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A review of the double asymptotic scaling phenomenon for the structure functions of the deep-
inelastic scattering process is presented as well as an analytical parameterization of the contributions
from the twist-two operators of the Wilson operator product expansion and power suppressed terms.
Higher-twist corrections to F2 at small x are studied for the case of a �at initial condition for the
twist-two QCD evolution in the next-to-leading order approximation. Higher-twist terms are estimated
using two different approaches Å one motivated by BFKL and the other motivated by the renormalon
formalism. The results of the latter approach are in very good agreement with deep-inelastic scattering
data from HERA.
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INTRODUCTION

For more than a decade, various models on the behavior of quarks and gluons
at small x have been confronted with a large amount of experimental data from
HERA on the deep-inelastic scattering (DIS) structure function F2 [1Ä14]. In
the small-x regime, nonperturbative effects are expected to give a substantial
contribution to F2. However, what is observed up to very low Q2 ∼ 1 GeV2
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608 ILLARIONOV A.YU., KOTIKOV A.V., PARENTE G.

values, traditionally explained by soft processes, is described reasonably well
by perturbative QCD evolution (see, for example, [15]). Thus, it is important
to identify the kinematical region where the well-established perturbative QCD
formalism can be safely applied.

At small x, the Q2 dependence of quarks and gluons is usually obtained
from the numerical solution of the DokshitzerÄGribovÄLipatovÄAltarelliÄParisi
(DGLAP) equations [16Ä20]∗. The x proˇle of partons at some initial Q2

0 and
the QCD energy scale Λ are determined from a ˇt to experimental data [30Ä43].

On the other hand, when analyzing exclusively the small-x region, a much
simpler analyses can be done by using some of the existing analytical approaches
of DGLAP equations in the small-x limit [44Ä53]. In [44Ä46, 52, 53] it was
pointed out that HERA small-x data can be interpreted in terms of the so-called
doubled asymptotic scaling (DAS) phenomenon related to the asymptotic behavior
of the DGLAP evolution discovered many years ago in [16,17,54].

In the present work we incorporate the contribution of higher-twist (HT)
terms of the Wilson operator product expansion to our previous analysis [53].
The semianalytical solution of DGLAP equations obtained in [53] using a �at
initial condition, is the next-to-leading order (NLO) extension of previous studies
performed at the leading order (LO) in perturbative QCD [44,52]. The �at initial
conditions at some initial value Q2

0 correspond to the case of parton distributions
tending to some constant when x → 0.

In [53], both the gluon and quark singlet densities are presented in terms of
the diagonal ®+¯ and ®−¯ components obtained from the DGLAP equations in
the Mellin moment space. The ®−¯ components are constants at small x for any
values of Q2, whereas the ®+¯ components grow for Q2 � Q2

0 as∗∗

∼ exp

(
2

√[
a+ ln

(
as(Q2

0)
as(Q2)

)
−
(

b+ + a+
β1

β0

)(
as(Q2

0) − as(Q2)
)]

ln
(

1
x

))
,

(1)
where a+ = 4CA/β0 and b+ = 8[23CA − 26CF ]TRf/(9β0). In Eq. (1) and
hereafter we use the notation as = αs/(4π).

The ˇrst two coefˇcients of the QCD β function in the MS scheme are
β0 = (11/3)CA − (4/3)TRf and β1 = (2/3)[17C2

A − 10CATRf − 6CF TRf ],
where f is the number of active �avors. This new presentation as a function

∗The x dependence can also be obtained from the BalitskyÄFadinÄKuraevÄLipatov (BFKL)
equation [21Ä25], which is out of the scope of this work. However, in Sec. 4, we use the twist-four
anomalous dimensions from [26Ä29] obtained from BFKL results.

∗∗Since we are only interested in the small-x behavior, and the initial conditions are given by
the �at (x-independent) functions (see Eq. (15)), we can use permanently the variable z = x/x0 with
values 0 < z < 1 with some arbitrary x0 � 1. However, the x0 dependence of the results is very
little, so we put x0 = 1. The variable z is used in Appendix B only.
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of the SU(N) group Casimirs, with f active �avors, CA = N , TR = 1/2,
TF = TRf , and CF = (N2 − 1)/(2N), permits one to apply our results to, for
example, the popular N = 1 supersymmetric model. Of course, for N = 3 one
obtains the QCD result [53].

The analysis performed in our previous work [53] has shown very good
agreement with H1 and ZEUS 1994 data [4,11,12] at Q2 � 1.5 GeV2. Here, we
add the higher-twist contributions with the hope to describe also more modern
data [2, 3, 7Ä10] at lower Q2.

Moreover, in comparison with [53], in the present work we have solved
the technical problem of ®backward¯ evolution that leads us now to have the
normalization scale Q2

0 of DGLAP evolution in the middle point of the Q2 range.
Basic Formulae. At this point of the introduction, we ˇnd convenient to

present the basic results of our article: the twist-four and twist-six corrections to
F2 in the DAS approach. Thus, a reader who has interest only in application of
the formulae to the analysis of F2 can skip the following sections and start to
read Sec. 9, where the ˇts of F2 are performed. We note, however, that some
of the sections that follow contain also the contribution of power corrections to
the derivatives ∂F2/∂ ln Q2 and ∂ ln F2/∂ ln(1/x) and to the parton distributions
(see Secs. 5, 6, 7 and 8, respectively).

The basic results of the present paper are the twist-four and twist-six correc-
tions to F2

F2(x, Q2) = F τ2
2 (x, Q2) +

1
Q2

F τ4
2 (x, Q2) +

1
Q4

F τ6
2 (x, Q2), (2)

where for the higher-twist parts F τ4,6
2 BFKL-motivated evaluations [26Ä29] (in

this case only the twist-four correction has been estimated) and the calcula-
tions [55] in the framework of the renormalon model (hereafter marked with
superindex R) have been used.

Let us give some discussions about the estimations of the higher-twist cor-
rections in the renormalon model. We follow the article [55] and, for simplicity,
discuss here only the twist-four case.

Note that the direct calculation of the matrix elemens associlated with the
twist-four operators is a very difˇcult problem, which was studied systematically
in [56Ä60]. It was found (see also [61] and references therein) that the twist-
four operators may exhibit logarithmic and quadratic ultraviolet divergences, that
makes the deˇnition of the twist-four contribution ambiguous. For DIS structure
functions the ambiguity always cancels against the corresponding ambiguity in
the deˇnition of twist-two contribution, which arises because of the asymptotic
character of the QCD perturbative series [62Ä72]. Hence, the sum of twist-two
and twist-four contributions is unambiguous up to order 1/Q2, if all calculations
are given within the same regularization scheme.
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This relation between twist-two and twist-four contributions has motivated
a phenomenological hypothesis [73]: the main contribution to matrix elements
of twist-four operators is proportional to their quadratically divergent part and,
thus, can be extracted directly from the large-order behavior of the corresponding
perturbative series.

The approach is called the renormalon model. At low-x range the corre-
sponding formulae have been obtained in [55]. They are used in our paper to
estimate higher-twist terms and below they will be called ®estimations of higher-
twist corrections in renormalon model¯.

These estimations are essentially more complete to compare with BFKL-
motivated ones, and the predicted HT corrections can be expressed through the
twist-two ones as follows:

FRτ4
2 (x, Q2) = e

∑
a=q,G

aτ4
a μ̃τ4

a (x, Q2) ⊗ f τ2
a (x, Q2) =

∑
a=q,G

FRτ4
2,a (x, Q2), (3)

where the symbol ⊗ marks the Mellin convolution (see Eq. (56) below); the

functions μ̃τ4
a (x, Q2) are given in [55], and e =

( f∑
1

e2
i

)
/f is the average

charge square for f -active quarks. We call FRτ4
2,q and FRτ4

2,G the HT corrections
proportional to the twist-two quark and gluon densities, respectively.

Note that the parton distributions f τ2
a (x, Q2) are multiplied by z, i.e.,

f τ2
q (x, Q2) = zq(x, Q2) and f τ2

G (x, Q2) = zG(x, Q2). Note also that we neglect
the nonsinglet quark density fΔ(x, Q2) and the valence part fV (x, Q2) of the
singlet quark distributions, because they have the following small-x asymptotics:
fΔ(x, Q2) ∼ fV (x, Q2) ∼ xλV , where λV ∼ 0.3−0.5. Thus, our quark density
f τ2

a (x, Q2) contains only the sea part fS(x, Q2), i.e., f τ2
a (x, Q2) = fS(x, Q2).

For the leading twist part we have [53] at the LO and NLO approximations,
respectively,

F τ2
2,LO(x, Q2) = e f τ2

q,LO(x, Q2), (4a)

F τ2
2 (x, Q2) = e

(
f τ2

q (x, Q2) +
4TRf

3
as(Q2)f τ2

G (x, Q2)
)

. (4b)

Note, that the absence of Mellin convolution in the r.h.s. of (4b) follows
from properties of generalized DAS approach (see Appendix B)

Let us keep the NLO relation (4b) beyond the leading twist approximation.
Then for the total F2 (see Eq. (2)) we obtain

F2(x, Q2) = e

(
fq(x, Q2) +

4TRf

3
as(Q2)fG(x, Q2)

)
, (5)
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where fa(x, Q2) are the parton distributions containing both the twist-two part [53]
(see the next Section) and the twist-four and twist-six contributions

fa(x, Q2) = f τ2
a (x, Q2) +

1
Q2

fRτ4
a (x, Q2) +

1
Q4

fRτ6
a (x, Q2). (6)

For the HT part fRτ4,6
a (x, Q2) calculations in the framework of the renormalon

model have been used∗.
We would like to note that each HT term fRτ4,6

a (x, Q2) can be chosen in a
quite arbitrary form, and only the combination

fRτ4,6
q (x, Q2) +

4TRf

3
as(Q2)fRτ4,6

G (x, Q2) (7)

is unique, because we kept the original twist-two relation, Eq. (4b), to be the same
when HT corrections are incorporated (see Eq. (5)).

Note that in our previous studies [74Ä76] we did not use Eq. (5) to parame-
terize the HT corrections to F2. Instead we consider the following representation:

FRτ4,6
2 (x, Q2) = ef̂Rτ4,6

q (x, Q2), (8)

coming from the LO relation (4a) between F2 and parton distributions. The
choice (8) looks quite natural for ˇts of F2 data if there is no interest to study the
parton distributions themselves: note that the HT corrections to the gluon density
are absent in Eq. (8). Indeed, in the calculation of F2 at NLO one has to take a
gluon density as in the r.h.s. of Eq. (4b). So, one should take the condition

f̂Rτ4,6
G (x, Q2) = 0, (9)

which is not so natural. Moreover, the choice (8) and (9) leads to quite a
complicated form for the HT corrections to the quark density: there are two
independent contributions ∼ Aτ2

q and ∼ Aτ2
G (see [74Ä76] and formulae therein).

In the work we also study x and Q2 dependences of ∂F2/∂ ln Q2 and
∂ ln F2/∂ ln(1/x), that force one to deˇne the parton densities in a proper way.
So, we take another quite a natural choice

fRτ4,6
q (x, Q2) = aτ4,6

q μ̃τ4,6
q (x, Q2) ⊗ f τ2

q (x, Q2) ≡ 1
e

FRτ4,6
2,q (x, Q2), (10a)

fRτ4,6
G (x, Q2) =

3/4TRf

as(Q2)
aτ4,6

G μ̃τ4,6
G (x, Q2) ⊗ f τ2

G (x, Q2) ≡

≡ 3/4TRf

eas(Q2)
FRτ4,6

2,G (x, Q2), (10b)

∗Note that twist-four corrections are studied below in two approaches based on BFKL and
DGLAP equations (see Sec. 4). However, we give here the results only for the DGLAP approach
based on the infrared renormalon model because it contains a more complete calculation, and the
agreement with experimental data is much better.
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i.e., the HT quark (gluon) part of F2 relates only to the corresponding quark
(gluon) twist-two density.

Note once again that the choice (10) corresponds exactly to Eq. (5), i.e., to the
extension of the standard twist-two relation (4b) between F2 and parton densities
at the NLO formulae with the purpose to include the HT contributions.

Note also that for both the above parton density choices the DGLAP equation
will be violated by the HT corrections (see Sec. 5 and discussions therein).

Estimations of Higher-Twist Terms in the Renormalon Model. As has
been already noted above it is useful to split the parton distributions in two parts

fa(x, Q2) = f+
a (x, Q2) + f−

a (x, Q2), (11)

where both the ®+¯ and ®−¯ components contain twist-two and HT parts.
The two-component representation follows directly form the exact solution of

DGLAP equation in the Mellin moment space at the leading twist approximation
(see [53]).

The twist-two contribution is presented below in Sec. 1 and the twist-four
and twist-six parts can be expressed through the twist-two one as follows (here
for simplicity we restrict our consideration to LO approximation):

for the (singlet) quark distribution

fRτ4,+
q (x, Q2)

f τ2,+
q,LO (x, Q2)

=
64CF TRf

15β2
0

aτ4
q

{
2

ρ2
LO

+ ln

(
Q2∣∣aτ4
q

∣∣
)

Ĩ0(σLO)

ρLO Ĩ1(σLO)

}
+ O (ρLO) ,

(12a)

fRτ4,−
q (x, Q2)

f τ2,−
q,LO (x, Q2)

=
64CF TRf

15β2
0

aτ4
q

{
ln
(

1
xq

)
ln

(
Q2

xq

∣∣aτ4
q

∣∣
)

− p̂′(νq)

}
+ O (x) ,

(12b)

for the gluon distribution

fRτ4,+
G (x, Q2)
f τ2,+

G,LO(x, Q2)
=

8
5β2

0

aτ4
G

as(Q2)

{
2

ρLO

Ĩ1(σLO)

Ĩ0(σLO)
+ ln

(
Q2

|aτ4
G |

)}
+ O (ρLO) ,

(12c)

fRτ4,−
G (x, Q2)
f τ2,−

G,LO(x, Q2)
=

8
5β2

0

aτ4
G

as(Q2)
ln
(

Q2

x2
G |aτ4

G |

)
+ O (x) , (12d)

where aτ4
a are the magnitudes which should be extracted from the ˇts of the

experimental data. The variables xa = x exp [p̂(νa)], where p̂(νa) = [Ψ(1 +
νa) − Ψ(νa)] and νa are the powers of the x → 1 asymptotics of the parton
distributions, i.e., fa ∼ (1 − x)νa at x → 1. From the quark counting rules we
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know that νq ≈ 3 and νG ≈ 4. Then, we get p̂(νq) ≈ 11/6 and p̂(νG) ≈ 25/12,
and their derivatives p̂′(νq) ≈ −49/36 and p̂′(νG) ≈ −205/144 (see Appendix B
for further details).

The functions Ĩν in Eqs. (12a), (12c) are related to the modiˇed Bessel
function Iν and to the Bessel function Jν by

Ĩν(σ) =

{
Iν(σ̄), if σ2 = σ̄2 � 0,

iνJν(σ̄), if σ2 = −σ̄2 < 0,
(13)

and the σ and ρ values are given in Sec. 1 by Eqs. (20) and (23) at the LO and
by Eqs. (26) at the NLO, respectively.

Note that the upper (down) line in the r.h.s. of Eq. (13) corresponds to the
solution of the DGLAP equation for the ®direct¯ (®backward¯) evolution in the
DAS approximation.

The twist-six part can be easily obtained from the corresponding twist-four
one as

fRτ6
a (x, Q2) = −8

7

[
fRτ4

a (x, Q2) with

aτ4
a → aτ6

a , ln
(

Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
. (14)

The paper is organized as follows. In Sec. 1 we shortly review basic for-
mulae of the solution of DGLAP equation at small-x values with the �at initial
conditions, given in [53]. We show the possibility of adding the backward evo-
lution to the formulae. In Secs. 2 and 3 we present the set of formulae for
the derivation ∂F2/∂ ln Q2 and for the effective slope ∂ ln F2/∂ ln(1/x). Sec-
tion 4 contains the suggestions about the contributions of power corrections in
our approach. In Secs. 5Ä8, we consider the estimations of the contributions
of the HT terms to the parton distributions and to the derivatives of F2 in the
framework of the infrared renormalon model. Section 9 contains the ˇts of
experimental data for F2, the predictions for its derivatives and some discus-
sions of the obtained results. In Appendix A we present the Mellin moments
of renormalon contributions, calculated in [55], and their n → 1 asymptotics.
In Appendix B we illustrate the method [77, 78] of replacing the convolution
of two functions by simple product at small x. The method is used in the
present work for the correct incorporation of renormalon-type contributions of
higher-twist terms into our formulae. The conclusions contain the summary
of the results and the outlook about other applications of the presented ap-
proach.
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1. THE CONTRIBUTION OF TWIST-TWO OPERATORS

As in [53], we will work with the small-x asymptotic form of parton distrib-
utions in the framework of the DGLAP evolution equations starting at some Q2

0

with the �at function

f τ2
a (Q2

0) = Aτ2
a (hereafter a = q, G), (15)

where Aτ2
a are unknown parameters that have to be determined from data.

The usage of the �at initial condition given in Eq. (15) is supported by
the actual experimental situation: low-Q2 data [79Ä81] are well described for
Q2 � 0.4 GeV2 by Regge theory with the Pomeron intercept αP (0) ≡ λP + 1 =
1.08 [82Ä84], closed to the standard (αP (0) = 1) one. The small rise in HERA
data [1Ä14] at low Q2 can be naturally explained by inclusion of the higher-twist
terms. This is the subject of our study here.

We shortly compile below the main results found in [53] at the LO and NLO
approximations.

1.1. Leading Order. The small-x asymptotic results for PD, f τ2
a,LO (a = q, G)

and F τ2
2,LO, at LO of perturbation theory and at twist-two in the operator product

expansion have been found in [53]:

F τ2
2,LO(x, Q2) = ef τ2

q,LO(x, Q2), (16a)

f τ2
a,LO(x, Q2) = f τ2,+

a,LO (x, Q2) + f τ2,−
a,LO (x, Q2). (16b)

After Mellin inversion of the explicit moment solution to DGLAP equations,
the ®+¯ and ®−¯ PD components are given by

f τ2,+
G,LO(x, Q2) =

(
Aτ2

G +
CF

CA
Aτ2

q

)
Ĩ0(σLO) e−d̄+(1)sLO + O (ρLO) , (16c)

f τ2,+
q,LO (x, Q2) =

2TRf

3CA

(
Aτ2

G +
CF

CA
Aτ2

q

)
ρLO Ĩ1(σLO) e−d̄+(1)sLO + O (ρLO) ,

(16d)

f τ2,−
G,LO(x, Q2) = −CF

CA
Aτ2

q e−d−(1)sLO + O (x) , (16e)

f τ2,−
q,LO (x, Q2) = Aτ2

q e−d−(1)sLO + O (x) , (16f)

where

d̄+(1) = 1 +
8TRf

3β0

(
1 − CF

CA

)
, d−(1) =

8CF TRf

3CAβ0
(17)
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are the regular parts of d+ and d− anomalous dimensions, respectively, in the
limit n → 1∗.

We deˇne the variable

s = ln
(

as(Q2
0)

as(Q2)

)
. (18)

At LO, in terms of the QCD scale ΛLO, it has the form:

sLO = ln
(

ln (Q2/Λ2
LO)

ln (Q2
0/Λ2

LO)

)
. (19)

The argument σLO in the LO is given by∗∗

σLO = 2
√

d̂GGsLO ln (x), (20)

where

d̂GG = −4CA

β0
(21)

is the singular part when n → 1 of dGG = γ
(0)
GG(n)/(2β0), γ

(0)
GG(n) being the LO

coefˇcient of the gluonÄgluon anomalous dimension.
The prescription for the backward evolution given by Eq. (13) is the result, in

the more general case, of the following representation of the series which appear
in the inverse Mellin transformation of the exact solution for PD moments (see,
for example, Eq. (6) in [53]),

∞∑
k=0

tk

k!Γ(k + ν + 1)
= t−ν/2Ĩν(2

√
t) ≡ |t|−ν/2

{
Iν(2

√
|t|), if t � 0,

Jν(2
√
|t|), if t < 0.

(22)

And ˇnally, in Eq. (16d)

ρLO =

√
d̂GGsLO

ln (x)
=

σLO

2 ln (1/x)
; (23)

let us note that

ρ−ν Ĩν(σ) → 1
ν!

lnν (1/x) at Q2 → Q2
0. (24)

∗From now on, for a quantity k(n) we use the notation k̂(n) for the singular part when n → 1
and k(n) for the corresponding regular part.

∗∗Hereafter, we use the variables σLO and ρLO, introduced in [44Ä46] for the case Q2 � Q2
0.

In our work, they are generalized to arbitrary values of Q2 and beyond the LO approximation (see
below).



616 ILLARIONOV A.YU., KOTIKOV A.V., PARENTE G.

1.2. Next-to-Leading Order. The small-x behavior of the twist-two parton
densities f τ2

a (a = q, G) and of F τ2
2 at the NLO approximation has been presented

in our previous paper [53]. Here we give the result that can also be used for Q2

below the initial condition point Q2
0 (where partons have the �at form in x as in

Eq. (15))

F τ2
2 (x, Q2) = e

(
f τ2

q (x, Q2) +
4TRf

3
as(Q2) f τ2

G (x, Q2)
)

, (25a)

f τ2
a (x, Q2) = f τ2,+

a (x, Q2) + f τ2,−
a (x, Q2). (25b)

The ®+¯ and ®−¯ PD components in the equations above are:

f τ2,+
G (x, Q2) = A+

G(Q2, Q2
0)Ĩ0(σ) exp (−d̄+(1)s − D̄+(1)p) + O(ρ), (25c)

f τ2,+
q (x, Q2) = A+

q (Q2, Q2
0)×

×
[(

1 − d̄q
+−(1)as(Q2)

)
ρĨ1(σ) +

20CA

3
as(Q2)Ĩ0(σ)

]
×

× exp (−d̄+(1)s − D̄+(1)p) + O(ρ), (25d)

f τ2,−
a (x, Q2) = A−

a (Q2, Q2
0) exp (−d−(1)s − D−(1)p) + O(z), (25e)

where D±(n) = d±±(n) − (β1/β0)d±(n); p = as(Q2
0) − as(Q2) and

σ = 2
√

(d̂+s + D̂+p) ln (x),
(26)

ρ =

√
(d̂+s + D̂+p)

ln (x)
=

σ

2 ln (1/x)
.

A+
G(Q2, Q2

0) =
[
1 − d̄G

+−(1)as(Q2)
]
Aτ2

G +

+
CF

CA

[
1 − dG

−+(1)as(Q2
0) − d̄G

+−(1)as(Q2)
]
Aτ2

q , (27a)

A−
G(Q2, Q2

0) = Aτ2
G − A+

G(Q2, Q2
0), (27b)

A+
q (Q2, Q2

0) =
2TRf

3CA

(
Aτ2

G +
CF

CA
Aτ2

q

)
, (27c)

A−
q (Q2, Q2

0) = Aτ2
q − 20CA

3
as(Q2

0)A+
q (Q2, Q2

0). (27d)
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Table 1. The values of the parameters used in the calculation of the parton distributions
as a function of the number of �avors

f d̂+ D̂+ d̄+(1) D̄+(1) d−(1) D−(1) d̄q
+−(1) d̄G

+−(1) dG
−+(1)

3 −4/3 1180/81 101/81 −43.370269 16/81 1.974431 2.779310 80/27 −29/9
4 −36/25 91096/5625 61/45 −45.485532 64/225 3.108220 2.618816 320/81 −89/27

5 −36/23 84964/4761 307/207 −47.729779 80/207 4.674958 2.458322 400/81 −91/27

6 −12/7 8576/441 103/63 −50.057345 32/63 6.864360 2.297828 160/27 −31/9

The different singular and regular parts of anomalous dimensions appearing in
Eqs. (25)Ä(26) have the form∗:

d̂++ =
8TRf

9β0
(23CA − 26CF ) , d̂q

+− = −20CA

3
, d̂G

+− = 0, (28a)

d̄++(1) =
8

3β0

[
C2

A

3

(
36ζ(3) + 33ζ(2) − 1643

12

)
−

−
(

4CF ζ(2) +
86
9

CA − 547
18

CF + 3
C2

F

CA

)
TRf−

− 26CF

9CA

(
1 − 2

CF

CA

)
T 2

Rf2

]
, (28b)

d̄q
+−(1) = CA

(
9 − 3

CF

CA
− 4ζ(2)

)
− 26

9

(
1 − 2

CF

CA

)
TRf,

(28c)

d̄G
+−(1) =

40CF TRf

9CA
,

d−−(1) =
4CACF

β0

(
1 − 2

CF

CA

)(
2ζ(3) − 3ζ(2) +

13
4

+
52T 2

Rf2

27C2
A

)
+

+
8CF

3β0

(
4ζ(2) − 47

18
+ 3

CF

CA

)
TRf, (28d)

dq
−+(1) = 0, dG

−+(1) = −
(

CA +
2
3

(
1 − 2

CF

CA

)
TRf

)
. (28e)

The corresponding numerical values are collected in Table 1 (see [53] for details).

∗The original results of [53] contain an error in the term d̄q
+−(1), where the correct number 23

at CF = 4/3 and CA = 3 was mistakenly replaced by 134/3. With the wrong number, the value
of d̄q

+−(1) was approximately 10 times higher than in Table 1. However, the results of ˇts do not

practically depend on the mistake.
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We would like to note that the exact value of the variable σ and the small-x
asymptotics of the modiˇed Bessel function

Iν(σ) ∼ exp (σ) at σ → ∞

are given in Introduction (see Eq. (1)) with |d̂+| = a+ and D̂+ = b++a+(β1/β0).
So, the most important part from the NLO corrections (i.e., the singlet part at
x → 0) is taken in a proper way: it comes directly into the argument of the
Bessel functions and does not spoil the applicability of perturbation theory at
low-x values.

We stress that the LO and NLO results given above coincide with the ones
in [53] for positive values of s and sLO (i.e., for the case Q2 � Q2

0).

Let us remind that these analytical expressions which have been obtained
from the exact solution to the moment space DGLAP evolution equations in the
asymptotic limit n → 1 have been already used in [53] to reproduce the small-x
behavior of parton distributions and lastly of DIS structure functions themselves.
The consideration of negative values for s and sLO leads us to apply the backward
evolution in the present analysis and, thus, to have the possibility of choosing
any normalization point Q2

0 and not only the low end of the Q2 evolution as it
was done in [53].

2. THE CONTRIBUTION OF TWIST-TWO OPERATORS

TO THE DERIVATIVE
∂F2

∂ ln Q2

In QCD, the scaling violations of F2(x, Q2) are caused by gluon bremsstrah-
lung from quarks and quark pair creation from gluons. In the low-x domain,
the latter process dominates the scaling violations. F2 is then largely determined
by the sea quarks, whereas the ∂F2/∂ ln Q2 is dominated by the convolution
of the splitting function PqG and the gluon density. At the leading twist ap-
proximation the derivative ∂F2/∂ ln Q2 relates strongly to the gluon distribution
f τ2

G (x, Q2). Moreover, the derivative is measured with a good accuracy. Then,
the ∂F2/∂ ln Q2 experimental data can be successfully used to determine the
characteristic properties of gluon distribution.

The ∂F2/∂ ln Q2 data becomes even more important, when we add higher-
twist corrections into consideration. In the case of the twist-four terms (of sum of
the twist-four and twist-six terms) in the renormalon model, there are two (four)
additional parameters (see below Sec. 3) which may lead to problems to ˇt all of
them together only with the help of F2 experimental data.
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2.1. Leading Order. Note that at the LO approximation there are the fol-
lowing properties:

∂

∂ ln Q2

[
1

ρk
LO

Ĩk(σLO)
]

= 4CA as(Q2)
1

ρk+1
LO

Ĩk+1(σLO), (29a)

∂

∂ ln Q2

[
ρk

LOĨk(σLO)
]

= 4CA as(Q2) ρk−1
LO Ĩ|k−1|(σLO) (k = 0, 1, 2, . . .),

(29b)

which lead to the following results:

∂f τ2,+
G,LO(x, Q2)
∂ ln Q2

= as(Q2)
[
4CA

ρLO

Ĩ1(σLO)

Ĩ0(σLO)
− β0 d̄+(1)

]
f τ2,+

G,LO(x, Q2) + O (ρLO) ,

(30a)

∂f τ2,+
q,LO (x, Q2)
∂ ln Q2

= as(Q2)
[
8TRf

3
f τ2,+

G,LO(x, Q2) − β0d̄+(1)f τ2,+
q,LO (x, Q2)

]
+

+ O (ρLO) , (30b)

∂f τ2,−
G,LO(x, Q2)
∂ ln Q2

= −as(Q2)
8CF TRf

3CA
f τ2,−

G,LO(x, Q2) + O (x) , (30c)

f τ2,−
q,LO (x, Q2)
∂ ln Q2

= as(Q2)
8TRf

3
f τ2,−

G,LO(x, Q2) + O (x) . (30d)

Thus, we have

∂F τ2
2,LO(x, Q2)
∂ ln Q2

= e
∂f τ2

q,LO(x, Q2)
∂ ln Q2

=

= eas(Q2)
[
8TRf

3
f τ2

G,LO(x, Q2) − β0 d̄+(1)f τ2,+
q,LO (x, Q2)

]
. (31)

The LO Q2 evolution of the derivative ∂F τ2
2 /∂ ln Q2 is deˇned mostly

by the corresponding evolution of the gluon distribution f τ2
G,LO(x, Q2), i.e., by

Eqs. (16b), (16c), and (16e).
2.2. Next-to-Leading Order. At the NLO approximation of perturbation

theory, Eqs. (29) are replaced by

∂

∂ ln Q2

[
1
ρk

Ĩk(σ)
]

= as(Q2)
[
4CA − as(Q2)β0d̂++

] 1
ρk+1

Ĩk+1(σ), (32a)

∂

∂ ln Q2

[
ρk Ĩk(σ)

]
= as(Q2)

[
4CA − as(Q2)β0d̂++

]
ρk−1Ĩ|k−1|(σ)

(k = 0, 1, 2, . . .), (32b)
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which leads to the following results:

∂f τ2,+
q (x, Q2)
∂ ln Q2

= as(Q2)
2TRf

3CA

(
Aτ2

G +
CF

CA
Aτ2

q

)
×

×
[
4CAĨ0(σ) − β0d̄+(1)ρĨ1(σ)+

+as(Q2)
{

80
3

C2
A

ρ
Ĩ1(σ)−

(
β0

[
d̂++ +

20
3

CA

(
1 + d̄+(1)

)]
−4CAd̄q

+−(1)
)

Ĩ0(σ)+

+ β0

(
d̄q
+−(1)

(
1 + d̄+(1)

)
− d̄++(1)

)
ρ Ĩ1(σ)

}]
×

× exp (−d̄+(1)s − D̄+(1)p) + O(ρ), (33)

f τ2,−
q (x, Q2)
∂ ln Q2

= −β0 as(Q2)

[
Aτ2

q

(
d−(1) + as(Q2)d−−(1)

)
−

− 40TRf

9
as(Q2

0) d−(1)
(

Aτ2
G +

CF

CA
Aτ2

q

)]
×

× exp (−d−(1)s − D−(1)p) + O (x) . (34)

Taking together equations (25), (30a), (30c), (33), and (34), after some
algebra, we have got the ˇnal result

∂F τ2
2 (x, Q2)
∂ ln Q2

= e as(Q2)
[
8TRf

3

(
f τ2

G (x, Q2) + Φ(x, Q2)
)
−

− β0 d̄+(1)f τ2,+
q (x, Q2) − as(Q2)β0 d−−(1)f τ2,−

q (x, Q2)
]
, (35)

where

Φ(x, Q2) = Φ+(x, Q2) + Φ−(x, Q2), (36a)

Φ+(x, Q2) = φ+(x, Q2) exp (−d̄+(1)s − D̄+(1)p) + O(ρ), (36b)

Φ−(x, Q2) = φ−(x, Q2) exp (−d−(1)s − D−(1)p) + O(z). (36c)
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The ®+¯ and ®−¯ components in the equations above are:

φ+(x, Q2) = as(Q2)
(

Aτ2
G +

CF

CA
Aτ2

q

){
26
3

CA

ρ
Ĩ1(σ)−

−
(

β0

4CA

[
d̂++ +

2
3
CA

(
13 + 3d̄+(1)

)]
d̄q
+−(1) − d̄G

+−(1)
)

Ĩ0(σ)+

+
β0

4CA

(
d̄q
+−(1) − d̄++(1)

)
ρĨ1(σ)

}
+

+ as(Q2
0)A

τ2
q dG

−+(1)Ĩ0(σ), (36d)

φ−(x, Q2) =
(
as(Q2

0) − as(Q2)
)
×

×
{

d̄G
+−(1)

(
Aτ2

G +
CF

CA
Aτ2

q

)
− dG

−+(1)
CF

CA
Aτ2

q

}
+

+
17CF

6
as(Q2)Aτ2

q . (36e)

The values of the coefˇcients are given in Eqs. (28).
Thus, the NLO Q2 evolution of the derivative ∂F τ2

2 /∂ ln Q2 is deˇned
mostly by the corresponding evolution of the gluon distribution f τ2

G (x, Q2), i.e.,
by Eqs. (25b), (25c), and (25e).

3. THE CONTRIBUTION OF TWIST-TWO OPERATORS TO THE
SLOPES OF F2 AND OF PARTON DISTRIBUTIONS

The behavior of F2 and parton distributions can mimic a power law shape
over a limited region of x, Q2:

fa(x, Q2) ∼ x−λeff
a (x,Q2) and F2(x, Q2) ∼ x−λeff

F2(x,Q2). (37)

The slopes are effective ones because the parton distributions and F2 have mostly
the Bessel-like form.

Note that there are the following properties:

∂

∂ ln (1/x)

[
1
ρk

Ĩk(σ)
]

=
1

ρk−1
Ĩk−1(σ), (38a)

∂

∂ ln (1/x)

[
ρkĨk(σ)

]
= ρk+1Ĩk+1(σ) (k = 0, 1, 2, . . .), (38b)

which we will use below.
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3.1. Leading Order. The effective slopes have the form at the LO approxi-
mation

λeff,τ2
G,LO (x, Q2) =

f τ2,+
G,LO(x, Q2)

f τ2
G,LO(x, Q2)

ρLO
Ĩ1(σLO)

Ĩ0(σLO)
, (39a)

λeff,τ2
F2,LO(x, Q2) = λeff,τ2

q,LO (x, Q2) =
f τ2,+

q,LO (x, Q2)
f τ2

q,LO(x, Q2)
ρLO

Ĩ2(σLO)

Ĩ1(σLO)
. (39b)

The effective slopes λeff
a and λeff

F2 depend on the magnitudes Aτ2
a of the initial

PD and also on the chosen input values of Q2
0 and Λ. At quite large values of

Q2 	 Q2
0, where the ®−¯ component is not relevant, the dependence on the

magnitudes of the initial PD disappears, having in this case for the asymptotic
values:

λeff,τ2
G,LO,as(x, Q2) = ρLO

Ĩ1(σLO)

Ĩ0(σLO)
≈ ρLO − 1

4 ln (1/x)
, (40a)

λeff,τ2
F2,LO,as(x, Q2) = λeff,τ2

q,LO,as(x, Q2) = ρLO
Ĩ2(σLO)

Ĩ1(σLO)
≈ ρLO − 3

4 ln (1/x)
, (40b)

where symbol ≈ marks approximations obtained by expansions of modiˇed Bessel
functions In(σ). These approximations should be correct only at very large σ
values (i.e., at very large Q2 and/or very small x). It is the case (see Figs. 6
and 7).

We would like to note that the slope λeff,τ2
F2,LO,as(x, Q2) = λeff,τ2

q,LO,as(x, Q2)
coincides at very large σ with one obtained in [85] (see also [15]) in the
case of �at input. Note that the slope λeff,τ2

G,LO,as(x, Q2) is larger than the slope

λeff,τ2
F2,LO,as(x, Q2) = λeff,τ2

q,LO,as(x, Q2):

λeff,τ2
G,LO,as(x, Q2) − λeff,τ2

F2,LO,as(x, Q2) = ρLO

(
Ĩ1(σLO)

Ĩ0(σLO)
− Ĩ2(σLO)

Ĩ1(σLO)

)
≈ 1

2 ln (1/x)
,

(41)
that coincides with the results of ˇts in [39,43].

3.2. Next-to-Leading Order. At the NLO approximation of perturbation
theory, we have the following properties of the effective slopes: the quark and
gluon ones λeff,τ2

a (x, Q2) = ∂ ln f τ2
a (x, Q2)/∂ ln (1/z) are reduced by the NLO

terms which leads to the decreasing of the gluon distribution at small x. For the
quark case it is not the case, because the normalization factor Aτ2,+

q of the ®+¯
component produces an additional contribution undamped as ∼ (ln z)−1.



SMALL-x BEHAVIOR OF PARTON DISTRIBUTIONS 623

Indeed, the effective slopes have the form

λeff,τ2
G (x, Q2) =

f τ2,+
G (x, Q2)
f τ2

G (x, Q2)
ρ
Ĩ1(σ)

Ĩ0(σ)
, (42a)

λeff,τ2
q (x, Q2) =

=
f τ2,+

q (x, Q2)
f τ2

q (x, Q2)
ρ
Ĩ2(σ)

(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ1(σ)/ρ

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ0(σ)/ρ
,

(42b)

λeff,τ2
F2 (x, Q2) =

=
λeff

q (x, Q2) f τ2
q (x, Q2) + (4TRf/3)as(Q2)λeff

G (x, Q2)f τ2
G (x, Q2)

f τ2
q (x, Q2) + (4TRf/3)as(Q2)f τ2

G (x, Q2)
.

(42c)

The gluon effective slope λeff,τ2
G (x, Q2) is larger than the quark slope

λeff,τ2
q (x, Q2), which is in excellent agreement with a recent MRS and GRV

analysis [39,43].
For the asymptotic values we have got

λeff,τ2
G,as (x, Q2) = ρ

Ĩ1(σ)

Ĩ0(σ)
≈ ρ − 1

4 ln (1/x)
, (43a)

λeff,τ2
q,as (x, Q2) = ρ

Ĩ2(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ1(σ)/ρ

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ0(σ)/ρ
=

= ρ
Ĩ2(σ)

Ĩ1(σ)
+

20CA

3
α(Q2)

(
1 − Ĩ0(σ)Ĩ2(σ)

Ĩ2
1 (σ)

)
≈

≈ ρ − 3
4 ln (1/x)

+
10CA

3
as(Q2)

ρ ln (1/x)
, (43b)

λeff,τ2
F2,as(x, Q2) = ρ

Ĩ2(σ)

Ĩ1(σ)
+

26CA

3
α(Q2)

(
1 − Ĩ0(σ)Ĩ2(σ)

Ĩ2
1 (σ)

)
=

= λeff,τ2
q,as (x, Q2) + 2CA as(Q2)

(
1 − Ĩ0(σ)Ĩ2(σ)

Ĩ2
1 (σ)

)
≈

≈ ρ − 3
4 ln (1/x)

+
13CA

3
as(Q2)

ρ ln (1/x)
= λeff,τ2

q,as (x, Q2) +
CAas(Q2)
ρ ln (1/x)

.

(43c)
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We would like to note that at the NLO approximation the slope λeff,τ2
F2,as(x, Q2)

lies between quark and gluon ones but close to quark slope λeff,τ2
q,as (x, Q2), that is

in agreement with [39,43].
Indeed,

λeff,τ2
G,as (x, Q2)−λeff,τ2

F2,as(x, Q2) =

=

(
ρ
Ĩ1(σ)

Ĩ0(σ)
+

26CA

3
as(Q2)

)(
1 − Ĩ0(σ)Ĩ2(σ)

Ĩ2
1 (σ)

)
≈

≈
(

ρ − 1
4 ln (1/x)

+
26CA

3
as(Q2)

)
1

2ρ ln (1/x)
, (44a)

λeff,τ2
F2,as(x, Q2)−λeff,τ2

q,as (x, Q2) =

= 2CA as(Q2)

(
1 − Ĩ0(σ)Ĩ2(σ)

Ĩ2
1 (σ)

)
≈ CAas(Q2)

ρ ln (1/x)
. (44b)

Both slopes λeff,τ2
a (x, Q2) decrease with decreasing x. An x dependence of

the slope should not appear for a PD within a Regge-type asymptotics (x−λ),
and precise measurement of the slope λeff,τ2

a (x, Q2) may lead to the possibility of
verifying the type of small-x asymptotics of parton distributions. The present data,
however, are not enough to distinguish this small-x dependence of λeff,τ2

a (x, Q2)
(see Fig. 6).

In the following Sections, we study the higher-twist contributions to
F2(x, Q2), its derivatives and parton distributions.

4. ESTIMATIONS OF THE HIGHER-TWIST
CONTRIBUTIONS FOR F2

In this Section we consider two different representations for twist-four effects.
The ˇrst one comes from Regge-like analysis [26Ä29]. Thus, it should have right
asymptotics at x → 0 limit, but, unfortunately, the knowledge of its form is very
restricted.

The second one is based on the IR-renormalon model. The predictions cannot
reproduce the exact form of x → 0 asymptotics, calculated in [26Ä29], but give
rather good agreement with modern experimental data from HERA (see Sec. 9).
We think this agreement is similar to one (see [15]) at larger Q2 values between
DGLAP approach (even for its analytical simpliˇcation: the generalized DAS
approach [53]) and experiment.

We would like to note here that in the analysis of experimental data performed
below, we consider both LO and NLO approximations in the twist-two case and
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for HT corrections in the renormalon case. In the BFKL-motivated approach, for
simplicity∗ we restrict the calculation of the HT contribution to the consideration
of LO Q2 evolution alone.

4.1. BFKL-Motivated Estimations for Twist-Four Operators. Twist-four
operators are known [86] to have their own evolution equations but the diag-
onalization of the operator anomalous dimensions matrix is a very complicate
problem. For our purpose, however, as the relevant limit is n → 1, one can apply
the results of [26Ä29], which have very simple form and are given in the classical
DAS asymptotics considered in Sec. 2 of [53].

Here we show that the contribution from twist-four operators can be rep-
resented in the same form as the twist-two operators by using the twist-four
anomalous dimensions instead of the twist-two ones.

For the singular part of twist-four anomalous dimensions, we consider
from [26] the result:

γτ4
GG(n − 1) = 2γ

(0)
GG

(
n − 1

2

)
(1 + ε), (45)

where ε is very small: ε = 1/1224.
Equation (45) allows us to ˇnd the relation between the singular part of

twist-four operators anomalous dimensions, γτ4
ab (n) and γτ4

± (n), with the twist-

two ones, γ
(0)
ab (n) and γ

(0)
± (n). It leads to the following relations:

d̂τ4
+ = d̂τ4

GG = a2d̂+ = a2d̂GG, d̂τ4
− = a2d̂− = 0, (46)

where a2 = 4(1 + ε) and d̂+ = d̂GG is given by Eq. (21).
To obtain the results (46), we applied a suggestion about the absence of the

n → 1 singularity in the ®−¯ component of the twist-four term. The suggestion
cannot be proven accurately but it is motivated by the regularity at n → 1 of
the coefˇcient functions and the anomalous dimensions in the ®−¯ component
of twist-two terms at ˇrst two orders of perturbation theory and presumably
above. Moreover, our information about the twist-four correction in the BFKL-
motivated approach is very poor and it is difˇcult really to propose something
else.

The prediction for the regular parts d
τ4

+ (n) and dτ4
− (n) cannot be obtained

from Eq. (45), but it should be essentially less important in the kinematical range
studied below, as it is discussed in Subsec. 9.2. Then, in the analysis presented

∗This simpliˇcation is connected also with a quite poor present knowledge about HT contribu-
tions in the BFKL-motivated approach.



626 ILLARIONOV A.YU., KOTIKOV A.V., PARENTE G.

below, we proceed by ˇxing this nonsingular part by means of a relation similar
to Eq. (46):

d̄τ4
+ (1) = b d̄+(1), dτ4

− (1) = b d−(1), (47)

and further we examine different ®natural¯ choices of b: b = 0, 1 and a2/2.
Note that the nonsingular (when n → 1) parts d̄τ4

+ (1), dτ4
− (1) and d̄+(1),

d−(1) determine the behavior of parton distributions and DIS structure functions
at nonsmall-x values. Usually, the ˇts to the experimental data at intermediate
and large values of x are performed with the help of the following forms for the
structure function F2:

F2(x, Q2) = F τ2
2 (x, Q2) +

1
Q2

F τ4
2 (x) (48)

or

F2(x, Q2) = F τ2
2 (x, Q2)

(
1 +

1
Q2

f τ4
2 (x)

)
(49)

with Q2-independent functions F τ4
2 (x) or f τ4

2 (x).
In fact, Eq. (48) is closed to our choice b = 0, i.e., the twist-four contribu-

tion does not evolve logarithmically with Q2. Also Eq. (49) is analogous to
the choice b = 1, i.e., twist-two and twist-four operators have the same loga-
rithmic Q2 dependence at large and intermediate x values. Lastly, the choice
b = a2/2 corresponds to the hypothesis about applicability of Eq. (45), obtained
in the classical DAS limit, to a more wide generalized DAS approximation con-
sidered here.

By analogy with Sec. 1 we represent the twist-four contribution split in the
®+¯ and ®−¯ parts:

F τ4
2 (x, Q2) = ef τ4

q (x, Q2), (50a)

f τ4
a (x, Q2) = f τ4,+

a (x, Q2) + f τ4,−
a (x, Q2). (50b)

The ®+¯ and ®−¯ PD components are:

f τ4,+
G (x, Q2) =

(
Aτ4

G +
CF

CA
Aτ4

q

)
Ĩ0(a σLO) e−bd̄+(1)sLO + O (ρLO) , (50c)

f τ4,+
q (x, Q2) =

2TRf

3CA

(
Aτ4

G +
CF

CA
Aτ4

q

)
b

a
ρLO Ĩ1(aσLO) e−bd̄+(1)sLO + O (ρLO) ,

(50d)

f τ4,−
G (x, Q2) = −CF

CA
Aτ4

q e−bd−(1)sLO + O (x) , (50e)

f τ4,−
q (x, Q2) = Aτ4

q e−bd−(1)sLO + O (x) , (50f)
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because the corresponding twist-four projectors (see [87]) have the following
form∗:

ετ4,+
qq = ετ4,−

GG = ε+
qq

b

a2
, ετ4,−

aa = 1− ετ4,+
aa , ετ4,±

qG = ε±qG

b

a2
, ετ4,±

Gq = ε±Gq. (51)

In Eqs. (50c)Ä(50f) the twist-four parameters Aτ4
a (a = q, G) have to be

determined from ˇts to experimental data.
The full contribution (i.e., the sum of twist-two and twist-four parts) is

given by

fa(x, Q2) = f τ2
a (x, Q2) +

1
Q2

f τ4
a (x, Q2) (52)

and

F2(x, Q2) = F τ2
2 (x, Q2) +

1
Q2

F τ4
2 (x, Q2), (53)

where the leading twist contributions f τ2
a (x, Q2) and F τ2

2 (x, Q2) are given at LO
by Eqs. (16a), (16b) and at NLO by Eqs. (25a), (25b).

To obtain (50)Ä(53) we have used the �at initial conditions

fa(Q2
0) = Aτ2

a +
1

Q2
0

Aτ4
a . (54)

From the study [88] we know that the slope λτ4(Q2
0) of the twist-four part is

twice as high as the twist-two one. Thus, we can start with λτ4(Q2
0) = 0, as it is

given in the r.h.s. of (54). The arguments in favor of this choice are similar to
ones given in twist-two case (see [53] and discussion therein).

4.2. Renormalon Model Predictions for Twist-Four Terms. The full
small-x asymptotic results for parton densities and F2 structure function in the
framework of the infrared renormalon model, i.e., FR

2 , at LO of perturbation
theory are the following:

FR
2 (x, Q2) = F τ2

2 (x, Q2) +
1

Q2
FRτ4

2 (x, Q2), (55)

where F τ2
2 (x, Q2) is given by Eqs. (16a)Ä(16f) at the LO approximation and by

Eqs. (25a)Ä(25e) at NLO one, respectively. The twist-four term FRτ4
2 (x, Q2) has

the form (3), i.e.,

1
e

FRτ4
2 (x, Q2) =

∑
a=q,G

aτ4
a μ̃τ4

a (x, Q2) ⊗ f τ2
a (x, Q2),

∗The projectors ετ4,±
ab can be obtained from Eq. (10) in [53] with the replacement d±(n) →

dτ4
± (n) = d̂τ4/(n − 1) + d̄τ4(n).
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where the symbol ⊗ marks the Mellin convolution

A(x) ⊗ B(x) =

1∫
x

dy

y
A(y) B

(
x

y

)
. (56)

The corresponding Mellin transforms of μ̃τ4,6
a (x, Q2)

μτ4,6
a (n, Q2) =

1∫
0

dxxn−1 μ̃τ4,6
a (x, Q2) (57)

are presented in Appendix A (see Eqs. (A2)Ä(A4) and (A7)).
Looking into the n-space representations for renormalon power-like correc-

tions given in Appendix A and applying the technique to transform the Mellin
convolutions to standard products at small x (see [77, 78] and Appendix B) we
can represent Eq. (3) in the form

1
e

FRτ4
2 (x, Q2) =

64TRf

15β2
0

[
aτ4

G

{
δ̂−1 +

101
120

+
1
2

ln
(

Q2

|aτ4
G |

)}
f τ2

G (x, Q2)+

+2CF aτ4
q

{̂
δ−2+

11
120

δ̂−1− 2291
3600

+
1
2

ln

(
Q2∣∣aτ4
q

∣∣
) (̂

δ−1− 139
120

)}
f τ2

q (x, Q2)

]
.

(58)

The operators δ̂−1 and δ̂−2 are deˇned as follows (see Appendix B for details):

δ̂−1
[
f τ2,−

a (x, Q2)
]

=
1
δR

f τ2,−
a (x, Q2),

(59a)

δ̂−2
[
f τ2,−

a (x, Q2)
]

=
1
δ2
R

f τ2,−
a (x, Q2),

δ̂−1
[
ρkĨk(σ)

]
= ρk−1 Ĩ|k−1|(σ),

(59b)

δ̂−2
[
ρk Ĩk(σ)

]
= ρk−2Ĩ|k−2|(σ).

Note that Eqs. (16) and (25) have been obtained in [53] with the accuracy
O(ρ) for the ®+¯ component and with one O(z) for the ®−¯ component, respec-
tively. It leads to the fact that we should use only the most singular terms in the
r.h.s. of Eq. (58): i.e., the terms δ̂−1 and ∼ ln (Q2/|aτ4

G |) for the gluon part and

the terms δ̂−2 and ln (Q2/|aτ4
q |) δ̂−1 for the quark part.
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Then, Eq. (58) should be replaced by

1
e
FRτ4

2 (x, Q2) =
64TRf

15β2
0

[
aτ4

G

{
δ̂−1 +

1
2

ln
(

Q2

|aτ4
G |

)}
f τ2

G (x, Q2)+

+ 2CF aτ4
q

{
δ̂−2 +

1
2

ln

(
Q2∣∣aτ4
q

∣∣
)

δ̂−1

}
f τ2

q (x, Q2)

]
. (60)

Applying the operators δ̂−1 and δ̂−2 separately to the ®+¯ and ®−¯ compo-
nents of f τ2

a (x, Q2), we obtain the following results for FRτ4
2 (x, Q2):

FRτ4
2 (x, Q2) = FRτ4,+

2 (x, Q2) + FRτ4,−
2 (x, Q2), (61a)

where

1
e

FRτ4,+
2 (x, Q2) =

32TRf

15β2
0

f τ2,+
G (x, Q2)

[
aτ4

G

{
2
ρ

Ĩ1(σ)

Ĩ0(σ)
+ ln

(
Q2

|aτ4
G |

)}
+

+
4CF TRf

3CA
aτ4

q

((
1 − d̄q

+−(1)as(Q2)
){2

ρ

Ĩ1(σ)

Ĩ0(σ)
+ ln

(
Q2∣∣aτ4
q

∣∣
)}

+

+
20CA

3
as(Q2)

{
2
ρ2

Ĩ2(σ)

Ĩ0(σ)
+ ln

(
Q2∣∣aτ4
q

∣∣
)

Ĩ1(σ)

ρĨ0(σ)

})]
, (61b)

1
e

FRτ4,−
2 (x, Q2) =

32TRf

15β2
0

f τ2,−
G (x, Q2)

[
aτ4

G ln
(

Q2

x2
G |aτ4

G |

)
−

− 2CAaτ4
q

{
ln
(

1
xq

)
ln

(
Q2

xq

∣∣aτ4
q

∣∣
)

− p′(νq)

}]
. (61c)

4.3. Incorporation of Twist-Six Contributions in the Framework of the
Renormalon Model. We shortly demonstrate the twist-six contributions in the
framework of the renormalon model.

When we added the twist-six part, the full small-x asymptotic results for PD
and F ren

2 structure function at NLO of perturbation theory look like:

FR
2 (x, Q2) = F τ2

2 (x, Q2) +
1

Q2
FRτ4

2 (x, Q2) +
1

Q4
FRτ6

2 (x, Q2). (62)

By analogy with twist-four case, the twist-six term fRτ6
q (x, Q2) has the form:

1
e

FRτ6
2 (x, Q2) =

∑
a=q,G

aτ6
a μ̃τ6

a (x, Q2) ⊗ f τ2
a (x, Q2), (63)
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where μ̃τ6
a (x, Q2) are given in [55]. The corresponding Mellin transform of

μτ6
a (n, Q2) is presented in Appendix A (see Eqs. (A2), (A5), (A6), and (A7)).

By analogy with the previous Subsection, applying the technique to transform
the Mellin convolutions to the standard products at small x (see [77, 78] and
Appendix B), we can represent Eq. (63) in the form

1
e
FRτ6

2 (x, Q2) =

= −8
7

64TRf

15β2
0

[
aτ6

G

{
δ̂−1 +

2663
3360

+
1
2

ln

(
Q2√
|aτ6

G |

)}
f τ2

G (x, Q2)+

+ 2CF aτ6
q

{
δ̂−2 +

143
3360

δ̂−1 − 870637
1411200

+

+
1
2

ln

⎛⎝ Q2√∣∣aτ6
q

∣∣
⎞⎠(δ̂−1 − 3217

3360

)}
f τ2

q (x, Q2)

]
. (64)

Considering only the most singular terms in the r.h.s. of (64), i.e., the
terms δ̂−1 and ∼ ln (Q2/

√
|aτ6

G |) for the gluon part and the terms δ̂−2 and

ln (Q2/
√∣∣aτ6

q

∣∣) δ̂−1 for the quark part, we obtain immediately the following

results:

1
e
FRτ6

2 (x, Q2) = −8
7

64TRf

15β2
0

[
aτ6

G

{
δ̂−1 +

1
2

ln

(
Q2√
|aτ6

G |

)}
f τ2

G (x, Q2)+

+ 2CF aτ6
q

⎧⎨⎩δ̂−2 +
1
2

ln

⎛⎝ Q2√∣∣aτ6
q

∣∣
⎞⎠ δ̂−1

⎫⎬⎭ f τ2
q (x, Q2)

]
, (65)

which is very close to the twist-four one, see Eq. (60):

1
e
FRτ6

2 (x, Q2) =

= −8
7

[
fRτ4

q (x, Q2) with aτ4
a → aτ6

a , ln
(

Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
. (66)

Note that the representation (66) of the twist-six terms in the terms of the
twist-four ones is universal and has quite compact form and, thus, it will be often
used below.

Because the forms of the twist-four and twist-six contributions are very
similar, it is possible to present quite compact form for the full contribution of
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the higher-twist operators FRhτ
2 (x, Q2)

FR
2 (x, Q2) = F τ2

2 (x, Q2) + FRhτ
2 (x, Q2), (67a)

where

FRhτ
2 (x, Q2) = FRhτ,+

2 (x, Q2) + FRhτ,−
2 (x, Q2) (67b)

and

1
e

FRhτ,+
2 (x, Q2) =

=
32TRf

15β2
0

f τ2,+
G (x, Q2)

∑
m=4,6

km

[
aτm

G

Q(m−2)

{
2
ρ

Ĩ1(σ)

Ĩ0(σ)
+ ln

(
Q2

|aτm
G |pm

)}
+

+
4CF TRf

3CA

aτm
q

Q(m−2)

((
1 − d̄q

+−(1)as(Q2)
){2

ρ

Ĩ1(σ)

Ĩ0(σ)
+ ln

(
Q2∣∣aτm

q

∣∣pm

)}
+

+
20CA

3
as(Q2)

{
2
ρ2

Ĩ2(σ)

Ĩ0(σ)
+ ln

(
Q2∣∣aτm

q

∣∣pm

)
Ĩ1(σ)

ρĨ0(σ)

})]
, (67c)

1
e
FRhτ,−

2 (x, Q2) =

=
32TRf

15β2
0

f τ2,−
G (x, Q2)

∑
m=4,6

km

[
aτm

G

Q(m−2)
ln
(

Q2

x2
G |aτm

G |pm

)
−

− 2CA

aτm
q

Q(m−2)

{
ln
(

1
xq

)
ln

(
Q2

xq

∣∣aτm
q

∣∣pm

)
− p′(νq)

}]
, (67d)

where k4 = 1, k6 = −8/7 and p4 = 1, p6 = 1/2.

5. THE HIGHER-TWIST CONTRIBUTIONS

FOR THE DERIVATIVE
∂F2

∂ ln Q2

By analogy with the previous Section we consider ˇrstly only the twist-four
terms in the framework of the infrared renormalon model. The contribution of
the twist-six terms will be incorporated shortly at the end of this Section.
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5.1. Renormalon Model Predictions for Twist-Four Terms. Note that
there are the following properties:

d

d ln Q2

1
Q2

= − 1
Q2

,
(68)

d

d ln Q2

[
1

Q2
ln
(

Λ2

Q2

)]
= − 1

Q2

(
ln
(

Λ2

Q2

)
+ 1
)
≈ − 1

Q2
ln
(

Λ2

Q2

)
,

where we keep only most important terms (see discussions in the previous Section
and Eq. (60)).

In this approximation we easily obtain that

∂FR
2 (x, Q2)
∂ ln Q2

=
∂F τ2

2 (x, Q2)
∂ ln Q2

+
1

Q2

(
∂FRτ4

2 (x, Q2)
∂ ln Q2

− FRτ4
2 (x, Q2)

)
(69a)

and
∂FRτ4

2 (x, Q2)
∂ ln Q2

= e
8TRf

3
as(Q2)ΦRτ4

G (x, Q2). (69b)

The value of FRτ4
2 (x, Q2) is given by Eqs. (61a)Ä(61c) and

ΦRτ4
G (x, Q2) =

16CA

5β2
0

f τ2,+
G (x, Q2)

[
aτ4

G

{
2
ρ2

Ĩ2(σ)

Ĩ0(σ)
+ ln

(
Q2

|aτ4
G |

)
1
ρ

Ĩ1(σ)

Ĩ0(σ)

}
+

+
4CF TRf

3CA
aτ4

q

{
2
ρ2

Ĩ2(σ)

Ĩ0(σ)
+ ln

(
Q2∣∣aτ4
q

∣∣
)

1
ρ

Ĩ1(σ)

Ĩ0(σ)

}]
. (69c)

Thus, we see that the twist-four corrections to F2 and dF2/d ln Q2 have
opposite signs, because dFRτ4

2 /d ln Q2 ∼ as(Q2), and the most important twist-
four contribution is given by FRτ4

2 (x, Q2).
5.2. Incorporation of Twist-Six Contributions in the Framework of the

Renormalon Model. Following Subsec. 4.3 of the previous Section and consid-
ering the properties

d

d ln Q2

1
Q4

= − 2
Q4

,
(70)

d

d ln Q2

[
1

Q4
ln
(

Λ2

Q2

)]
= − 1

Q2

(
2 ln
(

Λ2

Q2

)
+ 1
)

≈ − 2
Q2

ln
(

Λ2

Q2

)
,

together with the one (29), we immediately obtain that

∂FR
2 (x, Q2)
∂ ln Q2

=
∂F τ2

2 (x, Q2)
∂ ln Q2

+
1

Q2

(
∂FRτ4

2 (x, Q2)
∂ ln Q2

− FRτ4
2 (x, Q2)

)
+

+
1

Q4

(
∂FRτ6

2 (x, Q2)
∂ ln Q2

− 2FRτ6
2 (x, Q2)

)
(71a)
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and
∂FRτ6

2 (x, Q2)
∂ ln Q2

= e
8TRf

3
as(Q2)ΦRτ6

G (x, Q2). (71b)

The value of fRτ6
q (x, Q2) is given by Eq. (66) and

ΦRτ6
G (x, Q2) =

= −8
7

[
ΦRτ4

G (x, Q2) with aτ4
a → aτ6

a , ln
(

Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
. (71c)

Thus, we see that by analogy with the case of F2(x, Q2) itself, for the
derivation (71) the twist-six terms partially compensate the contributions of the
twist-four terms.

6. PARTON DISTRIBUTION FUNCTIONS IN THE RENORMALON
MODEL APPROACH

It is clearly seen that the standard parton distributions fq(x, Q2) and
fG(x, Q2) ˇtted with the help of experimental data do not coincide with the above
twist-two ones f τ2

q (x, Q2) and f τ2
G (x, Q2). These PD fq(x, Q2) and fG(x, Q2)

are usually deˇned keeping their twist-two relations (16a) or (25a) with the struc-
ture function F2(x, Q2), i.e.,

at LO
F2(x, Q2) = e fq(x, Q2), (72)

at NLO

F2(x, Q2) = e

(
fq(x, Q2) +

8TRf

3
as(Q2) fG(x, Q2)

)
. (73)

Thus, the parton distributions fq(x, Q2) and fG(x, Q2) can be strongly devi-
ated for the corresponding twist-two densities f τ2

q (x, Q2) and f τ2
G (x, Q2) at quite

low Q2 values, because there are the HT corrections to F τ2
2 (x, Q2).

The HT correction to the parton distribution at the LO was presented in the
Introduction already. Here we present the results at the NLO. As it was in the
previous Section, we consider ˇrstly the twist-four corrections.

6.1. Twist-Four Corrections to (Singlet) Quark Distribution. Consider
ˇrstly the (singlet) quark parton distribution fq(x, Q2). From Eq. (16a) and the
analysis of Sec. 4 we can obtain that

fR
q (x, Q2) = f τ2

q (x, Q2) +
1

Q2
fRτ4

q (x, Q2), (74a)

where fRτ4
q (x, Q2) is given at the LO by Eqs. (12a) and (12b).
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It is useful to represent also the complete expressions directly for fR
q (x, Q2):

fR
q (x, Q2) = fR,+

q (x, Q2) + fR,−
q (x, Q2), (74b)

where at the NLO

fR,+
q (x, Q2)

f τ2,+
q (x, Q2)

= 1 +
64CF TRf

15β2
0

aτ4
q

Q2
×

×
{

2
ρ2

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ2(σ)/ρ

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ0(σ)/ρ
+

+ln

(
Q2∣∣aτ4
q

∣∣
)

1
ρ

Ĩ0(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ1(σ)/ρ

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ0(σ)/ρ

}
+O (ρ) ,

(74c)

fR,−
q (x, Q2)

f τ2,−
q (x, Q2)

=

= 1 +
64CF TRf

15β2
0

aτ4
q

Q2

{
ln
(

1
xq

)
ln

(
Q2

xq

∣∣aτ4
q

∣∣
)

− p′(νq)

}
+ O (x) . (74d)

We clearly see that the twist-four terms are responsible for the additional
positive contributions to the quark distribution, which are very important at low
Q2 values.

So, the experimentally extracted quark distribution fq(x, Q2), which has the
leading twist relations (72) and (73) with F2(x, Q2), strongly deviates from the
leading twist quark distribution f τ2

q (x, Q2). At quite low Q2 values, where
f τ2

q (x, Q2) had the quite �at behavior closed to (15), the full quark distribution
fR

q (x, Q2) will rise at x → 0 (see Eqs. (74c) and (74d)), because aτ4
q > 0 (see

Tables 6, 7). This rise is in full agreement with the corresponding experimental
data (see Tables 6, 7, Fig. 9, Sec. 9 and discussions therein).

6.2. Twist-Four Corrections to Gluon Distribution. Consider now the gluon
parton distribution fG(x, Q2). From Eq. (16a) and the analysis of Sec. 4 we can
obtain that

fR
G (x, Q2) = f τ2

G (x, Q2) +
1

Q2
fRτ4

G (x, Q2), (75a)

where fRτ4
G (x, Q2) is given at the LO by Eqs. (12c) and (12d).

For the gluon distribution in the NLO we have the similar relations

fR
G (x, Q2) = fR,+

G (x, Q2) + fR,−
G (x, Q2), (75b)
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fR,+
G (x, Q2)

f τ2,+
G (x, Q2)

= 1 +
8

5β2
0

aτ4
G

as(Q2)Q2

{
2
ρ

Ĩ1(σ)

Ĩ0(σ)
+ ln

(
Q2

|aτ4
G |

)}
+ O (ρ) , (75c)

fR,−
G (x, Q2)

f τ2,−
G (x, Q2)

= 1 +
8

5β2
0

aτ4
G

as(Q2)Q2
ln
(

Q2

z2
G |aτ4

G |

)
+ O (x) . (75d)

So, as in the case of the quark distribution, the experimentally extracted
gluon density fG(x, Q2), which has the leading twist relation with F2(x, Q2)
and dF2/d ln Q2, strongly deviates from the leading twist gluon distribution
f τ2

G (x, Q2). At quite low Q2 values: Q2 ∼ Q2
0 , where f τ2

G (x, Q2) had the quite
�at behavior closed to (15), the full gluon distribution fR

q (x, Q2) falls at x → 0,
because aτ4

G < 0 (see Tables 6, 7). The behavior is in full agreement with the
corresponding experimental data (see Tables 6, 7, Fig. 9, Sec. 9 and discussions
therein).

6.3. Twist-Six Corrections to Parton Distributions. We shortly demon-
strate the twist-six contributions to parton distribution in the framework of the
renormalon model. When we added the twist-six part, the full small-x asymptotic
result for parton distributions is

fa(x, Q2) = f τ2
a (x, Q2) +

1
Q2

fRτ4
a (x, Q2) +

1
Q4

fRτ6
a (x, Q2) =

= f τ2
a (x, Q2) + fRhτ

a (x, Q2), (76)

where fRτ6
a (x, Q2) are given by Eqs. (14):

fRτ6
a (x, Q2) =

= −8
7

[
fRτ4

a (x, Q2) with aτ4
a → aτ6

a , ln
(

Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
.

The twist-six corrections do not change the results for parton distributions
obtained in the previous Subsection.

7. THE HIGHER-TWIST CONTRIBUTIONS TO THE SLOPES
OF F2 AND OF PARTON DISTRIBUTIONS

Consider the power-like corrections to the twist-two effective slopes
λeff,τ2

F2 (x, Q2) and λeff,τ2
a (x, Q2) (a = q, G) introduced in Sec. 3. The effective
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slopes have the following form:

λeff
F2(x, Q2) =

∂

∂ ln (1/x)
ln
[
F τ2

2 (x, Q2) +
1

Q2
FRτ4

2 (x, Q2) +
1

Q4
FRτ6

2 (x, Q2)
]
,

(77)

λeff
a (x, Q2) =

∂

∂ ln (1/x)
ln
[
f τ2

a (x, Q2) +
1

Q2
fRτ4

a (x, Q2) +
1

Q4
fRτ6

a (x, Q2)
]
.

(78)

Using Eqs. (38), the derivations ∂F τ2
2 /∂ ln (1/x), ∂f τ2

a /∂ ln (1/x), and
∂fRτm

a /∂ ln (1/x) (m = 4, 6) can be represented as the sum of two compo-
nents (®+¯ and ®−¯) which are obtained from the corresponding (®+¯ and ®−¯)
PD functions. One can show that

∂fRτ4,+
q (x, Q2)
∂ ln (1/x)

=

=
64CF TRf

15β2
0

aτ4
q

{
2
ρ

Ĩ0(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ1(σ)/ρ

Ĩ1(σ)
(
1 − d̄q

+−(1)as(Q2)
)

+ (20CA/3)as(Q2)Ĩ0(σ)/ρ
+

+ ln

(
Q2∣∣aτ4
q

∣∣
)}

f τ2,+
q (x, Q2), (79a)

∂fRτ4,−
q (x, Q2)
∂ ln (1/x)

=
64CF TRf

15β2
0

aτ4
q ln

(
Q2

z2
q

∣∣aτ4
q

∣∣
)

f τ2,−
q (x, Q2), (79b)

∂fRτ4,+
G (x, Q2)
∂ ln (1/x)

=
8

5β2
0

aτ4
G

as(Q2)

{
2 + ln

(
Q2

|aτ4
G |

)
ρ
Ĩ1(σ)

Ĩ0(σ)

}
f τ2,+

G (x, Q2), (79c)

∂fRτ4,−
G (x, Q2)
∂ ln (1/x)

=
16
5β2

0

aτ4
G

as(Q2)
f τ2,−

G (x, Q2), (79d)

∂fRτ6,±
a (x, Q2)
∂ ln (1/x)

=

= −8
7

[
∂fRτ4,±

a (x, Q2)
∂ ln (1/x)

with aτ4
a → aτ6

a , ln
(

Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
.

(79e)

Equations (77) and (78) together with Eqs. (42) and (79) give complete
information about the full and asymptotical values of the slopes λeff

F2(x, Q2) and
λeff

a (x, Q2). The results will be demonstrated in Figs. 2, 6 and 7.
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It is possible, however, to give a simple demonstration of the effect of the HT
corrections. Following Sec. 3, we can prepare also the results for the higher-twist
corrections to the asymptotical values of λeff,τ2

F2 (x, Q2) and λeff,τ2
a (x, Q2), which

can be obtained by neglecting the ®−¯ components. Restricting ourselves by
the twist-four case, we can estimate the values of the slopes λeff

F2,as(x, Q2) and

λeff
a,as(x, Q2) in the form

λeff
F2,as(x, Q2) = λeff,τ2

F2,as(x, Q2) +
1

Q2
λeff,Rτ4

F2,as (x, Q2) + O
(

1
Q4

)
, (80)

λeff
a,as(x, Q2) = λeff,τ2

a,as (x, Q2) +
1

Q2
λeff,Rτ4

a,as (x, Q2) + O
(

1
Q4

)
, (81)

where at the LO

λeff,Rτ4
F2,as (x, Q2) =

16CA

5β2
0

[
aτ4

G

{
2
Ĩ0(σLO) − Ĩ2(σLO)

ρLOĨ1(σLO)
+

+ ln
(

Q2

aτ4
G

)(
1 − Ĩ0(σLO)Ĩ2(σLO)

Ĩ2
1 (σLO)

)}
+

+
4CF TRf

3CA
aτ4

q

{
2
Ĩ0(σLO) − Ĩ2(σLO)

ρLOĨ1(σLO)
+

+ ln
(

Q2

aτ4
G

)(
1 − Ĩ0(σLO)Ĩ2(σLO)

Ĩ2
1 (σLO)

)}]
, (82a)

≈ 16CA

5β2
0

1
2ρLO ln (1/x)

[
aτ4

G

{
4

ρLO
+ + ln

(
Q2

aτ4
G

)}
+

+
4CF TRf

3CA
aτ4

q

{
4

ρLO
+ ln

(
Q2

aτ4
q

)}]
, (82b)

λeff,Rτ4
q,as (x, Q2) =

64CF TRf

15β2
0

aτ4
q

{
2
Ĩ0(σLO) − Ĩ2(σLO)

ρĨ1(σLO)
+

+ ln
(

Q2

aτ4
q

)(
1 − Ĩ0(σLO)Ĩ2(σLO)

Ĩ2
1 (σLO)

)}
, (82c)

≈ 64CF TRf

15β2
0

aτ4
q

2ρLO ln (1/x)

{
4

ρLO
+ ln

(
Q2

aτ4
q

)}
, (82d)
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λeff,Rτ4
G,as (x, Q2) =

16
5β2

0

aτ4
G

as(Q2)

(
1 − Ĩ2

1 (σLO)

Ĩ2
0 (σLO)

)
≈

≈ 8
5β2

0

aτ4
G

as(Q2)
1

ρLO ln (1/x)
. (82e)

From Equations (82b) and (82d) it is possible to see that the slopes
λeff

F2,as(x, Q2) and λeff
q,as(x, Q2) have got the positive twist-four corrections, that

is in full agreement with the corresponding experimental H1 and ZEUS data
for the slope λF2 at low Q2 values (see Fig. 7). However, the difference be-
tween the twist-four corrections to these slopes is negative, because aτ4

G < 0 (see
Tables 4, 6Ä8):

λeff,Rτ4
F2,as (x, Q2)−λeff,Rτ4

q,as (x, Q2) ≈ 8CA

5β2
0

aτ4
G

ρLO ln (1/x)

{
4

ρLO
+ln

(
Q2

aτ4
q

)}
. (83)

Thus, the inequality λeff
F2,as(x, Q2) > λeff

q,as(x, Q2) coming form Eq. (44b)

takes place for not very small Q2, because it is suppressed by power corrections.

We would like to note that Equations (82) are valid only at not very small
Q2 values, where we can neglect the terms ∼ 1/Q4 coming from expanding the
denominator and from the twist-six terms. The small-Q2 behavior of λeff

a,as(x, Q2)
can be easy demonstrated at the point Q2 = Q2

0 in the following Section.

8. PARTON DISTRIBUTIONS IN THE RENORMALON MODEL AT Q2
0

As has been already shown in the previous Section, the total PD functions
fq(x, Q2) and fG(x, Q2) ˇtted in experiments data do not coincide with the above
twist-two ones f τ2

q (x, Q2) and f τ2
G (x, Q2). It is very useful to demonstrate the

difference at Q2
0, at the starting point of the DGLAP evolution.

We begin the analysis with the consideration of only the twist-four terms.
The results can be calculated from the ˇnal formulae of the previous Section but
it is simpler to repeat all calculations given in Sec. 4. At Q2 = Q2

0 all results
simplify essentially because the leading-twist parton distributions are constant Aq

and AG at the point.

8.1. Parton Distributions at Q2
0. From Eqs. (15) and (74) we can easy obtain

at Q2 = Q2
0 that

fa(x, Q2
0) = Aτ2

a +
1

Q2
0

fRτ4
a (x, Q2

0) +
1

Q4
0

fRτ6
a (x, Q2

0), (84a)
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where at the LO

fRτ4
q (x, Q2

0) =
64CF TRf

15β2
0

aτ4
q

[
Aτ2

q

{
ln
(

1
xq

)
ln

(
Q2

0

xq

∣∣aτ4
q

∣∣
)

− p′(νq)

}
+

+
2TRf

3CA

(
Aτ2

G +
CF

CA
Aτ2

q

)
ln

(
Q2

0

x2
∣∣aτ4

q

∣∣
)]

, (84b)

fRτ4
G (x, Q2

0) =
8

5β2
0

aτ4
G

as(Q2
0)

[
Aτ2

G ln
(

Q2
0

x2 |aτ4
G |

)
+ 2

CF

CA
Aτ2

q p(νG)

]
, (84c)

fRτ6
a (x, Q2

0) =

= −8
7

[
fRτ4

a (x, Q2
0) with aτ4

a → aτ6
a , ln

(
Q2

|aτ4
a |

)
→ ln

(
Q2√
|aτ6

a |

)]
. (84d)

Thus, the total parton distributions fq(x, Q2
0) and fG(x, Q2

0) are strongly devi-
ated for the corresponding twist-two densities f τ2

q (x, Q2
0) = Aτ2

q and
f τ2

G (x, Q2
0) = Aτ2

G . Because usually the ˇtted values of aτ4
q (aτ4

G ) are posi-
tive (negative), the twist-four terms lead to positive and negative contributions in
the case of quark and gluon densities, respectively. The twist-six terms do not
change the results essentially.

8.2. The Effective Slopes of F2 and of Parton Distributions at Q2
0. To

estimate the values of the effective slopes at low Q2 values, we can look on their
behavior at Q2

0, where our formula simpliˇes essentially. In the approximation,
when the twist-six contributions are negligible, we can easy obtain from Eqs. (84)

λeff,R
q (x, Q2

0) =
64CF TRf

15β2
0

aτ4
q

Q2
0

{
ln
(

Q2
0

x2
q |aτ4

G |

)
+

4TRf

3CA

(
Aτ2

G

Aτ2
q

+
CF

CA

)}
, (85a)

λeff,R
G (x, Q2

0) =
16
5β2

0

aτ4
G

as(Q2
0)Q2

0

, (85b)

λeff,R
F2 (x, Q2

0) =

=
64CF TRf

15β2
0

1
Q2

0

[
aτ4

q

{
ln
(

Q2
0

x2
q |aτ4

G |

)
+

4TRf

3CA

(
Aτ2

G

Aτ2
q

+
CF

CA

)}
+

aτ4
G

CF

Aτ2
G

Aτ2
q

]
.

(85c)
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Because aτ4
G < 0, it is easy to see that λeff,R

F2 (x, Q2
0) < λeff,R

q (x, Q2
0). This

indicates that the inequality λeff
F2(x, Q2) > λeff

q (x, Q2) seems to be correct only
at quite large Q2 values (see also the previous Section and discussions therein),
where the twist-two terms give basic contributions.

Note also, that at Q2
0 the slope λeff,R

q (x, Q2
0) rises at x → 0, but the gluon

slope λeff,R
G (x, Q2

0) is negative and x-independent. Thus, the gluon density∗

falls down with x → 0 at Q2 ∼ Q2
0, that is, in full agreement with the recent

experimental data from HERA (see, for example, the recent ZEUS and H1 analy-
ses [89Ä91] and discussion therein). The twist-six terms do not change the above
results essentially.

9. RESULTS OF THE FITS

With the help of the results obtained in the previous Sections we have an-
alyzed F2(x, Q2) HERA data at small x from the H1 [1Ä6] and ZEUS [7Ä14]
collaborations both separately and together.

Without higher-twist corrections our solution of the DGLAP equations de-
pends on ˇve parameters, i.e., Q2

0, x0, Aτ2
G , Aτ2

q , and Λ (or, equally well, on
αs(MZ)). The incorporation of twist-four and twist-six corrections leads to two
and four additional parameters, respectively.

In order to keep the analysis as simple as possible we have ˇxed ΛMS to
the values given in Eq. (86), which corresponds to αs(MZ) = 0.1166, obtained
recently by ZEUS [7]. The analyzed data region was restricted to x < 0.01,
to stay in the kinematic region where our results are expected to be applicable.
The χ2 minimizations were done with MINUIT [92]. In the ˇts, the errors are
statistical and systematical added in quadrature. Finally, the number of active
�avors was ˇxed to f = 3 and 4 for comparison.

9.1. Leading Twist Approximation. Tables 2 and 3 summarize the results of
the ˇts to H1 and ZEUS data using twist-two formulae at LO (16) and NLO (25)
approximations.

We can see in Tables 2 and 3 and in Fig. 1 that the qualities of the ˇts are
very similar for the LO and NLO approximations. This suggests that perturbation
theory works well in the small-x regime. This is in accord with [93Ä95] (see
also recent reviews [96,97]), where it was shown that the argument of the strong
coupling constant is effectively much larger as Q2 in the small-x domain.

However, the similarity of the results found at LO and NLO ˇts does not agree
with our previous analysis [53], where NLO corrections essentially improved the
comparison between QCD and experiment. This disagreement relates mostly

∗We speak about the full gluon density, which is not twist-two one (see Sec. 7).
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Table 2. The result of the LO and NLO ˇts to H1 (1996/1997) [2] and ZEUS (1996/1997)
[7] data for different low Q2 cuts. In the ˇts f is ˇxed to 4 �avors

Q2 �, GeV2 Aτ2
G Aτ2

q Q2
0, GeV2 χ2/n.o.p.

LO
(H1, 1996/1997 [2])
1.5 0.797±0.022 0.791±0.026 0.304±0.005 181/101
2.0 0.819±0.022 0.781±0.026 0.309±0.005 139/98
2.5 0.869±0.024 0.754±0.027 0.319±0.005 88/90
3.5 0.920±0.028 0.733±0.029 0.332±0.006 61/81

LO
(ZEUS, 1996/1997 [7])
2.7 0.918±0.031 0.754±0.040 0.317±0.005 80/116
3.5 0.893±0.034 0.780±0.042 0.315±0.006 76/111

NLO
(H1, 1996/1997 [2])
1.5 −0.013±0.015 0.893±0.028 0.494±0.009 201/101
2.0 0.003±0.015 0.882±0.028 0.505±0.009 153/98
2.5 0.042±0.017 0.850±0.029 0.526±0.010 95/90
3.5 0.082±0.020 0.824±0.032 0.554±0.012 63/81

NLO
(ZEUS, 1996/1997 [7])
2.7 0.061±0.023 0.844±0.044 0.523±0.011 82/116
3.5 0.044±0.025 0.871±0.046 0.520±0.012 78/111

NLO
(H1 [2] + ZEUS [7])
1.5 (rZ = 0.963) 0.010±0.013 0.873±0.024 0.506±0.007 286/217 (204/101, 82/116)
2.0 (rZ = 0.964) 0.021±0.013 0.864±0.024 0.512±0.007 233/214 (154/98, 79/116)
2.5 (rZ = 0.963) 0.046±0.013 0.839±0.024 0.524±0.008 171/206 (95/90, 76/116)
3.5 (rZ = 0.962) 0.063±0.015 0.829±0.026 0.537±0.008 140/192 (66/81, 74/111)

Table 3. The result of the LO and NLO ˇts to H1 [2Ä6] and ZEUS [7Ä14] data for
different low Q2 cuts and different f

Q2 �, GeV2 Aτ2
G Aτ2

q Q2
0, GeV2 χ2/n.o.p.

LO (f = 3)
0.5 (rH1 = 0.933, rZ = 0.955) 1.216±0.015 1.153±0.015 0.306±0.003 1163/667

(488/292, 675/375)

1.0 (rH1 = 0.939, rZ = 0.966) 1.424±0.023 0.977±0.023 0.313±0.003 854/631
(389/279, 465/352)

1.5 (rH1 = 0.946, rZ = 0.969) 1.472±0.024 0.950±0.023 0.317±0.003 775/614
(348/267, 427/347)

2.0 (rH1 = 0.953, rZ = 0.971) 1.527±0.025 0.923±0.023 0.323±0.003 673/591
(273/252, 400/339)



642 ILLARIONOV A.YU., KOTIKOV A.V., PARENTE G.

The end of Table 3

Q2 �, GeV2 Aτ2
G Aτ2

q Q2
0, GeV2 χ2/n.o.p.

2.5 (rH1 = 0.958, rZ = 0.971) 1.589±0.026 0.890±0.024 0.330±0.003 580/573
(193/236, 387/337)

3.5 (rH1 = 0.963, rZ = 0.971) 1.655±0.030 0.866±0.026 0.339±0.004 501/532
(142/210, 359/322)

LO (f = 4)
0.5 (rH1 = 0.934, rZ = 0.957) 0.641±0.010 0.937±0.012 0.295±0.003 1090/667

(455/292, 635/375)
1.0 (rH1 = 0.940, rZ = 0.966) 0.755±0.015 0.821±0.019 0.301±0.003 826/631

(373/279, 453/352)
1.5 (rH1 = 0.947, rZ = 0.969) 0.784±0.016 0.801±0.019 0.304±0.003 754/614

(335/267, 419/347)
2.0 (rH1 = 0.953, rZ = 0.971) 0.817±0.017 0.780±0.019 0.310±0.003 659/591

(264/252, 395/339)
2.5 (rH1 = 0.958, rZ = 0.971) 0.855±0.017 0.754±0.020 0.316±0.003 570/573

(188/236, 382/337)
3.5 (rH1 = 0.963, rZ = 0.971) 0.892±0.020 0.737±0.021 0.325±0.004 495/532

(140/210, 355/322)

NLO (f = 3)
0.5 (rH1 = 0.929, rZ = 0.951) −0.094±0.009 1.358±0.015 0.515±0.006 1406/667

(599/292, 807/375)
1.0 (rH1 = 0.936, rZ = 0.965) 0.072±0.014 1.114±0.024 0.526±0.006 966/631

(455/279, 511/352)
1.5 (rH1 = 0.944, rZ = 0.968) 0.109±0.015 1.078±0.025 0.535±0.006 863/614

(403/267, 460/347)
2.0 (rH1 = 0.952, rZ = 0.971) 0.151±0.016 1.045±0.025 0.548±0.006 735/591

(311/252, 424/339)
2.5 (rH1 = 0.958, rZ = 0.970) 0.198±0.016 1.006±0.025 0.564±0.006 620/573

(213/236, 407/337)
3.5 (rH1 = 0.963, rZ = 0.971) 0.254±0.019 0.972±0.027 0.587±0.007 523/532

(151/210, 372/322)

NLO (f = 4)
0.5 (rH1 = 0.932, rZ = 0.955) −0.142±0.006 1.087±0.012 0.478±0.006 1229/667

(514/292, 715/375)
1.0 (rH1 = 0.938, rZ = 0.966) −0.042±0.011 0.929±0.021 0.487±0.006 884/631

(407/279, 477/352)
1.5 (rH1 = 0.946, rZ = 0.969) −0.020±0.011 0.903±0.021 0.495±0.006 798/614

(363/267, 435/347)
2.0 (rH1 = 0.953, rZ = 0.971) 0.006±0.012 0.877±0.021 0.506±0.006 688/591

(282/252, 406/339)
2.5 (rH1 = 0.958, rZ = 0.971) 0.035±0.012 0.847±0.022 0.520±0.006 589/573

(197/236, 392/337)
3.5 (rH1 = 0.963, rZ = 0.972) 0.065±0.014 0.826±0.023 0.539±0.007 505/532

(143/210, 362/322)
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to the incorrect use of the same value of the QCD parameter Λ in [53] in both
LO and NLO cases. By contrast, Λ should be different (see [98]). They are
extracted from αs(MZ) by using b- and c-quarks thresholds following to [99].
The values of Λ obtained by this procedure and used hereafter in all the ˇts are:

ΛLO(f = 5) = 80.80 MeV, ΛMS(f = 5) = 195.7 MeV,

ΛLO(f = 4) = 111.8 MeV, ΛMS(f = 4) = 284.0 MeV, (86)

ΛLO(f = 3) = 136.8 MeV, ΛMS(f = 3) = 347.2 MeV,

obtained from ZEUS result αs(MZ) = 0.1166 (see [7]).
Table 2 contains the results of separate ˇts to H1 and ZEUS data with a

low Q2 cut, Q2
cut, that increases step by step. We observe that the agreement

between theory and experiment improves when increasing the value of Q2
cut. For

Q2 � 2.5 GeV2 the agreement is good (see Tables 2 and 3).
Note that the separated ˇts of H1 and ZEUS data lead to purely comparable

values of the parameters Q2
0, x0, Aτ2

G , Aτ2
q . Thus, we may ˇt to the combined

data set. The results of such combined ˇts can be found in the last rows of
Tables 2 and 3.

Looking carefully on those Tables, we arrive to the following conclusions:
• In the leading twist approximation the preferred number of �avors f is four.
•The value of the quark distribution does not depend on the speciˇc Q2

cut

values within the limits of experimental errors. The magnitude of the gluon
density and Q2

0 decrease slowly with decreasing Q2
cut.

•A strong reduction of the magnitude of the gluon density is observed when
NLO corrections are included.

The suppression of the gluon density rise with Q2 at NLO in comparison
with the LO prediction is the well-known effect [87,100] but in addition we also
observe a strong reduction of the gluon magnitude at Q2

0.
At least partially, this effect can be explained based on the GRV-like point

of view [40Ä43], where at low Q2 values there are only valence quarks and all
other types of partons are generated in the Q2 evolution. Thus, the slow rise
with Q2 when NLO corrections are included directly implies a reduction of the
magnitude at a given Q2

0.
It should be mentioned that a similar relative reduction of gluon normalization

is obtained in the analyses [44,101], when the ln (1/x) resummation was included.
Thus, the correct incorporation of NLO terms has a similar tendency.

• The ˇtted Q2
0 values are essentially higher at NLO: Q2

0 ∼ 0.5−0.6 GeV2,
in comparison with LO ˇts, where Q2

0 ∼ 0.3−0.4 GeV2, and comparable to those
obtained earlier in [53].

Partially, the effect can be explained by different Λ values at LO and NLO
approximations. Note, however, that the ratio Λ2

MS
/Λ2

LO ∼ 6.4 and, thus, the Q2

dependence of F2 data itself should be important in the deˇnition of Q2
0.



644 ILLARIONOV A.YU., KOTIKOV A.V., PARENTE G.

Fig. 1. F τ2
2 (x,Q2) as a function of x for different Q2 bins. The experimental points are

from H1 [2Ä6] (open points) and ZEUS [7Ä14] (solid points). The solid line represents
the NLO ˇt with χ2/n.d.f. = 798/611 = 1.31 (Aτ2

G = −0.020, Aτ2
q = 0.903, Q2

0 =
0.495 GeV2). The long dashed line represents the LO ˇt with χ2/n.d.f. = 754/611 = 1.23
(Aτ2

G = 0.784, Aτ2
q = 0.801, Q2

0 = 0.304 GeV2)

Note, that our results are in agreement with the recent H1 and ZEUS analy-
ses [89Ä91] and with the recent GPR ˇts [102], which in turn have predictions
similar to ones obtained in global ˇts (see [34] and [39]). Our studies have
slightly higher χ2/d.o.f. values in comparison with [89Ä91] and [101], because
our semianalytical approach incorporates only the basic properties of Q2 evo-
lution. Moreover, contrary to [89Ä91] and [102, 103] we use the �at initial
conditions (15) containing only one free parameter for each parton density.
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We note also that the ˇts [89Ä91] give the gluon density falling down
with x → 0 at low Q2, that contradicts our �at initial conditions (15). At
least partially, this difference could be due to the disregard of the nonsinglet
contribution. However, this part can have not so strong decrease at low x
(see [104Ä107]). Note, however, that the last ZEUS analysis [89] shows
at Q2 ∼ 1 GeV2 the strong rise of the gluon density at x ∼ 10−4 (that is
close to the behavior of singlet quark density) and the decreasing at x ∼ 10−2.
Thus, it seems, that this �at behavior can be quite reasonable approximation at
10−4 � x � 10−2.

Considering Tables 2 and 3 and Fig. 1 we ˇnd good agreement with data
only at Q2 � 2.5 GeV2. The χ2/d.o.f. is slightly higher than it was before
in [53], mainly due to the strong improvement of experimental data. To expand
the range of applicability of our analysis to Q2 < 2.5 GeV2, we add to our ˇts
HT corrections presented in the previous sections.

Let's consider both types of estimations of the HT corrections separately.

9.2. BFKL-Motivated Estimations for Twist-Four Terms. Tables 4Ä6 and
Fig. 2 contain the results of the ˇts to H1 and ZEUS data using Eqs. (16), (50),
and (53) at LO and (25), (50), and (53) at NLO.

The results show a good agreement between the theoretical predictions having
BFKL-like twist-four term and experimental data of the H1 [3,4] and ZEUS [11,
12] collaborations.

The ˇts of H1 [3,4] and ZEUS [11,12] data demonstrate a strong improvement
of the agreement between theory and experiment (see Fig. 2), essentially at LO
and in the case f = 4.

The values of parameters in the twist-two terms do not change drastically;
Q2

0 rises 100 and 150 MeV at LO and NLO, respectively. The gluon density in
the twist-two term rises essentially and the quark distribution decreases slowly.
The changes are compensated by a negative gluon and a positive quark twist-four
magnitudes, respectively.

We found also a tiny dependence on the real value of the parameter ®b¯ that
supports our hypothesis (see Sec. 2) about the irrelevance of the exact form for
the nonsingular (at n → 1) terms in the twist-four anomalous dimensions.

An interesting fact is that the value of the sum Aτ4
G + 4/9Aτ4

q is very close
to zero. Hence, HERA data do not seem to support a strong increase of the twist-
four terms at small x, contrary to the expectation from various BFKL-motivated
estimations [26Ä29].

9.3. Renormalon Model Predictions for Higher-Twist Terms. Tables 4Ä
7 and Figs. 2 and 3 contain the results of the ˇts to H1 and ZEUS data using
Eqs. (16) and (67) at LO and (25) and (67) at NLO. The results show the ex-
cellent agreement between theoretical predictions and experimental data. The χ2

decreases very strongly.
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Fig. 2. F2(x, Q2) as a function of x for different Q2 bins. The experimental points are the
same as in Fig. 1. The solid line represents the NLO ˇt alone with χ2/n.d.f. = 798/611 =
1.31 (Aτ2

G = −0.020, Aτ2
q = 0.903, Q2

0 = 0.495 GeV2). The dash-dotted curve rep-
resents the BFKL-motivated estimations for higher-twist contribution to F2(x,Q2) with
the value of the parameter b = a2/2. The corresponding χ2/n.d.f. = 629/609 = 1.03
(Aτ2

G = 0.301, Aτ2
q = 0.535, Q2

0 = 0.631 GeV2 and Aτ4
G = −0.580 GeV2, Aτ4

q =
1.311 GeV2). The dashed curve is obtained from the ˇts at the NLO, when the renor-
malon contributions of higher-twist terms have been incorporated. The corresponding
χ2/n.d.f. = 500/607 = 0.82 (Aτ2

G = 0.041, Aτ2
q = 0.824, Q2

0 = 0.493 GeV2 and
aτ4

G = −2.765 GeV2, aτ4
q = 0.676 GeV2, aτ6

G = 0.939 GeV4, aτ6
q = 0.252 GeV4)

Consider separately the ˇts of data for Q2 � 1.5 GeV2 and Q2 � 0.5 GeV2,
presented in Tables 4Ä6 (and in Fig. 2) and Table 7 (and in Fig. 3), respectively.
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Fig. 3. F2(x,Q2) as a function of x for different Q2 bins. The experimental points are
from H1 [2Ä6] (open points) and ZEUS [7Ä14] (solid points). The solid line represents the
NLO ˇt alone with χ2/n.d.f. = 798/611 = 1.31 (Aτ2

G = −0.020, Aτ2
q = 0.903, Q2

0 =
0.495 GeV2). The dashed curve is obtained from the ˇt at the NLO, when the renor-
malon contributions of higher-twist terms have been incorporated. The corresponding
χ2/n.d.f. = 565/660 = 0.86 (Aτ2

G = 0.279, Aτ2
q = 0.640, Q2

0 = 0.672 GeV2 and
aτ4

G = −0.143 GeV2, aτ4
q = 0.140 GeV2, aτ6

G = −0.044 GeV4, aτ6
q = 0.043 GeV4).

The dash-dotted curve (hardly distinguished from the dashed one) represents the ˇt at the
LO together with the renormalon contributions of higher-twist terms. The corresponding
χ2/n.d.f. = 555/660 = 0.84 (Aτ2

G = 1.211, Aτ2
q = 0.539, Q2

0 = 0.404 GeV2 and
aτ4

G = −0.002 GeV2, aτ4
q = 0.102 GeV2, aτ6

G = 0.001 GeV4, aτ6
q = 0.031 GeV4)

Looking carefully at Tables 4Ä6 and Fig. 2, we arrive at the following con-
clusions:
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Table 4. The result of the LO and NLO ˇts to H1 (1996/1997) [2] data. Power correc-
tions included for different values of the parameter b and in the infrared renormalon
case

H1,
Aτ4

G (aτ4
G )

(aτ6
G )

Aτ4
q (aτ4

q )

(aτ6
q )

1996/1997 Aτ2
G Aτ2

q Q2
0, GeV2 χ2/n.o.p.

[2]

LO
(f = 4)
No hτ 0.797±0.022 0.791±0.026 Å Å 0.304±0.005 181/101
b = 0 1.214±0.060 0.426±0.054 Å 0.969±0.127 0.360±0.009 124/101
b = 1 1.263±0.070 0.436±0.051 −0.496±0.062 1.127±0.142 0.388±0.022 119/101
b = a2/2 1.321±0.072 0.446±0.049 −0.523±0.065 1.205±0.148 0.417±0.023 106/101

Rτ4 1.155±0.060 0.582±0.032 −0.310±0.171 0.230±0.078 0.381±0.020 56/101
(0.000 ˇx) (0.000 ˇx)

Renorm. 1.037±0.121 0.668±0.073 −0.011±0.259 −0.007±0.122 0.356±0.035 54/101
−0.486±0.841 0.084±0.325

NLO
(f = 4)
No hτ −0.013±0.015 0.893±0.028 Å Å 0.494±0.009 201/101
b = 0 −0.024±0.017 0.882±0.029 Å −0.001±0.000 0.473±0.017 199/101
b = 1 0.316±0.047 0.474±0.056 −0.542±0.065 1.219±0.147 0.600±0.030 133/101
b = a2/2 0.336±0.045 0.492±0.053 −0.603±0.067 1.362±0.152 0.635±0.030 127/101

Rτ4 0.144±0.078 0.764±0.056 −0.692±0.275 0.155±0.021 0.576±0.060 55/101
(0.000 ˇx) (0.000 ˇx)

Renorm. 0.102±0.086 0.800±0.066 −1.327±1.218 0.310±0.281 0.548±0.067 54/101
0.412±0.834 0.063±0.144

• For the data, usage of f = 4 is strongly preferred.
• The values of parameters in the twist-two terms do not change essentially.
We see, however, for H1 data in Table 4 and for combined data in Table 6

some rise of gluon terms when higher-twist terms are incorporated. The rise
exists for both the LO and NLO approximations and it is compensated by a
negative gluon twist-four magnitude. The twist-six gluon magnitude has different
signs (it is negative and positive at LO and NLO approximations, respectively),
but the combination of the higher-twist terms gives negative contribution for the
gluon case.

Note that the phenomenon is similar to one observed for BFKL-motivated
twist-four corrections (see the previous Subsection) and can be considered as
quite general property of the HT corrections.

• For the ZEUS data in Table 5 the in�uence of the higher-twist terms is not
so important.

• In contrary to the gluon case, the higher-twist corrections for the quark
density are mostly positive that leads to different small-x asymptotics of gluon and
quark distributions at low Q2 values, observed recently at HERA experiments [90]
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Table 5. The result of the LO and NLO ˇts to ZEUS (1996/1997) [7] data. Power correc-
tions included for different values of the parameter b and in the infrared renormalon
case

ZEUS,
Aτ4

G (aτ4
G )

(aτ6
G )

Aτ4
q (aτ4

q )

(aτ6
q )

1996/1997 Aτ2
G Aτ2

q Q2
0, GeV2 χ2/n.o.p.

[7]

LO
(f = 4)
No hτ 0.918±0.031 0.754±0.040 Å Å 0.317±0.005 80/116
b = 0 0.891±0.067 0.780±0.070 Å −0.093±0.203 0.314±0.009 80/116
b = 1 0.910±0.074 0.780±0.068 0.046±0.101 −0.101±0.229 0.324±0.023 79/116
b = a2/2 0.920±0.069 0.786±0.066 0.083±0.117 −0.179±0.263 0.330±0.019 78/116

Rτ4 0.980±0.063 0.739±0.050 0.344±0.329 −0.137±0.135 0.343±0.021 78/116

(0.000 ˇx) (0.000 ˇx)
Renorm. 0.859±0.087 0.757±0.074 −2.439±1.207 1.014±0.559 0.281±0.024 68/116

−10.66±3.60 4.99±1.78

NLO
(f = 4)
No hτ 0.061±0.023 0.844±0.044 Å Å 0.523±0.011 82/116
b = 0 0.067±0.030 0.849±0.046 Å −0.001±0.002 0.533±0.034 81/116
b = 1 0.062±0.015 0.859±0.026 0.020±0.002 −0.044±0.005 0.534±0.017 81/116
b = a2/2 0.071±0.055 0.866±0.073 0.046±0.122 −0.101±0.275 0.549±0.037 80/116

Rτ4 0.083±0.081 0.823±0.078 −0.046±0.313 0.016±0.041 0.533±0.054 81/116

(0.000 ˇx) (0.000 ˇx)
Renorm. −0.329±0.068 1.242±0.094 −1.599±0.643 −0.177±0.173 0.312±0.027 64/116

−16.008±2.451 2.253±0.492

(see a detailed discussion in Subsec. 9.6).
• The ˇtted value of Q2

0 tends to be little higher (at LO Q2
0 ∼ 0.5 GeV2

and at NLO Q2
0 ∼ 0.7−0.8 GeV2) when the twist-four corrections have been

added. It is in agreement with the results when BFKL-motivated twist-four
corrections have been considered (see the previous Subsection). The incorporation
of twist-six terms returns the Q2

0 values to the ones, obtained in the twist-two
approximation.

Looking carefully at Table 7 and Fig. 3, we see full support of above results:
the agreement with experimental data improves drastically, essentially for 0.5 �
Q2 � 2.5 GeV2. We should note, however, the following excepting features:

• Usage of f = 3 is preferred, that is natural choice at low Q2 values.
• The twist-six corrections are important to stabilize the HT contributions and,

thus, the results of Table 7 are comparable with ones in Tables 4Ä6 only when
the twist-six corrections are included. Indeed, at Q2 � 1 GeV2, the experimental
data increase at x → 0 essentially faster than the twist-two predictions.
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The twist-four term, which is most important here, is responsible for the strong
antishadowing effect.

At Q2 ∼ 0.5 GeV2, the experimental data rises already slowly at x → 0.
Then, the twist-four term, if it is alone, turnes out to be smaller as compared with
the results obtained from the ˇts of data at Q2 � 1 GeV2.

So, the contribution of the twist-six term is important and should be added
to recover an agrement between these analyses. The twist-six term is responsible
for the shadowing effect and stabilizes the HT contributions.

We comment here on the values of the magnitudes of HT corrections obtained
in the ˇts above which are essentially higher than the expected Λ2 for twist four
and Λ4 for twist six. As it was done in Introduction we start with the case when
only the twist-four corrections are taken into account.

Following [55] we stress that the renormalon model cannot account for the
absolute normalization of the twist-four corrections. As was proposed in [52,55,
108] it is necessary to assume that the model parameters, the overall normalization
factors and scales, should be ˇtted to the experimental data.

Recall that for the �avour nonsinglet case data can be described at x �
0.25 using the normalization factors about 2 or 3 times larger than μ2

R =
(2/β0)Λ2

MS
e−CMS ≈ (10.6/β0)Λ2

MS
(CMS = −5/3) arising directly from the renor-

malon model. For example, the authors of [108] used aτ4
NS = 0.2 GeV2 and

aτ6
NS =

(
aτ4
NS

)2 = 0.04 GeV2∗. The ˇts of nonsinglet data give similar results:

aτ4
NS = 0.104 GeV2 in [110] at the NLO level and aτ4

NS = 0.340, 0.125 and
0.013 GeV2 in [111] for LO, NLO, and NNLO approximations, respectively.

Note, that in the low-x range there is no the strong reduction of the magni-
tudes of the twist-four corrections with the increasing of the order of perturbation
theory or with the application of a proper resummation, that was observed at large
and intermediate x values (see [111Ä115] and [116], respectively).

Considering Table 6 we see that aτ4
q (f = 3) = 0.326 GeV2, aτ4

q (f = 4) =
0.162 GeV2 and aτ4

q (f = 3) = 0.265 GeV2, aτ4
q (f = 4) = 0.141 GeV2 at LO and

NLO approximations, respectively. Thus, the results for quark magnitudes are
stable in perturbation theory and they are in full agreement with those obtained
for the NS part.

For the gluon density we have that aτ4
G (f = 3) = −0.279 GeV2, aτ4

G (f =
4) = −0.172 GeV2 and aτ4

G (f = 3) = −0.660 GeV2, aτ4
G (f = 4) = −0.552 GeV2

at LO and NLO approximations, respectively. Thus, the results for gluon mag-
nitudes are nonstable in perturbation theory. At the LO they are very similar
to the quark ones but at NLO their values increase 2 or 3 times. Perhaps the

∗We would like to note that the similar analysis [109] has aτ6
NS = 0 and aτ4

NS = 1 GeV2, i.e.,
aτ4
NS is 5 times larger than one in [52, 55, 108].
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most natural explanation of this rise is a partial compensation by the twist-four
corrections of the twist-two part of gluon density, which decreases strongly when
NLO corrections are taken into account.

In our opinion, our results should be considered as a ˇrst estimation of HT
gluon magnitudes and some additional efforts should be necessary. We plan to
attempt this problem in the following publication, where the nonsinglet quark
density and the new experimental data [89Ä91] will be taken into account.

The investigation will contain also the study of the twist-six terms, which
were not studied in detail before and in the present work. For example, the

paper [108] contains the suggestion aτ6
NS =

(
aτ4
NS

)2
. Our present investigation

shows really only a strong correlation between twist-four and twist-six terms,
which have usually opposite signs.

We hope that the incorporation of the nonsinglet contributions and the new
experimental data of ZEUS and H1 collaborations [89, 91] leads to stabilization
of our results for the magnitudes aRτ4

a and aRτ6
a , a = (q, G).

9.4. Leading and Higher-Twist Approximations for the Derivative
∂F2/∂ ln Q2. The results for the derivative ∂F2/∂ ln Q2 are shown in Figs. 4
and 5 together with H1 experimental data [2].

Figure 4 contains only the leading twist theoretical predictions. As in the case
of F2 data, we have very good agreement between our formulae and experimental
data at Q2 � 3 GeV2.

When we added the HT corrections, the theoretical results begin to be in
agreement with experiment also at Q2 < 3 GeV2 (see Fig. 5), especially when we
used the results of F2 data ˇts at Q2 � 0.5 GeV2. The corresponding results for
∂F2/∂ ln Q2 are shown as the dashed curve for the NLO and as the dash-dotted
curve for the LO ˇts.

Both curves are hardly distinguished from each other. It means, that in this
kinematical region of small x the order of perturbation theory inside the leading
twist does not matter. The importance has the number of twists taking into
account.

Note that the HT corrections to F2 and ∂F2/∂ ln Q2 structure functions are
opposite in sign that demonstrates the importance, respectively, of the quark
density and gluon one for the functions (see also the following Subsection and
discussions therein). The fact is in full agreement with the results of Sec. 3.

Thus, our quite simple formulae obtained in the generalized DAS approach
are very convenient also to the study of the derivative ∂F2/∂ ln Q2, which is very
important to extract gluon density and the longitudinal FL or the ratio R = σL/σT

(see [117,118] and [119Ä121], respectively).

9.5. Effective Slope λeff
F2

(x, Q2). The results for the slope λeff
F2

(x, Q2) are
shown in Figs. 6, 7 and 8 together with H1 and ZEUS experimental data [1, 8,
122,123].
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Fig. 4. The derivative function ∂F τ2
2 (x, Q2)/∂ ln Q2 taken at ˇxed Q2 and plotted as a

function of x. The experimental points are from H1 [2]. The outer error bars represent the
quadratic sum of statistical and systematical errors. The inner error bars show the statistical
error only. The solid line represents the NLO ˇt with χ2/n.d.f. = 798/611 = 1.31
(Aτ2

G = −0.020, Aτ2
q = 0.903, Q2

0 = 0.495 GeV2), while the long dashed line is the LO
ˇt with χ2/n.d.f. = 754/611 = 1.23 (Aτ2

G = 0.784, Aτ2
q = 0.801, Q2

0 = 0.304 GeV2)

In Figs. 6 and 7 we see very good agreement between theory and experiment
both with and without consideration of the HT corrections. Note that the asymp-
totic approximation does not work so well because at large Q2 values, i.e., at its
range of applicability, there are experimental data only at quite large x values:
x > 10−3.

Since the logarithmic x derivative is compatible with independence of Q2,
both H1 and ZEUS have ˇtted their data on the proton structure function to the
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Fig. 5. The derivative function ∂F2(x, Q2)/∂ ln Q2 taken at ˇxed Q2 and plotted as a
function of x. The experimental points and the solid line (NLO ˇt with χ2/n.d.f. =
798/611 = 1.31) are the same as in Fig. 4. The dashed and dotted curves are obtained
from the ˇt at the NLO, when the renormalon contributions of higher-twist terms have
been incorporated. The dashed one is the same as in Fig. 3 with the corresponding
χ2/n.d.f. = 565/660 = 0.86, while the dotted line is the one from Fig. 2 with χ2/n.d.f. =
500/607 = 0.82. The dash-dotted curve (hardly distinguished from the dashed one) is
the same as as in Fig. 3 and represents the ˇt of data on structure function F2(x,Q2) at
the LO, the renormalon contributions of higher-twist terms included. The corresponding
χ2/n.d.f. = 555/660 = 0.84

form F2 = c(Q2)x−λ(Q2). Figure 8 shows recent H1 and ZEUS ˇts [1,8,9,122]
for λ(Q2). Some of them are preliminary only and extracted from Fig. 14 of the
recent review [123].
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Fig. 6.The derivative function (effective slope) λeff,τ2
F2

(x,Q2)=∂ ln F τ2
2 (x,Q2)/∂ ln (1/x)

as a function of x for different Q2 bins. The experimental points are from H1 [2]. The
outer error bars include statistical and systematical errors added in quadrature, while the
inner error bars correspond to statistical errors only. The solid line represents the NLO ˇt
with χ2/n.d.f. = 798/611 = 1.31 (Aτ2

G = −0.020, Aτ2
q = 0.903, Q2

0 = 0.495 GeV2),
while the long dashed line is the LO ˇt with χ2/n.d.f. = 754/611 = 1.23 (Aτ2

G =
0.784, Aτ2

q = 0.801, Q2
0 = 0.304 GeV2). The dotted line corresponds to the asymptotic

expression λeff,τ2
F2,as (x, Q2) in Eq. (43c)

The experimental data shows a rise of the slope λeff
F2

(x, Q2) from the value

∼ 0.1 at Q2 � 1 GeV2 (the so-called ®soft pomeron range¯) to the value
∼ 0.3−0.4 at Q2 � 100 GeV2 (the so-called ®hard pomeron range¯) and c ∼ 0.18
is consistent with being constant.
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Fig. 7. The derivative function (effective slope) λeff
F2

= ∂ ln F2(x, Q2)/∂ ln (1/x) as a
function of x for different Q2 bins. The experimental points and the solid line (NLO ˇt with
χ2/n.d.f. = 798/611 = 1.31) are the same as in Fig. 6. All other curves are obtained from
the ˇts, when the renormalon contributions of higher-twist terms have been incorporated.
The dashed one is the same as in Fig. 3 with the corresponding χ2/n.d.f. = 565/660 =
0.86, while the dash-dotted line is the one from Fig. 2 with χ2/n.d.f. = 500/607 = 0.82.
The dotted line corresponds to the asymptotic LO expression λeff

F2,as(x, Q2) in Eq. (80),
plotted at χ2/n.d.f. = 573/667 = 0.87 (Aτ2

G = 1.234, Aτ2
q = 0.518, Q2

0 = 0.407 GeV2

and aτ4
G = 0.201 GeV2, aτ4

q = −0.011 GeV2)

In our opinion, the strong Q2 dependence of the slope λeff
F2

(x, Q2) was ob-
served ˇrst in [124], where ˇts of experimental data have been performed for
the Regge-like PD form. At high Q2 side, the slope value is close to LO BFKL
prediction (λeff

F2
(x, Q2) ∼ 0.3−0.4), at smaller Q2 values λeff

F2
(x, Q2) ∼ 0.2,



SMALL-x BEHAVIOR OF PARTON DISTRIBUTIONS 659

Fig. 8. The derivative function (effective slope) λeff
F2

= ∂ ln F2(x, Q2)/∂ ln (1/x) as a
function of Q2. The experimental points (H1 and ZEUS) have ˇtted their x � 0.01

data to the form F2 = c(Q2)x−λ(Q2): black points Å H1 F2 data [1]; squares Å H1
data [122] combined with NMC data [80]; triangles Å H1 data [122] combined with
low Q2 ZEUS BPT data [8]; open diamonds Å preliminary ZEUS slope ˇt 2001 [123].
The inner error bars illustrate the statistical uncertainties, the full error bars represent the
statistical and systematic uncertainties added in quadrature. The data are compared with
a parameterization [1] (see the short-dashed line) in which λ(Q2) = a ln[Q2/Λ2] grows
logarithmically with Q2 (a = 0.0481, Λ = 292 MeV). Using data for Q2 � 3.5 GeV2, the
next-to-leading ˇt leads to the results (see solid line) close to the parameterization [1]. The
solid line (NLO ˇt with χ2/n.d.f. = 798/611 = 1.31), the long-dashed one (NLO&Rht ˇt
with χ2/n.d.f. = 565/660 = 0.86) and the dash-dotted one (NLO&Rht ˇt with χ2/n.d.f. =
500/607 = 0.82) are the same as in Fig. 7. The value of x was ˇxed to 10−3 for all
curves

that is close to the model with Pomeron interactions [125] and to NLO BFKL
predictions [95] based on non-MS-like renormalization schemes and BLM resum-
mation of large values of NLO corrections calculated recently in [126, 127] (see
also [128,129] ). At low Q2 the slope value coincides with DonnachieÄLandshoff
model, where λeff

F2
(x, Q2) ∼ 0.1.

In a sense, the shape of the slope λeff
F2

(x, Q2) is in contrast with Regge asymp-
totics, where the corresponding slopes should be Q2-independent. Note, however,
that this Q2 dependence can be described in phenomenological Regge-like mod-
els [130Ä133]. There are also attempts (see [48,49]) to recover the slope shape in
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the Regge-like form of parton distributions considering the
small-x asymptotics of DGLAP equation. A quite natural explanation of the
rise is given in the generalized DAS approximation as it was shown in [53].

Quite recently, the H1 (1996/1997) data [1] (black circles in Fig. 8) has
been analyzed in [76], where good agreement has been found between data and
theoretical predictions based on generalized DAS approach. For example, the rise
can be described as ln lnQ2, i.e., in pure perturbative QCD. Incorporation of HT
corrections gives a possibility of extending the agreement to new preliminary H1
and ZEUS data for quite low Q2 values (see dashed curve and the preliminary
data near Q2 ∼ 1 GeV2 in Fig. 8).

9.6. Parton Distributions. The results for the quark and gluon densities
are shown in Fig. 9 together with the NLO QCD predictions of A02NLO [134],
represented by dots.

As was noted already in Secs. 6 and 8, there is very strong difference between
the twist-two and total parton distributions. In the case of the twist-two parton
densities f τ2

a (x, Q2), the higher-twist corrections contribute to the Wilson coef-
ˇcient functions, i.e., (in MS-like factorization scheme used here) to the relation
between the parton distributions f τ2

a (x, Q2) and F2. Then, the higher-twist terms
give additional power-like corrections to the relation and, thus, change it.

Contrary to this, in the case of the total parton densities fa(x, Q2), the
coefˇcient functions are pure twist-two ones, i.e., the relation between the par-
ton distributions fa(x, Q2) and the structure function F2 taken in the standard
MS-like way. Thus, in this case the higher-twist corrections are responsible for
the difference between the twist-two parton distributions f τ2

a (x, Q2) and the full
ones fa(x, Q2).

For the quark density the difference between twist-two distributions and total
densities is not very strong. In Fig. 9, one can see good agreement between
quark distributions obtained in the different approximations. For the renormalon
higher-twist corrections, our results are very close to those obtained by ZEUS
collaboration in [90].

At high Q2 values, there is also good agreement between gluon distributions
obtained in the different approximations. For small Q2 values, in the renormalon
model our total gluon density is strictly less than twist-two one: for example,
at Q2 = 2 GeV2 the ratio fG(x, Q2)/f τ2

G (x, Q2) < 1/3. Nevertheless, there
is a disagreement here between our results and the recent ones from ZEUS
collaboration (see [90]) in the range of small Q2 values: our total gluon density
is essentially higher than the ZEUS one. A similar disagreement exists between
our total gluon distribution and the Alekhin one [134] (see Fig. 9). Thus, the
deviation between our twist-two and total gluon distributions is strong but less to
have agreement with experimental data.

In our opinion, the most part of the difference comes from neglection of
valence quark part fV (x, Q2) in our paper. The neglection is a quite standard tool
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Fig. 9. The parton distributions fa(x, Q2) as a function of x for Q2 = 2, 10 and 100 GeV2

compared to the NLO QCD predictions of A02NLO [134], represented by black dots.
The solid lines represent the NLO ˇt alone with χ2/n.d.f. = 798/611 = 1.31 (Aτ2

G =
−0.020, Aτ2

q = 0.903, Q2
0 = 0.495 GeV2). The dash-dotted curves represent the BFKL-

motivated estimation for the higher-twist contribution with the value of the parameter
b = a2/2. The corresponding χ2/n.d.f. = 629/609 = 1.03 (Aτ2

G = 0.301, Aτ2
q =

0.535, Q2
0 = 0.631 GeV2 and Aτ4

G = −0.580 GeV2, Aτ4
q = 1.311 GeV2). The dashed

curves are obtained from the ˇts at the NLO, when the renormalon contributions of higher-
twist terms have been incorporated. The corresponding χ2/n.d.f. = 565/660 = 0.86
(Aτ2

G = 0.279, Aτ2
q = 0.640, Q2

0 = 0.672 GeV2 and aτ4
G = −0.143 GeV2, aτ4

q =
0.140 GeV2, aτ6

G = −0.044 GeV4, aτ6
q = 0.043 GeV4)

at small-x range (and quite large Q2 values, where parton model is applicable),
because fV (x, Q2) ∼ xλV with λV ∼ 0.3−0.5.

At low Q2 values, however, the ignoring of the valence and nonsinglet quark
distributions cannot be the correct approximation, because here the singlet parton
distributions (at least the gluon density) start to fall when x → 0. Moreover, at
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higher orders of perturbation theory, strong double-logarithmic terms contribute to
the valence and nonsinglet quark distributions. The contributions can be evaluated
in the framework of BFKL-like approach, and they can lead to essential decreasing
of the λV value at low Q2 values (see [135,136] and discussion therein).

Thus, in our model gluon density at small Q2 values includes effectively a
contribution of the valence quark distributions and, thus, is essentially large to
compare with ZEUS and Alekhin predictions from [90] and [134], respectively.

Note that the absence of the valence quarks can be partially responsible for
some disagreement between theory and experiment for the derivation ∂F2/∂ ln Q2

(see Figs. 4 and 5 and discussions in Subsec. 9.4), which depends strongly on
gluon density.

We plan to return to the study of the problem and to incorporate the valence
quark densities in our future investigations.

CONCLUSIONS

In generalized DAS approximation we have incorporated HT corrections for
semianalytical solution of DGLAP equation obtained earlier in [53] at LO and
NLO levels in the leading twist approximation for the �at initial condition.

The HT corrections have been added in two models Å the so-called BFKL-
like one and the renormalon one. In both models the HT terms lead to im-
provement of the agreement with new precise experimental data of H1 and ZEUS
collaborations. The elements of the renormalon model, however, are essentially
better deˇned and the model describes experimental data much better, especially
at very low Q2 values (Q2 � 0.5 GeV2).

After veriˇcation of all uncalculable parameters in our formulae from the ˇts
of F2 data, we apply our approach to compare with H1 data for the derivative
∂F2/∂ ln Q2, with H1 and ZEUS data for the effective slope λeff

F2
(x, Q2) data,

and with experimental predictions for the parton distributions.
We have found rather good agreement with the data for the effective slope

λeff
F2

(x, Q2) and for the derivative ∂F2/∂ ln Q2 and also with experimental pre-
dictions for the quark distribution, but have some disagreement with other results
for gluon densities at low Q2 values (see Subsec. 9.6 in the previous Section and
discussions therein), that needs an additional investigations. We plan to study
this problem in a further publication where the nonsinglet quark density and the
new experimental data [89Ä91] will be taken into account.

As next steps we plan to add (at low Q2 values) to our analysis some
phenomenological models of coupling constant. We hope to apply the ShirkovÄ
Solovtsov analylical coupling constant [137,138] and a ®freezing¯ procedure (see,
for example, [139] and discussions therein).
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Moreover, we plan also to add to our initial conditions (15) the corrections
∼ ln(1/x) and ∼ ln2(1/x) obeying Froassart restriction by analogy with con-
sideration of these corrections in the Regge-like small-x asymptotics of parton
distributions done earlier in [140,141].

Addition of HT terms should be important also for high-energy cosmic rays,
where they can lead to quite important shadowing corrections for cross sections
of neutrinoÄproton scattering studied in DAS approach in [142Ä144]. The subject
will be considered in the forthcoming article.

We are considering also to extend the application of the higher-twist cor-
rections for the longitudinal structure function FL. The consideration of FL

should be very important essentially at low Q2 values, where FL should go to
zero when Q2 → 0 [145Ä149] at low-x values based on kt-factorization proce-
dure [150Ä153]).

In the QCD improved parton model, the LO results for FL are proportional
to αs(Q2) and, thus, do not lead to zero values to the longitudinal structure
function. Moreover, the NLO corrections to FL are large and negative at low-x
values (see [154Ä161]) and, thus, give large negative contributions at low Q2

range [94, 162Ä164]. Thus, these corrections can lead to the negative values
for FL [38, 94] of perturbation theory and one needs a resummation of large
corrections at low Q2 values. Based on Grunberg approach [165, 166], the
resummation leads to recovering the well-know CallanÄGross relation FL = 0 at
asymptotics x → 0 (see [94]).

Thus, there are quite conserved results for FL at low-x and Q2 values.
The incorporation of the higher-twist corrections, which can be very important,
namely, in the case of the longitudinal structure function (see recent study [88]
and discussions therein), should give an additional important information about
FL structure at low-x and Q2 values. Moreover, the measurement of FL should
become possible in the nearest future (see discussions in Sec. VII of [15]) with the
proposed updates to the HERA machine, which will yield very large integrated
luminosity. Note that some precise preliminary results for FL can be found
already in the recent review [123] and we plan to study them in the nearest
future.
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APPENDIX A

The estimations of the twist-four and twist-six contributions in the framework
of IR-renormalon model have been done in [108] (for nonsinglet case) and in [55]
(for singlet one). As we already noted in Sec. 1, we neglect the nonsinglet
component in our analysis. The higher-twist corrections to singlet case contain
sum of nonsinglet and singlet higher-twist results. However, we take an interest
only in n → 1 asymptotics of the corrections, where nonsinglet part of higher-
twist corrections are neglected because of exact Bjorken sum rule.

The singlet part of higher-twist corrections may be presented in the following
form:

MR
a (n, Q2) =

= Ma(n, Q2)

[
1 +

aτ4
a

Q2
μτ4

a

(
n, ln

(∣∣aτ4
a

∣∣
Q2

))
+

aτ6
a

Q4
μτ6

a

(
n, ln

(√
|aτ6

a |
Q2

))]
.

(A1)

The quark contributions μτ4
q (n, ln (A/Q2)) and μτ6

q (n, ln (A/Q2)) [55] may
be transformed to n space

μτm
a

(
n, ln

(
A
Q2

))
=

8CF TRf

β2
0

[
Bτm

a (n) + bτm
a (n) ln

(
A
Q2

)]
, (A2)

where

Bτ4
q (n) =

16
15

1
(n − 1)2

+
22
225

1
n − 1

+
11
3

1
n + 1

− 25
9

1
n + 2

− 74
75

1
n + 4

−

− 12
(n + 1)2

+
6

(n + 2)2
+

4
(n + 1)3

+
12

(n + 2)3
, (A3)

bτ4
q (n) = − 8

15
1

n − 1
+

9
n + 1

− 23
3

1
n + 2

− 4
5

1
n + 4

− 2
(n + 1)2

− 6
(n + 2)2

,

(A4)

Bτ6
q (n) = −128

105
1

(n − 1)2
− 572

11025
1

n − 1
+

52
75

1
n + 1

+
32
9

1
n + 2

+
16
3

1
n + 3

−

− 724
75

1
n + 4

+
452
3675

1
n + 6

+
16
5

1
(n + 1)2

− 16
(n + 3)2

, (A5)
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bτ6
q (n) =

64
105

1
n − 1

− 8
5

1
n + 1

− 8
3

1
n + 2

+
8

n + 3
− 24

5
1

n + 4
+

16
35

1
n + 6

.

(A6)

The gluon contributions μτ4
G (n, ln(A/Q2)) and μτ6

G (n, ln(A/Q2)) may be
estimated [55] as

μτm
G (n, ln(A/Q2)) = μτm

q (n,
ln(A/Q2))

γ
(0)
Gq (n)

, (A7)

where [167]

γ
(0)
Gq (n) = −4CF

2 + n + n2

(n − 1)n(n + 1)
is the leading contribution to the gluonÄquark anomalous dimension.

We take an interest in the asymptotics n → 1, where the above values may
be represented as

Bτ4
q (n) = − 4

15

(
1
δ2

+
11
120

1
δ
− 2291

3600

)
+ O(δ),

bτ4
q (n) =

2
15

(
1
δ
− 139

120

)
+ O(δ),

(A8)

Bτ6
q (n) =

32
105

(
1
δ2

+
143
3360

1
δ
− 870637

1411200

)
+ O(δ),

bτ6
q (n) = − 16

105

(
1
δ
− 3217

3360

)
+ O(δ);

Bτ4
G (n) = − 2

15CF

(
1
δ

+
101
120

)
+ O(δ), bτ4

G (n) =
1

15CF
+ O(δ),

(A9)

Bτ6
G (n) =

16
105CF

(
1
δ

+
2663
3360

)
+ O(δ), bτ6

G (n) = − 8
105CF

+ O(δ),

with δ = n − 1.

APPENDIX B

We present here the detailed analysis∗ of the method of replacing the convo-
lution of two functions by a simple product at small x. We restrict ourselves to
the accuracy O(z). Some earlier presentations can be found in [77,78] (here the
accuracy O(z2) has been considered) and in [53].

∗Contrary to [77, 78] and to the main body of the paper we use here the variable z = x/x0.
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Let to consider the set of PD with different forms:

(I) Regge-like form fR(z) = z−δf̃(z),

(II) Logarithmic-like form fL(z) = z−δ ln(1/z)f̃(z),

(III) Bessel-like form fI(z) = z−δ d̂ ln(1/z)
k/2

Ĩk

(
2
√

d̂ ln(1/z)
)

f̃(z) with de-

ˇnition (22) of the Ĩk function,

where f̃(z) and its derivative f̃ ′(z) ≡ df̃(z)/dz are smooth at z = 0 and both
are equal to zero at z = 1:

f̃(1) = f̃ ′(1) = 0.

(1) At the beginning, we consider the basic integral with integer nonnegative
n values:

J
(1)
δ,i (n, z) = zn ⊗ fi(z) ≡

1∫
z

dy

y
ynfi

(
z

y

)
, i = R, L, I.

(a) Regge-like case. Expanding f̃(z) near f̃(0), we have

J
(1)
δ,R(n, z) = z−δ

1∫
z

dy yn+δ−1×

×
[
f̃(0) +

z

y
f̃ (1)(0) + . . . +

1
k!

(
z

y

)k

f̃ (k)(0) + . . .

]
=

= z−δ

[
1

n + δ
f̃(0) + O(z)

]
−

− zn

[
1

n + δ
f̃(0) +

1
n + δ − 1

f̃ (1)(0) + . . . +
1
k!

1
n + δ − k

f̃ (k)(0) + . . .

]
.

(B1)

Using the power-like large-x asymptotics

f(z) ∼ (1 − z)ν when z → 1, (B2)

the second term in the r.h.s. of Eq. (B1) can be summed:

J
(1)
δ,R(n, z) = z−δ

[
1

n + δ
f̃(0) + O(z)

]
+ zn Γ(−(n + δ))Γ(1 + ν)

Γ(1 + ν − n − δ)
f̃(0). (B3)
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Consider particular cases n � 1 and n = 0 separately:
(a1) If n � 1, then the second term in the r.h.s. of (B3) is negligible and we

have

J
(1)
δ,R(n, z) = z−δ 1

n + δ
f̃(0) + O(z1−δ) =

1
n + δ

f̃R(z) + O(z1−δ). (B4)

(a2) If n = 0, the r.h.s. of (B3) can be rewritten as follows:

J
(1)
δ,R(0, z) = z−δ

[
1
δ
f̃(0) + O(z)

]
+

Γ(−δ)Γ(1 + ν)
Γ(1 + ν − δ)

f̃(0) =

= δ−1
R (z)fR(z) + O(z1−δ), (B5)

where
1

δR(z)
=

1
δ

[
1 − Γ(1 − δ)Γ(1 + ν)

Γ(1 + ν − δ)
zδ

]
, (B6)

i.e., there is the correlation between small-x and large-x asymptotics of parton
distributions (see [168Ä170]. Note that the value δ−1

R (z) is ˇnite at the limit
δ → 0:

lim
δ→0

1
δR(z)

= ln
(

1
z

)
− [Ψ(1 + ν) − Ψ(1)] ≡ ln

(
1
z

)
− p(ν), (B7)

where the Riemannian Ψ function is the logarithmic derivation of the Γ function.
Remember that the large-x asymptotics are different in quark and gluon cases,

the values νq ≈ 3 and νG ≈ 4 are coming from quark counting rules, which leads
to p(νq) ≈ 11/6 and p(νG) ≈ 25/12.

(b) Logarithmic-like case. Using the simple relation

z−δ ln
1
z

=
d(z−δ)

dδ

we immediately obtain:
(b1) n � 1 case:

J
(1)
δ,L(n, z) = z−δ ln(1/z)

[
1

n + δ

(
1 − 1

(n + δ) ln(1/z)

)
f̃(0) + O(z)

]
=

=
1

n + δ

(
1 − 1

(n + δ) ln(1/z)

)
fL(z) + O(z1−δ) =

=
1

n + δ
fL(z) + O

(
1

ln(1/z)

)
. (B8)
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(b2) n = 0 case:

J
(1)
δ,L(0, z) = z−δ ln(1/z)

[
1
δ

(
1 − 1

δ ln(1/z)

)
f̃(z) + O(z)

]
+

+
Γ(−δ)Γ(1 + ν)
Γ(1 + ν − δ)

f̃(0) [Ψ(1 + ν − δ) − Ψ(−δ)] =

= δ−1
L (z) fL(z) + O(z1−δ), (B9)

where

1
δL(z)

≡ zδ

ln(1/z)
d

dδ

(
z−δ

δR(z)

)
=

1
δR(z)

+
1

ln(1/z)
d

dδ

(
1

δR(z)

)
=

=
1
δ

[
1 − 1

ln(1/z)

(
1

δR(z)
+

+
Γ(1 − δ)Γ(1 + ν)

Γ(1 + ν − δ)
zδ [Ψ(1 + ν − δ) − Ψ(1 − δ)]

)]
. (B10)

The value δ−1
L (z) is also ˇnite at the limit δ → 0:

lim
δ→0

1
δL(z)

=

=
1
2

ln
(

1
z

)
− 1

2 ln(1/z)

(
[Ψ(1 + ν) − Ψ(1)]2 − [Ψ′(1 + ν) − Ψ′(1)]

)
=

=
1
2

ln
(

1
z

)
− 1

2 ln(1/z)
(
p(ν)2 − p′(ν)

)
, (B11)

where the Ψ′ function is the derivation of the Ψ function, p′(νq) ≈ −49/36 and
p′(νG) ≈ −205/144 are coming from quark counting rules.

(c) Bessel-like case. Representing Bessel function in the form

z−δd̂ ln (1/z)
k/2

Ĩk

(
2
√

d̂ ln(1/z)
)

=
∞∑

n=0

1
n!Γ(n + k + 1)

(
d̂

d

dδ

)n+k

z−δ =

= d̂

(
d

dδ

)k/2

Ĩk

(
2

√
d̂

(
d

dδ

))
z−δ (B12)

and repeating the above analysis, we have
(c1) in the n � 1 case:

J
(1)
δ,I (n, z) =

1
n + δ

fI(z) + O

⎛⎝√ d̂

ln(1/z)

⎞⎠ , (B13)
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(c2) in the n = 0 case:

J
(1)
δ,I (0, z) =

1
δI(z)

fI(z) + O(z1−δ), (B14)

where

1
δI(z)

=
zδ d̂

(
d

dδ

)k/2

d̂ ln(1/z)
k/2

Ĩk

(
2
√

d̂ ln(1/z)
) Ĩk

(
2

√
d̂

(
d

dδ

))
z−δ

δR(z)
. (B15)

The value δ−1
I (z) is also ˇnite at the limit δ → 0:

lim
δ→0

1
δI(z)

=

=

√
ln(1/z)

d̂

Ĩk+1

(
2
√

d̂ ln(1/z)
)

Ĩk

(
2
√

d̂ ln(1/z)
) ≈

√
ln(1/z)

d̂
− 2k + 1

4d̂
+O

⎛⎝√ d̂

ln(1/z)

⎞⎠,

(B16)

where the r.h.s. of (B16) is obtained from the expansion of the modiˇed Bessel
functions at z → 0.

Note that we can represented Eqs. (B5), (B9), and (B14) formally as follows:

δ−1fB(z) =
1

δB(z)
fB(z) (B = R, L, I), (B17)

which has been used in Secs. 2 and 4.

(2) Since the HT coefˇcient functions Bτ4,6
q (n) contain the terms

∼ 1/(n − 1)2 (see Eqs. (A3) and (A5)), we should consider also the second
basic integral with integer nonnegative n values:

J
(2)
δ,i (n, z) = zn ln(1/z)⊗ fi(z) ≡

1∫
z

dy

y
yn ln(1/y)fi

(
z

y

)
, i = R, L, I.

It is easy to demonstrate that

J
(2)
δ,i (n, z) =

d

da
J

(1)
δ,i (n − a, z)|a=0,

which simpliˇes essentially the consideration of J
(2)
δ,i (n, z).
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(a) Regge-like case. Repeating the analysis of Subsec. (1a), we obtain easy
that

J
(2)
δ,R(n, z) = z−δ

[
1

(n + δ)2
f̃(0) + O(z)

]
+

+ zn Γ(−(n + δ))Γ(1 + ν)
Γ(1 + ν − n − δ)

[
ln

1
z

+ Ψ(−(n + δ)) − Ψ(1 + ν − n − δ)
]

f̃(0).

(B18)

Consider particular cases n � 1 and n = 0 separately:
(a1) If n � 1, then the second term in the r.h.s. of (B3) is negligible and we

have

J
(2)
δ,R(n, z) = z−δ 1

(n + δ)2
f̃(0)+O(z1−δ) =

1
(n + δ)2

f̃R(z)+O(z1−δ). (B19)

(a2) If n = 0, the r.h.s. of (B18) can be rewritten as follows:

J
(2)
δ,R(0, z) = z−δ

[
1
δ2

f̃(0) + O(z)
]

+

+
Γ(−δ)Γ(1 + ν)
Γ(1 + ν − δ)

[
ln

1
z

+ Ψ(−δ) − Ψ(1 + ν − δ)
]

f̃(0) =

= δ−2
R (z)fR(z) + O(z1−δ), (B20)

where

1
δ2
R(z)

= − d

dδ

1
δ

[
1 − Γ(1 − δ)Γ(1 + ν)

Γ(1 + ν − δ)
zδ

]
≡ − d

dδ

1
δR(z)

. (B21)

Note that the value δ−2
R (z) is ˇnite at the limit δ → 0:

lim
δ→0

1
δ2
R(z)

=
1
2

[(
lim
δ→0

1
δR(z)

)2

− p′(ν)

]
, (B22)

where the value of limδ→0 (1/δR(z)) is given in (B7).
(b) Logarithmic-like case. Following Subsec. (1b), we obtain:
(b1) n � 1 case:

J
(2)
δ,L(n, z) =

1
(n + δ)2

fL(z) + O
(

1
ln(1/z)

)
. (B23)

(b2) n = 0 case:

J
(1)
δ,L(0, z) = δ−2

L (z) fL(z) + O(z1−δ), (B24)
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where
1

δ2
L(z)

= − d

dδ

1
δL(z)

(B25)

and the value of 1/δL(z) is given in (B10).
The value δ−1

L (z) is also ˇnite at the limit δ → 0:

lim
δ→0

1
δL(z)

=
1
6

[
ln
(

1
z

)]2
− 1

2
(
p(ν)2 − p′(ν)

)
−

− 1
3 ln(1/z)

(
p(ν)3 − 3p′(ν)p(ν) + p′′(ν)

)
, (B26)

where the Ψ′′ function is the second derivation of the Ψ function; p′′(νq) ≈
251/108 and p′′(νG) ≈ 2035/865 are coming from quark counting rules.

(c) Bessel-like case. Following Subsec. (1c), we obtain:
(c1) in the n � 1 case:

J
(1)
δ,I (n, z) =

1
(n + δ)2

fI(z) + O

⎛⎝√ d̂

ln(1/z)

⎞⎠ , (B27)

(c2) in the n = 0 case:

J
(1)
δ,I (0, z) =

1
δ2
I (z)

fI(z) + O(z1−δ), (B28)

where
1

δ2
I (z)

= − d

dδ

1
δI(z)

(B29)

and the value of 1/δI(z) is given in (B15).
The value δ−2

I (z) is also ˇnite at the limit δ → 0:

lim
δ→0

1
δ2
I (z)

=
ln(1/z)

d̂

Ĩk+2

(
2
√

d̂ ln(1/z)
)

Ĩk

(
2
√

d̂ ln(1/z)
) ≈

(
lim
δ→0

1
δI(z)

− 1

4d̂

)2

+
3(k + 1)

8d̂2
.

(B30)
Note that the r.h.s. of (B16) is obtained from the expansion of the modiˇed
Bessel functions at z → 0.

Note that we can represented Eqs. (B20), (B24), and (B28) formally as fol-
lows:

δ−2fB(z) =
1

δ2
B(z)

fB(z) (B = R, L, I), (B31)

which has been used in Sec. 4.
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(3) Consider the Mellin integral

Iδ(z) = K̃(z) ⊗ f(z) ≡
1∫

z

dy

y
K̂(y)f

(
z

y

)

and deˇne the moments of the kernel K̃(y) in the following form:

Kn =

1∫
0

dy yn−2 K̃(y).

In analogy with part (1) we have for the Regge-like case:

Iδ,R(z) =

= z−δ

1∫
z

dy yδ−1K̃(y)

[
f̃(0) +

z

y
f̃ (1)(0) + . . . +

1
k!

(
z

y

)k

f̃ (k)(0) + . . .

]
=

= z−δ
[
K1+δ f̃(0) + O(z)

]
−

−
[
N1+δ(x)f̃(0) + Nδ(z)f̃ (1)(0) + . . . +

1
k!

N1+δ−k(z)f̃ (k)(0) + . . .

]
, (B32)

where

Nη(z) =

1∫
0

dyyη−2K̃(zy).

The case K1+δ = 1/(n + δ) corresponds to K̃(y) = yn and has been
already considered in part (1). In the more general cases (for example, K1+δ =
Ψ(1 + δ) + γ) we can represent the ®moment¯ K1+δ as a series of the sort∑
m=1

1/(n + δ + m).

So, for the initial integral at small x we get the simple equation:

Iδ,R(z) = z−δ KR,1+δ f̃(z) + O(z1−δ) = K1+δ fR(z) + O(z1−δ), (B33)

where the coefˇcient KR,1+δ coincides with the one K1+δ in the case if Kn

does not contain the term 1/(n − 1). The coefˇcient KR,1+δ contains the term
δ−1
R (z) if the term 1/(n− 1) contributed to Kn. So, the function KR,1+δ can be

represented in the form:
KR,1+δ = K1+δR(z). (B34)
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Repeating the analysis of the subparts (b) and (c), one easy obtains

Iδ,L(n, z) = KL,1+δ fL(z) + O
(

1
ln(1/z)

)
, (B35)

Iδ,I(n, z) = KI,1+δ fI(z) + O

⎛⎝√ d̂

ln(1/z)

⎞⎠ , (B36)

where

KL,1+δ = K1+δL(z), (B37)

KI,1+δ = K1+δI(z). (B38)

Thus, in the nonsingular case (i.e., in the case when Kn does not contain
the term 1/(n − 1)), the results of transformation of the Mellin convolution to
usual products depend only on the δ value but not on the concrete shape of
parton distribution. The presence of the term 1/(n−1) in Kn leads to the results
depending on numerical value of δ. If δ is large (more precisely, if z−δ 
 const),
the presence of the term 1/(n − 1) in Kn leads to the term 1/δ in the functions
Ki,1+δ (i = R, L, I) (because the term zδ is negligible in expressions for 1/δi),
and the results do not also depend on the concrete shape of parton distribution.
If δ is small (i.e., if z−δ ≈ 1 + δ ln(1/z), that depends on concrete z values,
of course), then the subasymptotics of parton distribution starts to play and the
function Ki,1+δ (i = R, L, I) contains the term 1/δi, which is determined by
both the asymptotics and subasymptotics of parton distributions.
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