy of the Coulomb problem appears as a
harmonic oscillator frequency. As we have seen, this kind of coupling constant
metamorphosis or space-time transformation, respectively, had been indispensable
tools in the path integral evaluations of the free motion and for the superintegrable
potentials, and we can use both notions as synonymously.

We did not go into details of three-dimensional generalization of the Darboux
spaces [15]. Of course, it is possible to extend the notion of superintegrability
to three-dimensional Darboux spaces. In particular, in three dimensions there
are more of such potentials. In total, there are five maximally superintegrable
potentials [17], the first four of them are also superintegrable, including the
singular harmonic oscillator, the Holt potential and the Coulomb potential. New
features will arise due to the fact that on three-dimensional generalization of the
more complicated Darboux spaces Dryr and Diy, coordinate systems from the
three-dimensional complex sphere come into play [30]. Studies along such lines
will be performed in future investigations.
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Appendices

A. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v =1)

We start by considering the metric in elliptic coordinates (y = 1):

ds* = |- sna ) ——— — ——— | | (d&® +d¢?). (A1
’ [a (sinhQ(J) +sin2¢> a+<cosh2® ) @)]( w7 +dp7). (A1)

We formulate the path integral in the usual way. We perform the space-time
transformation with the coordinate transformation cos ¢ = tanh 7 yielding

w(t”):w”
K", o' ¢" @ T) = Di(t)x
(t)=a"
B(t")=¢" ) ) 1 1
X Dot)la| ——+ —— | —a _ _ X
() [ (sinh2d) sin? cﬁ) +<Cosh2&) cos? gp)]
()=

T
m a_ a4 a— a4 X2 42
X exp | — - + - 5 ) (@7 +@7)dt| =
P l?h / (sinthJ cosh?&  sin®*¢  cos? <P>( ?) ]
0

T dE _pr [ ; B2
= / ﬁeﬂET/h/ds” exp {% (aE— %>s”] x
—00 0

x K(@" & #",#:5") (A2)
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with the transformed path integral given by

7/;(8//):_7_// LZJ(S”):L:)”
K" o' #" %8 = / D7(s) D(s) cosh 7x
#(0)=+" @(0)=a"

i m o 5.9, N 1 <A2+1/4 AT +1/4 1)
xXe — — (7" 4cosh” 70 ) — — - +— |-
P (ﬁ o/ { 2 * ) 2m [cosh2 7\ sinh?®  cosh?® 4

A +1/4
_ ALl }ds) (A3)
sinh” 7

1
where A2 = 1 —2may E/h%. The successive path integrations are of the modified
Poschl-Teller type. Therefore the solution can be written as follows:

K@",&',¢",957) = [[db [ pul 0@l @)

x \I/ék_'_,ik) (%//)\Ij](j)\+7ik) * (7_/) e—ith2/2m (A4)

with the energy spectrum

2
B,= " <p2+1), (A5)

~ 2ma_ 4
and we can reinsert tanh7 — cos . The difference of the energy spectra in

degenerate elliptic and elliptic coordinates (interchanging of a4 and a_) can be
removed by a shift of the coordinates ¢ and ¢ by /2, respectively.

B. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v = 2)

We start by considering the metric in degenerate elliptic coordinates (y = 2):

1 a a_
ds® = = +r 4 do? + dg?). B.1
° <smh2 25 T amtag ) @A) (B.1)

We formulate the path integral in the usual way. We scale both variables by the
factor 2 and perform the space-time transformation with the coordinate transfor-
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1
mation cos ¢ = tanh 7 yielding (A\? = 1~ 2may E/h?):

B(t")=a" F()=5
K@@' &, ¢ 3 T) =~ Dis(t) Do) — 4
@@, T) = @ PO et 525 )"
sinh“@ sin* @
B(t)=ar B(t)=¢"
T dE
o~ iET/h

— 00

T
m a a_ < L
o [2_/<~7+~+~T><“’2“02)dt1 -/
0

o0 . h2
x/ds” exp |2 (a B — —— )" | K(&",&,7",7;s") (B2)
h 8m

F(s")=F" B(s")=0"
K@", o' 7,75 = D7(s) Do(s) cosh 7x
#(0)=+" @(0)=a"
X exp i’/{Q(Tiz—i-cosmﬁfﬂ)— - 2~<>\2+21/~4+1>} ds p =
h ) 2 2m cosh” 7 \ cosh“@w 4
dk k sinh 7k

= (cosh 7 cosh 7/)~1/2 / X
( ) g J cosh? A + sinh? 7k

X Pg\“_lm(:ﬁ: tanhw“)PZ_}flm(:ﬂ: tanh @) x
d inh
D
= cosh® wk + sinh” 7mp

(+tanh 7/)P 7, , (£ tanh 7) e~ "TP/2m (B3

ip
X P10

Therefore we obtain the wave functions and the energy spectrum, respectively,

1/2

oo 1 k sinh 7k p sinh 7p

\IjkW(T?w) = = 2 ) 2 ) X
v2cosh 7 \ cosh” mA 4 sinh” 7k cosh® 7k + sinh” 7p

X P p(£tanh w) P, ,(+tanh 7) (B.4)

K2 5 1 . s -
+ — |, and we can reinsert tanh 7 — cos .

dE, =
and Ep 2ma_ 4
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C. SUPERINTEGRABLE POTENTIALS ON E(2,C)

In this appendix we shortly discuss the path integral representation of su-
perintegrable potentials on the two-dimensional complex Euclidean plane. A
thorough path integral discussion on the real two-dimensional complex Euclidean
plane has been done in [17], and therefore these solutions will not be repeated
here, only some new due to the appearance of three more potentials Vs-V7. In
Table 6 we list the seven coordinate systems on the complex plane F(2,C).
As usual Py = —ihd, and P» = —ihd, denote the momentum operators, and
M = yP, — zP, is the angular momentum. The potentials now read as fol-
lows [27,34-36]:

B
Vs = 5(96 —iy) Cartesian
Semihyperbolic
Light Cone
@
Vo = -—F—— Parabolic
2v/x — 1y . (C.1)
Semihyperbolic
Light Cone
1 22442 Jé] ) )
Vo= Sl = + — +y(z° + Polar
T2 (x+iy)*  (z+1iy)? i y)| Polar
Hyperbolic

In the underlined cases we give a (formal) path integral representation.
The Potential V5. For the potential V5 the corresponding Lagrangian has

the form

L= %(ﬂ +9?) — g(aj —1y). (C.2)

Thus, we identify two linear potentials [13,45]
K(VE,)(:E//’ x/’ y//7 y/; T) _

I(t”):x” y(t”):y” n

BT
- T('r/ +z — iy/ _ iy”))} 7 (C.3)
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Table 6. Coordinate systems on the complex plane E(2,C)

Coordinate system Integrals of motion Coordinates
1. Cartesian, I=7p? T,y
(z,y €R)
2. Polar I=m? T = 0 Cos
(0> 0,9 €0,m)) r=gsin g
3. Light cone I= (P +iP)? T=x—1y
(z,y €R) g=x+1y
4. Elliptic I=M?—a?P} z = coshwcosa
(w>0,a€0,2m))|a #0 y = sinhw sin «
5. Parabolic I={M,P} z= %(52 —n%)
(&,n>0) y=¢&n

6. Hyperbolic

I=M?*+ (P +iP,)?

_ u2—|—u2v2—|—vz

2uv
(u,v > 0) y = ZW
7. Semihyperbolic I ={M,Pi+iP:}+(Pi—iP,)? |z = %(w—z)z—i—i(w—i—z)
(w, 2 € R) y = —%(w—z)Q—i(w—kz)

Am 4/3 )
= <%> /dEe”ET/h/d)\x
R R
2B+ X (mB\' 2B XY (mB\Y
k h? k h?
(2B =)\ (mB\"? (1, 2B=)\\(mB\'’
YTk 12 "\Y 2 12

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant.

For V5 in the semihyperbolic coordinates we obtain for the corresponding
Lagrangian (v = dw/dt)

x Ai Ai

X

x Al Ai

, (C4)

—(w — 2)(w? — 2?) — g(w +2)+E, (C.5)



1070 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

which gives after a time transformation (w = dw/ds, 2 = dz/ds and dt =
(w — z)ds) a transformed Lagrangian

Lo =T~ )~ D —2) + Blw - 2). (©6)

Therefore the potential vs has been transformed into the problem of a shifted
harmonic oscillator, whose solution is well known. In order to determine the path
integral solution we consider the Green function of the harmonic oscillator [22],
use the convolution formula for the kernel in terms of a product of two Green
functions

K(Vs)(w//7w/7Z//’Z/;T) _ / d_E e~ iET/h
2mh
X /ds”Kw(u)H7w/;Sl/) . KZ(ZI/7 Z/;s//) —
0
T dE _,ppy B
= / —e_zET/h—,/dSGw(E;w",w';—E)GZ(E;Z”,Z';E), (C.7)
27h 271

and obtain therefore
w(t//):wll
KV (" ', 2", 2, T) = / Dw(t)x
w(t)=w’

Z(t”):Z” "

) B
x Dz (t) exp 1/ {E(w—z)(w2—z2)——(w+z)}dt -
h 2 2
z(t")==z' t
1 7 m |/m 1 E+A
= E = ==~
A2 /d /d)\wh?’ ' B (2 hw )X
2 E 2 E
XD%+%\[ ﬁva<w>—€>] D7%+% [— ﬁ\/mB<w<—z> X
2 E 2 E
XD;+%\[ ﬁva<Z>—€>‘| D7%+% [— ﬁva<Z<—€> )
(C.8)

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant. The Green function may be evaluated in terms of even and odd parabolic

cylinder functions B (z) and ES" (2), e.g., [14,17,22,41], which is omitted here.
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The Potential V5. Let us consider the two Lagrangians of the potential Vg
expressed in parabolic and semihyperbolic coordinates, respectively,

m 9, .

Lp =5 E+n)E +i )+¢50¢€2+ B, (C.9)
_E . .2 22 \/5&
= 2(u} z)(w” —2%) +1 w—z+E (C.10)

which gives after a time transformation (¢ = d¢/ds, 7 = dn/ds and dt =
(€2 +n?)ds in parabolic coordinates; W = dw/ds, ¢ = dz/ds and dt = (w — z)ds
in semihyperbolic coordinates) the transformed Lagrangians

Lp— §<$2+ﬁ2>+ﬂa<s—m>+<s2 +1%), (C.11)
_ %(fﬁ — ) +iV2a+ BEw-—2). (C.12)

In parabolic coordinates we have a shifted harmonic oscillator and in semihyper-
bolic coordinates a linear potential plus a constant. The solution is consequently
almost identical to the corresponding solutions for the potential V5 with appropri-
ate replacement of the coupling constants. See also [14,17,22,41] for more details.

The Potential V7. Let us consider the last potential V7. In polar coordinates
we have the effective Lagrangian (note the additional h2-potential [22])

m, .o 2.9 2 h? —4igp —2i 1
i — — -2 Y ——. 1
L 5 (0% + 0°¢° — w?) 53 (ae Be 1 (C.13)

In the variable ¢ we have a complex periodic Morse potential, the same kind of
potentials we have encountered on Dyyr for V3 in polar coordinates. We identify
a = 4c? and 3 = cy/c;. Furthermore we see that the remaining path integral in
the variable p is just a radial harmonic oscillator path integral. Putting everything
together yields

Q(t”):gll t//):
K(V7) "ol o T = D
(Q 9 Q 790 7%0 ) ) - Q

o(t)=e' P(t)=¢’

T
) h2 —4ip —2ip 1
X exp 7 Q + 0% —w?0?) — Smg? ae —20e ~1 dt p =
0

_ Z(I)(Cl,cz 1 @(61,62) ((pl) mw

enip (P) Ppenipy 1 (9) 3 o
e ) ) mwg/gl/
X exp {— %(9/ +¢"") cot ‘“‘JT} Toz+y (m (G
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with the well-known expansion by means of the Hille-Hardy formula in terms of
Laguerre polynomials for p. We leave the result as it stands.

D. SUPERINTEGRABLE POTENTIALS ON S(2,C)

Let us shortly enumerate the superintegrable potentials on the complex sphere.
On the real two-dimensional sphere there are two superintegrable potentials, a
feature which has been already investigated, e.g., [18]. On the complex two-
dimensional sphere there are four more potentials which are listed in (D.4) [27,
30,34]. In the underlined cases we give a path integral representation. These
representations remain, however, on a formal level, because the complex sphere
is an abstract space and serves just as a tool to find the relevant potentials. Going
to the corresponding real spaces, i.e., the sphere and the hyperboloid, respectively,

Table 7. Coordinate systems on the complex sphere S(2,C)

Coordinate system

Integrals of motion

Coordinates

1. Spherical
(¥ €[0,7),¢ €[0,27)

L=J3

s1 = sin ¥ cos @
so = sin ¥ sin ¢, s3 = cos ¥

2. Elliptic

L=J-124rJ3

$2 (ru—1)(rv—1)

1—r
53 = rw—He-1) 1), 2% = ruv
1—r
. S i y? -1
3. Horospherical L= (J1+1iJ2) s1=g v+
v
. 2
_ & y -1 .
8272(1}4— ” ),83723]/’1)
1
4. D t L= (J1 +ii)? — 2J2 g — &
egenerate (J1 4+ ij2)* — c*J5 | s1+is3 cosh T cosh 72
. . cosh7e  coshm
Elliptic 1 S0 — 1S3 = —
cosh 7 cosh 7
_ 1
cosh 71 cosh 1
(11,2 € R) s3 = tanh 71 tanh 72
5. Degenerate L=Js(Ji —iJ)? s1+ise = fi
n
1 (€2 — )2
Elliptic 2 o1 4isy — L& )
4 £&n
1 2 + 2
(€n>0) sy = 28T

2 &n
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requires the real representation of the coordinate system in question, including
the corresponding path integral representation.

In Table 7 we list the five coordinate systems on the complex sphere S(2,C)
according to [27,30,34]. Let us note that we can also use v = ie i as a
parameterization in the horospherical system (z,y € R). As usual, Ji,Jo,J — 3
are the angular momentum operators in three dimensions.

The Potential V5. Let us start superintegrable potential on the two-dimensio-
nal complex sphere. It has the form

« I6] (81 + 189

Va(s) = = + 4 2 (D.1)
3(s) 53 (s1—1is2)? 7(81 —is9)3

a 6721‘@ ef4itp

= — D.2

cos? 192 + ﬁsinQ 9 Wsin2 9’ 02
—2ix & —4dix

=e 2 <7y2+?+ﬂ>—7e diz (D.3)

and we have inserted spherical and horospherical coordinates on the (complex)
sphere, respectively,

«o 3 1 + 189

Va(s) = = Spherical
3(s) s3 + (s1 —is2)? (s1 —isg)3 >prered
Horospherical
Degenerate
elliptic I
o Bss
V =
1(s) (51 —i52)? + T e +
1y .
+ Spherical
V(s1+is2)(s1 —is2)?
Degenerate
elliptic II
2 (D.4)
Vs(s) = ary etz Elliptic
V(22 — 24)2 — 4c22
Blar — o )(zrz +20) | iz
23/ (P2 — 24)% — 4c2z 23
1
(zi =51 +isg, 23 =4/1 —s7—53, ? = 1—3) Degenerate
elliptic I
! 03 1 — 452 .
Ve(s) = Horospherical
5(s) (51— i59)? + (x —iy)® +7(51 Tsg)l  —roSPENCd
Degenerate
elliptic 11
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This potential has now in spherical coordinates in the ¢ dependence the same
structure as the potential V7 on the complex plane, thus the solution is the same
(c1,2 in the complex Morse potential appropriately). In the 1 dependence we
obtain after the separation of ¢ a Pdschl-Teller potential. In comparison to V7

with the complex plane, we must therefore replace the wave functions in p in terms
. . . &, 4+23+ 3
of Laguerre polynomials by the Poschl-Teller wave functions @T(La ! 2) (9)

(62 = 2ma/R* + Z) and we have done. Summarizing we obtain

ﬂ(tll):’ﬁll t”):
VS)(19//,’I9/,QO//,QO/;T) _ / / ) sin ¥

I(t =0 o(t')

tll
i meg2, o 29:2y X 1 —2ip . —dip
xexp{h/ lQ (9% +sin® ) - Sin219<ﬂe e 4)]dt}

t/
(l+2§—j+%,a)

= (s sin )Y B ()0l () (9%
n=0 =0
22414 i h? 3\2
( v )(ﬁ’)exp[—%%<2n+l+22—j+§) T} (D.5)

In horospherical coordinates we have in the variable y a radial harmonic oscillator
1
(set v = mw?/2, G* = 2ma/h* + Z) and in the same way (c; 2 in the complex

Morse potential appropriately)

I(t//):I// y(t,,):yll
K(VS)(aj",x/, v,y T) = / Dax(t) / Dy(t) %" x

x(t)==z' y()=y’

t//
7 m ; ; « ;
% exp{ﬁ/ [E(i+e2zry2) _e—2zr <7y2 + E +ﬁ> _ve—4z:c‘| dt} _

t

—ilz +z" RHO,& RHO,& c1,C ci,c
= o7t ) NN GO (g RO () pled) (MBI (o)
n=0 [=0
X exp | — 1—(n+20—2+1) 7|, (D6
h2m c1

and the \IIZ(RHO’&) (y) are the wave functions of the radial harmonic oscillator [22].
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The Potential V5. As the last potential we consider V5. We have (set
v = —mw?/8)
a Bss3 1 — 4s2

Vo(s) = (s1 —i82)? + (x —iy)3 + 7(51 —i89)% (D.7)

. 2 2
—imm —2ix —4dix
=e 2 5w ( +m—g2> —e? <a+2£7>—7e4 , (D)

and we have inserted horospherical coordinates. This potential is, in the variable
y, a shifted harmonic oscillator, however, the shift is a complex one. In the
variable  we have the complex periodic Morse potential. Again, we encounter a
complex potential, this time a P7 -symmetric harmonic oscillator with spectrum
E; = hw(l+1/2), e.g., [49]. Consequently, we have in a similar way as before
(1,2 in the complex Morse potential appropriately, set xk = i3/mw?):

a:(t”):z” y(tll):yll

K(VG)(x”, x/, y//’ y/; T) = / Da(t) / Dy(t) o 21T 5

2(t)=a’ Y=y’
t//
1
X exp {E /

. 2
m. .o 2iz 2y [T 2 i
2(33 +e*7y%) (2 <y+mw2>+
t/

5> - -
+ (Oé + 2mw2> e—2zr _ ,Ye—4z:c dt —

—i(x +a2” HO HO c1,c c1,c
DR DE A O Z@[C;AP” PG ()
=0

)
X €xp [— 1h—(n+ 22 4 1)2T}, (D.9)
h2m c1
and the \I/l(HO’F”)(y) are the wave functions of the shifted harmonic oscillator [22].
The representations of the potentials V; and V5 in the separating coordinate sys-
tems lead to intractable powers in the various coordinates, respectively, powers of
cosh 7y 9, i.e., highly anharmonic terms which cannot be treated. The same holds
for V3 and Vj in the remaining separating coordinate systems. This concludes the
discussion.
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This is the second paper on the path-integral approach of superintegrable systems on Darboux
spaces, spaces of nonconstant curvature. We analyze in the spaces Dyyr and Dy five and, respec-
tively, four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate
the path integral in most of the separating coordinate systems, leading to expressions for the Green
functions, the discrete and continuous wave functions, and the discrete energy-spectra. In some cases,
however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order
polynomial equation. We also show that the free motion in Darboux space of type III can also contain
bound states, provided the boundary conditions are appropriate. We can state the energy spectrum
and the wave functions, respectively.

DT0 BTOp 5 CT Thd, IOCBAIIECHH s NPUOIIKEHNAI0 WHTETp JIOB MO IMyTSM JUIS CyepHHTErpupye-
MBIX CHCTEM H mpocTp HCTB X [l pOy, mpocTp HCTB X HepeMeHHOI KpuBu3Hbl. H mpocTp HCTB X
I p6y Diyr u Dry TpOBOOMTCS H JIM3 IATH H, COOTBETCTBEHHO, UYETHIPEX CYNEpPUHTErPUPYEMbIX
MOTEHIU JIOB, KOTOpbIe BliepBble ObUIN HpencT BieHbl K maHuHCOM M Ap. H M yA JIOCh BBIUHCIHTDH
HHTErp JI IO MyTSIM B H HOoJiee p 3eMIOIXC CHCTeM X KOOPAHH T, YTO HPHBOAUT K BBIP KEHUIM
1 yHKimil pHH , BOTHOBBIM (pyHKLHSAM AMCKPETHOTO M HENpPEpPHIBHOIO CHEKTPOB M JHCKPETHOMY
creKkTpy ®Hepruil. OIH KO B HEKOTODBIX CIy4 sIX IMCKPETHBIH CIIEKTp YCT HOBUTbH He yI eTcs, T K K K
OH oIpefernsdeTcs IOIMHOMH JIbHBIM yp BHeHHeM Ooliee BhICOKOro mopsuk . ITok 3 Ho, 4To cBoGOx-
Hoe aBikeHue B mpoctp Here [I pOy Il Tm T KXe MOXET COepX Thb CBS3 HHBIC COCTOSHHUS IPU
OIIpefieNIeHHBIX TP HUYHBIX YcIoBHAX. COOTBETCTBEHHO, JUIS HHX MOXKHO YCT HOBHUTBH CHEKTp DHEpruid
U BOJIHOBBIE (DYHKIIMH.

PACS: 02.30.Jr, 45.05.4x, 02.40.-k

1. INTRODUCTION

In the previous publication [21] we have started to study superintegrable
systems on spaces of nonconstant curvature, i.e., Darboux spaces. These spaces
were introduced by Kalnins et al. [26,28]. In the first paper we have studied

*E-mail: pogosyan@theor.jinr.ru
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the Darboux spaces D and Drj, and we continue our study by considering
the two other Darboux spaces Diyr and Dry with five and, respectively, four
superintegrable potentials as determined in [26].

We find a rich structure of the spectrum of these potentials yielding bound
and continuous states. As it turns out, already the free motion on Dy can give
a positive continuous and an infinite negative discrete spectrum. This situation is
similar to that for the quantum motion on the SU(1, 1) manifold [2], respectively,
on the SU(2,2) [6] and SO(2,2) manifold [30].

The notion of superintegrable systems was introduced by Winternitz and
co-workers in [9,47], Wojciechowski [48], and was developed further later on
also by Evans [7]. Superintegrable potentials have the property of finding addi-
tional constants of motion. In two dimensions one has in total three functional
independent constants of motion and in three dimensions one has four (mini-
mal superintegrable) and five (maximal superintegrable) functional independent
constants of motion. Well-known examples are the Coulomb potential with its
Lenz—Runge vector and the harmonic oscillator with its quadrupole moment.
Another property of superintegrable potentials is that usually the corresponding
equations in classical and quantum mechanics separate in more than one coordi-
nate system.

Similar studies of the quantum motion on spaces with and without curva-
ture have been investigated in [17] for two- and three-dimensional flat space,
in [18] for the two- and three-dimensional sphere, and in [19] and [20] for
the two- and three-dimensional hyperboloid. In all these cases the path in-
tegral method [8, 22, 39, 45] was applied to find the bound and continuous
states, i.e., wave functions and the explicit form of the spectrum. We have
not considered complexified spaces as in [37] for the two-dimensional com-
plex sphere or in [34-36] for the two-dimensional complex Euclidean space. In
particular, in [34] coordinate systems on the two-dimensional complex sphere
and corresponding superintegrable potentials, and in [36] coordinate systems
on the two-dimensional complex plane and corresponding superintegrable po-
tentials were discussed. The goal of [34,36] was to extend the notion of
superintegrable potentials of real spaces to the corresponding complexified
spaces. The findings were that there are, in addition to the four coordinate
systems on the real two-dimensional Euclidean plane, three more coordi-
nate systems and also three more superintegrable potentials. Similarly, in ad-
dition to the two coordinate systems on the real two-dimensional sphere there
are three more coordinate systems on the complex sphere and four more su-
perintegrable potentials. This is not surprising because the complex plane con-
tains not only the Euclidean plane but also the pseudo-Euclidean plane
(10 coordinate systems [13,23,24]), and the complex sphere contains not only
the real sphere but also the two-dimensional hyperboloid (9 coordinate sys-
tems [13,24,29,43]).
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However, a complexified space is an abstract object. In order to obtain the
actual spectrum of a given potential formulated in a coordinate system one has
to consider a real version of the complexified space, e.g., the complex sphere:
One has to determine whether one considers the potential on the real sphere or
on the real hyperboloid. The complexification serves only as a tool for a unified
investigation.

Further studies on superintegrability in spaces with constant curvature are
due to [31,33] (hyperboloid with new potentials), [32] (sphere and Euclidean
space), [37] and [38] with a general theory about the connection of separation
in nonsubgroup coordinate systems of superintegrable systems and quasi-exactly-
solvable problems [46].

An extension of the study of path integration on spaces of constant curvature
is the investigation of path integral formulations in spaces of nonconstant cur-
vature. Kalnins et al. [26,28] denoted four types of two-dimensional spaces of
nonconstant curvature, labeled by D;—Drvy, which are called Darboux spaces [40].
In terms of the infinitesimal distance they are described by (the coordinates (u, v)
will be called the (u,v) system; the (z,y) system in turn can be called light-cone
coordinates):

(1) ds* = (z +y)dzdy =

= 2u(du® + dv?) (z=u+iv,y =u—iv), (1.1)
i ds2=(L+b)da¢d =
(IT) T y

_bu2—a

1 1
2 2 _ 2 ; — (v —i
3 (du® + dv?) (x— 2(v+zu),y 2(v zu)), (1.2)
(III) ds* = (a e~ (THv)/2 4 be " Y)dxdy =
=e (b4 ae")(du® + dv?) (z=u—iv,y =u+iv), (1.3)

a(e(m—y)/2 + e(y—ﬂﬁ)/2) +b

V) ds® = —
(V) (elw=v)/2 — e(y—z)/z)2

dxdy =

:<a—§+ — )(du2+du2) (€ =utivy=u—iv), (14

sinu  cos?u

where a and b are additional (real) parameters (a+ = (a =+ 2b)/4). These sur-
faces are also called surfaces of revolution [5,25,26]. Kalnins et al. [26, 28]
studied not only the solution of the free motion, but also placed emphasis on the
superintegrable systems in these spaces.
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The Gaussian curvature in a space with metric ds? = g(u,v)(du? + dv?) is
given by (g = det g(u,v))

1/0* &

Equation (1.5) will be used to discuss shortly the curvature properties of the
Darboux spaces, including their limiting cases of constant curvature.

In the following sections we discuss superintegrable potentials in each of
the two Darboux spaces Diyip and Diyy, respectively. We set up the classical
Lagrangian and Hamiltonian, the quantum operator, and formulate and solve (if
possible) the corresponding path integral. We also discuss some of the limiting
cases of the Darboux spaces, i.e., where we obtain a space of constant (zero
or negative) curvature. For the Darboux space Dryr the zero-curvature case R?
emerges. In Dry we find a hyperboloid.

In the last section we summarize our results, where we also include the
findings of our previous paper which dealt with superintegrable potentials on Dj
and DH.

In the first two appendices we add some additional material about the path
integral evaluation of the free motion in Dyy in degenerate elliptic coordinates. In
the third appendix we summarize briefly the path integral investigation of some
remaining superintegrable potentials on the two-dimensional Euclidean plane.
Finally, in the fourth appendix an example of a potential on the two-dimensional
complex sphere will be given.

2. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dy

The coordinate systems to be considered in the Darboux space Dy are as
follows:

((u,v) system) z=v+iu, y=0v—iu, (2.1)
(Polar:) & =pcosp, n=opsing (0>0,¢¢€]0,27]), (2.2)

(Parabolic:) ¢ = 2e %2 cos g, n= 2e""/?gin g,

4 . 2n
w=1In—— v=arcsin —2_ (£ €R,n>0), (2.3
(Elliptic:) ¢ = dcosh wcos ¢, n = dsinh wsin ¢ (w > 0, p€[—m, 7]),

2.4)

(Hyperbolic:) € = 2%4—\/;3, nzi(i/j% - W) (w,v>0). (2.5)
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For the line element we get (we also display where the metric is rescaled in such
a way that we set a = b =1 [26]):

=e (b4 ae")(du® + dv?) = (e + e ") (du® + dv?), (2.6)
(Polar:) = (a + -0 ) (do? + 0*dy*)= <1+392> (do® + 0%*dy?), (2.7)
(Parabolic:) ( (€2 +1n )) (de? +dn?) =

= (1 + i(sz +n2)) (A€ +dn*),  (238)

b
(Elliptic:) = (a + ZdQ(sinh2 w + cos” w)) d*x

x (sinh? w + sin? @) (dw? + dp?), (2.9)
b dp?  dv?
(Hyperbolic:) = (a + §(M - 1/)) (u+v) (N—MQ - V—V2> . (2.10)
For the Gaussian curvature we find
—3u
G- abe : @2.11)

(be=2u 4+ ge~u)4

For, e.g., a = 1,b = 0 we recover the two-dimensional flat space with the
corresponding coordinate systems. To assure the positive definiteness of the
metric (1.3), we can require a,b > 0. We introduce the following constants of
motion on Drpr:

1 2u 2 1
1=Zach SV - P2 — 4%00311']754-56"8111@'%%, (2.12)
1 e 1 2 1
Xy = g sinypl - Zea(iibtu)smmi + 5" cosv-pupy, (213)
K = p,. (2.14)

These operators satisfy the Poisson relations
(K, X1} =X, {K,Xo}=X1, (X1, Xe}=KHy, (219
and the functional relation

X2+ X2 —H2 —HoK?=0. (2.16)
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Table 1. Constants of motion and limiting cases of coordinate systems on Dir

. Constant Es
Metric of motion D (a=1,b=0)
e 2%(b+ ae)(du® + dv?) K? (u,v) system Cartesian
(a + e > (do® + 0°dp? X2 Polar Polar
( ~(&+n )) (d€* + dn?) X1 Parabolic Parabolic
(a + —d*(sinh® w + cos gp)) d*x
x (sinh® w + sin® p)(dw® + dp?) | d*X:1 +2K?|  Elliptic Elliptic

The operators K, X1, X2 can be used to characterize the separating coordinate
systems on Dry, as indicated in Table 1. The corresponding quantum operators

are given by

1 [ U u
X, =—¢" © COSU~83— < cosv - 02+
la+bev a+be
+(251nv~8u8v+cosv~8u—|—sinv~8v)], 2.17)
1 [ AU o3 u
Xy = sou| SISV 5o CTHZ 2
la+bev a+bet
— (2cosv - 0,0, —sinv~8u+cosv-3v)}, (2.18)
K =0, (2.19)
These operators satisfy the commutation relations
(K, X:] =X, [K,Xs]=X:, [X1,Xs]=KHy, (2.20)
and the relation
~ ~ ~ N 1~
X{+ X3 - Hi — HoK? + 1o =0. (2.21)

(Let us note that by H, the classical Hamiltonian without the 1 /2m factor is

meant.
algebra is simpler.)

Keeping this factor is no problem, however, in the present form the
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We now state the superintegrable potentials on Dryy:
2k e " cos v/2 4 2ko e Usinv/2 + k3

Vi(u,v) = , (2.22)
a+ 1 e v
Bk —1/4 k2—1/4
Va(u,0) = ——— |—a et (A 1 , 2.23
2(u,v) a+bed [ ate 8m(cos2v/2 + COSQ’U/2>:| (2.23)
1 K2 ) .
Valu,v) = ——r [—a + et (cf e — 26, e_m”ﬂ , (2.24)

Table 2. Separation of variables for the superintegrable potentials on Dir

Separating
Potential Constants of motion coordinate
system
2k16(2 + n?) — 2kan(2 + €2) + ks (n® — €2)
R = X1 + Parabolic
Vi 4a +b(€2 +n?)
kin(n® — €2 +4) + ka£(€2 — 0 +4) — 22k
Ry = X 4 (n” — & +4) + k2£(§7 —m” +4) — 2aksén Translated
da +b(&% +1?)
Parabolic
(&m—énto)
R = X1+
Rn?/m((k} —1/9)n*(n* +2) — (k3 — 1/4)§%(€* +2)) — a(n” — £7)
Voo |+ (u,v) system
da +b(&% +1?) e
h2 2 2
Ro= K24 2 (62 — 1/ 4+ (2 — 1/0)%) Polar
8m 52 7]2
Parabolic
Can?? 4+ 2y — 2e0(1 _
Ri— Xy 4+ iXs — ap‘ve + cipv ca(l4+p—v) Polar
Vs (a+b/2(p—v))(p+v)
_ N2
Ro = K? — c? rzv + co u Hyperbolic
nZ n2v?
Ri = X1 +iXs — K?—
Va pv(dy(v —2) + da(p + 2) + mw?(v — p + pv)) .
— Hyperbolic
(a+b/2(p—v))(n+v) -
Ry = X1 —iXo—
L (p ) (= )t daw) =P 2 ) |
4(a+b/2(p —v))(u+v)
h202 n? — €2
Ri =X ‘o — , ) syst
1 1+ Sm o T b/ 1) (u,v) system
F202
Ve [Ra=X) - 0 o Polar
4m  a+b/4(&% +n?)
Rs = K =pyv Parabolic
Elliptic

Hyperbolic
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1 m
Va(p,v) = ; [dm + oy + SW(p® =%, (2.29)
(a+ §<u—u>) (u+v)
1 h?v?

In Table 2 we list the properties of these potentials on Dyyr, where the coordi-
nate systems, where an explicit path integral solution is possible, are underlined.
We see that V5 is a special case, and it has three integrals of motion. We will
threat this case in some more detail as in the other spaces, because on Dy the
free quantum motion can give bound state solutions (provided the constants are
chosen properly). This feature has not been discussed in [14].

2.1. The Superintegrable Potential V; on Dy, We state the potential V; in
the respective coordinate systems

2k1e " cos v/2 + 2kg e " sin v/2 + k3

Vi(u,v) = (2.27)
a+ 1 e "
_ kg #{; kan + k3 ’ (2.28)
a+ 1(52 +1%)
_ k1§~t-kg?7+(k1c—k;26+k;3)7 (2.29)

at S(E+eP + (- c))

and V7 is also separable in translated parabolic coordinates £ — £+ c¢,7 — n—c.
The translated parabolic coordinates just modify the solution of a shifted harmonic
oscillator, and this case we do not discuss separately.

2.1.1. Separation of Vi in Parabolic Coordinates. The classical Lagrangian
and Hamiltonian in parabolic coordinates on Dyyp are given by

) b )
cleémi) =y (o4 3) @+ PN@ P -Vien. @30
H(E, pe,mspe) = %;(pﬁ +pi)+V(En). (2.31)

b
a+7 € +n?
The canonical momenta are given by

h o b h o b
pe="2 S S L (A —

% at 2@ )
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and for the quantum Hamiltonian (product ordering) we find

2 2 2
HZ_%%(%*%) + V(& n), (2.33)
a+ 1(52 +1%) K
1 1 1
= |G 1) FVED). @3

b b
a+ (€ +n%) a+ (€ +n°)

Therefore we obtain for the path integral formulation for V;

£(t")=¢" n(t")=n"
b
ket = [ oo [ooi (ar e )

bia | 2 2 .2 k1§ + kon + ks ] -
<a+1(£ +77)>(£ +n)—(a+%(§2+n2)) dt o =

_ [ dE —iET/h r " i k2 + k3N )
= / —27The /ds exp 7 aF — k3 CT s | X
—00 0

x KW ¢ 0" /s s"), (2.35)

with the time-transformed path integral K (s”) given by

e(s")=¢" n(s
K(Vl)(gl/7£l7n//7n/;sll) _ / Dg(s)
3 n(

//):,’]//
Dn(s)x
£(0)= )=’

0

1"
S

xeond o [5(€@ ) - Fo2@ei)|asp. 20

0

The transformed variables &, 7 are given by £ = & + ki /mw?, 7 = 0 + ko /mw?,
and w? = —bE/2m. Similarly as in [14] we can determine the Green function to
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have the form

GV & 0 E) =

- Joesin e (o5 ) i )
D, _%< v 8mEb2 £>> . (_ v 8mEb2 £<>
XD—;%@(V‘MTEW )D—lm 2";(‘ e ) 237

The~Dl,(z) are parabolic cylinder-functions [10, p. 1064], and the € is defined
by £ = aE — k3 — (k? + k3)/bE — €. On the other hand, we can insert for the
discrete part of the Green function the harmonic oscillator wave functions and
obtain
W) o) [ee] N2
dlslc(g//gﬂ an/;E): Z Z ﬁx
nEgNN

ng=0nn=0
(HO) [ &1\, (HO) [ &1\, (HO) ¢ 11\, (HO) 1,/
X W ()W (E) W, ()W, P (). (2.38)

The wave functions for the harmonic oscillator are given by the well-known form
in terms of Hermite-polynomials [10]

(HO) mw\ 1 \Y? mw mw o
UL (z) = — S H, Sor)exp| - 5w (2.39)

Engn, is determined by the equation

k? + k2 bE
E—ks— —h 1 = 2.40
a 37 o2 (ng +ny +1) “om =0 (2.40)
which is actually an equation of the fourth order in E
bh? 2k
4 2 3\ 3
Engnn + (W(nﬁ + Ny + 1) a )Engnn
kI+k3 K3\ o ki + k3 (k? + k3)?
- (2 ab a2 B eng + 2k = a2b Engnn = a2 0. 24D

We dot not solve this equation. Note that for k; = ky = k3 = 0 a discrete
spectrum emerges for the free motion on Dyyy, a feature which will be discussed
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in more detail in the subsection for V5. For the special case ky = ko = 0 we
obtain the solution (N = ng +n, + 1)

Engnnzl: = - k§ (2.42)

4ma? a  a 4am 2am

BREN? k| 1 \/(bh2N2)2_bk3h2N2

Note that wy,,,,, must be taken on wyen, = \/—bEngn,/2m. The normalization
Npgn,, is determined by the residuum in GV (E). If one fixes the parameters
a and b and the specific surface of revolution, a more detailed investigation can
be performed (special cases, limiting cases, which sign of the square-root gives a
positive definite Hilbert space, etc.). Because we do not fix these parameters, we
keep both signs of the square-root expression (recall that the free motion on Dipy
allows already a discrete spectrum reaching to —oo). ~

Note that for the translated parabolic coordinates, the variables &, 7] are trans-
lated by +c, respectively; and the quantity £, by an additional Ebc?/2.

2.2. The Superintegrable Potential 5 on Dy;. We state the potential V5 in
the respective coordinate systems

2 2 2
Vg(u,v)zil {—a%—e“h—(kl 1/4+k1 1/4)], (2.43)

a+be v 8m \ cos?v/2  cos?v/2
1 n? (k¥ —-1/4 k3—1/4
- — {—a+2 2( L \2/ + %,Q/H, (2.44)
CH_ZQQ me? \ cos? ¢ sin® ¢

2 2 _ 2 _
_ b1 {_th_(/ﬁ 14, K 1/4)]’ (2.45)
2, 2 2m &2 7>
G+Z(§ +17)

{—a%— h? ( k?—1/4 k3—1/4 )]
a+be v 2md? \ cosh® wcos? ¢ sinh?wsin®p /|’
(2.46)

V5 is obviously separable in elliptic coordinates, but the corresponding path inte-
gral is not solvable, so this case will be omitted.

2.2.1. Separation of Vs in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

L(w, 1,0, ) = %b t;ie (0% + 92) — V(u,v), (2.47)
1 e2u 9 9
H(t, pu, v, py) (Pu +p3) + V(u,0). (2.48)

- 2m b + a et
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The canonical momenta are given by

h(d lae ®+2be 2 h o0
k(o 1 D e 2.49
b z(@u 2 ae—“+be—2“> b i Ov (2.49)

and for the quantum Hamiltonian we find

h? 1 2 92
- _%m<au2 9 2) + V(u,v), (2.50)

1

/ 1 N 1
— _— . 2.51
2m \ ae~% 4 be—2u (p“ + p”) ae v 4 be2u +V(w,v) (2.5

Therefore we obtain for the path integral (f(u) = (

ae "+ be2u))

u(tll):u// v(tll):v//
K(Vz)(u//’ W T) = Dul(t) Do(t)(ae ™™ + be 2%)x

u(t)=u’ v(t)=v’

T
X exp (% / {(ae“ +be ") (i 4 v?)—
0

B k2-1/4  k2—1/4
ater 8_m<cos2v/2 * COSQ’U/2> dt | =

[f( / // 1/4 Z(I) ) ( )CI)(k2’k1) (2) %

1
a+be v

u(t’)=u" T
/ Du(t)(ae ™ +be 2") /2 exp (%/{(ae_“+be_2“)u2—
u(t)=u 0
1 B2 T dE
- - “— (20 + 1+ |k k dt | = [ == e iET/h
a+be v ate Sm( 1+ ] + | 2|) } > /27rhe x

— 00

o0 . h2
X /ds” exp [— %8— (204 1+ |k | + |k2|)28//:| Kl(vz)(u”,u’; s"), (2.52)
m
0
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with the time-transformed path integral K;(s”) given by

KZ(VQ) (u//’ u/; S//) _

"
9 s’

/ Du(s) exp %/(%iﬁ—&-EbeQ“ + (aE —a)e” )ds . (2.53)

O =u’ 0

The @%kl’kﬁ(ﬁ) are the wave functions of the Poschl-Teller potential, which are

given by
2 2 2
V(z) = L (O‘ 21/4 B 1/4>’ (2.54)

2m \  sin“zx cos?

IM(a+pB+1+1) 1Y?
@A) (z) = |2 2 +1
(@) [(O‘+ﬂ+ Y Py gy

x (sin2)* T2 (cos z)P 12 PP (cos 22).  (2.55)

Equation (2.53) is a path integral for the Morse potential. Inserting the corre-
sponding solution [22] we obtain

GV (" ' v V' E) —i@kal v pk2:k1) v X
B 2) ! 2

=
1 aF — « m
F(T“T\/‘ﬁ)X

2BE AD(1 4 2X) e(w/+u")/2

T vV—=8mbE _, _ Y vV—=8mbE _,
aEﬁ—a\/i%’)\ 7 e aEﬁ—a\/ ng‘E’ h e .

(2.56)

Inserting the bound state wave functions for the Morse potential gives the bound
state contribution of G(V2)(E)

0 /
G(Vz) . E) (I> (k2,k1) (I)(kz,kl) v
disc (U u' U U ; 1 5 X

ZE FUD @MW), (257)

nl_
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X

2mbE,, aEnﬁl_m\/fzbEm*”*1/2
S )

aF, — a m
><< h \/_QbEnl_2n_1>

r aF, — a _2m o
h bE,,;

WG e (M) . @58)

h

\I,;MP)(H) = N,,; (

1/2

The L%‘*)(z) are Laguerre polynomials [10]. Here, the spectrum E,; is deter-
mined by

bE,,
- 2m
which is a quadratic equation in E,; with solution (N = 2n+ 2]+ |k1| + |k2| + 2)

1 bh? bh? 8aam
Eyi=—|—|—N?-2 j:—N2\/1—
=T 02 [ <2m aa) 2m bh2 N2
and the normalization constants [V,; are determined by the residuum of (2.56).
For large n,l we have

aFE,; —a—h

(2n + 20 + | k1| + | k2| + 2), (2.59)

, (2.60)

h
(2n 4 21 + [k | + k2| + 2)2, (2.61)

2
B o =2
m

ma2

2bh2(2n 4 20 + |k | + |ka| + 2)2°

By ~ (2.62)
with E,,;+ showing a Coulomb-like behavior.

2.2.2. Separation of Vo in Polar Coordinates. In the coordinates (o, ) the
classical Lagrangian and Hamiltonian take on the form

. . m b . )
L(0,0,0,9) = 5 (a -+ 192> (0% + 0*¢*) — V(0. ¢), (2.63)
1 1 , 1,
H(0, o> 5 Pyp) = o o\ Pet 3P | F Ve, ¢). (2.64)
a—+ —92 e

4
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The canonical momenta are given by

h( 0 bo 1 h 0
_ - = - 2.65
Pe i<89+4a+b92+29)’ Py =73 (2.63)
Therefore the quantum Hamiltonian is given by

R 1 2 10 1 9
‘%m@?ﬁm*%—sﬁ)”(“@‘ (260

4
1 1 , 1,
b (pg 2@)
2m adt 2o 0

49

b\ " R
- - S 2.
+V(o, ) <a+ 4g> g (2.67)

and in this case we have an additional quantum potential oc A2. This gives for

the path integral (f(g) =a+ 292 = \/g)
o(t")=e" e(t")=¢"
KM (", d,¢", ¢ T) Do(t) Di(t) f(0)ox
o(t")=¢' e(t)=¢’
T
) m 9 9 .9 1
X exp —/ —J(o)(o” + o — —X
<ho SO + )~
R (k}—-1/4 k3—-1/4 1
X —a+2mg2< o + sin _Z> dt | =
. . o(t")=e"
_ (k?z,k?l) 1 (k?z,k?l) / 1/2
= P o Dol(t o)X
l; C ) [(¢/0")2f (&) f")]M/* 07
o(t")=¢’
f 1 h? A% —1/4
i m . -
XeXp{ﬁ/[Ef(Q)Q2—m<—a+2m 92 )]dt}:
0

1 X o (kak ko k
= Q/Q// Zq)l( ’ 1)(90//)(1)[( ’ 1)(<p/)><
v 1=0

E prm [ '
X / d—e_lET/h/ds”exp z(aE—a)s” Kl(v2)(g",gl;s”), (2.68)
2mh h
0

— 00
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with the time-transformed path integral K;(s”) given by (A = 21+ |kq|+|k2|+1))

o(s")=¢"
K= [ Do)

0(0)=¢

P (mp Bb BN\
X exp h/<29+4g o &2 ds| =

0

mw+/¢' 0" mw ;2 12 7 mwe'o"
= ihemws P T an @ Ot | DG ) G0

Performing the s” integration yields the Green function

G2 (g", o " ¢ E) = 3 ) ()@ M) ()
=0

1 1
Fiz({1+XA—=(aF —a)\/—2m/bE
2m 2 h M o
- aE—o 2m A

Eb 1+ M) Vo' o"” 57 VT bE

m bE m bE 4
X(E ‘%&) Magze 28 (E\/_%Q>>' @70

Inserting the expansion into Laguerre polynomial yields the discrete contribution
of the Green function

1 Ko,k Ko,k
Gl (€0 ¢ &5 B) =~ 3 i ()0 (o)
1=0
= N2l (RHO,N) ( 11\; (RHO, ) [/
) gt @), 27D
ne0 nl

R? A\2—-1/4
@uﬂ__i/

The wave functions for the radial harmonic oscillator V' (r) = 5

have the form [22,44]

2 2m r

\I/glRHO,)\) (7’) —

2m n! mw \? mw o mw
SR ot S LAY (i _ (2,2
\/ 5 F(n—&—)\—&—l)r( " 7") exp( on " )Ln ( T ) (2.72)
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The spectrum F,,; is determined by

bE,
aFEn —a—hy/— ml (2n + 20 + k1| + |ka2| +2), (2.73)
L . . (RHO,)) .
which is the same as in (2.60). In the wave functions ¥y, (o) the quantity

w has to be taken on w = /—bFE,,;/2m, and the normalization constants N,,; are
determined by the residuum of (2.69).

2.2.3. Separation of Vo in Parabolic Coordinates. We insert the potential V5
b
into the path integral and obtain (f =a + 1(52 +1°))

g(t")=¢" n(t")=n"
KO, ¢ s T) = / DE(t) Dn(t) (€. m) %
&(t)=¢’ n(t")=n’
T

P [{sene -

0

2 2 _ 2 _
o (SR ) -

X exp

1
f(&mn)

o0

_ / dE e_iET/h/dS// exp 1(&E—O¢)S” K(VQ)(g//’gl’77//’77/;8//)’ (2.74)
2mh h
0

with the time-transformed path integral K (V2)(s") given by (w? = —bE/2m)
£(s")=¢" n(s")=

KW ¢ " 5 8") = / D¢(s) /
3 n(0)=

£(0)=
cepd 1 [ 2@+ i) - e+ )
0

”7//
Dn(s)x

0)=n’

1h sin ws”

- h_2<k% ~1/4 K- 1/4>]d8 mw/TE

om £2 2 =

mw 12 "2 " mwg'¢" mwv/n'n"
- t I
e { ih sin ws” (€7 + ¢ cot ws )} F2 (ih sin ws” ) ih sin ws”
mw 9 9 mwn'n"’
X exp [‘ s w1 T ot ”S'”] T (m - @79
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Performing the s” integration yields the Green function (£ = aE — a — &)

{ (1 + k1] 5\/—2m/bE/h)]
aWV2) (¢ _Zr
(€850, B) /dgv bE (1 + [ki|)VEE" )

m bE
WeyZmmpssanimiz \ 7\ "2m & ) %

M m bE
Ey/—2m/bE/2hk1|/2 \ ] _%& X

5T B + |ka| — 5\/—2m/bE/h}
bE RU(1 + [ka|)v/n'n”

[ bE
\/mmh\kglm (E - m77>>><
m bE o
\/T/I)E/%sz(h\/ —mﬁ<>~ (2.76)

On the other hand, we insert the expansion of the bound states of the radial
harmonic oscillator and obtain for the discrete spectrum contribution of the Green
function:

G(VZ)(SN,S/,W”,W; E Z Z nE "_n =

ng= =0 'an—O nE n

X \Ing];{Hov‘kl

) (¢ \qy (RHO, | k2]) [ ¢/\\qy (RHO, | k2|) (o, \y (RHO, | k1]) [,/
(€)W V(€)W Y () Wy RV ('), (2.77)

where the energy Ey ., is determined by the equation

aBpg n, — _2m
h bEne ny’

2n§+2nn+\k1\+\k2\+2= (2.78)

which is equivalent with (2.60). The normalization constants Ny, are deter-

mined by the residuum of (2.56), and w in the \II%EHO"MD\I/%HO"MD has to be
taken on Wng n, = \/—0Eng n, /2m.
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2.3. The Superintegrable Potential V3 on Dy;. First we state the potential
V3 in the respective coordinate systems

1 12 , _
Vau,v) = ——r [—a + gl (ci e — 26y e—2“’)] , (2.79)
1 12 , ‘
- o+ 4(c§ 2% _ 9¢, e*‘w) , (2.80)
b 4 2mo?
a+ ZQ
+v 22
—alp+v)+ 3t — ek

i prve (2.81)
b
(a4 5059 e

In hyperbolic coordinates no closed solution can be obtained due to the invol-
ved mixture of linear, quadratic, inverse-linear and inverse-quadratic terms. In
polar coordinates the path integral in ¢ turns out to be a path integral for the
radial harmonic oscillator. Note that the (u,v) system is equivalent to polar
coordinates.

2.3.1. Separation of V3 in Polar Coordinates. We insert the potential V3 into

b
the path integral and get (f(o0) = a + ZQQ =./9)

o(t")=¢" e(t")=¢"

KY9) (0", o ", ¢/;T) = / Do(t) D(t) f(0)ox

o(t")=e’ et )=¢’

T
X exp /{ 0)(6® + 0**)—
0

1 ﬁ2 : C2 ; 1
e 9 2 —4190_2_ —2ip _ — dt —
i [ gt (=23 )]

Z (01,02 // @(61,62) ( /) 1 %
[cMP], i [cMP],I\P 2 1/4
— [(0'¢")2 f () f(2")]Y

8
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Q(t//)zg// ) T
1 m .
< [ Do ewd s [ |08 -
o(t)=¢ 0
2, 1\° 1
B +h_2<”?+5> i
f(o) 2m 0?

1 > (e1,c2) (c1,c2)
= /o ol Z(I)[cli/[Pz] l( //)cb[cli/[Pz] l(‘p/)x
o0
dE o [ :
x| 5= e iET/h / ds” exp [%(aE - a)s”] KM (0", dss"), (2.82)
0

with the time-transformed path integral K;(s”) given by

K" (", d;s") =

" " 202 1 2 1
o(s")=e +=4 ) =
i ][50 me g L)),
N s h 2 2m 0? N
0(0)=¢’ 0
mw/0' 0" mw, ,2 1,2 . mwo o
= - — t I, 2 — ). (2.83
ihsin ws” P QiH(Q + o) cot ws g2 +5\ Gk sin ws” (2.83)

By @Egﬁ/i;”])l(cp) we denote the wave functions of the complex periodic Morse

1\2

potential in the variable ¢ with spectrum F; = K2 (Z + 22—2 + 5) /2m [1,3,36,
1

42,50,51], c.f. Appendix C:

(46—2 —2n — 1) n! c 42—?—2n—1

cy,C C1 2

@) () = (42) S
r (4—2 - 2n>

C1

1 ) 422 _opn—1 )
X exp [— 2i (20—2 -n— §><p —2¢y ez“"] Ly '(dere29). (2.89)
1
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Performing the s” integration gives the Green function
G5 = W)
r (142213 Yup—a)/“2mE
= =4+ - ——(aE —a)y/—2m
2m 2 ca 2 h

Eb r<z+zzﬁ+§)w
1

bE
S m;(z+2°2+)< V72 92<>X
| bE
) ( gi) . (2.85)

Inserting the expansion into Laguerre polynomials yields the discrete contribution

2 1
of the Green function ()\ =10+ 2 + 2)

X

_2m 1
bE °2

\% c1,c c1,c
G((iljc) (‘Q Q SO 90 7 - / // Z é(cli/[Pz] l ! éfcﬁ/ﬂf])l (80/) X
x Z LS HON () ON (), (286)

and the normalization constants N,,; are determined by the residuum of (2.85).
Here, the spectrum F,,; is determined by

bE,
0Bt — o — g/ — l<2n+2l+c—2+1>, (2.87)
2m c1

which is quadratic equation in F,,; with solution (N =2n+ 2+ e + 1)
c1

1 bh? bh? 8aam
Et=—|—(—N%?2-2 + — N? — . 2.
T 942 [ <2m ao‘) am't V1 bR ] (2.88)
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In the wave functions \IJSLRHO’/\)(Q) the quantity w has to be taken on w =

—bE,;/2m. For large n,l we have

bh? 9
B~ ma? (2.90)
M T bR (2n + 20+ 1)2] '
with F,;4 showing a Coulomb-like behavior.
2.4. The Superintegrable Potential V; on Dy,
1 m o, 2 2
VZ;(M,I/) = b d1M+d2V—|‘5W (,u -V ) ) (291)
(a4 50a-0) e
1

T utbeu [2(d1 + dz)(cos 2¢ — cosh 2w)+

+ 2(dy — d3)(2i sin 2¢ + sinh 2w) + 2d3(2i sin 2 + sinh 4w)]. (2.92)

We can evaluate the path integral in hyperbolic coordinates (application of the
Morse potential); in elliptic coordinates no closed solution can be found.

2.4.1. Separation of Vy in Hyperbolic Coordinates. The classical Lagrangian
and Hamiltonian have the form

o.m b [
ﬁ(ﬂ?/‘L?V? V) - E <a+ 5(/”” - V)) (/”L—’_V) (F - ﬁ) - V(:U’vl/)v (2.93)
1 12y — vip;
H(p P> Vs v = 5— L +V(p,v). (2.94)

(=) ko)

The canonical momentum operators are given by

h| O 1 1 b 1
pu:;{a——FQ(—F +V+ 2 ——)], (2.95)

g P et g

h| O 1 1 b 1
n=t a2t i - ) e
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and the quantum Hamiltonian has the form

K2 1
<a+§(M—V)> (n+v)
02 19 2 19
2 ~z - N 2 o 10
8 {N <3u2 u@u) v (3,/2 V@,/)] + Vi, v), (2.97)
1 I ; p

+V(p,v). (2.98)

_ \/ (a+ 306-0) . \/ (a4 50 o0

Note that from each coordinate there comes a quantum potential AV = h?/8m,
however they are canceling each other due to the minus-sign in the metric in v.

We insert the potential V into the path integral which has the form (f (1, v)=
b
(a+30=0)(u+v)

M(t"):l},,, V(t//):V/I
K(V4)(/,L//,/,L/,I///,I//;T) — / Du(t) / Dv(t)f(//j;/y) >
(=g V()=

T
. .2 .2
rpm LA T
< exp h/Lf(u,V)(MQ y
0

1 m
T (dl,u + dov + 5w2(u2 - 1/2)>]dt =

(oo}

_ / dE e_iET/h/dS//K(V4)(M//’M/’V//’V/;S//)’ (2.99)
2mh
0

— 00
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and the path integral K (Y4 (s”) is given by

l/(s”):l/”

1
KV (W i " s s") = / Dpu(s) / Dr(s)— X

Uy
w(0)=p’ v(0)=v’

. -2 -2
4 m ([ v 1 9 9
X exp %/ [5 (F - ﬁ) +ClE(,u+I/) + §bE(/J, -V )_

- (dlu + dov + %cﬂ(;ﬂ - 1/2))] ds S . (2.100)

Each of the last path integrals has a similar form as the one discussed in [14].
One can perform the transformation 1 = e”, v = eY. Then the path integration
in (i, v) gives a path integration in (x,y) of the following form:

.’L‘(S”):.’E”

K(V4)(x”,x',y”,y'; s//) _ / Dx(s)x

z(0)=xz’
s . y(s")=y"
X exp % / {%iQ—ﬁ(mwQ —bE)e** —(dy — aE) em} ds / Dy(s)x
0 y(0)=y’
. S 1
X exp —%/ [%gf—i(muﬂ —bE)e*Y—(dy + aF) ey] ds p, (2.101)
0

and we find the product of two path integrals for the Morse potential. This can
be evaluated now as follows. We introduce the abbreviations

_dipgFak

2 _m 2
= — —bE oy = ——————.
Vi = s (m? = bE), au, = - 12T

5 (2.102)

We expand each path integral first into the discrete spectrum contribution by
means of the known solution of the Morse potential in terms of Laguerre poly-
nomials with the quantum numbers n and [, respectively, and the corresponding
energy spectra. The s” integration gives the energy spectrum

B, - mw? m  (dy + do)?

_ 2.103
: b AR (n+l+1)2 (2.103)
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together with the wave functions (NN, ; is determined by the corresponding
residuum)

U (@,y) = Ny UM (2) - 0P (), (2.104)

_ _ 1/2
\I/](CMP)(Z) _ <2an0 2k 1)

KT (20 Vo — k)

X (2‘/0)(11\/0—]6—1/2 e(aZVO—k—l/Q)z—Vo eZL’(cQaZVO*2k*1) (2‘/0 ez)’ (2105)

for z = z,y with k = n,l. The continuous spectrum is examined in an analogous
way yielding

h2 2
E==- (2.106)
2m
with the wave functions
Uy a(z,y) = U (@) - 5P (), (2.107)

. 1/2
(MP) [ p+sinh 27py
\I/p,/\ (Z) - ( 2’/T2Vb ) X

. 1
F<ij:_az+§>

with pL = p+ X for z = z,y. The entire Green function has the form

x ¢ Wa,voips (2Vo %), (2.108)

\Ijn //’ /! \I/n /’ /
NN D V) nalsV)

n,l En,l —E
i} //,l/// P /7]//
+/@/wp“ﬁ%jﬂw‘),@m%
2m

together with the replacement u = e*, v = e¥. This concludes the discussion.
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2.5. The Superintegrable Potential 5 on D1, We display the potential V;
in the respective coordinate systems

1 K202
Va(u:v) = e o (2.110)
1 2,2
_ v 2.111)
a—|—9 2 2m
10
- 1 g (2.112)
b o o 2m’
a+ 1(5 +n7)
=— ! h;”g, (2.113)
a+ ZaZQ(sinh2 w + cos? @) m
- ! h2g (2.114)

2m

(o 20a—0)) (4 )

We discuss the path integral solution of V5 in some extend, where the case of
elliptic coordinates is omitted due to intractability of this system in the path
integral. Provided that b > 0, there is in the case of the free motion a discrete
spectrum

h% b

En=—o—

2mﬁ(2N+1)2, (2.115)

with the principal quantum number NV € IN.
2.5.1. Separation of Vs in the (u,v) System. We insert the potential V5 into

the path integral for the (u,v) system and obtain

u(t//):u// v(t”):v”

KV (" ! " ' T) = Duft) / Du(t)(ae ™ 4+ be ") x
u(t)=u’ v(t)=v’
- 1 h2 2
i m 0
_ o —u b —2u\ (2 2\ 0 dt _
X exp h/{Q(ae +be ") (4" + %) T bo 2m
0

= [ B e g mi OO ), @016)
2mh
s 0
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with the time-transformed path integral K (V5)(s") given by

u(S//):uII U(SII):U//
KW (0" /0" 0 8") = / Du(s) / Du(s)x
w(0)=u’ v(0)=v’
X ex 17 a2 4 2) 4 B ez g (CEZIE02mY a1y
Pl 2 Eb -
0
u(sll):ull
o0 Lil(v" =) ) y
— € e—zhl25 /2m / DU(S)X
P 2w
- u(0)=u’
- E — 1*0}/2
X exp %/{%uQ +Eb {e% n (W) e“} } ds | . @117
0

The path integral in v is a path integral for the Morse potential. Performing
the s” integration gives, c.f. [14], the Green function as follows (£ = [Ea —

(h?v3/2m)]\/—2m/bE/2h):
1
00 eil(vu—vl) mF (5 + l - g)
G(Vs) //7 /7 //’ /;E — e(u’+u11)/2><
(u",u' 0" E) Z 2 h/=2mbET (1 + 21)

V—8mbE V—8mbE
XWg7l<$e_“<>M&l<$e_“>>. (2.118)

The corresponding continuous part of the Green function is evaluated as [14]

eil('u"fv')

2

Vs),mm 1 11, u' +u'") /2
Gcont(u y U,V ,U,E): Z e( )/ X
l=—00
2

1 )
X]C P2dp ’F<§+l+zp
h?p? > 272(1 + 20)

2m

Mip/2,l ( — 22p e_“/) M—ip/2,l (22;0 e_“”) .

(2.119)

In addition, we have a discrete spectrum. This is found by analyzing the poles of
the Green function (2.118):

om 2m
- — 2.12
2 2 bE,, " (2.120)
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In the case of vy = 0 this simplifies to

1 a 2m

I+ — —/— = 2.121
nrlt s =g om0 (2.121)
with the solution 2
Ey=——02n+2+1)? 2.122
: 2m a? (2n+20+1) ( )

yielding for b > 0 an infinite number of bound states. For vy # 0, the equation
for E,,; is a quadratic equation in F with solution

B2 1
Bpe = ———
I+ 2m 2a? %
x |b(2n+21+1)2—2av] + b(2n+21+1)%[1 — _davg (2.123)
0 b(2n+20+1)2 |’ '
B, M b (2n + 21 +1)2 — 2242 (2.124)
mE T 2m a? b Oy '
2 4
B, (n,l):—>oo h Vo (2.125)

C2bm (2n 4 20+ 1)2°

For vg = 0, there is only E,;,. For (2n+2l+1)? < 4av? /b, there are semibound
states located approximately around Ey = —h%v3 /2ma.
Therefore we have for the discrete spectrum contribution

G(Vs)(u”,u’,v”,v’; E) _

disc

& eil(v”—u’) 0o 1 r
=Y 5 Xl W), @126
l=—o00 n—o M

with the functions \IlgL‘l/S)(u) given by (£ as in (2.118))

) () = Ny

nl

(26 — 20— Ot (VIERBE T
['(2€ — n) B

1 8mbE,;
X exp 5—n—§ U — —Te

V=8mbE,
x L(2€-2n-1) (% e“) . (.127)
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The constant N,,; is determined by taking the Green function at the residuum
E,;. The wave functions vanish for u — oo due to e~V —8mbEnie"/h _
e 2bh@@n+2l+D)e/a 0 provided b/a > 0 for all n € IN, which shows that
the discrete spectrum is indeed infinite. The feature that an homogeneous space
with curvature has at the same time a discrete and a continuous spectrum is
already known from the path integration on the SU(1,1) group manifold [22].
Actually, this property allows the analysis of the modified Poschl-Teller potential
with its continuous and (finite) discrete spectrum.

2.5.2. Separation of V5 in Polar Coordinates. We insert the potential V5 into
the path integral in polar coordinates and obtain

Q(t//):Q// t//):
KY9) (0", o, ¢",¢/;T) = / Do(t) / <a+—g2> o

o(t)=¢' w(t")
/T D (a2 (@20 + (atle? S ) b =
B Q o TP 49 m Vo 402 =
0

_/ dE —zET/hG(Vs)(Q” o, 0", ¢ E), (2.128)
2rh I

X exXp

St .

— 00

E—R%*v2/2
and the Green function is evaluated to have the form [14] (5 :%,
w

w? = —bE/Qm)

1
00 . " ’ F —(1+l—5)
il(e"=¢") 1 2m [2 }
V) (o oW o E © 4
G (Qa@v@v@v ); ! Al 2 F(1+l) X

2mbE 2mbE
X Wg/z% ( T Q>> Mg/QV% (\/—7 Q<> . (2.129)

The Green function has poles which are determined by

1 v3h? 2m
2 1——|aF, — =0. 2.1
nldl- o (a -2 ) =0 (2.130)

In the case of vy = 0 this simplifies to

2
@n+i1+1)— 2 m

—1/— = 2.131
T ED 0, (2.131)
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with the solution )

K2 b ,

yielding for b > 0 an infinite number of bound states. For vy # 0 the equation
for E,,; is a quadratic equation in F with solution

o1
Fnts = o 342
x [b(2n + 14+ 1)? — 2av £ b(2n + 1+ 1)? 1—4a7”3 (2.133)
0 b(2n +1+1)2 :
The limit of N,l — oo yields
R b V2
Buy~—|=0@2n+1+1)2+2 2.134
I+ 2m[a2<n++)+a}, (2.134)
2 2
By~ Y% (2.135)

C2mAb(2n+ 1+ 1)

and E,;4 corresponds in this limit to the spectrum of the free motion.
2.5.3. Separation of Vs in Parabolic Coordinates. We insert the potential V5
into the path integral in parabolic coordinates and obtain

£(t")=¢" n(t")=n" )
KW\ & ' n/sT) = / DE(t) Dn(t) (a +1E+ 772)> X
gt)=¢ n(t)=n’
7 T m b 9 9 9 .9 1 h2’l)g
X exp i ) a—&—z(f—&-n) (& +n7) — 5 5 dt y =
0 a+ (€ +n°)
T dE .
— / Rt eszT/hG(Vs)(gl/’5/777//’77/; E), (2.136)
27h

with the time-transformed path integral K (s”) given by

£(s")=¢" n(s
Ko\ ¢ " 05 s") = / DE(s)
& n(

//):,’]//
Dn(s)x
£(0)= )=’

0

"
S

@ mogo .2 bia o @ _h2v(2)
X exp h/ [2 (&7 )+E4(§ +n )]ds+h<aE o ds y. (2.137)
0
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The only difference in comparison with the result in [14] is the the additional
h2v}

term in the s” integration. In order to find the discrete spectrum we insert
m
the solution for the harmonic oscillator and get

G ¢ " s E) =

= & N
=D > OO (e ("), (2.138)
TLEZOTLnZO nEnn

where Fy,.p, is determined by the equation

1 K202\ [ bE

which is (up to a different counting in the quantum numbers) identical with
(2.131). The normalization N, is determined by the residuum in G(Y3)(E).
We do not state the continuous spectrum part, it can be derived from [14] by the
replacement aE — aF — h?v3 /2m.

2.5.4. Separation of V5 in Hyperbolic Coordinates. We insert the potential
V5 into the path integral in hyperbolic coordinates and obtain: The path integral
has the form

A= (g G ) k)
- D Du(t

p(t) v(t) T x

(e = v(t)=v'
i r 2 1/2

X exp %/ <a+—(u—l/)>(u+v)<—2—ﬁ>—

0

1 h*vg
D lath =

_<a+g(u—'/)> (h+v)

_ / dE e_iET/h/dS//[((Vs)(MH’Iu/’l///’l//;su)7 (2.140)
2mh
0

— 00
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and the path integral K (Y3)(s") is given by

l/(s”):l/”

1
KV (W, " /5 6") = / Dpu(s) / Dy (s)— X
uv

;o ») > 2,,2
i m ([ v h*vg
Z SR (R E—
e h/[?(xﬂ v2>+(“+y)<a 2m>+
0

+%bE(u2—1/2)] ds 3. (2.141)

Each of the last path integrals has a similar form as the one discussed in [11].
One can perform the transformation 1 = e*, v = e¥ yielding

K(V"’)(:E”,x’,y”,y’; s//) _

:c(s”):m” §
; b h2 2 7
= / Dx(s) exp %/ [%ﬁ + <E5 e + (aE - 2:;) eI> ds p
z(0)=z' 0 )
y(s")=y" s’
i m b h2v? ]
D — [ |=P+Eze® - [aE - —2) e
X / y(s) exp h/{Qy +< 5¢ (a 2m)e)_ds
y(0)=y’ 0

(2.142)

and we find the product of two path integrals for the Morse potential, however
more complicated as in [14]. The continuous part of the spectrum can be analyzed
similarly as in [14] yielding products of M-Whittaker functions. Analyzing the
discrete spectrum contribution from the Morse potential we find the quantization

condition
1 B2 4m
1) — = E — 0 — = 2.143
(ng +my +1) h (a 2m > V. E.b 0, ( )

which is up to a different counting in the quantum numbers equivalent with
(2.131). This concludes the discussion.
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3. SUPERINTEGRABLE POTENTIALS ON DARBOUX SPACE Dyy

Finally, we consider the Darboux space Diy. We have the coordinate sys-
tems:

((u,v) system:) z=v+iu, y=v—iu (u€ (0,7/2),v€eR), (3B.1)

(Equidistant:) u = arctan (), v = g (e e R, 5 €R), (3.2)

(Horospherical:) x = log %, y = log % (v >0), (3.3)

1w =2e"cosu, v=—2e"sinu, (3.4)
(Elliptic:) = d cosh w cos ¢, v =d sinh w sin ¢
(w>0,p€(0,7/2)). (3.5)
We obtain the following forms of the line-element (¢ > 2b, ay. = (a £ 2b)/4):

_ 2b cosu+a

ds® = du® + dv*) =
3 4 sin®u (du o)
a+ a— 2 2
= d d
(sinQu * cosQu) (du + dv™)
(rescaling u/2 — w :), (3.6)
— 2b tanh
(Equidistant:) = %(da2 + cosh? ad3?), (3.7
(Horospherical:) = (a—; + a_2> (dp? + dv?), (3.8)
v
C . a— a4
Elliptic:) = + X
(Elliptic:) (cosh2 wcos?p  sinh?wsin? cp)

x (cosh? w — cos? ) (dw? + dp?),

a4 a— a4 a—
N T oo T 5z, 7. ) %
sin“p  cos®¢  sinh“w  cosh”®w

x (dw? + dp?), (3.9)
1 1 1 1
Degenerate elliptic I:) = |a_ +———] —a —— | X
(Deg ptic I [ (sinh2 ©  sin? ¢> * (cosh2 @ cos? <,0>]
x (do* +dg?) (y=1), (3.10)

1 _

(Degenerate elliptic II:) = — (ai% + %) (do® 4+ dp?) (v =2). 3.11)
4 \sinh“® sin“¢

We observe that the diagonal term in the metric corresponds in most cases to a

combination of a Pdschl-Teller potential and a modified Pdschl-Teller, respec-

tively. In particular, the (u,v) and the equidistant systems are the same, they
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just differ in the parameterization. The limiting cases a = 2b and b = 0 give
particular cases for the metric on the two-dimensional hyperboloid. We have also
displayed two versions of degenerate elliptic coordinates. They come from the
observation that for the representatives

K2, Xo, vXo+ K2, Xi+ Xo+~K? (3.12)

one can distinguish the cases v = 0, v = 2, and v # 0,2. For v # 0,2, one
has coordinate systems which can be explicitly formulated in terms of the elliptic
functions sn(a, k), cn(8, k), and only for a special choice of the parameter k
they can be simplified in trigonometric and hyperbolic functions. Then the line
element has the form

ds* = i[a+k4sn2(a, k) —sn?(B, k) + k*a_](da* + dB?), (3.13)

and separated equations are versions of Lame’s equation, if we assume an Ansatz
of the form ¥ = A(«)B(3) [28]:

0?A(o 4
(2 ) + (——1 k4Ea+sn2(a,k) - >\1> A(a) =0, (3.14)
9?°B(p 1
(2 ) + (——4k4Ea+sn2(ﬂ, k) — Az) B(B) =0, (3.15)

where \; — Ao = —Fa_k? /4. k denotes the modulus of the elliptic functions.

In particular, for the potential V> one has the possibilities of taking v = 0,
and v = 2. For v = 0, the modulus k of the elliptic functions equals k¥ = —1.
We do not treat V5 in these elliptic coordinates, but only the degenerate case of
v =2.

For the potential V3, however, the elliptic systems with v = 1 can be explicitly
worked out. We have stated the respective line elements for these two cases. Note
that for v = 2 the coordinate transformation can be put into

2=l [tan(gz) - w)} y=1ln [tan@ + Zw)} (@> 0,5 € (0,7/4)). (3.16)

We do not dwell into a discussion of elliptic systems any further, for details we
refer to [26]. Let us finally note that the notion elliptic is also used for the (w, )
system, and they must not be confused with the general elliptic coordinates just
discussed.

Because we have not worked out the path integral for the free motion in
these two further coordinate systems, this will be done in an appendix. For the
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Gaussian curvature we obtain, e.g., in the (u,v) system

a? a’ a_ay
sin® u i cosbu  sin*wcostu
G=— . (3.17)

a a 3
+ -
5 T
s~ u COS“ U

The case a = 2b yields a_ = 0, and

G=—- (3.18)

1
37
and therefore again a space of constant curvature, the hyperboloid A is given
for b > 0. We have set the sign in the metric (1.4) in such a way that from
a = 2b > 0 the hyperboloid A®) emerges. We could also choose the metric
(1.4) with the opposite sign, then a = 2b < 0 would give the same result. In the
following it is understood that we make this restriction of positive definiteness of
the metric and we do not dwell into the problem of continuation into nonpositive
definiteness. Because the (u,v) coordinates and the equidistant system are the
same, we do not evaluate the path integral in the equidistant system. In the
following we assume a4 > 0 and ay > a_.
We introduce the following three constants of motion on Dry:

X, = e2”(—7:[0 + cos 2u - p2 + sin 2u - pupy), (3.19)
Xo = 62”(—7:[0 + cos 2u - p2 — sin 2u - pupy), (3.20)
K =p,. 3.21)

These integrals of motion satisfy the Poisson relations
{K, X1} =2X1, {K,Xo}=-2Xo, {X1,Xo}=—-K%—4aKH,, (3.22)
and satisfy the relation
XXy — K* —aK?Hy — H? = 0. (3.23)

The corresponding quantum operators have the form

= sin? 2u 9 9

°= Feoszuran o) (324
X, = 62”(—ﬁ0 +cos2u - (92 4+ 9,) + sin2u - (9,0, + 0u), (3.25)
X, = 62”(—ﬁ0 +cos2u - (92 — 9,) — sin2u - (9,0, — 0u), (3.26)

and the commutation relations read

(K, X1] = 2X,, [K,X,5] = —2X,, [X1,X2] = —8K® —4aKHy — 4K (3.27)



1044 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

and satisfy the operator relation

1 ~ =~ ~ ~ o~ ~ ~ ~
§{)(1,)(2} — K*—aHoK? - 5K? — HZ —aHy = 0.

(3.28)

In Table 3 we list the connection with these operators and the corresponding

coordinate systems on Dry.

Table 3. Constants of motion and limiting cases of coordinate systems on Drv

. Constants A® A®
Metric of motion Drv (@a=2b | =0
2b cos
M(diﬁ + dv?) K? (u, v) system | Equidistant | Equidistant
4sin2 u
(a% + a%) (d;f + dy2) Xo Horospherical | Horicyclic | Semicircular
v 2
parabolic
( o= + o+ ) x | K?+d%x, Elliptic | Elliptic- | Hyperbolic-
cosh? w cos? ¢ sinh? wsin? ¢
x (cosh? w — cos? ) (dw? + dp?) parabolic | parabolic
[a+k2 (sn2(a, k) — sn2(8, k)) + a,] x | X1 + X2 +vK?|  Elliptic Elliptic | Elliptic
2
X (d*a + d*B)
We state the superintegrable potentials on Dryy:
a a -1
+ —_
Vi(u,v) = <—2 5 ) X
sin“u  cosu
R (k2 —1/4 k?—1/4
X | — - / + /4 4ae?® 4+ 8mw?e? |, (3.29)
2m \  cos*u sin” u
a a -1
+ —_
V2(u,v):<#+ 5 ) X
sin“u  cosu
R (k}-1/4 k3-1/4 al 1 N 1 (330)
X | — - - — — .
2m \ sinh®v cosh? v 4 \sin®y  cos?u )|’
h? a4 ay a a -1
Vg(UJ,SO): T 12 ~ 5 ~ .2~+ 3 ~ X
2m \sinh*® cosh®® sin“® cos*y
Cc3 Co C3 C2
X | == 5=~ o= 5 3.3
sin“p cos“¢ sinh®@ cosh®w
ar . a— I 9 1 1 1
Vilp,v) = | 5 + — — | kg — = —+— |- 3.32)
(:U’v ) 2 M2 2m 0 4 /1'2 2
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Table 4. Separation of variables for the superintegrable potentials on D1y

Separating
Potential Constants of motion coordinate
system
) 2 2 mo2, 2 2 e
Vi |Ri=K°—oa(p*+v°)+ Tv (p* +v7) (u, v) system

2
—2a(ayp® —a_v?) 4+ 8(k? — 1/4)— + 2mw?(agp* —a_v?)
m

R =Xz + i fau? Horospherical
Elliptic
k2 2 2 1
Vo |R1= X1+ X2+ (2cosu + a) . ki + k5 — 5)~ (u, v) system
ooy W, U) Sy
, 1 k2 —1/4 kI -—1/4
—2( k3 — = ) cosh 2v + (cos 4u + 2a cos 2u + 3) — — > Degenerate
2 sinh? v cosh® v 76111 i I
R — K 4 h2 <k§71/4 k§71/4> e -
2= 2m \| sinh? v cosh? v
) B2 at a -1
Vi |[Ri=X1i+Xe+2K°+aH+ — | —5==+ —>5— X Degenerate
2m \ sinh? 2@ sinh? @

elliptic I & II

at C3 C1 a— C3 Cc2
x |:sinh2 20 (sin2 @ + sin2 gﬁ) sinh? 25 (sinh2 & cos? C))
RZ:X17X2+L2<Q7++L>_1X
2m \ sinh? 2@ sinh? &

X |:a7+ (cl cosh 2& tan? @ — c2CcOs2¢p—
sinh? 2%
c3(2cos? @(sinh® @ — sin? @) + 1)
a sin? @ >+

t— <02 cos 2@ tanh? @ + c¢1 cosh 20—
sin? 2¢
c3(2 cosh? LD(sinh2 @ — sin? @)+ 1
sinh? ©
B2 o 2 2
2— (kg —1/4) (" +v7)
Vi |Ri=X 4+ P (u, v) system
atp? +a_v? A Y Sy

32 n (k2 —1/4)

—(ky —

Ro=Xo4+ 11 Horospherical
(1+;L2 + U._D2 _

R3 = ppu +vpy Elliptic

In Table 4 we list the properties of these potentials on Dry. We see that

V, is a special case, and it has three integrals of motion. The variables w, ¢ are
defined by

x = log [tan (¢ — iw)], vy = log[tan (P + iD)]. (3.33)

In terms of these coordinates the line element is given by

a—+2b a+2b  ay a4+ a_ a_

2

d52:_2~ — - = 5 — s — T35t 5=
sinh“2w  sin“2¢  sinh“°® cosh®@ sin“¢p cos“p

(3.34)
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3.1. The Superintegrable Potential 1, on Diy. We start by stating the
potential V7 in the respective coordinate systems

-1
Vl(u,v)=< a; +a__> X

sinu  cos?u

[h? (k2 —1/4 Kk2—-1/4
X | =— / + .2/ — 40e? 4 8mw?et?| | (3.35)
12m \ cos?u sin? u
—1
a4 a_
:<§+F> :
I K2 (K2—1/4 K2—1/4\ m o, 5
x —a+%< e 0z >+5w (u +1/)}, (3.36)

~1
= e + — x
sinh?wsin? ¢ cosh? wcos? ¢

. _a+h_2< o1/4 k-1 >+
2m \sinh® wsin? ¢ cosh? wcos? ¢
m o5 2 .2
+ Ew d*(cosh” w — sin“ ) | . 3.37)

The path integral for the potential V; can be solved in the (u,v) system and in
horospherical coordinates. We also keep the parameters k; and ko different in
comparison with Kalnins et al.

3.1.1. Separation of Vi in the (u,v) System. The classical Lagrangian and
Hamiltonian are given by

m 2bcos2u + a

L(u, 1, v,0) = > — (0? + %) 4+ V(u,v), (3.38)
Sin u
1 sin® 2u
H(u, pu,v,po) = %m(pi + ) + V(u,v). (3.39)

The canonical momentum operators are given by

h( o 2bsin2u h O
w ==\ = 2 cot 2 - | v = T 5 3.40
P [ <8u+ b 2b0052u+a> P 1 Ov (340)
and the Hamiltonian operator has the form
B2 sin?2u 0? 0?
H=——"F7r—""—"7—"|—S+— v 3.41
2m 2bcos2u + a (8u2 * 81)2) V() 34D
1 sin 2u 9 9 sin 2u
=——(p: +p) ——— + V(u,v). 3.42
2mx/2bc032u+a(p b )\/2b0032u+a () (.42)
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We insert V; into the path integral and obtain (f = a /sin® u + a_ /cos® u)
u(tll):u// v(tll):v//

KW @" o/ " ' T) = / Du(t) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
i @ .9 .2 _l h_2 k%—1/4_k%—1/4
xexp(h/{Qf(u +07) f[Qm( cos? u sin? u -
0

+ 8mw? <e4” - 272;2 e2”>] }dt) . (343)

We see that the v dependence has the form of a Morse potential:

VMP) () = wve (e** — 2ae"), (3.44)
2M
where the (finite) discrete energy spectrum is given by
2
El:—% (d—l—%) . (3.45)
Proceeding in the usual way we obtain for the time-transformed path integral
u(s")=u"" v(s")=v"
KWV @" o " ' s") = / Du(s) / Du(s)x
u(0)=u’ v(0)=v’

T
ifme o B (M -1/4 A3 -1/4N\
xexp{h/lQ(u +97) 2m< cos? u sin? u

0
— 8mw? <e4” - 277:;2 e2">] ds} =

. h2
_ Z(P%Az)\l)(u//)q)glAg,Al)(ul) exp {_ 1_()\1 + Ao+ 2n + 1)28//] «

h2m

% {/dﬁ@éMP)(v//)@gMp)*(u/) efihNQS”/Qm_F

1 * !/ ] h2 ~ 1 2
+ ;W;MP) (v )@l(MP )(u )] exp {%% (a —1- 5) } } (3.46)

Here, A}, = ki, — 2ma_ (E/h?, and in the variable v we have used the
solution of the Morse potential and in the variable u the solution of the Pdschl—
Teller potential, respectively. This form of the solution is convenient to obtain
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the bound state solutions. The bound state energy levels are determined by

2(n+l+1)+)\1+/\2—%:0. (3.47)

By denoting
2
Noi= (2(n +1+1)— %) — (k¥ +K3) (3.48)

the quadratic equation in E can be solved to give (with the further abbreviation
Ko = 4(ask? +a_k3))

En,l =

h2
= Imb? {i\/(aNnvl + K,)? — 4b2(N2 | — 4k$k3) — (aNny + Ka)} . (3.49)

We keep the £-sign to allow for different boundary conditions which may depend
on the parameters a and b. For instance, for a = 2b we get the limiting case:

K2 a\?
For ko = £1/2 it has the form of the usual zero-energy on the two-dimensional
hyperboloid.

In order to obtain the continuous spectrum, the formulation in (u, v) coordi-
nates is inconvenient. Following [12] we perform the coordinate transformation
cosu = tanh 7, and additionally we make a time-transformation with the time-
transformation function f = a, /sin®u + a_/cos’u. Due to the coordinate
transformation cos u = tanh 7 additional quantum terms appear according to

exp (ﬂ (Au(j))Q ) .

2¢h cos uli—1) cos ul#)
m N2 h 1
= — (A Gy ;2 1 ] 51
exp {M( ) —ig - ( + cosh27(j)>] (3.51)
We get for the path integral (3.43)

o0

dE _,
VO (o " V=T :/ —iET/h
K (u”,u' 0", 0" T) 5.7 X

— 00

r i h2k3
x /dS// exp |:ﬁ <a+E _ 5 2>:| K(VI)(TH,T/,’U//,v/;sl/), (3.52)
m
0
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and the time-transformed path integral K (V1) (s”) is given by

KW (" ' " 5 6") = (cosh 7’ cosh 7)™/ 2%
< [ 3w e K7+
+ / drUMP) (Y UMD () K (7, 7 s“)] , (3.53)
7(s")

KZ(ZI)(T” 7’5" / Dr(s

7(0)="7'

i 1[m o PPN -1/4 Vi, —1/4
X - - = ds . (3.54
Py / [ T 2m ( sinh? 7 cosh? 7 § (354

The parameters \; o are the same as in the previous paragraph and v is given by

’2[ +1- —‘ (discrete), v, =ik (continuous), (3.55)

where discrete and continuous means the discrete and continuous contribution of
the Morse potential. Of course, the analysis of the discrete spectrum gives the

same result as before. The kernel K l()‘,?)(s” ) now allows us to write down the

entire kernel K (V1)(T') in terms of Morse wave functions and modified Pschl—
Teller wave functions in the following form:

KW ' 0" ', T) = (cosh 7’ cosh 7)1/ 2 x

{ ZNln MP)* )\II(MP)( //)\Ijgl)\l,lq)*(T/)\I/%/\l,lq)(T//)efiEmT/h_'_

/deNlp\I,(MP V) (MP)( ”)\Ilg‘l’y')*(T/)\Ifg‘l’"')(T”) o~ BT /h

/dp/dﬂN2 \II(MP ( )\:[/Ing:’)(,U//)\IIZ())\l,iH)*(7_1)\:[/1(7)\1,1';-@)(,7_//)e—iEpT/h}7
(3.56)

with the proper normalization constants Ny, N;,, Ny, where, e.g., Ny, is deter-
mined by the residuum corresponding to FEj, in the Green function, and with the

continuous spectrum
2

I
E, = ma, ——(p* + k3). (3.57)
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Note that for ko = 1/2 we obtain the well-known zero energy on the two-
dimensional hyperboloid, which appears here in a natural way after performing
the coordinate transformation cosw = tanh 7.

The ") (w) are the modified Péschl-Teller functions, which are given by

\Ifgﬁ’”) (r) = N,(L"’”) (sinh r)Qk”_% (cosh r)_2k1+% X
X oF1(—=k1 + ko + Kk, —k1 + ko — k + 1; 2ko; — sinh? T), (3.58)
1/2
(nw) _ 1 2(2H — 1)F(k‘1 + ko — H)F(kl + ko + K — 1) / . (3.59)
" I'(2k2) D(ky — ks + k)(k1 — ke — K+ 1)
The scattering states are given by

Vi) = h_2<772—1/4 - 1/2—1/4>’

2m \_ sinh?r cosh? r

\IIZ(,""’) (r) = NI(,""’) (cosh T)2k1 -3 (sinh T)ri% X

X 2F1(]€1 +]€2 —;‘ﬁl,k‘l+k’2+f€— 1;2k‘2;—$iﬂh27"), (360)

1 [psinh Tp
(mv) — _ _
N, T(27s) 52 [F(k‘l + ko — k)D(—k1 + ko + k)X

1/2
 T(k1 + ko + k — DD(—k1 + ko — & + 1)} : (3.61)

1 1
k1, ko defined by: ky = 5(1 +v), ky = 5(1 + 7)), where the correct sign depends

on the boundary conditions for » — 0 and » — oo, respectively. The number

1
Ny denotes the maximal number of states with 0,1,..., Ny < k1 — ko — 2

1
k = k1 — ko —n for the bound states and xk = 5(1 +ip) for the scattering states;
2F (a, b;¢; z) is the hypergeometric function [10, p. 1057].
3.1.2. Separation of V1 in Horospherical Coordinates. We evaluate the path
integral for V7 in horospherical coordinates. The classical Lagrangian and Hamil-
tonian are given by

. . m(a a— . .
L(ps fv,0) = 5 (V—§ + F) (*+0%) = V(pv),  (3.62)

1 e (pp 4 p})

om anZ4a e TV (3.63)

H(:U’vpuv v, pl/) =

For the canonical momentum operators we have

h({ o via_/u

h(o wray v
Pv =~ (5 - 7a+ﬂ2 Ta2) (3.65)
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and for the quantum Hamiltonian we get

h2 M2V2 82 32
H - _%7a+/ﬂ + a,zﬂ (a—/u’? + W) + V(/Jv V)v (366)
22 2p2
B Rt —E i vy).  (3.67)

ayp?+a_ 1/2 a2+ a_v?

We insert V; into the path integral and obtain (f = a /v? + a_/u? and keeping
to constants ki 2)

H(t” FL V(t”):V”
KW (" V' V5 T) / Dy(t) / Du(t) f (p, )%

n(t)=p' v(t)=v’

Flu,v)(* +0%)—

h2 k‘2— k2_
_ f(/iy) (%wQ(MQ—H/Q) a—|—%< 1 ,u21/4_|_ 3 l/21/4>>]dt} =

_ [ 22 v /d/K<> o

K(VI)(/J//a/i/a l///, l//; s//) _ / ’D,u(s)x

i m, . B2 k? —2ma_E/R? —1/4
/[—(MQ—W2M2)—% 1 u2/ /:|d

- - 2 1.2 2
X / Du(s) exp %/{%(02—w2u2)—h—k2 2ma E/h 1/4]ds =

2m V2

2.2 ST T T T
:%exp —m—(u + +l/2+1/”2) cot ws” | x
12h2 sin” ws” 2ih

mwp! 1" mwr' V"
1 1 3.69
X (zh sin ws” )\ i sin ws” )’ (3.69)
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where A1 2 = ki 5 — 2mazE/h?. We can extract the bound state wave functions
for the bound state contribution of the Green function according to:

GO ) = 3 3

Tl T
nu=0n,=0 KtV

xwﬁHO’“(wwsﬁHO’m<u“>w£f§HO’*2>(u/)wg%HW(u“). (370
The bound states are determined by the equation

Q@ _ 5 2ma_FE 5  2maiE
%—2(nft+nu+1)—\/k1—7+ ky — = —

This quadratic equation in E' is identical with (3.47).
3.2. The Superintegrable Potential 1, on Diy. We state the potential in the
respective coordinate systems

3.71)

-1 32 2 2
_ —1/4 —1/4
‘/Q(U,U) = (—a; a ) h l:k / k2 / +

sinu  cos?u 2m | sinhZv cosh? v
(=) (S (3.72)
34 sinfw  cos?u /|’ ’
-1 39
ay a_ I3 5 1 1 1 )
=4 + > | (k7 + +
(sinh2 20 sin? 2@) 2m [ ( 3 4) (sinh2 20 sin?2¢
k2 —-1/4 k?—-1/4
+<22/~—12/~>. (3.73)
cos® 2¢ cosh” 20

It is possible to evaluate the path integral for V5 in the (u,v) and the degenerate
elliptic system with v = 2. The elliptic system with v = 0 is not treated.
3.2.1. Separation of Vs in the (u,v) System. We insert Vo into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)
w(t”)=u" o(t")=0v"
KW (" o/ " 0 T) = / / Dot

u(t)=u’ v(t)=v’

T

i [ m e gy P (K14 -1
X e - —Jf(u”+v7)—
Xp{ho/[Qf( ) 2mf< sinh? v cosh® v

, 1 1 1
+ <k3 - Z) (—Sin2 ~+ —0032u>>1 dt}. (3.74)
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This formulation in (u,v) coordinates is inconvenient. Following the procedure
as for V; in the (u,v) system we perform the coordinate transformation cosu =
tanh 7, and get for the path integral (3.74)

2mh

— 00

K(VQ)(U”,U',U”,U’;T)Z/ e e Ty

" 1 _ h2k?2) "1 00
x [ ds" exp N ar F K(r", 70", 4" "), (3.75)
0

and the time-transformed path integral K (V2)(s") is given by

KOl af ) =
= (cosh 7’ cosh 7")~1/? Z WLk () (Faok) ()
ny=0

T(S”):T” s

i m B2 (A3 —1/4 N —-1/4
D v m., hT (A Al
. / T(s) exp ho/ [2 T om ( sinh? 7 cosh? 7 )} ds i+

+ (cosh 7/ cosh 7)~1/2 / dk, U (0 )R (0

T(S”):T” s

i TIm., K [(M2—1/4 —k2—1/4
D - "2 2 _ v d
8 / 7(s) exp h / [ 2" " om ( sinh? 7 cosh? 7 )] s

7(0)=r" 0

(3.76)

(A2 = (2ny + |k1| — |ko| + 1)2, A3 = k2 — 2ma_E/h?).
The v-path integration gives a discrete and continuous spectrum, thus two
different parts for the 7-path integration. We therefore find for the Green function

GV (" 7' 0" v E) = (cosh 7’ cosh 7)1/ 2x

Nmax

« Z \I/(kl,kg pkka) u)ﬁ L(m1 — Ly )D(Ly, +m1 +1)
h2 F(TTL1 + mo + 1)F(m1 — ma + 1)

ny=0

x (cosh 7’ cosh 7)™ (F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
><2F1<—LA1+m1,L>\l+m1+l;m1—m2+1;72>x
cosh” 7~
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X 2F1<—L)\1 +TTL1,L,\1 +mq + 1;m1 + mo +1;tanh27'>>+

+ (cosh 7/ coshT”)*l/z/de\I/,(fll’kZ)(v')\Iléﬁl’k”(v”)><
m I'(mq — L, )T (L, +m1 + 1)
R T(mi+me+ 1)T(my —ma+1)

x (cosh 7’ cosh 7/)~(F1=k2) (tanh 7/ tanh 7)™ +me+1/2

1
><2F1<—Lkv+m1,Lkv+m1+1;m1—m2+1;72 >><
cosh” 7~

X oy ( — Ly, +m1, L, + my + 1;my + mg + 1; tanh? T>> (3.77)

1 1 1
(M2 = 3o £ V2méE/h), Ly, = 5 = 1), Li, = 5(iky = 1), € = ay E —
h2k3/2m).
A discrete spectrum is only possible for the first summand in (3.76). First,
we can analyze the discrete spectrum by looking at the poles in (3.77) which
gives the equation

2(nr +ny) + Ay + A+ k2| — |k1| =0 (3.78)

(0% = k2 — 2ma+E/h?). This gives a quadratic equation in E with solution
(N =2n,; — 2n, — ‘kl‘ + ‘kQ‘)

2N} 402 (K3
Eneny = ="k <1¢\/1+—<W—1)>. (3.79)

The entire Green function in terms of the wave functions is given by

N2
GV (" 7' 0" v E) = (cosh 1’ cosh ") ~1/2 dpE E/dk X

> \I/g\il,kz))(vl)\p’(cﬁl,kﬁ(,U//)\Ij()\g,ik:v)(T/)\Ij()\g,zk:v) (7_//)_|_

+ (cosh 7’ cosh 7)) ~1/2 Z Z Wk ()@ (F1ok2) (/1)

nt=0ny=0

Nmax 2
" Z Ny on, \II()\Q,Al)(T/)\II(AQ,Al)(T//)+
= Enrnv _ E nt nt

N2
dpE p VE\IJI(J)\QJ\l)(T/)\I/I(])\Zv)‘l)*(7-”)}’ (380)
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where Ny n,, Nkon, 18 determined by the residuum in (3.77). The continuous

spectrum has the form
2

> = Sman (p? + k3). (3.81)
For ks = £1/2 we obtain the usual zero-point energy on the two-dimensional
hyperboloid. Reinserting cosu = tanhv gives the Green function in the (u,v)
system.

3.2.2. Separation of V5 in Degenerate Elliptic Coordinates. We insert the
potential V5 in degenerate elliptic coordinates into the path integral and obtain
(f(@,¢) = 4(ay / sinh? 20 4 a_ / sin® 23))

KD (@" & ", ¢ T) = Di(t) DE(t) f(&, @)%

sinh?20  cosh?20  sin? 2 cos? 2¢

2 2 2 2
y <k1—1/4_ k2—1/4+k3—1/4+k2_1/4>]dt}_ (3.82)

The calculation is similar as in the case of the (u,v) system: First, we rescale
20 — w,2p — @, then we perform the transformation cos¢ = tanh 7. Finally,
we perform a time transformation in the path integral with the time transformation
f(@,9) — f(@,7) yielding

GV (7 70" &' E) =

2m

= " 3 " _ h2k§ (Vo) (mlt ~1 ~11 ~1. 1
= [ ds" exp 5 Ea_ — — )| K\, 70", 0" 8")  (3.83)
0

with the transformed path integral K (V2)(s”) given by

2m \ sinh? 7 cosh? 7\ sinh? & cosh’® 4

2 2 _ 2 _ 2 _
G 1/4+ 1 <)‘+ 1/4 k3 1/4+1>>]d3}. (3.84)



1056 GROSCHE C., POGOSYAN G.S., SISSAKIAN A.N.

Again we evaluate this path integral by a successive w- and 7-path integration.
Performing finally the s integration we obtain

G2 (7 7 & &' E) = (cosh 7' cosh 7)) 71/2x

{/dp kmp /dk‘ \If k:l,zk:w) ) (k:l,ikg,)*(%//)\I/I(Czhkz)(@/)\Ijl(czhkz)*(a)//)+

Nmax
s fany o gt T e W @R @)+
ne=0

Nmax

RS nrnm (k Enm) ~ (k vEnm
FY D e T ) T R @) e @ )}.

nt=0ne= O

(3.85)

The normalization constants Ny, Niop, Nnene are determined by the respective
residuum in G(2)(E) and the discrete spectrum is determined by the quadratic
equation (3.78). The continuous spectrum has the form

2

=5 — (p* + k3). (3.86)
The difference of E, in comparison to the (u,v) system can be resolved by
making in the (u,v) system the transformation sinu = tanh 7 which changes the
sign in the energy term. This concludes the discussion of V2 on Dry.

3.3. The Superintegrable Potential V3 on D1y. We state the potential in the
respective coordinate systems

h2 4a+ 4Cl_ )1
Va(@,9) = — + X
2 2m<sinh2 25 ' sinhZ @

x| —2 42 4 ( ! ! ) (3.87)
= |\ ————-——==]| @G
cos? ¢ cosh®@ *\ sin? ¢ sinh?@
i (s~ ws) o (e v vs)]
2m | "\cosh®w cos? @ sinh2¢ | sin® ¢

C3 C2 1 1
« + +ec —— ). (3.88
Linh2 & cosh?® 8 <51n2 $  cos? 90)1 ( )

It is possible to evaluate the path integral for V3 in both separating coordinate
systems. However, due to the similarity in the evaluations, only the degenerate
elliptic II case will be presented.
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3.3.1. Separation of V3 in Degenerate Elliptic Coordinates II. We insert the
potential V3 in the path integral formulation for degenerate elliptic coordinates on
Dry and obtain f(@, @) = 4(a./sinh? 20 + a_ / sin” 2¢))

KY)(@" & ", o5 T) = Di(t) D) f(@, )%

FL2 C1 C2 ( 1 1 >
- —— ~ + +ce3| ——— ——— dt p. (3.89
2mf (@, @) <0082 ¢ cosh®m ° \sin? ¢ sinh®@ (-89

In order to obtain a convenient form to evaluate (3.89) we perform the coordinate
transformation cos ¢ = tanh7 in the same way as for V5. Performing also the
corresponding time transformation gives

oo

dE  _,
K@ 27,751 = [ 5o e BT/
r i (B
« [asresn 550 )| K0G8 7, G0
m a_

and the time-transformed path integral K (V3)(s”) is given by

KW (" & 7 76" = Da(s) D7 (s) cosh Tx

X ex 1/ @(7’2 + cosh? 70?) — _hQ /\1;—7_1/4_
g 2 2m  sinh? 7

2 2

K2 )\Sa_+ —1/4 )\2a_+ —1/4

1
— + - ds 3.91
2m cosh? 7 sinh? @ cosh? @ 4 (3:91)

1

(N = vk 2mayE/h?, i = 1,2,3). The latter path integral has the
Zai

form of two successive modified Poschl-Teller path integrations in @ and 7. In

the w-path integration we get a contribution from the continuous and discrete
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spectrum. The continuous contribution gives in the 7-path integration only a
continuous part, whereas the other gives a discrete and continuous contribution
in 7. We denote the continuous parameter in @ by pg, the discrete parameter in
w by €p, = 2ngp + )\3;+ — )\2;+ — 1, the continuous parameter in 7 by p, the

discrete parameter in 7 by €,, = 21z + A+ — €, — 1, therefore:
=

K(V3)(c~u//,d)/,7~'//,7~'/; SH) _

® Age Ay ) [CYRES VR
= (cosh 7 cosh%")_l/Q/dpu\I/pm at Tt (@)W, T AT (@)%
0
F(s'")=F ; s " h2 )\er _1/4 p2 +1/4
X D7(s) exp ] — —7? - - + & dsp +
/ (s) exp h/ 2 2m sinh? 7 cosh? 7
#(0)=+" 0
Nmax Pg= A=) (A= 2 A— )
+ (cosh 7 cosh 7)™ 1/2 Z N (70 ) L (U P
n,;,:O
=" A2, —1/4
DH(s) z/ m., h? 11 e —1/4 J
X T(S) ex - —_— T = - sy =
PR 2 2m | sinh?7 cosh? 7
7(0)=7" 0

CYP Y Aye Ay )
3 2+ 3a+ 2+

= (cosh 7 coshi'”)*l/Q/dptw\Ilpa, at et (@)W, at (@)%
0

oo

A+ ipa) A+ ipe) * -
« /dp\ij la_ ((;}/)\ij la_ ((I)”) e is hp2/2m+
0
Nimax A= A=) (A= A— )
+ (cosh 7 cosh 7)™ 1/2 Z N (70 ) S (L P
na,:O

T s seng) (A4 seng)*
xQ [avw, S @, T @ ey
0

Nmax ()‘ + ,En(:)) ()‘ + ,En(:)) e
Y w @ e m G)
N =0

Performing the s” integration gives the spectrum. For the continuous spectrum
we obtain

E, = U 2+1—c (3.93)
P 9ma_ p 4 3) ’
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The discrete spectrum is determined by
Q(TL@ + ’I”L;—) + )\1;—7 + )\Sa—+ — )\2;7 —2= )\3;—7 . (3.94)

This is an equation in E in the eighth order which we will not solve.

3.4. The Superintegrable Potential 1V, on D1y. We state the potential in the
respective coordinate systems

—1 ;9
[ as a_ h . 1 1 1
Valu, v) = (sin2u+cos2u> 2m (ko 4) (sin2u+0052u (395
—1 ;9
ay  a_ I 9 1 1 1
(2 +) (-2 )(s+= 3.96
(+32) m(6-5) (7). 699
R [ a+20  a—20\"'[, 1
= 2\ 52 + - ko — )
2md? \ sinh” 2w’  sin® 2¢’ 4

1 1
X + . 3.97
(cosh2 wcos? ¢ sinh? wsin? cp) 397)

It is possible to evaluate the path integral for V, in all the separating coordinate
systems. However, we evaluate the path integral for V4 only in the (u,v) system
because V} is trivial.

3.4.1. Separation of V4 in the (u,v) System. We insert Vj into the path
integral and obtain (f = a, /sin®u + a_ /cos? u)

u(t//):u// 'U(t//):'u//
K" ' 0" 0 T) = Duft) / Do(t) f(u)x

u(t)=u’ v(t)=v’

T
. 2 1.2
X exp %/[%f(u)(am?) L 1/4( o )}dt . (3.98)
0

C2m f(u) \sinfu cos?u

We proceed similarly as in [14]. Because the formulation in (u,v) coordi-
nates is inconvenient, we perform following [12] the coordinate transformation
cosu = tanh7. Further, we separate off the wv-path integration, and addi-
tionally we make a time transformation with the time-transformation function
f =ay /sin®u+a_/cos? u. Due to the coordinate transformation cos u = tanh 7
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additional quantum terms appear according to

im (Au0)? N
P\ 2eh cosuG—D cosul) |

= exp [%(ATU))Q i (1 + éﬂ . (3.99)

8m cosh? 7(9)

We get for the path integral (3.98)

o0

K" v 0" v;T) = / %e‘“ﬂ/hx
™
1 3 _fLng "ot mno 0. M
x [ ds" exp N ar F 5 K", 70" 0" 8"), (3.100)
m
0

and the time-transformed path integral K (s”) is given by

et
K(T 7T7U 7U;S):

s iky (v —v") reh)=r"
_ dk € h7' cosh ")~ 1/2 D
= UT(COS 7' cosh ) T(s)%
—0o0 7(0)="7'
i fm., R (A—1/4 —k2 —1/4)}
X e - —7° = — — ds p. (3.101
Y7 / [ 2" " 2m ( sinh? 7 cosh? 7 ( .
0

Inserting the solution for the modified Poschl-Teller potential and evaluating the
Green function on the cut yields for the path integral solution on Diy as follows
(K (", /"0, T) = K (7,7 0" 05 T

K(u”,u',v”,v’; T) _

= / dk, / dpe™ TE/ My (7 0"V (7)), (3.102)
—00 0
i, (T,0) = o W (Nosik) (1) (3.103)
AT \/2ma; cosht 7 ’ '
B =1 (p* + kJ) (3.104)
P 2may 0/ '



PATH-INTEGRAL APPROACH FOR SUPERINTEGRABLE POTENTIALS 1061

where A3 = k2 — 2ma.E/h? and the wave functions for the modified Poschl—
Teller functions. Reinserting cosu = tanh 7 gives the solution in terms of the
variable u.

We also see from this example that the introduction of a third variable
w, say, to a three-dimensional version of Darboux space Dy allows separa-
tion of variables, where the additional quantum number kg corresponds to the
motion in w.

4. SUMMARY AND DISCUSSION

In this paper we have finished the discussion of superintegrable potentials
on spaces of nonconstant curvature. The results are very satisfactory. There are
two potentials on Dj, four potentials on Dy, five potentials on Dyyr, and four
potentials on Dry, respectively. We could solve many of the emerging quantum
mechanical problems. To give an overview, we summarize our results in Table 5.
We list for each space the corresponding potentials including the general form of
the solution (if explicitly possible). We omit the trivial potentials here, because
they are separable in all corresponding coordinate systems.

In the first Darboux space Dj the superintegrable potentials were related to
the Holt potential and a shifted isotropic harmonic oscillator in two-dimensional
Euclidean space. Whereas the solution in the coordinate v can be expressed in
terms of the wave functions for the radial harmonic oscillator (Laguerre polyno-
mials) and the shifted harmonic oscillator (Hermite polynomials), the solution in
the coordinate u was determined by a boundary condition for u. This gave wave
functions in terms of parabolic cylinder functions and a transcendental equation
for the bound state energy levels. The corresponding solution in the rotated
(r,q) system was similar. An explicit solution in parabolic coordinates could not
be found.

In the second Darboux space there were three nontrivial superintegrable po-
tentials. The potentials were related to the Hold potential, the isotropic singular
oscillator, and the Coulomb potential in two-dimensional Euclidean space. We
found combinations of polynomial wave functions for the discrete states and com-
binations of polynomials and Whittaker functions for the scattering states. The
discrete energy spectrum for the oscillator-related potentials was usually given
by a quadratic equation in the energy. For the Coulomb-related potential we
found an equation in eight order in the energy, which could be studied in a
special case. Also, in the semiclassical limit, we found that the energy spec-
tra indeed had the behavior of a harmonic oscillator and a Coulomb potential,
respectively.

On D1 we had potentials related to a linear potential, a Coulomb potential,
and a shifted oscillator in two-dimensional flat space. We found for the first po-
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Table 5. Solutions of the path integration for superintegrable potentials in Darboux

spaces
Space and potential Solution in terms of the wave functions
Dr
Vi: (u,v) Hermite polynomials x Parabolic cylinder functions
Parabolic No explicit solution
Va: (u,v) Hermite polynomials x Parabolic cylinder functions
(r,q) Hermite polynomials x Parabolic cylinder functions
D
Vi: (u,v) Hermite polynomial x Whittaker functions®
Parabolic No explicit solution
Va: (u,v) Laguerre polynomial x Whittaker functions®
Polar Gegenbauer polynomial x Whittaker functions™
Elliptic No explicit solution
V3: Polar Gegenbauer polynomials x Bessel functions
Parabolic Product of Whittaker functions™
Elliptic No explicit solution
D
Vi: Parabolic Product of Hermite polynomials/Parabolic cylinder functions
Translated parabolic | Product of Hermite polynomials/Parabolic cylinder functions
Va: (u,v) Gegenbauer polynomials x Whittaker functions®
Polar Gegenbauer polynomials x Whittaker functions™
Parabolic Product of Whittaker functions™
V3: Polar Gegenbauer polynomials x Whittaker functions™
Hyperbolic No explicit solution
Vi: Hyperbolic Product of Whittaker functions™
Elliptic No explicit solution
Dy
Vi: (u,v) system Product of hypergeometric functions
Horospherical Product of Whittaker functions™
Elliptic No explicit solution
Va: (u,v) Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
V3: Elliptic Hypergeometric functions
Degenerate elliptic | Hypergeometric functions
*The notion Whittaker functions means for a disrete spectrum Laguerre polynomials and for
a continuous spectrum Whittaker functions W, (), respectively.
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tential an equation in the fourth order in the energy £, and quadratic equations in
the energy E for the second and third potentials. The Coulomb-related potential
showed again in the semiclassical limit the behavior of a Coulomb potential. Of
some special interest was the feature of the complex periodic Morse potential
for the separation of V3 in polar coordinates. Such complex potentials have at-
tracted in the recent years some attention, because the involved P7 symmetry in
these potentials has the consequence that they, nevertheless, have a real spectrum,
e.g., [3,4,42,49-51]. Such kind of potentials also appear as subsystems in the
list of superintegrable potentials on the complex Euclidean plane [36].

A special feature in Dy was that for the free motion there are already
positive continuous and negative infinite discrete spectra. A similar feature
also exists for the free quantum motion on the SU(1,1) and SO(2,2) hyper-
boloid.

In the fourth Darboux space we found potentials which were related to the
Morse and Poschl-Teller potential, and combined modified Péschl-Teller poten-
tials. The modified Poschl-Teller potentials had, of course, solutions in terms of
hypergeometric functions, respectively: Jacobi polynomials (discrete spectrum)
and Jacobi functions (scattering states).

We were able to solve the various path integral representations, because we
have now to our disposal not only the basic path integrals for the harmonic
oscillator, the linear oscillator, the radial harmonic oscillator, and the (modi-
fied) Poschl-Teller potential, but also path-integral identities derived from path
integration on harmonic spaces like the elliptic and spheroidal path-integral rep-
resentations with their more complicated special functions. This includes also
numerous transformation techniques to find a particular solution based on one of
the basic solutions. Various Green-function analysis techniques can be applied to
find an expression not only for the Green function but also for the wave functions
and the energy spectrum. Usually, we stated in all cases the solution for the dis-
crete spectrum contribution, i.e., the energy spectrum and the bound-states wave
functions. However, not in all cases we stated explictly the scattering states.
In the cases where we omitted the explicit representation, this can be done in
a straightforward way by inserting the corresponding solution by the potential
problem in question and inserting the various coupling constants and scattering
quantum numbers.

Let us also note that our solutions are often on a more or less formal level.
Neither have we specified an embedding space, nor have we specified boundary
conditions on our spaces. For instance, in D; boundary conditions the signature
of the ambient space is very important, because choosing a positive or negative
signature of the ambient space changes the boundary conditions, and hence the
quantization conditions [21]. The same line of reasoning is, of course, valid in
the other three Darboux spaces. We have not discussed in detail special cases of
the parameters (say a and b), including the limiting cases to flat spaces or spaces
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with constant (negative) curvature. Such a discussion would go far beyond the
scope of this paper.

Let us finally mention an important observation due to [26]. At the end
of their paper Kalnins et al. gave a list of superintegrable potentials on the
two-dimensional complex plane and complex sphere. As it turns out, all of the
potentials on Darboux spaces can be generated by taking a two-dimensional line
element and dividing this line element by a superintegrable potential belonging
to a specific class [27]. Not every class generates a new potential on a Darboux
space, some are simply related by a coordinate transformation, and some potentials
can be generated from the Euclidean plane as well as the complex sphere. The
appearance of the complex sphere is especially obvious in the general elliptic
coordinate system on Dry. Some of the various different potentials coming from
the complex plane and sphere are also related by the so-called «coupling constant
metamorphosis». Coupling constant metamorphosis always comes into play if
the energy E of the quantum system appears in the form of E - metric terms.
This observation leads to the notion that every nondegenerate superintegrable
system in two dimensions is «Stdckel equivalent» to a superintegrable system in
a two-dimensional space of constant curvature [27].

In the language of path integrals coupling constant metamorphosis comes
from «time-» or «space-time» transformations (also called Duru—Kleinert trans-
formations [39]). Here the most important example is the Coulomb problem,
where by means of a space-time transformation the Coulomb coupling « just be-
comes a constant and the emerging harmonic oscillator problem has the frequency
w? = —2E/m, i.e., the negative energy of the Coulomb problem appears as a
harmonic oscillator frequency. As we have seen, this kind of coupling constant
metamorphosis or space-time transformation, respectively, had been indispensable
tools in the path integral evaluations of the free motion and for the superintegrable
potentials, and we can use both notions as synonymously.

We did not go into details of three-dimensional generalization of the Darboux
spaces [15]. Of course, it is possible to extend the notion of superintegrability
to three-dimensional Darboux spaces. In particular, in three dimensions there
are more of such potentials. In total, there are five maximally superintegrable
potentials [17], the first four of them are also superintegrable, including the
singular harmonic oscillator, the Holt potential and the Coulomb potential. New
features will arise due to the fact that on three-dimensional generalization of the
more complicated Darboux spaces Dryr and Diy, coordinate systems from the
three-dimensional complex sphere come into play [30]. Studies along such lines
will be performed in future investigations.
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Appendices

A. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v =1)

We start by considering the metric in elliptic coordinates (y = 1):

ds* = |- sna ) ——— — ——— | | (d&® +d¢?). (A1
’ [a (sinhQ(J) +sin2¢> a+<cosh2® ) @)]( w7 +dp7). (A1)

We formulate the path integral in the usual way. We perform the space-time
transformation with the coordinate transformation cos ¢ = tanh 7 yielding

w(t”):w”
K", o' ¢" @ T) = Di(t)x
(t)=a"
B(t")=¢" ) ) 1 1
X Dot)la| ——+ —— | —a _ _ X
() [ (sinh2d) sin? cﬁ) +<Cosh2&) cos? gp)]
()=

T
m a_ a4 a— a4 X2 42
X exp | — - + - 5 ) (@7 +@7)dt| =
P l?h / (sinthJ cosh?&  sin®*¢  cos? <P>( ?) ]
0

T dE _pr [ ; B2
= / ﬁeﬂET/h/ds” exp {% (aE— %>s”] x
—00 0

x K(@" & #",#:5") (A2)
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with the transformed path integral given by

7/;(8//):_7_// LZJ(S”):L:)”
K" o' #" %8 = / D7(s) D(s) cosh 7x
#(0)=+" @(0)=a"

i m o 5.9, N 1 <A2+1/4 AT +1/4 1)
xXe — — (7" 4cosh” 70 ) — — - +— |-
P (ﬁ o/ { 2 * ) 2m [cosh2 7\ sinh?®  cosh?® 4

A +1/4
_ ALl }ds) (A3)
sinh” 7

1
where A2 = 1 —2may E/h%. The successive path integrations are of the modified
Poschl-Teller type. Therefore the solution can be written as follows:

K@",&',¢",957) = [[db [ pul 0@l @)

x \I/ék_'_,ik) (%//)\Ij](j)\+7ik) * (7_/) e—ith2/2m (A4)

with the energy spectrum

2
B,= " <p2+1), (A5)

~ 2ma_ 4
and we can reinsert tanh7 — cos . The difference of the energy spectra in

degenerate elliptic and elliptic coordinates (interchanging of a4 and a_) can be
removed by a shift of the coordinates ¢ and ¢ by /2, respectively.

B. PATH INTEGRAL FOR THE FREE MOTION ON Dyy
IN DEGENERATE ELLIPTIC COORDINATES (v = 2)

We start by considering the metric in degenerate elliptic coordinates (y = 2):

1 a a_
ds® = = +r 4 do? + dg?). B.1
° <smh2 25 T amtag ) @A) (B.1)

We formulate the path integral in the usual way. We scale both variables by the
factor 2 and perform the space-time transformation with the coordinate transfor-
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1
mation cos ¢ = tanh 7 yielding (A\? = 1~ 2may E/h?):

B(t")=a" F()=5
K@@' &, ¢ 3 T) =~ Dis(t) Do) — 4
@@, T) = @ PO et 525 )"
sinh“@ sin* @
B(t)=ar B(t)=¢"
T dE
o~ iET/h

— 00

T
m a a_ < L
o [2_/<~7+~+~T><“’2“02)dt1 -/
0

o0 . h2
x/ds” exp |2 (a B — —— )" | K(&",&,7",7;s") (B2)
h 8m

F(s")=F" B(s")=0"
K@", o' 7,75 = D7(s) Do(s) cosh 7x
#(0)=+" @(0)=a"
X exp i’/{Q(Tiz—i-cosmﬁfﬂ)— - 2~<>\2+21/~4+1>} ds p =
h ) 2 2m cosh” 7 \ cosh“@w 4
dk k sinh 7k

= (cosh 7 cosh 7/)~1/2 / X
( ) g J cosh? A + sinh? 7k

X Pg\“_lm(:ﬁ: tanhw“)PZ_}flm(:ﬂ: tanh @) x
d inh
D
= cosh® wk + sinh” 7mp

(+tanh 7/)P 7, , (£ tanh 7) e~ "TP/2m (B3

ip
X P10

Therefore we obtain the wave functions and the energy spectrum, respectively,

1/2

oo 1 k sinh 7k p sinh 7p

\IjkW(T?w) = = 2 ) 2 ) X
v2cosh 7 \ cosh” mA 4 sinh” 7k cosh® 7k + sinh” 7p

X P p(£tanh w) P, ,(+tanh 7) (B.4)

K2 5 1 . s -
+ — |, and we can reinsert tanh 7 — cos .

dE, =
and Ep 2ma_ 4
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C. SUPERINTEGRABLE POTENTIALS ON E(2,C)

In this appendix we shortly discuss the path integral representation of su-
perintegrable potentials on the two-dimensional complex Euclidean plane. A
thorough path integral discussion on the real two-dimensional complex Euclidean
plane has been done in [17], and therefore these solutions will not be repeated
here, only some new due to the appearance of three more potentials Vs-V7. In
Table 6 we list the seven coordinate systems on the complex plane F(2,C).
As usual Py = —ihd, and P» = —ihd, denote the momentum operators, and
M = yP, — zP, is the angular momentum. The potentials now read as fol-
lows [27,34-36]:

B
Vs = 5(96 —iy) Cartesian
Semihyperbolic
Light Cone
@
Vo = -—F—— Parabolic
2v/x — 1y . (C.1)
Semihyperbolic
Light Cone
1 22442 Jé] ) )
Vo= Sl = + — +y(z° + Polar
T2 (x+iy)*  (z+1iy)? i y)| Polar
Hyperbolic

In the underlined cases we give a (formal) path integral representation.
The Potential V5. For the potential V5 the corresponding Lagrangian has

the form

L= %(ﬂ +9?) — g(aj —1y). (C.2)

Thus, we identify two linear potentials [13,45]
K(VE,)(:E//’ x/’ y//7 y/; T) _

I(t”):x” y(t”):y” n

BT
- T('r/ +z — iy/ _ iy”))} 7 (C.3)
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Table 6. Coordinate systems on the complex plane E(2,C)

Coordinate system Integrals of motion Coordinates
1. Cartesian, I=7p? T,y
(z,y €R)
2. Polar I=m? T = 0 Cos
(0> 0,9 €0,m)) r=gsin g
3. Light cone I= (P +iP)? T=x—1y
(z,y €R) g=x+1y
4. Elliptic I=M?—a?P} z = coshwcosa
(w>0,a€0,2m))|a #0 y = sinhw sin «
5. Parabolic I={M,P} z= %(52 —n%)
(&,n>0) y=¢&n

6. Hyperbolic

I=M?*+ (P +iP,)?

_ u2—|—u2v2—|—vz

2uv
(u,v > 0) y = ZW
7. Semihyperbolic I ={M,Pi+iP:}+(Pi—iP,)? |z = %(w—z)z—i—i(w—i—z)
(w, 2 € R) y = —%(w—z)Q—i(w—kz)

Am 4/3 )
= <%> /dEe”ET/h/d)\x
R R
2B+ X (mB\' 2B XY (mB\Y
k h? k h?
(2B =)\ (mB\"? (1, 2B=)\\(mB\'’
YTk 12 "\Y 2 12

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant.

For V5 in the semihyperbolic coordinates we obtain for the corresponding
Lagrangian (v = dw/dt)

x Ai Ai

X

x Al Ai

, (C4)

—(w — 2)(w? — 2?) — g(w +2)+E, (C.5)
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which gives after a time transformation (w = dw/ds, 2 = dz/ds and dt =
(w — z)ds) a transformed Lagrangian

Lo =T~ )~ D —2) + Blw - 2). (©6)

Therefore the potential vs has been transformed into the problem of a shifted
harmonic oscillator, whose solution is well known. In order to determine the path
integral solution we consider the Green function of the harmonic oscillator [22],
use the convolution formula for the kernel in terms of a product of two Green
functions

K(Vs)(w//7w/7Z//’Z/;T) _ / d_E e~ iET/h
2mh
X /ds”Kw(u)H7w/;Sl/) . KZ(ZI/7 Z/;s//) —
0
T dE _,ppy B
= / —e_zET/h—,/dSGw(E;w",w';—E)GZ(E;Z”,Z';E), (C.7)
27h 271

and obtain therefore
w(t//):wll
KV (" ', 2", 2, T) = / Dw(t)x
w(t)=w’

Z(t”):Z” "

) B
x Dz (t) exp 1/ {E(w—z)(w2—z2)——(w+z)}dt -
h 2 2
z(t")==z' t
1 7 m |/m 1 E+A
= E = ==~
A2 /d /d)\wh?’ ' B (2 hw )X
2 E 2 E
XD%+%\[ ﬁva<w>—€>] D7%+% [— ﬁ\/mB<w<—z> X
2 E 2 E
XD;+%\[ ﬁva<Z>—€>‘| D7%+% [— ﬁva<Z<—€> )
(C.8)

with the continuous spectrum E = h?p?/2m, and \ is the second separation
constant. The Green function may be evaluated in terms of even and odd parabolic

cylinder functions B (z) and ES" (2), e.g., [14,17,22,41], which is omitted here.
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The Potential V5. Let us consider the two Lagrangians of the potential Vg
expressed in parabolic and semihyperbolic coordinates, respectively,

m 9, .

Lp =5 E+n)E +i )+¢50¢€2+ B, (C.9)
_E . .2 22 \/5&
= 2(u} z)(w” —2%) +1 w—z+E (C.10)

which gives after a time transformation (¢ = d¢/ds, 7 = dn/ds and dt =
(€2 +n?)ds in parabolic coordinates; W = dw/ds, ¢ = dz/ds and dt = (w — z)ds
in semihyperbolic coordinates) the transformed Lagrangians

Lp— §<$2+ﬁ2>+ﬂa<s—m>+<s2 +1%), (C.11)
_ %(fﬁ — ) +iV2a+ BEw-—2). (C.12)

In parabolic coordinates we have a shifted harmonic oscillator and in semihyper-
bolic coordinates a linear potential plus a constant. The solution is consequently
almost identical to the corresponding solutions for the potential V5 with appropri-
ate replacement of the coupling constants. See also [14,17,22,41] for more details.

The Potential V7. Let us consider the last potential V7. In polar coordinates
we have the effective Lagrangian (note the additional h2-potential [22])

m, .o 2.9 2 h? —4igp —2i 1
i — — -2 Y ——. 1
L 5 (0% + 0°¢° — w?) 53 (ae Be 1 (C.13)

In the variable ¢ we have a complex periodic Morse potential, the same kind of
potentials we have encountered on Dyyr for V3 in polar coordinates. We identify
a = 4c? and 3 = cy/c;. Furthermore we see that the remaining path integral in
the variable p is just a radial harmonic oscillator path integral. Putting everything
together yields

Q(t”):gll t//):
K(V7) "ol o T = D
(Q 9 Q 790 7%0 ) ) - Q

o(t)=e' P(t)=¢’

T
) h2 —4ip —2ip 1
X exp 7 Q + 0% —w?0?) — Smg? ae —20e ~1 dt p =
0

_ Z(I)(Cl,cz 1 @(61,62) ((pl) mw

enip (P) Ppenipy 1 (9) 3 o
e ) ) mwg/gl/
X exp {— %(9/ +¢"") cot ‘“‘JT} Toz+y (m (G
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with the well-known expansion by means of the Hille-Hardy formula in terms of
Laguerre polynomials for p. We leave the result as it stands.

D. SUPERINTEGRABLE POTENTIALS ON S(2,C)

Let us shortly enumerate the superintegrable potentials on the complex sphere.
On the real two-dimensional sphere there are two superintegrable potentials, a
feature which has been already investigated, e.g., [18]. On the complex two-
dimensional sphere there are four more potentials which are listed in (D.4) [27,
30,34]. In the underlined cases we give a path integral representation. These
representations remain, however, on a formal level, because the complex sphere
is an abstract space and serves just as a tool to find the relevant potentials. Going
to the corresponding real spaces, i.e., the sphere and the hyperboloid, respectively,

Table 7. Coordinate systems on the complex sphere S(2,C)

Coordinate system

Integrals of motion

Coordinates

1. Spherical
(¥ €[0,7),¢ €[0,27)

L=J3

s1 = sin ¥ cos @
so = sin ¥ sin ¢, s3 = cos ¥

2. Elliptic

L=J-124rJ3

$2 (ru—1)(rv—1)

1—r
53 = rw—He-1) 1), 2% = ruv
1—r
. S i y? -1
3. Horospherical L= (J1+1iJ2) s1=g v+
v
. 2
_ & y -1 .
8272(1}4— ” ),83723]/’1)
1
4. D t L= (J1 +ii)? — 2J2 g — &
egenerate (J1 4+ ij2)* — c*J5 | s1+is3 cosh T cosh 72
. . cosh7e  coshm
Elliptic 1 S0 — 1S3 = —
cosh 7 cosh 7
_ 1
cosh 71 cosh 1
(11,2 € R) s3 = tanh 71 tanh 72
5. Degenerate L=Js(Ji —iJ)? s1+ise = fi
n
1 (€2 — )2
Elliptic 2 o1 4isy — L& )
4 £&n
1 2 + 2
(€n>0) sy = 28T

2 &n
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requires the real representation of the coordinate system in question, including
the corresponding path integral representation.

In Table 7 we list the five coordinate systems on the complex sphere S(2,C)
according to [27,30,34]. Let us note that we can also use v = ie i as a
parameterization in the horospherical system (z,y € R). As usual, Ji,Jo,J — 3
are the angular momentum operators in three dimensions.

The Potential V5. Let us start superintegrable potential on the two-dimensio-
nal complex sphere. It has the form

« I6] (81 + 189

Va(s) = = + 4 2 (D.1)
3(s) 53 (s1—1is2)? 7(81 —is9)3

a 6721‘@ ef4itp

= — D.2

cos? 192 + ﬁsinQ 9 Wsin2 9’ 02
—2ix & —4dix

=e 2 <7y2+?+ﬂ>—7e diz (D.3)

and we have inserted spherical and horospherical coordinates on the (complex)
sphere, respectively,

«o 3 1 + 189

Va(s) = = Spherical
3(s) s3 + (s1 —is2)? (s1 —isg)3 >prered
Horospherical
Degenerate
elliptic I
o Bss
V =
1(s) (51 —i52)? + T e +
1y .
+ Spherical
V(s1+is2)(s1 —is2)?
Degenerate
elliptic II
2 (D.4)
Vs(s) = ary etz Elliptic
V(22 — 24)2 — 4c22
Blar — o )(zrz +20) | iz
23/ (P2 — 24)% — 4c2z 23
1
(zi =51 +isg, 23 =4/1 —s7—53, ? = 1—3) Degenerate
elliptic I
! 03 1 — 452 .
Ve(s) = Horospherical
5(s) (51— i59)? + (x —iy)® +7(51 Tsg)l  —roSPENCd
Degenerate
elliptic 11
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This potential has now in spherical coordinates in the ¢ dependence the same
structure as the potential V7 on the complex plane, thus the solution is the same
(c1,2 in the complex Morse potential appropriately). In the 1 dependence we
obtain after the separation of ¢ a Pdschl-Teller potential. In comparison to V7

with the complex plane, we must therefore replace the wave functions in p in terms
. . . &, 4+23+ 3
of Laguerre polynomials by the Poschl-Teller wave functions @T(La ! 2) (9)

(62 = 2ma/R* + Z) and we have done. Summarizing we obtain

ﬂ(tll):’ﬁll t”):
VS)(19//,’I9/,QO//,QO/;T) _ / / ) sin ¥

I(t =0 o(t')

tll
i meg2, o 29:2y X 1 —2ip . —dip
xexp{h/ lQ (9% +sin® ) - Sin219<ﬂe e 4)]dt}

t/
(l+2§—j+%,a)

= (s sin )Y B ()0l () (9%
n=0 =0
22414 i h? 3\2
( v )(ﬁ’)exp[—%%<2n+l+22—j+§) T} (D.5)

In horospherical coordinates we have in the variable y a radial harmonic oscillator
1
(set v = mw?/2, G* = 2ma/h* + Z) and in the same way (c; 2 in the complex

Morse potential appropriately)

I(t//):I// y(t,,):yll
K(VS)(aj",x/, v,y T) = / Dax(t) / Dy(t) %" x

x(t)==z' y()=y’

t//
7 m ; ; « ;
% exp{ﬁ/ [E(i+e2zry2) _e—2zr <7y2 + E +ﬁ> _ve—4z:c‘| dt} _

t

—ilz +z" RHO,& RHO,& c1,C ci,c
= o7t ) NN GO (g RO () pled) (MBI (o)
n=0 [=0
X exp | — 1—(n+20—2+1) 7|, (D6
h2m c1

and the \IIZ(RHO’&) (y) are the wave functions of the radial harmonic oscillator [22].
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The Potential V5. As the last potential we consider V5. We have (set
v = —mw?/8)
a Bss3 1 — 4s2

Vo(s) = (s1 —i82)? + (x —iy)3 + 7(51 —i89)% (D.7)

. 2 2
—imm —2ix —4dix
=e 2 5w ( +m—g2> —e? <a+2£7>—7e4 , (D)

and we have inserted horospherical coordinates. This potential is, in the variable
y, a shifted harmonic oscillator, however, the shift is a complex one. In the
variable  we have the complex periodic Morse potential. Again, we encounter a
complex potential, this time a P7 -symmetric harmonic oscillator with spectrum
E; = hw(l+1/2), e.g., [49]. Consequently, we have in a similar way as before
(1,2 in the complex Morse potential appropriately, set xk = i3/mw?):

a:(t”):z” y(tll):yll

K(VG)(x”, x/, y//’ y/; T) = / Da(t) / Dy(t) o 21T 5

2(t)=a’ Y=y’
t//
1
X exp {E /

. 2
m. .o 2iz 2y [T 2 i
2(33 +e*7y%) (2 <y+mw2>+
t/

5> - -
+ (Oé + 2mw2> e—2zr _ ,Ye—4z:c dt —

—i(x +a2” HO HO c1,c c1,c
DR DE A O Z@[C;AP” PG ()
=0

)
X €xp [— 1h—(n+ 22 4 1)2T}, (D.9)
h2m c1
and the \I/l(HO’F”)(y) are the wave functions of the shifted harmonic oscillator [22].
The representations of the potentials V; and V5 in the separating coordinate sys-
tems lead to intractable powers in the various coordinates, respectively, powers of
cosh 7y 9, i.e., highly anharmonic terms which cannot be treated. The same holds
for V3 and Vj in the remaining separating coordinate systems. This concludes the
discussion.
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