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COLLECTIVE MOTION FROM VARIOUS ASPECTS
E. B. Balbutsev

Joint Institute for Nuclear Research, Dubna

Three methods to describe the collective motion — Random Phase Approximation (RPA),
Wigner Function Moments (WFM) and Green’s Function (GF) method are compared in detail, and
their physical content is analyzed with an example of a simple model — the harmonic oscillator
with quadrupole—quadrupole residual interaction. It is shown that they give identical formulae for
eigenfrequencies and transition probabilities of all collective excitations of the model. The exact
relation between the RPA and WFM variables and the respective dynamical equations is established.
The transformation of the RPA spectrum into the one of WEM is explained. The very close connection
of the WFEM method with the GF one is demonstrated. A differential equation describing the current
lines of RPA modes is established and the current lines of the scissors mode are analyzed as a
superposition of rotational and irrotational components. The orthogonality of the spurious state to all
physical states is proved rigorously.

Cp BHMB 10TCS TPH IOAXOA K ONKUC HUIO KOJJIGKTUBHOTO NBUXEHUA: NPHOMIKEHHE CITyd HHBIX
¢ 3 (IICD), meron MomenToB ynkuun Burnep (M®B) u meron dpynkumii I'pun  (PIN). Hx duzu-
YecKoe COepX HHME H JIM3MPYeTCs H MpUMEpE IPOCTOH MOIENM — I' PMOHHYECKOTO OCLHILIATOP
C KB JIPYNONb-KB JPYNONBHBIM OCT TOYHBIM B3 MMozelicTeueM. ITok 3 HO, YTO OHM J 10T OIMH KOBBIE
chopMmysbl 171 COOCTBEHHBIX Y CTOT M BEpOSITHOCTEH IIEPEeXOIOB BCEX KOIUIEKTHBHBIX BO30YXKIECHHIA
MOJIENIH. YCT HOBJIEHO TOYHOE COOTHOLIeHHe Mexny nepeMeHHbIMH IICD u merom M®B u coot-
BETCTBYIOIIUMH JUH MUYECKUMU yp BHeHHMAMU. OOBSCHEHO Npeobp 30B HHE CNEKTP NPUOIIKEHHs
clyd HHBIX ¢ 3 B CIEKTp MeTol MoMeHToB ynkuuu Burnep . IlpogemoncTpupoB HO Omi3Koe poj-
ctBo M®B- u ®OI'-meTonos. Briseneno nugdepeHiy 1bpHOE yp BHEHUE, ONNCHIB IOLIEE JIMHHU TOKOB B
I[C® u merone pynkumii ['puH . JIMHUKM TOKOB HOXHMYHON MOJBI IIPO H JIM3UPOB HBI K K CyHEpIIO-
3ULHS POT LIMOHHOW M UPPOT LIMOHHOH KOMIIOHEHT. J[ HO CTPOroe JOK 3 TeJIbCTBO OPTOrOH JIbHOCTH
JlyXOBOTO COCTOSHHUs BCeM (PU3MYECKUM COCTOSHHAM MOJIENH.

PACS: 21.60.Ev; 21.60.Jz; 24.30.Cz

INTRODUCTION

The aim of the present paper is the systematic comparison of three meth-
ods to describe the collective motion. As an example, their competition in the
description of the nuclear scissors mode will be considered. This very curious
excitation was predicted thirty years ago [1,2]. Its experimental discovery [3]
has initiated a cascade of theoretical studies. An excellent review of their twenty
years development was given by D.Zawischa [4]. Very briefly the situation can
be described in the following way. All microscopic calculations with effective
forces reproduce experimental data with respect to the position and the strength
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of the scissors mode, some of them [S5] giving also reasonable fragmentation of
its strength. However, the situation is more obscure in regard to simple phenom-
enological models whose aim is to explain the physics of the phenomenon and to
interpret it in the most simple and transparent terms. A noticeable discord of the
opinions of various authors must be observed here [4]. So, it will be interesting
to compare the possibilities, advantages, and disadvantages of various methods in
the description of all subtleties of this mode.

The full analysis of the scissors mode in the framework of a solvable model
(harmonic oscillator with quadrupole—quadrupole residual interaction (HO + QQ))
was given in [6]. Several points in the understanding of the nature of this mode
were clarified: for example, its coexistence with the isovector giant quadrupole
resonance (IVGQR), the decisive role of the Fermi surface deformation, and sev-
eral things more. The Wigner Function Moments (WFM) method was applied
to derive analytical expressions for currents of both coexisting modes, their ex-
citation energies, magnetic and electric transition probabilities. Our formulae
for energies turned out to be identical with those derived by Hamamoto and
Nazarewicz [7] in the framework of the RPA. In [8], we investigated the relation
between formulas for transition probabilities derived by two methods. It was
shown there that also these formulas are identical. This coincidence motivated
us to undertake a detailed comparison of the two approaches and understand
the connection and differences between them. One of the important subjects of
this comparison is the current distributions. The WFM method, a priori, cannot
give the exact results, because it deals only with integrals over the whole phase
space. It would therefore be very interesting to evaluate the accuracy of this
approximation by comparing the results with the currents obtained from the RPA.
Unfortunately, even for this simple model (HO + QQ) it is impossible to derive
in the RPA the closed analytical expressions for currents of the scissors mode
and IVGQR. That is why we consider in addition Green’s Function (GF) method
which allows one to find explicit expressions for currents directly.

The HO + QQ model is a very convenient ground for this kind of investiga-
tion, because most of the results can be obtained analytically. The basis of all
three methods is the same: Time Dependent Hartree—Fock (TDHF) theory in its
small amplitude approximation. Strictly speaking, the small amplitude approxi-
mation is not compulsory in the WFM method — it allows one to study the large
amplitude motion, too. There is no need to describe the merits of the RPA or of
the GF method — they are very well known [9]. It is necessary, however, to say
a few words about the WFM. Its idea is based on the virial theorems of Chan-
drasekhar and Lebovitz. These theorems were derived by the authors in fifties in
a series of papers, the results of which were summarized in the book [10]. The
old astrophysical problems were considered: figures of equilibrium of rotating
self-gravitating masses (planets and stars) and their vibration eigenfrequencies.
In the classical mechanics the dynamics of such objects is described with the help
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of the well-known equations of hydrodynamics, the Euler equation and the conti-
nuity equation, which usually leads to very complicated mathematical problems.
Chandrasekhar and Lebovitz have shown that the solution of these problems can
be found in an essentially simpler and elegant way if one works with moments of
the Euler equation (virial theorems). In such a way they reproduced all already
known results (obtained by the efforts of many famous mathematicians) and have
found the solutions of several old long-standing problems of astrophysics.

In the light of these successes it is natural to expect that the method of
moments will also be useful in the nuclear theory, for example, to solve TDHF
equations. Really, it is known that the Wigner transform of the TDHF equation
for the density matrix is similar to the dynamical equation for the distribution
function of the classical kinetic theory (Vlasov equation). In particular, first two
moments (in momentum space) of this equation are just the continuity equation
and the Euler equation. So, at a glance there is no problem in employing the virial
theorems of Chandrasekhar and Lebovitz in the nuclear theory. However, the
real situation turns out to be a little bit more complicated, because all moments
(in momentum space) of the Vlasov equation are coupled in an infinite set of
dynamical equations and, consequently, the problem of their decoupling arises.
The way to the solution of this problem with the help of virial theorems was
proposed in [11] and described in detail in [12]. Instead of writing the equations
of motion for microscopic amplitudes of particle hole excitations (RPA), one
writes the dynamical equations for various multipole phase space moments of a
nucleus. This allows one to achieve a more direct physical interpretation of the
studied phenomenon without going into its detailed microscopic structure and,
what is even more important, solves the problem of decoupling. The obtained
equations are nonlinear, as it should be, when one deals with the Hartree—Fock
theory. In the case of a sufficiently simple interaction they can be solved without
a standard linearization procedure, i.e., for large amplitudes, which has been done
in [13], where the multiphonon giant resonances were studied. So in this sense the
WFM method is more general than the RPA one. In the approximation of small
amplitudes, the WFM method was successfully applied to study isoscalar and
isovector giant multipole resonances and low-lying collective modes of rotating
and nonrotating nuclei with various realistic forces [14—17]. The results of WFM
were always very close to similar results obtained with the help of the RPA,
which allowed one to suspect the intimate relationship between both the methods.
The detailed analysis of the interplay of the two methods turns out to be useful
also from a «practical» point of view: first, and most importantly, it allows one
to obtain additional insight into the nature of the scissors mode; second, we find
new exact mathematical results for the considered model.

The paper is organized as follows. In Sec. 1, we recall the principal points
of the WFM formalism and give a summary of the key results of [6] obtained by
applying this method to the HO + QQ model. The same model is considered in
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Sec. 2 in the frame of the RPA: the formulae for eigenfrequencies, electric and
magnetic transition probabilities of the scissors mode are derived, the equations of
motion for Transition Matrix Elements (TME) are constructed and the «synthetic»
scissors and spurious state are analyzed. The exact interrelation between the RPA
and WFM methods and between their variables is established in Sec.3, where
TME equations are derived by the WFM method. Section 4 is devoted to the GF
method. The three methods are applied to derive analytical formulae for lines
of currents in Sec. 5. The mutual interplay of the three methods is discussed in
Conclusion. Various mathematical details are given in Appendices.

1. THE WFM METHOD

The basis of the method is the TDHF equation for the one-body density
matrix p” (r1,r2,t) = (r1]p7 (t)|r2):

ap"

ih
ot

= i), (1)

where HT is the one-body self-consistent mean field Hamiltonian depending
implicitly on the density matrix and 7 is an isotopic spin index. It is convenient
to modify equation (1) introducing the Wigner transform of the density matrix

Friepit) = [ s esp(eips/mp (x4 5o 5.0) @
and of the Hamiltonian
Hiy(r,p) = /d% exp (—ip-s/h) (x + > ‘H r— %) . 3)
Using (2), (3) one arrives [9] at
L L1 LR LR G A

where the upper index on the bracket stands for the function on which the operator
in these brackets acts. It is shown in [13,17] that by integrating equation (4) over
the phase space {p,r} with the weights x;, =4, - - - %3, i, ., - - - Di,,_, Pi,» Where k
runs from 0 to n, one can obtain a closed finite set of dynamical equations for
Cartesian tensors of the rank n. Taking linear combinations of these equations
one is able to represent them through irreducible tensors, which play the role of
collective variables of the problem. However, it is more convenient to derive the
dynamical equations directly for irreducible tensors using the technique of tensor
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products [18]. For this it is necessary to rewrite the Wigner function equation (4)
in terms of cyclic variables

afT

ot

2 [h < o H ;o (wr )H Ty Hy 7
=750 §a;1<—1> (Vo) - (VB = (V2)™ - (Vo] ¢ Hi ST, (5)
with

V=75 (om tiam) a7 (o om):

1 ' 1 .
Ty = —ﬁ(m +irg), To =13, T_1= ﬁ(xl — iT2)

and the analogous definitions for V% |, V{, V¥, and p1, po, p—1. The required
equations are obtained by integrating (5) with different tensor products of r, and
Po. Here we consider the case n = 2.

1.1. Model Hamiltonian, Equations of Motion. The microscopic Hamil-
tonian of the model, harmonic oscillator plus separable quadrupole—quadrupole
residual interaction is given by

A A2 2 Z N
H = Z (_ 4+ Zmw?r? ) + R Z (—1)"‘ZZq2_H(I’¢)QQu(I’j)+

i=1 p=—2
1 2 4 N
o STEDY g2 p(ri)aen(rs) + Y qau(ri)azu(r;) ¢, (6)
p—2 oy i%5

where the quadrupole operator go,, = /167/572Ys, and N, Z are the numbers
of neutrons and protons, respectively. The mean field potential for protons (or
neutrons) is

V7(r,t) = —mw2r2 + Z DAZ5 () gou(r), (7
p=—2
where ZQM = kQY, + QY ZQ = k@4, + RkQ%, and the quadrupole moments

3,,(t) are defined as

QQ;J, / d{pa I'}QQH ) (I', p, t) (8)
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with /d{p,r} = 2(27rh)*3/d3p /d3r, where the factor 2 appears due to

summation over spin degrees of freedom. To simplify notation, we omit spin in-
dices, because we consider spin saturated system without the spin-orbit
interaction.

. . . /15
Substituting spherical functions by tensor products TQYQH = 8_7rr§ > Where

TAM = {7“ ® 7’})\“ - Z Cla 17Ty

and Cf‘(f 1, 18 the Clebsch-Gordan coefficient, one has
VT mw2r2 + Z nWz;_ ur2u ©)

Here

Zy, = xRy, + xR, 75, =xRh, +xR5,, x=6k X=6F, 10

() = / d{p. 73, /7 (. . t).

Integration of equation (5) with the weights riu, (rp)ap = {r ® p}ap, and
piu yields the following set of equations [6]:

d . 2
%R)\M_E )\HZO’ )\:0,2,
d

1
T T 2 pT
/\M—EP)\M—l—mw Ry,—

—2\/_2«/2]—1— o HZER)A =0, A=0,1,2, (11)

dt

d .
PR+ 2me’ Ly, — 4\/52 V2 + 1 HZ5L) =0, A=0,2,
=0

where {2 /\1} is the Wigner 65-symbol. For the sake of simplicity, the time depen-
dence of tensors is not written out. Further the following notation is introduced:

; / AP, e}, (e p ), LE(0) = / AP, T} (rp)a 7 (5, pub)- (12)

It is necessary to say some words about the physical meaning of the collective
variables introduced above. By definition R}, = Q7 ,/ /6 and Q3,, is the quadru-

pole moment of the system of particles and Rj, = —QF,/v/3 with Qfy = N7 (r?)

Pl
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being the mean square radius of the same system. By analogy with these vari-
ables, defined in the coordinate space, we can say that the variables P7, and
Fg, describe the quadrupole moment and the mean square radius of the same
system in a momentum space. The variables L} describe the coupling of mo-
mentum and coordinate spaces. To understand their nature it is useful to recall
the definitions [13,17] of nuclear density and mean velocity:

w0 = [ B2 b,

(13)
0 = [ S )
mn” (r,t)u (r,t) = if T (r, p,
) 1 ) (2 h)g p p
They enter into the definitions (10), (12) of irreducible tensors
2d3
/d3 / P r)\MfT r,p,t /d%rm r,t),
(14)

/d3/ rp)aafT(r, P, t m/dr ru” ) ,n' (r,t).

The last expression for LY, demonstrates in an obvious way the physical meaning
of these variables: being the first order moments of mean velocities they give
information about the distribution of these velocities in the nucleus («first» means
that velocities are weighted with the coordinate r). Sometimes, if the motion is
comparatively simple, this information turns out sufficient to completely determine
the velocity field (see Conclusion). In the case of more intricate motions higher
order moments are required for a complete description of velocities [17]. In any
case the moments of velocities are a very convenient tool to describe the collective
motion. For example, the zero order moment of velocity is nothing more than
the linear momentum describing the nucleus’ center-of-mass motion. One of the
first order moments corresponds to the very well known angular momentum of a
nucleus. It is connected with the variable L7, by the following relations:

T { T T 1 T cTT
lo=—"F7213, Lig,= 5(12 Fily).

V2

It is convenient to rewrite Egs. (11) in terms of the isoscalar and isovector
variables

R)\M: +R/\H’ P)\M:P)ZL'FP/Z\)H, L)\H: +L/\H’
R’\” - RZ‘L RAM’ p)‘“ = P;\LM - P)[\)u’ I’M = L;\Lu - LI))\M'
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So the equations for the neutron and proton systems are transformed into isoscalar
and isovector ones. The equations for the isoscalar system are given by

Roo — 2Loo/m = 0,
Loo — Poo/m +mw?Roo — 24/5/3[x0(R2Rz2)oo + Xx1(R2R2)00] = 0,
Poo + 2mw?Loo — 41/5/3[x0(R2L2)oo + Xx1(R2L2)oo] = 0,
Ry, —2Lo,/m =0,
LQ/L — Po/m+mw?Ry, — 2\/%[X0(R2R0)2H + x1(R2Ro)2,]— (15)
—/T/3[x0(R2R2)2, + x1(RaR2)2,] = 0,
Py + 2mw? Ly, — 4y/1/3[x0(R2Lo )2y + X1(R2Lo)2,]—
—2/7/3[x0(R2L2)2 + x1(R2L2)2,] + 2V3[x0(R2L1)2, + X1 (R2L1)2,] = 0,
Ly, =0
and the ones for the isovector system read:
Roo — 2Lgo/m = 0,
Loo — Poo/m +mw?Rog — 21/5/3x(Rz R2)ao = 0,
Poo + 2mw?Loo — 4v/5/3[x0(RaLa)oo + x1(RaLa)oo] = 0,
Ry — 2L, /m =0,
i2u — Payu/m +mw?Ro, — 24/1/3[x0(R2Ro)2u + x1(R2Ro)2u)— (16)
—/7/3x(RaR2)2, = 0,

Poy -+ 2mw® Loy — 4/ 1/3[x0(Ra L)y + X1 (RaLo)zu] ~
—2/7/3[x0(R2L2)2y + x1(RaLa)2u] + 2V3[xo(RaL1)au + Xx1(RaLi1)2,] = 0,
ilu + \/E)Z(RQRQ)ly =0.

Here
Xo = (x+X)/2
is an isoscalar strength constant and
xi=Kx-x)/2

is the corresponding isovector one. The last equation of (15) demonstrates the
conservation of the isoscalar angular momentum Li,. The dynamical equation
for the isovector angular momentum L1, (the last equation of (16)) describes the
relative (out of phase) motion of the neutron and proton angular momenta; hence
it must be responsible for the scissors mode.
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Writing out in detail the tensor products one can write out the whole set of
42 coupled equations (including integrals of motion) for the whole set of isoscalar
and isovector variables. There is no problem to solve these equations numerically.
However, we want to simplify the situation as much as possible to get the results
in analytical form giving us a maximum of insight into the nature of the modes.

1) We consider the problem in small-amplitude approximation. Writing all
variables as a sum of their equilibrium value plus a small deviation

Bau(t) = Ry, + Roau(B), Pau(t) = Py + Pan(t), Lan(t) = Ly, + Lau(t),

iz iz
R/\u(t) = Ric;i + ﬁz\u(t)v pA/L(t) = P;E + ﬁku(t)a EA/L(t) = Eicli + E_M (t),

we linearize the equations of motion in Ry, Py, Lan and R, Py Lap-

2) We study nonrotating nuclei, i.e., nuclei with L{} = L]} = 0.

3) Only axially symmetric nuclei with R5%, = R31, = R51, = Ryl =0
are considered.

4) Finally, we suppose that equilibrium deformation and mean square radius
of neutrons are equal to that of protons:

Ryg = Rgg = 0. (17)

Due to the approximation (17) the isoscalar and isovector sets of equations
are decoupled. The isoscalar set is

Roo — 2Loo/m = 0,
Loo — Poo/m + mw?Roo — 4\/1/_3XOREB1 Rao0 =0,

Poo + 2mw?Loo — 4y/1/3x0RS3 Lao = 0,

Rop — 2La,/m = 0,
Lois = Paa/m + [mw? — /A[3x0(REG + V2R Rasa = 0,
Lo = Posa/m+ [me? = VABxo(Bgl — BS3/V2)| Raur =0, (18)
L2o = Pao/m + [me? /430 (RS} — V2R53)| Rao—/A/3x0 5] Roo = 0,
Poio + 2[mw? — \/%XORS%]L:Q:EQ =0,
Pas1 + 2[mw® + v/1/6x0 RS0 Laz1 F VOxoR50 L1241 = 0,

7520 + 2[mw2 + 4/ 2/3X0R§8]£20 — 4/ 1/3XOR§8 Lo =0,
L1, =0.
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The isovector set of equations reads:
Roo — 2Loo/m = 0,
Loo — Poo/m + mw?Roo — /4/3x RS Rao = 0,
fLPoo + 2mw?Log — 4\/%)(0}338 L2 =0,
Rap — 2L2,/m = 0,
Loty — Posa/m + [mw2 — /2/3xR5: — \/mlegg} Raosa =0,

Zzil — Pog1/m + [mw2 +/1/6x RS — \/mngg} Rot1 =0, (19
Loo — Pog/m+ {mwQ—i— \/2/_3ng8—le]%88} Rao—v/4/3x0RA Roo = 0,
Paso + 2[mw? — /2/3x0R5}] Loss = 0,

Pas1 + 2[mw? + \/1/6x0 RS Lazr F Voxo B3 L1 = 0,
Pao + 2[mw? + v/2/3x0 R53 L20 — v/A/3X0R53 Loo = 0,
Lii1 + V3/2X RS Ro41 = 0,

L10=0.

Due to the axial symmetry, the angular momentum projection is a good
quantum number. As a result, every set of equations splits into five independent
subsets with 4 = 0,£1,+2. It is known [19], that equations with ¢ = 0 and
1 = £2 describe the § and v modes, respectively. The equations with p = +1
describe the coupled dynamics of the transvers shear mode [10] and the rotational
motion — they are the subject of the especial interest in this paper.

1.2. Isoscalar Eigenfrequencies. The dynamics of the isoscalar angular mo-
mentum is trivial — no vibrations, this variable is conserved. However, it is nec-
essary to treat this mode carefully because, being the nonvibrational mode with
zero eigenfrequency, it gives, nevertheless, a nonzero contribution to the sum rule
(see below). Let us analyze the isoscalar set of equations with p = v = 1 in

more detail .
R21 — 2£21/m = 0,

L':Ql — Pgl/m + {mwQ + v 4/3X0(R§8/\/§ — Rgg) Ro1 =0,

_ (20)
Po1 + 2[mw2 =+ 4/ 1/6X0R38]£21 — \/EXQRS(S L1 = 0,
L1 = 0.
mo?
Using the self-consistent value of the strength constant kg = ~1 (see Ap-

pendix A), the relations between (0, and Ry, and the standard definition of the
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4
deformation parameter Qo = Qoog ¢ we reduce (20) to

Rao1 — 2L21/m = 0,
Loy — Par/m =0,
(21

. 5
Po1 + 2mw? [(1 + §) Lo1 + 5£11] =0,
L1, =0.

Imposing the time evolution via e ~** for all variables one transforms (21) into a
set of algebraic equations. The eigenfrequencies are found from its characteristic
equation which reads

0
02 [92 — 22 (1 + gﬂ =0. (22)
The nontrivial solution of this equation gives the frequency of the p = 1 branch
of the isoscalar GQR

0% = 02 = 202 (1 + g) : (23)

Taking into account the relation (A.7) we find that this result coincides with that
of [20]. The trivial solution €2 = Q¢ = 0 is characteristic of nonvibrational mode
corresponding to the obvious integral of motion £1; = const responsible for
the rotational degree of freedom. Having in mind that in the case of harmonic
oscillations £1; = 0, we can find another, not so obvious, integral. The simple
combination of the third and first equations of (21) gives

)
Po1 + m30? <1 + g) Ro1 = const.

Assuming here § = 0, we reproduce our result from [13] for spherical nuclei,
saying that the nuclear density and the Fermi surface oscillate out of phase.

1.3. Isovector Eigenfrequencies. The information about the scissors mode is
contained in the subset of isovector equations with © = 1. Let us analyze it in
detail:

7;?,21 — 2521/m = 07
Loy = Por/m+ [mw? + TGRS — VAT3x1 RG] Rar =0,
Por + 2[mw? + v/T/6x0 R3] Lor — Voxo RS L1y = 0,
211 + 3/2)2R§87€21 = 0.

(24)
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Supposing, as usual, the isovector constant k1 to be proportional to the isoscalar
one, k1 = kg and using the same definitions as in the isoscalar case we find

ﬁm — 2[121/m = 0,
- _ o\ -
Lo — Pgl/m—l- mLDQ(l — 0&) (1 =+ g) Ro1 =0,
(25)
ES 5 — _
P21 + 2mo? {<1 + g) Lo + 5£11] =0,
211 — mo?25(1 — 04)7?,21 =0.

Imposing the time evolution via e ~** one transforms (25) into a set of algebraic

equations with the characteristic equation
)
O —20%0%(2 - ) (1 + §) +40*(1 — a)8? = 0. (26)

Its solutions are

2
0% =02 -0) <1+g>i\/w4(2—a)2 <1+g> — 404 (1 — )82, (27)

The high-lying solution Q. gives the frequency €)%, of the x4 = 1 branch of
the isovector GQR. The low-lying solution 2_ gives the frequency {2s. of the
scissors mode.

It is worth noticing that in the case L11 = 0 the set of equations (25) becomes
quite similar to (21). Its characteristic equation reduces to the equation

)
03— 200°%(2 — a) <1 + §> =0, (28)
implying that there exists an integral of motion analogous to the isoscalar one:
_ 5\ -
Po1 + m*w? (1 + §) Ro1 = const.

The nontrivial solution of (28) gives the IVGQR frequency for the case, when
rotational degrees of freedom are neglected:

0?2 =20%(2 - a) (1 + g) . (29)

Now let us fix the value of the coefficient «. The experimental fact is:
the energy of an isovector GQR is practically two times higher than that of an
isoscalar one. Assuming § = 0, we have

Qi = Q?V = 2w2(2 —a).
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The simple comparison of this expression with (23) shows that the experimental
observation is satisfied by a = —2. Then Eq. (27) gives the following formulae
for both energies:

] 5\° 3
.2: o2 — by - = 2
02 =40 1+3+\/<1+3> 202

5 5\* 3
2 = o2 —- —_ — — =42
0 =40” [ 143 \/<1+ 3> 70

In the limit of small deformations one can write for IVGQR energy

F2 ~ 8(hw)? <1 + g) <1 - 1—3652> . (31)

For a = —2, formula (29) gives: E2 = 8(hw)?(1 + §/3). Comparing it with
(31) one sees that the influence of rotational degrees of freedom on the IVGQR
energy is very small.

The scissors mode energy in the limit of small deformation is

Esc ~ \/ghwo(sv (32)

which is quite close to the result of Hilton [21]: Ey. ~ v/1 + 0.66 fwgd.

It is interesting to study the role of the Fermi Surface Deformation (FSD) for
the formation of IVGQR and the scissors mode. Neglecting in (25) the variable
Po1(t), which is responsible for FSD, we find that the frequency of IVGQR
(being determined mainly by the neutron—proton interaction) is changed not very
much:

(30)

02 =20%(1 — @) (1 + g) :

Comparing this formula (for o« = —2) with (30), one sees that in the limit of
small deformation one obtains Q2 =~ 6w? instead of Q2 =~ 8wZ. One should
recall that also for the Isovector Giant Dipole Resonance the distortion of Fermi
sphere plays only a minor role.

It is also easy to see that omitting Po; (¢) in (25), one obtains zero energy for
the scissors mode independent of the strength of the residual interaction. Thus,
the nuclear elasticity discovered by G.F.Bertsch [22] is the single origin for the
restoring force of the scissors mode. So one can conclude that this mode is in its
essence a pure quantum mechanical phenomenon. This agrees with the conclusion
of the papers [23,24]: classically (i.e., without Fermi surface deformation) the
scissors mode is a zero energy mode.
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1.4. Linear Response and Transition Probabilities. A direct way of calcu-
lating the reduced transition probabilities is provided by the theory of the linear
response of a system to a weak external field

F(t) = Fexp (—iQt) + FTexp (i), (33)
A

where [ = Z fs is a one-body operator. A convenient form of the response

s=1
theory is, e.g., given by Lane [25] (see also Sec. 4). The matrix elements of the

operator F' obey the relation

[(IFI0)* =R lim (2 — Q) (Y F[y) exp (—i€2), (34)
where |0) and |v) are the stationary wave functions of unperturbed ground and
excited states; v is the wave function of the perturbed ground state, Q, = (E, —
Ey)/h are the normal frequencies, the bar means averaging over a time interval
much larger than 1/92, Q being the frequency of the external field F'(t). To use
formula (34) in the frame of WFM method, one must solve two problems [17]:

(1) to express the matrix element ( 1) in terms of collective variables of
the system,

(2) to find the solution of the dynamic equations for these variables in the
presence of the external field.

The first problem is solved with the help of the formula for the Wigner
transformation of a product of two operators [9]

2d%p
3 3 3
w|F|w /d /d T(r,r’ t)F(r', 1) /d/27rh

<oxp (5 (V- V)= V5 VD)) Fulep)f (om0 69

To deal with the second problem we add the field (33) to the mean field
potential (9). The equation for the Wigner function (4) is then modified by the
term

2
Fl, = hsm (h(VF Vf Vg.Vf)> X
x (Fw exp (—ift) + Fyy exp (i2t)) f7. (36)

Proceeding in the same way as before one obtains equations for all collective vari-
ables needed to calculate (¢)|F'|1))”. The only new element now is the presence
of the term F_, that makes the equations for the moments inhomogeneous.
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1.5. B(M1) Factors. To calculate the magnetic transition probability, it is
necessary to excite the system with the following external field:

A
F=F£,=>
! (37)
N eh
V(Yo ) x Vipn,  pn =

f)\l‘/ = _Z)\+1

2mc

We are interested in the dipole operator (A = 1). In the cyclic coordinates it
looks like

fl”' = THhN V 2 ZCIV 167V, f;ru’ = _fl*li' = (=" fl—li" (38)
Its Wigner transformation is

(fr)w =7 Cit 1 orupe = Y(rp) i,

v,0

i /3 . .
where v = “3\ 2. pn. For its matrix element we have

(WU I0) = VL8, = 5Ly = L) = 3 (Law = Lrw). - (39)

o2

Here we have taken into account that Li‘i, = Ei‘i/ = 0. The contribution of

F1,(t) to the equation for the Wigner function is
Foxy = v (Fl"l eiiQt + (_1)MIF*P/ eiQt)

with

Fu *chu 16Pa V) =1, V] fP.

Integration of F,, with the weights 73 ,, (p)x, and p3, yields

/d{p’ r}rku =2 \/ 2)‘ + 1 Z C)\u 1p’ {lls k}ﬂ"(eq)
/d{p,r}(rp)Aqu = VBEA+ 1)) [ + (—DFICET ALY (eq),
k,m

[ dtp.xbi, Fre = 2/50AT 1 DICARERLAC
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A simple analysis of these expressions shows that the external field modifies only
the proton part of the set of equations (11) with A = 2:

d

Y pp _
g e T T
- _’y\/g [0221’1“{5, RSMM/ (eq) o' + (_1)H 022;:3&#’ Rgu*u’ (eq) eiﬂt} ’
d
LB, ... =0, (40)
d
4 _
EPQH +...=

2 4 . S, Yy .
= VB[O L () e o (1) O P, (eq) @]

The modifications of the respective isoscalar and isovector equations are obvious.

The p/ = 0 component of the external field does not disturb a nucleus due
to its axial symmetry. Let us consider the case of x' = 1. According to formula
(39) we have to find the tensors £1; and £1,. The tensor £, is found by solving
the modified (as in (40)) set of equations (24):

7;?,21 - 2221/7)1 = =7V 3/8R38 eiﬂt,

221 — 7521/m + [mwQ —+ 4/ 1/6XR38 - \/4/3X1R88} 7@21 =0,
(41)

Por + 2[mw? + v/ 1/6x0 RS La1 — Voxo RS L11 = —7+/3/8Ps ¥,
211 + 3/2)_(R§87é21 =0.

It is clear that the time dependence of all variables must be e
variable is determined by the ratio of two determinants

“  The required

r AE iQt
11 e,
Aiv

where A, is the determinant of (24) and

5] 2 5] 2 5]
RS <2w2 + \/;%Rgg - QQ> =

At equilibrium the set of dynamic equations (11) considerably simplify turning
into the set of equations of equilibrium. Taking into account one of them we find

B S
Ay = Z'YXRQ((])[

1 2 2
— Py = mw? B3 — —=xo RS R + —=xo(R50)*,

V3 V6
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It turns out, that for the self-consistent value of x( this expression is equal to zero,
i.e., P;g = 0. This means that deformed nuclei have spherical Fermi surface. So
we have

3 )
Az = Z'y/?;ng [2@2 <1 + §> - QQ} :

Looking at the isoscalar counterpart of the set of equations (41) one easily finds
that the isoscalar tensor £1; = 0.
Writing now the determinant A;, as

Ay = (QQ - QIQV)(QQ - 950)7 (42)
we easily can find the limit (34). For the case, where |v) = |sc), we have

—vhAz (QSC)
[(Q2 - 92,)40%]

|(sc|EFy10)[* =

The matrix element for |v) = |iv) is obtained simply by changing indices sc < iv.
Applying the standard values of parameters

1)
_o _o
K1 = arg, 4roQoo = —mw”, KoQ20 = —3me

we arrive at the following expressions for transition probabilities:

- 1 —amo? 02, —2(1+46/3)?

_ r 2 2 " %sc 2
BMY)e = 2fsel PO = 2T Quot e T i a3)
B(M1)sy = 2|(iv[ERJ0)2 = Lm0 g2 e = 2LH /32 5 )

VTR T e T T ez

These two formulae can be joined into one expression by a simple transformation
of the denominators. Really, we have from (27)

5\ 2
+(QE-02) = +£(Q2-0%) = 12\/@4(2 —a)? <1 + §> —4o*(1 — )82 =
é
=202 - 20%(2 — @) (1 + 5) =203 — (2 - a)(w? +w?). (45)
Using these relations in formulae (43) and (44), we obtain the expression for the
B(M1) values valid for both excitations
B(M1), = 2|(v|F}i|0)|* =

- 1—amw
8 h

02 —2(1+6/3)0? )
02— @22 — )1 +o/3)" N

2
Q006> Q (46)
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1/3 \%/3
Taking into account the relation ng% ~ 5 (QA , which is usu-

ally [19] used to fix the value of the harmonic oscillator frequency wg, we obtain
the following estimate for the transition probability of the scissors mode:

B(M1) 1= 2|(sc|FF,|0)|* = (3/126) AY35 3, = 0.042A4%365 13,

which practically coincides with the result of [26]: B(M1) 1= 0.043A%/3§ %,
obtained with the help of the microscopic approach based on the evaluation of
the sum rules.

1.6. B(E2) Factors. To calculate the B(E2) factor it is necessary to excite
the system with the external field operator

F=FP

2 _ 3,2
o = €r Yo = pry,, El

2u’ T F2p/ - ( 1)H/F2—p,’; (47)

/15
where § = ¢ 3 . Its Wigner transform is identical to (47): ( o Dw = 57“§H/.
T
The matrix element is given by

(WIFg, ) = BRY, = 2(Raye — Roy). (48)
The contribution of 13‘2“/ (t) to the equation for the Wigner function is

Fue =28 (FH, e 4 (—1)WF, emt)
with

— 2u’ P fp
P = E Croomw Vo P

v,o

Integration of F,, with the weights 73 o (TP)a and 3 ., yields

/d{p,r}rquM/ =0,
/d{pvr} Tp )\H W=V 2>\+1 ZC)\M 2/1, Ilcéi\ kﬂ'(eq)

/d{p, r}p)\p, = 1 + V 2)‘ + 1 Z C)\p, 2u’ {Ilcéi\}Lkﬂ'(eq)
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The external field modifies the set of equations (11) in the following way:

iL’{ﬁ =
= _B\/g [ fﬁ—gﬁ Rg;u-u (eq) e M 4 (=1)H C%ﬁzuu/RQH w /(eq) mt}
(49)
G = L= [ (2VBCH oy Rhlea) + VIO R, o)) e =
= (=1 (2V5C80 5 Rbg(ea) + VTCHS B, (ea)) ).
Let us consider the case of i/ = 1 (i’ = —1 gives the same result). According

to formula (48), we have to find the tensors Ry; and Ro;. The value of Ry; = Ro1
is found by solving the modified (as in (49)) set of equations (25)

7%21 — 2521/m = O7

- _ 6 — e 15 6 ;
£21—7721/m+m@2(1—04) (14-5) Rglzg 8_71' (14—5) QOQQILQ]‘
(50)

- S\ - _
Po1 + 2mw? [(1 + —) Lo1 + 5£11] =0,

,Cn — mw 5(1 — a Rgl “ Qoo

It is obvious that the time dependence of all variables must be ¢**. The required
variable is determined by the ratio of two determinants

)

> Aﬁ iQt
Rgl = -——2=¢€
Aiv

where A;, is the determinant of (25) and

2 eq | L e
592< 08+ZQ2%>+ —Q5 \/7X0R
- _35 e [92 (1+§> —2w252} .

Analogously variable R4 is found from the modified set of equations (21), which
have exactly the same right-hand sides as (50) but with the opposite signs.

The limit (34) is calculated with the help of expression (42) for A;, and the
analogous expression for Aj; (the determinant of (21)):

Ais = (9% - Q) (2 - Q).

N

m
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In the case |v) = |sc) we find
(Qse) _
(Qgc - Qi2v)2QSC
e?h 5 (14 6/3)02, — 2(w)?

~ h
(el 5 10) = ~55 A

T BT 2 a2 ©b
In the case |v) = |iv) formula (34) gives
g h (Qy)
Fp 2 __ —A B iv _
|(iv|F5:10)] 62 RQin(QiQV —2)
e?h 5 (14 6/3)Q2 — 2(w)?
= e o —ary - ©Y
In the case |v) = [is) formula (34) gives
s h (Qis)
Fp 2 - _ —A 18 _
|<IS| 21|0>| 62 R2Qis(9125 _ Q(Q))
e’h 5 14 6/3)Q2 — 2(w6)?

m 167w [Qis)3

Formula (34) allows one to calculate the matrix element |(v/|E%, |0)[? also in
the case when |v) = |€)p), i.e., for the rotational state corresponding to the trivial
solution of (22):

(Qo) o 62h 5 52

- h
14 2 _ _plt v e v
(0l 510} = 55 A% W5

200(02 - Q%) m 87 o

The value of this matrix element is obviously infinite due to the zero value of 2.
However, below this expression will be useful to calculate the energy weighted
sum rule.

Using relations (45) in formulae (51) and (52), we obtain the expression for
the B(E2) values valid for all four excitations

B(E2), = 2|<V|F2pl|0>|2 = @iQOO Qu[((SQ—'—_(ZS()QQZ ;)2((1@—?5/3)]

55
m 16w (55)
The isoscalar values (53), (54) are obtained by assuming o = 1.

1.7. Sum Rules. [.7.1. Magnetic Case. The magnetic dipole operator (37)
is not Hermitian. By definition it is a linear combination of Hermitian operators
(components of the angular momentum)

o 1 o ~

i = —57(11 +ily), Fi1= 57(11 —ily).
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This fact allows one to derive several useful relations:

R R 2
(i [H, Pial) = 20 (e, [H, L)) + [y [H 1)),

2
A~ ~ ’)/ ~ ~
(Ol P11 ) (V] F1—1[0) = - (1L 0 + [(vI 1y 0)[%) =
~([(|En|0)]? + [(v]F1-1]0)[?).
Using these formulae and the standard sum rule for a Hermitian operator [37]

(B, — Eo) B0} = SOl [, £]]0),

v

one immediately obtains the sum rule for Flil:
> (B = Eo)(|(“|F01|0)* + [(v] F1-1]0)[*) = —(O|[Fuy, [H, Fy1]][0).  (56)

It can also be calculated in a more direct way:

(O[[Fr, [H, Fy_1]]]0) =
— "By — Bo) (1B o) (| i1 [0) + (0] Fa1 1) (| Fra[0) =

= > (B = Eo)((01Fua [p) O E_y [v)* + (01 P11 ) (O Efy [1)"). - (57)

Using here the Hermitian conjugation properties (38) of the operator Fm, one
reproduces formula (56).
The double commutator is calculated with the help of (6) and (38):

[Py, [H, Pry]] = ZZZ Y32 500 a3 ()3, (k- (58)

% j v,0,€

Taking into account axial symmetry, one finds the ground state matrix element of
(58) (in the Hartree—Fock approximation)

(0|[F1y, [H, F1¢/]]|O) _ 15

1y 2

)_CZ( )CQVQOC uzoRzoR20:

= _5¢’ (Czljj zoReq) .
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It is obvious that this expression is different from zero only for ¢ = =+1.
Hence, the final expression for the right-hand side of (56) is

. . 9
(O|[F11, [H, F11]]]0) = 16—7TX(R§3)2M§V =
l—«o

= = Quom**uyy = —(1 = @)%, (59)

-2
. . mw ..
where, for the sake of convenience, the notation >y = —Q0052u?\, is in-

7
troduced. The left-hand side of (56) is calculated trivially by multiplying the
right-hand side of (43) by E,. and adding it to the right-hand side of (44) multi-
plied by Eiy:

Sior = 2 (By = Eo) (|0|F11[0)[2 + (] F1-1[0)2) =

v

= 2 (Bucl(scl F1a|0) 2 + Buo| (vl P11 |0)?) =
=Yse + Uiy = (1 — )Xo, (60)

where (B2, —2(1 +6/3)(hw)?]

Voo = 2 FL-F) (1—a)% (61)
and (B2 —2(1+6/3)(hw)?]

Uiy = = (B~ EL) (1—a). (62)

So, one sees that the sum rule (56) is fulfilled. .

1.7.2. Electric Case. The sum ruAle for Fyyq1 can easily be obtained by
replacing in formula (57) the operators Fi41 by the operators F541 and using the
Hermitian conjugation properties (47) of the operator Fy,,:

> (Ey = Eo) (|| F21|0)* + |(v] F2—1]0)*) = —(0][Fon, [H, Fo-1]][0).  (63)

v

The double commutator is calculated with the help of (6) and (47):

. . h & . .
[Fag, [H, Fag]] = —20625 DY O 35113, (1), (64)
i Ao
Taking into account axial symmetry, one finds the ground state matrix element
of (64):

. . K2
(01 Fag, [H, Fog1)I0) = =206° —05, 0 Y 305 (3RS =
A=0,2
h? 2 1
- —2 2— — b —1 d)— P —_
B m%’ ¢ (( ) Roo"’\/é

e R’2’0> . (65)
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Taking here ¢ = 1 we obtain the final expression for the right-hand side of (63)

2
Ol 11 Feilo) = 202 (2t + 30t ) = - 2w (1+)).

The left-hand side of (63) is calculated by summing expressions (51), (52),
(53), and (54) multiplied by the respective energies. It is convenient to calculate
the isovector and isoscalar contributions separately. The contribution of the
isovector modes is

R . 52 2
2 (Bucl{scl P21 |0)? + By {iv] i 0)]?) =

(Qoo + Q20> =

)
2
=e'—— 14+ -). (66
em87rQ00(+3> (66)
Exactly the same result is obtained for isoscalar modes:
. ~ n? 5 4]
2 (120l (20l a0} 2 + Bi|Gis| Pt |0)) = €222 Qoo (145 ). (67
0l (Q0[F21[0)[" + Eis|(is| F21|0)| Qoo (143 (67)

Hence the sum rule (63) is fulfilled.
It is interesting to compare the contributions of the scissors mode and the
rotational mode. The scissors mode (for small 9) yields:

5 Lh?
2ESC|<SC|F21|0>| 1987 [ EQOO(SQ. (68)
The rotational mode yields:
~ 5 52
21| (Qo| P [0)* = — —Qoo (69)

8 1+6/3

It is seen that the contribution of the rotational mode is approximately 16 times
larger than the one of the scissors mode. This is a very significant number
demonstrating the importance of excluding the spurious state from the theoretical
results. Indeed, to describe correctly such a subtle phenomenon as the scissors
mode, it is compulsory to eliminate the errors from spurious motion whose value
can be by an order of magnitude larger than the phenomenon under consideration.

2. RANDOM PHASE APPROXIMATION (RPA)

In this section we now want to derive the analogous equations for energies
and transition probabilities from standard RPA theory. RPA equations in the
notation of [9] are

Z {[6ij5mn(€m - 61’) + T]mjin] an + @mnijynj} = hQXmi;

(70)
Z {'Dijmanj + [5ij57r1,n(€m - 612) + 'Dinmj] Ynj} = —hQY ;.
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According to the definition of the schematic model in [9], the matrix elements of
the residual interaction corresponding to the Hamiltonian (6) are written as

’
= _ T* AT
Umgjin = K/TT’Qim an
with Q;, = (i|g21|m) and Kpy = Kpp = K, Knp = K. This interaction distin-

guishes between protons and neutrons, so we have to introduce the isospin indices
7, 7' into the set of RPA equations (70):

T T T E T« AT v’ § T« AT T T
(€m — € )Xmi + KTT’Qim anan + "iTT'Qim any;zj = hQXmi?

n,j,7’ n,j,7’
71
QHQm X7 + (e, — €)Y, . + QrEQr YT = —hQY£ :
Krr' &mi € jntnj €m — € ) i Rrr'%mi%njing = mi
n,j,7’ n,j,7’
The solution of these equations is
¥ QT*
T _Zim_ per T __2mi T (72)
mae E _ ET I’ me E + ET

mie mie

m

with B = hQ, e, =}, — ¢l and K™ = K, C" .
The constant C7 is defined as C7 = Z(Q;ansz + Q7,;Y,;). Using here

n,j
the expressions for X7, and Y,7; given above, one derives the useful relation

CT=28"K" =287 k. CT (73)

where the following notation is introduced:

T T Ezni
§T=2_ 19 iy (74)
mi m

Let us write out the relation (73) in detail

Cm — 28" (kC™ + RCP) = 0,

75
CP —25P(RC™ + kCP) = 0. (73)

The condition for existence of a nontrivial solution of this set of equations gives
the secular equation

(1 —28"k)(1 —2S5PK) — 4S"SPR? = 0. (76)
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Making linear combinations of the two equations in (75), we write them in terms

of isoscalar and isovector constants C = C" + CP, C = C" — C?

C = 2(S™ + SP)koC — 2(S™ — SP)ky

C —2(S™ — SP)koC — 2(S™ + SP)ky

Q Q)

0,
(77)

Approximation (17) allows us to decouple the equations for isoscalar and isovector
constants. Really, in this case S™ = SP = 5/2; hence, we obtain two secular
equations

1—-2Skp=0, or 1—Sk=Sk (78)

in the isoscalar case and
1-25k1 =0, or 1—Sk=-Sk (79)

in the isovector one, the difference of both lies in the strength constants only.
Having in mind the relation x; = akg, we come to the conclusion that it is
sufficient to analyze the isovector case only — the results for isoscalar one are
obtained by assuming o = 1.
2.1. Eigenfrequencies. The detailed expression for the isovector secular
equation is
1 €mi
o = 2 |Qmil (80)

mi mt

The operator Q = ¢o1 has only two types of nonzero matrix elements Q,,; in
the deformed oscillator basis. Matrix elements of the first type couple states
of the same major shell. All corresponding transition energies are degenerate:
€m — € = hw, —w,) = €. Matrix elements of the second type couple states
of the different major shells with AN = 2. All corresponding transition energies
are degenerate, t00: €, — ¢; = I(w, + w,) = €a. Therefore, the secular equation
can be rewritten as

1 e n €2Qo 81

261 E?2—€2  E?2-—é3

The sums Qy = Z |Q,m-|2 and Q; = Z |Qmi|2 can be calculated
mi(AN=0) mi(AN=2)
analytically (see Appendix B):

_ QOO

m?

QOO

—5 €2.
m?

Qo €, Q2= (82)

Let us transform the secular equation (81) in the polynomial form

E* — E?[(e§ + €3) + 2K1(0 Qo + €2Q2)] + [€5€5 + 2K1€0€2(e0Q2 + €2Q0)] = 0.
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Using here the expressions (82) for Qp, Q2 and the self-consistent value of the
strength constant (A.3), we find

E'— B(1- a/2)(& + &) + (1 - )& = 0,

or
Q' - Q2 - a)wi + (1 —a)w? =0, (83)
with the notation w? = w? + w? and w? = (w2 — w?)2. This result coincides

with that of [7]. By a trivial rearrangement of the terms in (83) one obtains the
useful relation
QX% —w?) = (1 - a)(Q%w? —uwh). (84)

Inserting expressions (A.3) for w2,w? into (83), we find w3 = 2w? (1 + §/3),
w* = 46%0* and reproduce formula (26) for the isovector case. Taking a = 1,
we reproduce also formula (22) for the isoscalar case.
2.2. B(E2) Factors. According to [9], the transition probability for the
A

one-body operator F= Z fs is calculated by means of the formulae
s=1

OIF ) = > (Xt + Yol ),
) mi (85)
WIETI0) = 3 (i Xoss + Fin Yo

Quadrupole excitations are described by the operator (47) with fgu = er?Ys, =

/5
€Q, where € = e Ton: Using the expressions (72) for X ., Y., we get
s

A p .
(O1F|v) = 26K2 > QP P mi = 22KDST = éCP. (86)
mi Ez/ - (Emi)

The constant C? is determined by the normalization condition
duar = D (XRX = YY),
me,T
that gives
1
ch?

- |Q['r)ni|2 €['r)ni (03)2 |Q?n,i|2 €mi
J”%[(Sﬁ)? B2 (2 (oD (Sn? 2 () &P

mi
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The ratio C™/C? is determined by any of the equations (75):

cr o 1-—28Pk 2SR
cr  28PE 1 -—2S7k’ (88)

Formula (87) is considerably simplified by the approximation (17), when S? =
S =5/2, € =er., QP . = Q".. Applying the second forms of formulae
(78), (79) it is easy to find that in this case C™/CP = +1. As a result, the final
expression for B(E2) value is

—1
B(E2), = 2/(0|F4 v)* = 28° [ 16E,:3 3 [Quil* g5 |+ (89)
=

With the help of formulae (82) this expression can be transformed into

5 €2Q00 6(2) 6% -1
B(E2), = — =
(B2 = g ama?E, |FT- ) T (BZ- Q)

_ 5 hQu (i —w!)?
© 16 mw?Q, Qbw? — 202wt + wiw?

(90)

At first sight, this expression has nothing in common with (55). Nevertheless,
it can be shown that they are identical. To this end, we analyze carefully the
denominator of the last expression in (90). Summing it with the secular equa-
tion (83) (multiplied by wi), which obviously does not change its value, we find
after elementary combinations
Denom = Qjw? —2Q2w? +wiw? +wi[Q) — Q22— a)w? +(1—a)w!] =
=wi Q2202 — (2 - a)wi] —wl[202 — (2 - @)wi] =

= (2w} — w292 — (2— a)wi]. 9D
This result allows us to write the final expression as

5 e2h 0202 — ot
B(E2), = vt o
( ) QOO QV[QQ,Q, — (2 — a)wi] )

= — 2
167 mw? ©2)

which coincides with (55). By simple transformations this formula is reduced

to the result of Hamamoto and Nazarewicz [7] (taking into account that they
. oo 5 €%h
published it without the constant factor ————Q,).
321 mwy
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2.3. B(M1) Factors. In accordance with formulae (37), (72), (85) the mag-
netic transition matrix element is given by

<0|F1p1|l/> = ng (ffl)imgfm o (f{)1)ngfm‘| .

P P
— E,—¢e.; E, 4+ e,

(93)

As is shown in Appendix B, the matrix element (f%, ), is proportional to Q%
(formula (B.16). So, expression (93) is reduced to

m

N eh Qi’? Q?* Qp .Qp*.
0 Fp — _KP 2 2\p im =im o mi<mi _
O = =K g5 o = (=)~ i+ )

im
|2

= Kp (w2 — W?)PE, $. (94)
' DI ey
With the help of approximation (17) and expressions (82) for Qg, Q2 we find

P e E, E,
C,,ﬁ(i_wg)Qoo ( n ):

O|F7, |v) =
O1F; ) 257 ¢\/5 @ #omeo? \ B2 —¢  EZ—é2

QOO QV (QE - W-Qi-)

m? a(Qw? —wt)

:—2/<;1Cpc\/_( 2 —w?)

95)

Relation (84) and the self-consistent value of the strength constant k1 = akyg
were used in the last step. For the magnetic transition probability we have

2 2 (cp)? e ,(1-a)
B, =2AOIFh )" = 2= 25w =g — =
Wt (1-a)?
202 Q2

B(E2),. (96)

This relation between B(M1) and B(F2) was also found (up to the factor
1/(20¢?)) by Hamamoto and Nazarewicz [7]. Substituting expression (92) for
B(E2) into (96) we reproduce (with the help of relation (84)) formula (46).

2.4. «Synthetic» Scissors and Spurious State. The nature of collective
excitations calculated with the method of Wigner function moments is quite easily
revealed analyzing the role of collective variables describing the phenomenon.
The solution of this problem in the RPA approach is not so obvious. That is
why the nature of the low-lying states has often been established by considering
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overlaps of these states with the «pure scissors state» [27,28] or «synthetic
state» [7] produced by the action of the scissors operator

Sy = NTL(IPAYIP — (1))

on the ground state

In the considered model the overlap of the «synthetic» state with the real scissors
mode (and with IVGQR) can be calculated analytically. Surprisingly, it was not
done until now. Let us at first modify the definition of the «synthetic» state.
Due to axial symmetry one can use the fyT component instead of f; , or any of
their linear combinations, for example, the 4 = 1 component of the magnetic
operator Ffu, which is much more convenient for us. The terms (I7*) are
introduced to ensure the orthogonality of the synthetic scissors to the spurious
state |Sp) = (I" + I7)|0). However, we do not need these terms because the
collective states |v) of our model are already orthogonal to |Sp) (see below);
hence, the overlaps (Syn|v) will be free from any admixtures of |Sp). So, we
use the following definitions of the synthetic and spurious states:

[Syn) = NHEL, — F13)[0),  [Sp) = (£ + £13)[0).

Let us demonstrate the orthogonality of the spurious state to all the rest of the
states |v). As the first step it is necessary to show that the secular equation (76)
has the solution £ = 0. We need the expression for S™(E = 0) = S7(0). In
accordance with (74), we have

€090 Qs 17 Qy Q2]
() = T0) = — | 204 22|
57(E) EQ—E(Q)+E2—E% » §7(0) |:60+62:|

The expressions for Qf, QF are easily extracted from formulae (B.10), (B.11):

4 277
5 1+-6 1-25
or = "or 3 3|
" m Wy Wy
] ] 97)
4 277
5 1+20 1-326
Q= EQOO o, + .




1800 BALBUTSEV E.B.

So we find
4 2 T
14+ =6 1-=6
h 1 1 1 1
ST(0) = ——Qfy | —2 (—+—>+ : (———) =
m Wy €2 €0 Wy €2 €0

—— 7 (98)

2 407Qg _ 1 3Q%
m  e5el m (w2 —w2)™’

where, in accordance with (B.12),

6 6
(Wi —w2)P = = —(kQ5) + FQRy), (wi —w)" = ——(kQy + Q). (99)

Finally, we get

p =N
257(0) = —— 920 ___ 1 _ogroye = "
= a8+ i, O = 8+ w2,

n =P

257(0) = — 0 1~ 287 (0)x = — @20

QB+ RQ5 - RQB, + RQ5,
It is easy to see that substituting these expressions into (76) we obtain an identity;
therefore, the secular equation has a zero energy solution.

For the second step it is necessary to calculate the overlap (Sp|v). Sum-
ming (94) with an analogous expression for neutrons, we get

eh |QT .|2
S _ Eu KT 2 2\T mi _
< p|V> C\/g ET u(wz wz) Emz: €Zm'(E3 _ 6%”-)7—
eh |Q‘r ) 267 )
— —El/ K7 2 2\T mi mi . 100
C\/g ET u(w:c wz) E : (62 )T(EE _ 62 i)T ( )

m

mi m

Applying the algebraical identity

1 1 1 n 1
(B2 —e2) E2\e&  E?—¢
and remembering the definition (74) of S7, we rewrite (100) as

eh eh KP
S - " KT 2 QTST_STO — vy
(8pl) = e DKWl — (ST - 5T0) =

n

(=257 - 870 + (2 -2 - 50N 5 | aon
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In accordance with (73) and (88),

K 1-28%
KY  2S7R

(102)

Noting now (see formula (98)) that (w2 — w?)7S7(0) = —ngo and taking into
m

account relations (99), we find

sol) = 5 {00 + RQ)25” ~ QBL+1(Q5 + RQE)25™ Q41 0" |

T25"R
1—25Pk
25"k

3 {[(25% C1)Q + 257RQY] + (25" — 1)Q3 + 25"RQL)]

1 - 257k
_ D =N n,. n _
Ié; {25 RQY + (25"x — 1)Q5 ~ognz }

= 52§SR {25"R25Pk — (1 —25"k)(1 — 25Pk)} =0, (103)
3 eéh K7 .
where 0 = —= ———= and Q2 = @)29. The expression in the last curly brackets
" /5 By

coincides obviously with the secular equation (76) that proves the orthogonality
of the spurious state to all physical states of the considered model. So we can
conclude that, strictly speaking, this is not a spurious state, but one of the exact
eigenstates of the model corresponding to the integral of motion I™ + I”. In other
words [9]: «In fact these excitations are not really spurious, but they represent a
different type of motion which has to be treated separately». The same conclusion
was made by N. Lo Iudice [29] who solved this problem approximately with the
help of several assumptions (a small deformation limit, for example).

The problem of the «spurious» state being solved, the calculation of the
overlaps (Syn|v) becomes trivial. Really, we have shown that (0|F7, + FP, |v) =
0. That means that (O|F7;|v) = —(0|FP|v); hence, (Syn|v) = N~1O|FP, —
vy = 2N 10| F}|v) and

U? = |(Syn|v)|? = 2N 2B(M1),. (104)

The nontrivial part of the problem is the calculation of the normalization factor
N. It is important not to forget about the time dependence of the synthetic state
which should be determined by the external field:

[Syn (1)) = NTH(ER, — Fiy) e 4 (FFy — Fi)Te]]0).
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Then we have
N? =2(0|(FF, — FP)T (P! — FT1)|0) =

=2 (0|(FF — F11) T [ph) (ph|(Ff), — £11)]0) =2 [(ph|(Ff, — F1})[0)* =
ph ph

=23 [(phlE[0)° =2 |(ff)pnl* (105)

7,ph 7,ph

With the help of relation (B.16) we find

2 (eh\’ |(ph|r2Y2:]0) 2 )
vt g (e -
5\ 2¢c

2

7,ph eph
- 1 eh 2 AT QO QQ i
§<2—C> Z(w_) (¥+g> . (106)

Expressions for Qf, QF, wl, w] are given by formulae (97), (B.12). To get a
definite number, it is necessary to make some assumption concerning the relation
between neutron and proton equilibrium characteristics. As usual, we apply the
approximation (17), i.e., suppose Qfy = QF,, Q% = Qb,. It is easy to check
that in this case formulae for wy , are reduced to the ones for the isoscalar case,

namely (A.3), and Qf = Qy/2, QF = Q2/2, where Qp and Qs are given by (82).
So we get

wh fen\? 11 § mwy

2¢ ) mw? \ e

The estimation of the overlap for *°Gd with § = 0.27 gives N? = 34.72u% and
U? = 0.53 (see Eq. (104)), that is two times larger than the result of [27] obtained
in QRPA calculations with the Skyrme forces. The disagreement can naturally be
attributed to the difference in forces and especially to the lack of pair correlations
in our approach. In a small deformation limit U? = 3 g ~ 0.6.

This is the maximum possible overlap of the «pure» (or «synthetic») scissors
with the real scissors. The increasing of ¢ and /or taking into account pairing
correlations decreases its value, which is confirmed by numerous microscopic
calculations with various forces [4]. Such small overlap leads inevitably to the
conclusion that the original model of counter rotating rigid rotors [30] has not
very much in common with the real scissors mode, the correct description of
which requires the proper treatment of the Fermi surface deformation and the
coupling with IVGQR.
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2.4.1. Superdeformation. The pair correlations are not considered in this
paper. Nevertheless, our formulae (30), (46) can be successfully used for the
description of superdeformed nuclei where the pairing is very weak [7,30]. For
example, applying them to the superdeformed nucleus '°?Dy (§ ~ 0.6, hwy =
41/AY3 MeV), we get

Ei, = 20.8 MeV, B(M1);, = 15913
for the isovector GQR and
Ey. = 4.7 MeV, B(M1). = 20.0u3

for the scissors mode. There are not so many results of other calculations to
compare with. As a matter of fact, there are only two papers considering this
problem.

The phenomenological TRM model [30] predicts

By, ~26 MeV, B(M1);, ~26u%, Es.~6.1MeV, B(M1)s ~22u%.

The only existing microscopic calculation [7] in the framework of QRPA with
separable forces gives

Ei ~28MeV, B(M1)iy, ~ 3743, FEe~5—6MeV, B(M1)+ ~234%.

Here B(M1),+ denotes the total M1 orbital strength carried by the calculated
K™ = 17 QRPA excitations modes in the energy region below 20 MeV.

It is easy to see that in the case of IVGQR one can speak, at least, about
qualitative agreement. Our results for Eg. and B(M1)g. are in good agreement
with that of phenomenological model and with Es. and B(M1);+ of Hamamoto
and Nazarewicz.

It is possible to extract from the histogram of [7] the value of the overlap of
calculated low-lying 17 excitations with the synthetic scissors state: |(Syn|17)|? ~
0.4. The result of our calculation U? = 0.43 agrees with it very well. So, the
comparison of our calculations with that of QRPA shows, that we have excellent
agreement in superdeformed nuclei and rather large disagreement in moderately
deformed nuclei. On the other hand, it is known [7] that pairing is very weak at
the superdeformation and becomes important at moderate deformations. There-
fore, as a consequence, the correct treatment of pair correlations is important for
an accurate description of the scissors mode.

2.5. Equations of Motion. Let us look on WFM equations of motion from
the RPA point of view. Is it possible to construct something similar in the RPA
approach? Equations (11) are written for average values of operators and are valid
for the description of the arbitrary amplitude motion. One should compare with
RPA their linearized version (18), (19). The variables of these equations are the
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variations of the above-mentioned average values. It is natural to suppose some
correspondence between the variation of the average value of the operator F and
the matrix element of the type (0|F|v) used to calculate transition probabilities.
To check this idea we have to derive dynamical equations for matrix elements
of the operators r?\ o ﬁi o and (rp) A and to compare them with the linearized
equations (11). To this end, we combine the RPA equations (71) in accordance
with the definition (85) of matrix elements:

he, Z fszmz + fmzYV‘rFLV Z€Mi(fi‘rmXTV fmer;rlr)

mi mi

+ KDY (5 Q0 — fri Qo). (108)

mi

Taking into account the relations

6'mi.]l.im = [fa HO]imv 6'mifmi = _[fa HO]miv
one rewrites Eq. (108) as
|FT Z{ fT HO szrTnVi + [fTng]min:n?"‘

+ K (fin Qi — fmiQmi) }- (109)

The Hamiltonian of the axially deformed harmonic oscillator corresponding to the
mean field (9) is

Nro ~2
Hj(r)= Z { Ps 1meri + Z;O(eq)rgo(s)} . (110)

=t 2m 2

Let us consider the operator f = \/67“%1 = @91 = Q. Calculating the commu-
tator 9 2
[r31, Ho] = Zh%(rp)ﬂ

we find from (109) the following equation:
N
hQ, <O

Taking into account relations (Q*);,, = (Q)%,; and |Q.nil?> = |Qiml|?, we find

mt

that the last sum in (111) is equal to zero. Applying again formula (85) and

I/> = Zh\/E% Z{((rﬁ)Ql szmz + ((rﬁ)Ql)m'LYT;lz/}—’—

+ KD > (95,90 — 90,905, (111)

mi
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A A
introducing the notation RM = Z(r?))\u, ﬁ,\u = Z(rsﬁs),\u, we write (111) as
s=1 s=1
. o 2
— i (01125, [v) = — (0|3 |v). (112)

Identifying the matrix elements (0|R3,|v) and (0|L3,|v) with variables R}, and
L3, respectively, we reproduce the variation of the first equation in (11), or first
equations of (18), (19) (having in mind the time dependence via ey,

Let us consider the operator f = (rp)21. The required commutator is evalu-
ated to be

[(rD)21, Ho] = ZEp% — ihmw’r3; — Z%Zﬂ)(e@?ﬁl-
With this result equation (109) looks as

rT . h DT . T
R, (0L, [v) = i— (0] P5y[v) — ihmw? (0| RS, |v)—

h .
- i%ZEO(eQNOIREﬂV) + K Y [((rD)30)im Qi — (1D)30)mi Qi (113)

mi
A
where the notation Py, = Z(ﬁf) ap has been introduced. The last sum in (113)
s=1
is calculated with the help of formula (B.17). Using the fact that €;,,, = —€my,
one gets

D 1((r9)21) 7 Qe = (19)21) 7 Qi) =

mi

m
=5 Z €ril(r50) i Qi + (13175 Qi) =
mi

V6

According to the definitions (see formulae (73), (85)) we have

. m 9 .m L 4 6
—— T. T4 — _ T T T T — h 1 _ T .
Zh\/g Emi 6mz|sz| Zh\/é(EOQO +62Q2) Q < + 3> QOO

X {0 R [v) + (0| R, |v)
K} = HnTCZ = )
v Zr: \/6

X{0[R51|v) + X (0| R34 |v)
KL= kpCy = .
v NG
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So, equation (113) (let us say, for neutrons) is transformed into

1 R
%Z&)(eqNOIR& [v)—
2

) . R
-3 (14 3) QOcOIRgIY) + X0, a1

: . 1, - )
= 10 (0|L3 [v) = +— (0[P [v) — mw? (0 R, |v) —

3

The equation for protons is obtained by interchanging indices n and p. One has
to compare this equation with the variation of the second equation in (11) with
A =2, p=1. Let us write this variation in detail:

d 1
L5 — P, +mw?RY, —2v5 > /25 + {57} x

7=0,2

X Z 020 ,Jv ZQU eq)R + 6220 (eq)] 0.

We recall that only Rj,(eq) and R3,(eq) have nonzero values, so this equation
is reduced to

d T 1 T T T T
Eﬁzl - E’Pm + mw2R21 - 10{%%%}020 21Z20(GQ)R21_
—2v5623, ({339} C51 0000 (eq) + V5{351}C31, 20150(eq)] = 0.
In agreement with definition (9) of ZKH its variation is
073, = xRy, + XRE,, 073, = xXRb, + XRj,-

Substituting 65 symbols and Clebsch—Gordan coefficients by their numerical val-
ues, we obtain finally (e.g., for neutrons)

d 1 1
Eﬁgl - E,Pin + mWQRQLl + %ZQO(QQ)RQLH‘
2 )
t3 <1 + g) Qbo(XR31 + XRE;) = 0. (115)

This equation coincides obviously with (114) if we assume the time dependence
via e~*? and identify the matrix elements (0|R3,|v), (0|L3,|v), and (0| PF |v)
with the variables R%;, £3;, and P3;, respectively.

Let us consider finally the operator f = (p?)21. The required commutator is

[(132)217 Ho| = —2ihmw®(rp)ar + 4\/_1712 V2j+1 5]1 20 ]1Z20(GQ)(TP)31,
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and one obtains from (109) the following equation:
h, (0| P3, |v) = —22’hmw2<0|ﬁT )+
+ 4\/_th V2 + {;{}Czo 31220(601)<0|IA/37‘1|V>+

+ KDY [((0%)50)im Qhr, — (0)5)mi Qi) (116)

mi

It is easy to show (with the help of formula (B.18)) that the last sum is equal
to zero. This equation must be compared with the variation of the last equation
in (11) with A = 2, u = 1. Let us write it in detail. Taking into account that
L7, (eq) = 0, we find the equation

d
%Pérl + 2mw?L3, — 4\/_2 V2j+ {55{ 30, leQO(eq)’C}—l =0, (117)

which obviously coincides with (116), if we assume the e~ ** time dependence
and identify the proper RPA matrix elements with the respective WFM variables.

We will show in the next section that Eqs. (112), 114), (116) can be derived
from the proper equations of (11) exactly, without the primitive procedure of
identifying RPA matrix elements with WFM variables.

3. WFM VERSUS RPA

The exact relation between RPA matrix elements and the respective WFM
variables can be established with the help of the linear response theory. Let us
first recall, following Appendix D of [9], the necessary definitions concerning the
density and the density matrix.

The density operator is defined as

A

plr) = d(r —1t) deq r)ala,, (118)

s=1

where diq(r) = (k|d(r — T)|q) = qui(rar)(ﬁq(rm-) and ¢,(roT) are single-
particle wave functions. Indices k‘,L] include spin and isospin quantum numbers
o and 7.
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The density of particles in the system depends on its state ¥ and is defined
as the average value of a density operator over this state:

p(r) = (U|p(r)| ) = dig(r)pg =

=A Z d3r2---d3rA|\I/(raT,r20272,...,erATA)|2, (119)

O, T,..,OA,TA

where pgr = <\Il|a£aq|\ll). The particle density (119) can be interpreted as the
diagonal element (in the coordinate space representation) of the density matrix
which is defined as

p(ror,v'o'7) =D $i(r'o' T )by (ror) (¥lafag| W) =
kq

= dig(r'o’T ;xoT)pgr (120)
kq

with dpq(r'o’r',ror) = ¢} (r'0’'7")¢4(roT). The average value of the arbitrary

one-body operator
F=Y fi=) frgalag (121)
is written in terms of the density matrix as

<\II|F|\II> = kaq<\ll|a£aq|\ll> = kaqqu =Tr(fp).

kq kq
Let us consider the system to be in the weak external time-dependent field
W (t) = Wexp (—iQ2t) + W exp (iQ1), (122)
where W = Zwkqalaq is a one-body operator. The change of the ground
kq

state wave function produced by this field is found by using the time-dependent
perturbation theory [31]:

U(t)=10)+ Y |v) [e, e — &5 ] (123)
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Here |0) and |v) are stationary eigenstates of the unperturbed system and

o WI0) -~ (wlafaglo)
YR -Q) R -) ko
) (124)
o OWy) - (Olajaglv)
YR+ Q) T h(Q+ )

Inserting this expression into formula (120), we obtain the perturbed density

matrix

p(rar,v'o’'t' t) = po(ror,v’'o’7") + 6p(ror, v’ o' 7', t),

where po(roT,r'c’7") is the unperturbed (equilibrium) density matrix

po(ror,x’o’r") = quk(I‘IUITI,I‘UT (0lalak|0) = quk (r'o’'r’ I'O'T)p](cq)

and dp(ror,r’c’7’,t) is the change of the density matrix

Sp(ror,v'o’7' 1) quk r'o’'r’ rUT)p;q)( ) (125)

with

P () = [(Oladarlv)e, — (vlafar]0)a,) e ™ +

v

(<1/|a ax|0)c;, —<O|a ag|v)ey) mt}. (126)

Deriving (125) we neglected the terms proportional to |W|2 At this stage it
is necessary to remind that we work in a Hartree—-Fock approximation. This
means that stationary states |0), |v/) are Slater determinants; matrix pfﬁl) = PqOkq
is diagonal with p, = 1 for levels below the Fermi level and p, = 0 for levels

above the Fermi level. The requirement (pg + dp)? = (po + dp) leads to the

well-known [9] property of the matrix p,(iz): it has only particle-hole nonvanishing
matrix elements. Looking to formula (126) we see that it is possible for the matrix
elements <O|a:f] ax|v) to be different from zero only for particle-hole combinations
of indices g, k. Consequently, the summation over k,q in formula (124) for ¢,

and ¢,, will also be restricted only to particle-hole pairs. So we can write p,(iz) as

Pl (8) = 37 [Rigqirg () e 4 Rl 00 () ] wprg,
k/q/
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where

qu,k’q’ (Q) =

hQ —Q,) B hQ+Q,)

v

Z<<0|a2ak|y><l/|a£faq'|0> <0|a£/aq'|V><V|a2ak|0>>

is the RPA response function [9], where the index pairs kq and k'q’ are restricted
to particle-hole pairs. For the change of the arbitrary operator average value we
have

S(U|F|W) = Z Frab'y). (127)
We now are ready to analyze the WFM variables. The first one is

T(t) = 2(20h) 8 / dp / )

Using here definitions of the Wigner function and the § function we find

2 . . s s
R}, (t) = e /d?’rriu /d3s/d3p exp (—ip-s/h)p (r+§,r—§,t) =
= 2/d37“ r?\upT(r,r,t) = Z/dBTT?\Hp(rUT, ro7,t) =
=25 [ Prrduditromoy o) ¥iaad¥) =

= Z TA;L kq ‘I’|akaq|‘1’ (Y] Z TAH kqakaq|‘1’>
kq kq

\I/lzw = (U|R3, W), (128)

i.e., this is just the ground state expectation value of the operator RM =
A

72) 4. In accordance with (127) the variation of this variable is
S/AK

s=1

5R ( ) ;M(t) = Z(r)\ﬂ)kqpé}c)( )
kq
= ST(OIRS V) e, — (WIRS,[0)E,) e +

+Z ((v|R3,,10)¢;, — (0| R, [v)E;) . (129)
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Equation (129) demonstrates in an obvious way the structure of the variable
ORx,. It is a linear combination of the transition matrix elements (0|Ry,|v)
which are, in turn, linear combinations of RPA amplitudes X}, Yi,. In a similar
way we can show that the variables L] (t) and P, (t) defined by (12) are just

A
the ground state expectation values of the operators ﬁ,\u = Z(rsﬁs) Ap and
s=1
A
P\, = Z(ﬁ?) A respectively:
s=1
Su(t) = (WILS, W), PJ,(t) = (V[P],|¥).
Variations of these variables are
OL3,(8) = L£3,() = D ((rB) kg (1) =
kq
=Y ((0IL3, )y — (W|L3,,100e,) e "+
+Z ((VIL3,.10)e; — (OILF . [v)ey) €', (130)

and
SPY, (1) = PR, (1) = Z@M)kqpf;} (t) =
= Z(<o|ﬁ;u|y>cu — (V| P],10)c,) e ¥4
+ > (WIP10)¢; — (01 P, [v)ey) e (131)

Inserting the expressions for 6 Ry, 6Ly, into the variation of the first equa-
tion of (11)

d 2
ER)\M — Eﬁ)\u =0,

we find

03 (O R — R 0e) = = S (Ol Eaulwdes — (a0

v

It is sufficient to consider only the part with the e~*?* time dependence. Multi-
plying this equation by (2 —€,) and taking the limit 2 — ,,, we reproduce the
RPA equation (112).
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Inserting the expressions for dRy,, 0Ly,, and Py, into Eq.(115) and per-
forming the described limiting procedure we obtain Eq.(114). Analogously,
inserting formulae (131), (130) into Eq.(117) and performing the same limiting
procedure we get the RPA equation (116).

So, there exists one-to-one correspondence between the set of dynamical
equations for WFM variables and the set of dynamical equations for Transition
Matrix Elements (TME). This correspondence makes obvious the fact that both
the sets have the same eigenvalues. On the other hand, the TME equations are
just linear combinations of the RPA equations. Therefore we can conclude that
RPA and WFM approaches generate identical eigenvalues. In this sense both
approaches are equivalent in all aspects. This concerns, for instance, also the
transition probabilities. However, for this equivalence to be exact, one needs to
work in the full space in both approaches, that is in the complete particle hole
space in RPA and taking all phase space moments of all powers in WFM, a task
which can hardly be tackled in general.

The difference of the two approaches then shows up if truncations of the
dimension of the equations have to be operated. In RPA one usually solves
the equations with a restricted number of discrete particle hole pairs, i.e., the
dimension of the RPA matrix is finite (in some works the RPA equations for finite
nuclei are, however, solved in full space, including continuum states [32, 33]).
The result of such a diagonalization usually yields a huge number of discrete
eigenvalues approximating more or less the spectrum one would obtain from a
solution in the full space. For instance, resonances in the continuum (e.g., giant
resonances) will be mocked up by a bunch of discrete states whose envelope may
simulate the full solution. Reducing of the dimension of the particle hole space
too much may lead to a situation where the full solution is only approximated
rather badly and in an uncontrolled manner.

In the WFM method, the dynamical equations for Cartesian tensors of the
rank n = 2 are coupled (by the interaction terms in (5)) with dynamical equa-
tions for tensors of the rank m = 3, these equations being coupled with the
ones for tensors of the rank n = 4 and so on up to n = oo. Here one hopes
that the essential part of physics is described by a small number of the lowest
rank tensors. The hope is based on the assumption that the higher rank tensors
(moments) are responsible for the more refined details and that neglecting them
does not appreciably influence the description of the more global physics which
is described with the lower rank tensors. This assumption is substantiated in
the past applications of the WFM method to realistic situations with the Skyrme
forces for the description of collective nuclear modes [14,15,17]. In those works
it has indeed been demonstrated that even with a very limited number of low-
rank phase space moments one can faithfully reproduce the centroid position of
the collective states. From these studies it is then permitted to assume that the
inclusion of higher and higher rank moments will just give raise to a refinement
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of the gross structure obtained with the low rank tensors. A formal convergence
study of this type has been performed in the infinite matter case [34] where it was
indeed shown that the moment method allows one to approach the full solution
in an optimized way.

The net result is, that WFM and RPA approximate the exact infinite spectrum
of the quantum mechanical problem by a finite number of eigenfrequencies of the
classical problem with, however, different convergence.

An analogous situation occurs with transition probabilities. Let us analyze,
for example, the expression (129) for the WFM variable 6R] ,(t) = R, ().

Using the definition (124) of ¢, with the external field operator W = R;L we
find

Q Q) RO+ Q)

0|R |>|2 OIRS, PP
(e )

The summation limit N, depends on the method of calculation. In the case of the
exact solution N, = oo, for RPA N, is usually of the order of several hundreds or
thousands, for WFEM N, usually is not more than around a dozen. Naturally, the
eigenvalues €2, and eigenstates |v) are different in each case. So, the strength,
which in RPA was distributed over hundreds or thousands levels, in WFM is
concentrated only on several levels, i.e., averaging of levels is accompanied by
the redistribution of the strength. The variable 6 1?5 ,(¢) is the quantum mechanical
observable, so its value should not depend on the basis |~). Hence, the right-
hand sides of (132), calculated by two methods, should coincide if both methods
are mutually consistent. This statement can, e.g., be checked with the help of
sum rules. Generally, in RPA sum rules are well fulfilled for a sufficiently large
particle hole space which in realistic cases can become quite significant, whereas
in WFM sum rules are generally already well fulfilled even with a small number
of low rank moments (see, e.g., [14,15,17,35]).

The essential difference between WFM and RPA methods lies in their prac-
tical use. The RPA equations (70) are constructed in such a way that the increase
in dimension does not cause any formal problems and finally it is only a question
of computer power what dimension can be handled. Quite on the contrary, the
increase of dimension in WFM is a nontrivial task. Beyond a certain order of
the moments even the reduction of the Cartesian tensors to the irreducible ones
becomes a very difficult task. However, the spirit of WFM is rather to reproduce
the gross structure of a couple of prominent collective states, a situation which it
can handle very efficiently.

Z( (O[R, v) (W RTL[0) (v RS, [0) (0| RS |v >> i _
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In conclusion WFM and RPA are equivalent when the full particle hole
configuration space in RPA and the infinite number of moments in WFM are
considered. However, under truncation of the spaces both methods have different
convergence properties. In the general case for WFM only a few moments are
sufficient to get the correct gross structure of the collective part of the spectrum,
whereas in RPA one in general must take into account a quite large configuration
space to produce reasonable results.

4. GREEN’S FUNCTION METHOD

One of the important subjects of comparing RPA and WFM methods are the
current distributions. The WFM method, a priori, cannot give the exact results,
because it deals only with integrals over the whole phase space. It would therefore
be very interesting to evaluate the accuracy of this approximation by comparing
it with the exact result. Unfortunately, even for the simple model HO+QQ it
is impossible to derive in RPA closed analytical expressions for currents of the
scissors mode and IVGQR. That is why we consider in this section Green’s
Function (GF) method, which allows one to find explicit expressions for the
currents directly.

Following the paper of H.Kohl, P.Schuck, and S.Stringari [36] we will
consider at first the isoscalar case. Conserving on the right-hand side of Eq. (4)
only the first term of the sin-function expansion leads to the Vlasov equation

of P P
EzVHW-Vf—VHW-Vf. (133)
In our case the Wigner transform Hyy coincides with the classical Hamiltonian
H.. Having in mind small amplitude vibrations we have to linearize (133):
f=fo+ fi, H. = Hy+ H;p, with fy being the solution of the time independent
equation. The linearized version of (133) is
Of1 P pro_
E—FV HQ'Vfl—VHQ'V fl—S(I‘,p,t), (134)
where S(r,p,t) = VH; - VPf;. This equation will be solved with Green’s
function method. We have

<% +VPHy -V~ VHy- V") G (rp,r'p) =
=8(r—r)5(p—p)o(t—t) (135)
with [36]

G(t_t/)(rp, r/p/) = (5[I'C(I‘,p7t/ —t) - I'/](S[pc(r, p,t — t) — Pl]e(t - t/),
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where r.(r,p,t —t), p.(r, p,t —t) are solutions of classical equations of motion
with initial conditions r, p. The solution of (134) can be written as

fitept) = g+ [ atr [ @ et O, p) S B -

— 00

t
:f1h+ /dt,S(I‘C,pC,t,), (136)

where f]' is the solution of the homogeneous equation, which does not play any
role at resonance and therefore will be omitted in the forthcoming.

We consider the axially deformed harmonic oscillator Hy with the quadrupole—
quadrupole residual interaction Vies = H;. The derivation of the proper single-
particle Hamiltonian from the original microscopic Hamiltonian (6) can be found
in Appendix A. We have

2

D m
Ho=o—+ 3[%25(3?2 +y%) +wi2?.
We are interested in the part of the residual interaction with |u| = 1. In

accordance with formula (A.1) it can be written as

Vies = —k0[Q21(t)q2—1(r) + Q2-1(t)g21(r)] = 12k0Q1(t)[x2 + yZ]

with
Qi(t) =2 / d{p.r}f(r.p, )z = 2 / d{p,r}f(r, p t)yz =

—o / d{p, £} [fo(x, p) + fa(r,p, t)]2z = 2 / d{p,r} fi(r,p, 1)z,

With the help of the Thomas—Fermi approximation for the static distribution
function

fo="0(er — Hp)
the right-hand side of (134) is found to be

K
S(r,p,t) = —1ZEOQ1(t)5(eF — Ho)[pzz + pzx + pyz + p.yl.

The classical trajectories are determined by the solution of the Hamilton
0Hy OH,

equations 7. ; = 8—p-’ Dei = 9 with i = x,y, 2. In our case they are
(2

B 5‘73

Di

Wi

Tei(t) =15 cos wit + sin wit, peqi(t) = p; cos wit — mw;r; sin w;t.
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Formula (136) then gives

t
flr.pot) = =6"20(er — Ho) [ dEQu(t)x

1
X {—(pz + py)z [wy cos wi (t' —t) + w_ cos w_(t' —t)]+
Wy

1
+ —pa(x+ y)|wy cos wy(t' —t) —w_cos w_(t' —t)]+
w

z

1

MWW,

(pz + py)P2|ws sin wy (' —t) —w_sin w_(t' —t)]—
—m(x +y)z[wysin wy (' —t) +w_sin w_(t' — t)]}, (137)

where wy = w, £ w,.

So, we have derived a complicated integral equation for the perturbed dis-
tribution function which may not easily be solved in general. As a matter of
fact, the analytic possibilities of Green’s function method are, without further
consideration, exhausted at this point.

In order to proceed to the evaluation of the eigenfrequencies and transition
probabilities we again apply the method of moments. Integrating (137) over the
whole phase space with the weights zz, p,p., 2p, + zp., and zp, — xp,, we
obtain the following set of coupled integral equations:

¢
Q:1(t)=p / dt' Q1 (t')|wy sinw, (¢ — t) + w_ sinw_ (¢’ —t)],

Py (t) = —fm ww. / dt'Q1(t)|wy sinwy (' —t) —w_sinw_(t' —t)],

— 00

(138)

Li(t) = —pm / dt' Q1 (t") w3 coswy (t' —t) + w? cosw_(t' — 1)),

—0o0

t
I,(t) = —Bmwiw_ / dt' Q1 (t")[coswi (t' — t) + cosw_(t' —t)],

—00
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where

G = 2k0m3er 4 _

m2wiwd (2rh)3

= 12k /d{p,r}x2225(ep — Hy) = /d{p,r}pipié(ep — Hp) =

1,,2,,2
miwiw?

12&0

12k
=0 /d{p,r}xngé(q: — Hp) = e /d{p,r}zQpié(eF — Hp)

2,52
m2w?

and the following notation is introduced
Pi(t) =2 /d{pm}fl(r,p,t)pxpz,
La(t) =2 /d{pm}fl(r,p,t)(zm +aps),

1,(t) = 2 / d{p.r} f(r, 9. 8) (2ps — ap2).

By simple means these equations are reduced to a set of differential equations.
At first, we perform time derivatives of all equations in (138):

Qi(t) = —p / dt' Q1(t)[w? coswy (' —t) + w? cosw_(t' —t)],

— 00

¢
Pi(t) = BmPww. / dt' Q1 (t) w3 coswy (t' —t) — w? cosw_(t' —t)],

(139)
Li(t) = —Bm{(u)i +w?)Q1(t)+

¢
+ / dt'Q1(t)[w? sinwy (' —t) + w? sinw_ (¢ — t)]},

—0o0

L(t) = —ﬂmw+w{2Q1(t)+

+ / dt'Q1(t")ws sinwy (' —t) +w_sinw_ (¢ — t)]}

—00
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Solving (138) with respect of obvious time integrals we can exclude them
from (139). We have

¢

20miww.w_ / dt'Qq () sinw_(t' —t) = m*w,w.Qy(t) + Pi(t),
¢

20m waw.wy / dt'Qq () sinw, (' —t) = m2w,w.Q1(t) — Pi(t),

(140)
t

ABmw,w, / d'Qy (1) cosw_(t —t) = Ly (t) + Z—JrIy(t),
t

—4fMmww, / dt'Q1(t') coswy (' —t) = Li(t) + Z—_Iy(t).
+

Substituting the time integrals in (139) by the proper expressions from (140) we
find

Oi(t) = — L (1),

m

£a(t) = =m(28 + 1)(? + )@ (0) + = Fi(0)
(141)

Pi(t) = ~S (@2 + WD) Li(t) - (@2 = W)L, (1))

Iy(t) = =m(28 + Dwiw_Q1 (t).

Due to the conservation of the angular momentum the right-hand side of the last
equation must be equal to zero. So we have the requirement

m2wiw? (2rh)3

264+1=0, or ko= Il 1 (142)
With the help of the relation
Alr?) = 2/d{p,r}r2f0 = 2/d{p,r}r29(ep — Hp) =
_ 7T3541{-.(w34+ 2&)3) 4 (143)
3mwiw? (2mh)3
and formulae (A.3) for w,, w,, the expression for k¢ is reduced to
o — _m(wfc + 2w?) _ m? (144)

12A(r2) C4A(r2)
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which is just the familiar expression for the self-consistent value of the strength
constant (see Appendix A). This is a rather interesting result, because the well-
known formula is obtained without the usual self-consistency requirement [37].
As is known, in the absence of external fields the angular momentum of any
system is conserved. The short range interparticle interactions depending on the
module of the interparticle distance |r; — r;| create the scalar, i.e., rotational
invariant, mean field, which exactly repeats the shape of the nucleus. When we
imitate the mean field by a rotational invariant function, the angular momentum
will be conserved independently of the shape of this function due to a pure
mathematical reason: angular momentum operator commutes with a scalar field.
If we use the nonrotational invariant function (as in our case), mathematics does
not help and the shape of the function becomes important. If the function does not
follow exactly the shape of the system, the latter will react on this inconsistency as
on the external field, that leads to the nonconservation of an angular momentum.
Therefore the requirement of the angular momentum conservation in this case
becomes equivalent to the requirement of the self-consistency. This is seen very
well in the method of moments. Integrating equation (134) over the phase space
with the weight zp, — xp., we obtain the dynamical equation for I,

%Iy =m(w? —w?) Q1 + 12k ((x?) — (22)) Q1. (145)

The requirement of the angular momentum conservation gives the following re-
lation:
m(w? — w?) = 12k0((2%) — (22)). (146)

Obviously, it is the requirement of the consistency between the shapes of the
potential and the nucleus. In principle, this relation is less restrictive than the
standard self-consistency requirement [37]. However, the latter satisfies equation
(146) which can be easily checked with the help of Appendix A.

So, finally the set of Eqgs. (141) is reduced to

Qi(t) = — L (1),

m

Li(t) = = Pa(o),

(147)
Py (t) = —m? {<1 + %5) Li(t) — My(t)] :

i,(t) =o.

Taking into account the relations between the definitions of variables in (21)
and (147)

Q1 = —ReRgl, P1 = —R6P21; L1 = —2R€£21
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1
(which follow from formulae 73, = —z(x + iy) and (rp)a; = _§[pr + ap, +

i(zpy + yp-)]) and I, = 2Re Lq1, it is easy to see that the last set of equations
is identical to (21).

With the help of relations (140) the Wigner function (137) can be written in
terms of the Wigner function moments

3/@0

fl(rapat) = Wé

(er = H){ [ 0) + 1,0 S5 s+ )+
0 = L O]l +) + P00 (s ) e+ poet

+ Q1(t)2m?2(x + y)}. (148)

Taking into account equations of motion (147) and the time dependence of vari-
ables via e~ ** (which leads to the equality I,, = 0) one finds

3/@0

fl(rapat) = Wé

(er = ) { =m0 [ a4z + ot 4] -

x

(S 22) et mdp 2 ) f i)
x z
In the case of § = 0 it reproduces the result of [36].

Having the Wigner function one can calculate transition probabilities in the
same way as in WFM method.

Let us consider now the problem with two sorts of particles: neutrons and
protons. All variables and parameters acquire isotopic index 7. The part of
the residual interaction with || = 1, in accordance with formula (9) becomes
Vi = Z7(0)[ez + y2] with Z}(t) = 12(xQ} + RQD), ZP(t) = 12(kQ% + RQY)

and QT = /d{p,r}f{(r,p,t)xz. The expression for the Wigner function is

1
obtained from formula (137) by changing the factor 6xQ1(¢') by §Z1T(t')- The

dynamical equations for isovector variables Q1 = Q7 — QY, P, = PP — P?,
Ly =L} — LY, and _fy = I,; — IT can be derived (in approximation (17)) exactly
in the same way as the equations for isoscalar ones. As is expected, they coincide
with (25).

As we see, in the considered simple model all results of WFM method are
identical to that of Green’s Function (GF) method. Having in mind also that both
methods generate the same set of dynamical equations for collective variables
(Wigner function moments), one could suspect their identity. In general, this is
not quite true. The principal difference between the two methods is more or less
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obvious. In the GF method, one finds first the formal solution of Eq. (5) and only
afterwards one takes the phase space moments of the found Wigner function to
obtain the final solution of the physical problem. In the WFM method one takes
from the beginning the phase space moments of Eq. (5) without any attempts to
find the «natural» expression for the Wigner function. It is worth noting also,
that the initial conditions in the two methods are quite different. It is the static, or
equilibrium, distribution function f in GF method, which is not always known
exactly, and one is forced to use some approximations. In the WFM method
the initial conditions are given by the equilibrium values of the natural nucleus
characteristics (such as the mean square radius, the quadrupole moment, etc.)
which can be taken from the experiment.

The reason of coincidence of all results is quite simple. For the harmonic
oscillator with multipole—multipole residual interaction of arbitrary rank (mul-
tipolarity) the equations of both methods can be derived without any approxi-
mations — the interaction of the multipolarity n generates the set of dynamical
equations for tensors (moments) of the rank n. For the GF method this is easily
seen from formula (136). In the case of the WFM method it is seen very well
from the structure of Eq. (134). When one takes the moments of rank n, neither
the left-hand side nor the right-hand side of this equation, can generate moments
of rank higher than n. The coincidence of results in the case of n = 3 was
demonstrated in [38].

The power and simplicity of the GF method are restricted by the potentials for
which the analytical solutions for classical trajectories are known. In the case of
realistic forces the GF method loses its simplicity and transparency, whereas the
WFM method does not meet any difficulties and continues to be a convenient and
powerful tool for the description of the collective motion what was demonstrated
by calculations with Skyrme forces [17]. For an illustration of this property of
the WFM method, currents are a good example, because the procedure of their
construction with WFM is general enough to be used for any type of force (see
Subsec. 5.1 below and [6]).

5. FLOWS

We are interested in the trajectories of infinitesimal displacements of neutrons
and protons during their vibrational motion, i.e., in the lines of currents. The
infinitesimal displacements are determined by the magnitudes and directions of
the nucleon velocities u(r,t), given by

3
mn(r, t)u(r,t) _/(;ri—h};” pf(r,p,t) =

_ 4 s [ 43 i S oS =
= mh)p /d s/dppexp( p s/h)p(r+2,r Z,t)f
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= —2ih{(V =V )p(r,v', 1) }ep = Z{ (V =V)p(ror,x'or,t) e =

S S 65 60m)Vi (v07) — oy rr )V (1)} (afa, [9) —

prq oO,T

_mszq r)pgp(t \I’|ijq aaq|\I/> <\I/|j(r)|\I/> (149)

pPq

The current density operator J (r) has the standard quantum mechanical defini-
tion [9]:

A
ng = 2m [0(r — 15)Vs + Vsd(r — Ty) Z]m aaq,
) ih . -
Jpa(r) = =5 (p|lo(r — £)V + Vi(r — 1)]lq) =
= QZZ [ (xaT)V o, (raT) — ¢y (raT)Vy(raT)] =

o, T

= 40 9y () V65 (x) — () V()]

The variation of u generated by the external field (122) is

Z]P‘I pqp
—Z [(O]J (x)|[v)e, — (w]J(r)]0)E,] e ¥4
+Z [(v]J(x)[0)e;, — (O (r)|v)e;] . (150)

To proceed further, three options are possible.

5.1. WFM Method. The first way was developed within the WFM ap-
proach [17]. It allows one to derive an approximate analytical expression for
du(r,t). The main idea lies in the parameterization of infinitesimal displace-
ments &,(r,t) = dx;, which are represented by the expansion

3 3
G(r,t) =Gi(t) + > Gij(ta; + > Gig(t)zjapt
j=1 dik=1

3
+ Z Giju(O)zjzpz + ... (151)

jik,l=1
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This series, in principle, is infinite, however one makes the approximation keeping
only the first terms and neglecting the remainder. For example, in [6] only the
two first terms were kept. It turns out that the GG; do not contribute to the final
results due to the triplanar symmetry of considered nuclei, hence

3
& (r,t) =) GT;(t)z;.
j=1

The coefficients G;; can be expressed analytically in terms of the variables
Ro21(t) and L11(t). Really, small variations R, = 0R}, and L], = §L], are
naturally expressed in terms of variations of n”(r,¢) and u] (r,t) (13):

f\u(t) = /dgr riuénT(r,t),
(152)

() = m/d3r [(rugg)audn™ + (rou”)xung,] = m/d3r (10uT ) AuMgq-

In the last equation we have supposed that u;, = 0, i.e., there is no motion at
equilibrium. The variations én and du; are not independent. A relation between
them is obtained by means of the continuity equation [10]

3

(5n:—zvi(n&), 5’(1,1': —

i=1

It is convenient to introduce the «cyclic» combinations of &; analogously to the
cyclic variables in (5):

T 1 T c T T T T 1 T T
Pi1 = _ﬁ(ﬁ +i&3), po =&, pli= %(51 —i&3)
+1
and to write them as pj,(r,t) = Z (=1)"S} _,(t)r,. Then
v=—1
3 +1
onT == Ving) ==Y (-1)"Vu(npl,),

i=1 v=—
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Using these expressions one finds

+1

Lu(t) = —/d3rZCf‘[’,flurgrl, Z (—1)¢V¢(n7pi¢) =

ov dp=—1

= ZCIU lV/d3rn (parl’ + purtf) -

=2 Z C{\‘fly /d3r NoqSe,—oTéTy =

@0,V

A k
= 22 Z 01511/ (bST ¢01$,1VRZH(eq)-
k,k ¢,0,v

Now taking into account the axial symmetry (x = 0) one gets

2 T T
w ﬁ {(\/5320 - )Cm 10°1,0

1 T T A T
- (ERQO +Ro0> (C1M+1 1215 1,-1 T C 1 0S—1 1) |-

Exactly the same derivation for £}, leads to the following result:

T E AL 3 T T _
Ap m Cla,ll/ /d rneqpvrﬁ -

o,V

m
-2 [(mgo RO ST o

1 T T )\ L o
- (E 20 T Roo) (Ciiia—151,-1 + Cm 1,11 u1,1)}
We are interested in Ro; and Lq1. Remembering that Rypg = —Qoo/ V3, Rog =

2\ %2 1
<§> Qood, and Qfy = §Q00 (due to approximation (17)), we find

_ 1 2 _ 4 _
Rowt = —— 1 26) Soer+ (1426 Ssrol .
241 3\/56200 K 3 > 0,41 < 3 ) 11,0}

_ 2 = 4\ 5
L —=6]Som1—(1+20)S
141 = \/—Qoo K 3 > 0,41 < t3 ) 11,0} ;
where S,, = 52, — 5%, (and Sy, = S7, 4+ S?,). Having in mind the e’

time dependence (vibrational motion), we can substitute 5‘,,71, by iQS‘,”,. Solving
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these equations with respect to 5‘,,71,, we have

3

-] /[on (-3
sl 2] fouc049)

Now we use the set of Eqgs. (24) to find that £, = —émwzé(l —a)R2; and, as

So1 =

a result, ,
_ 21 - w PS
Ro1 F %511 = {1 F 2@(1 - 0‘)5} Roi.

Introducing the notation

=g ffoo- 3]

B= \;’5 [1+22( oz)é} /[Qoo(1+§5):|7

So1 = ARa21, Si,0= BRoi.

A similar analysis of Ro_; and £;_; allows us to write immediately

(153)

we finally get

So,—1=ARs_1, S_10=BRa_1.
So we have for isovector «cyclic» displacements:
P41 = S1,0r0 = BRa173,
p-1=S_10r0 = BRa_173,
Po = —S017_1 — So 1711 = V2A(Ji3x1 + Jazxa),
where J13 = (Ra—1 — Ro1)/2, Joz = i(R2—1 + R21)/2. The variable Jj is a
small variation of the tensor J; = /d{p,r}xixjfT(r, p,t). Isovector cartesian

displacements are found by elementary means:

_ 1 _

& —\/._(ﬁ,l — p41) = \/53713$37

¢, = %@ |+ pp1) = V2BJasas, (154)
c3 = o = V2A(Th3x1 + Jaza).
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By definition, the infinitesimal displacements &; are the differentials (§; = dz, & =
dy, &3 = dz). This fact allows one to construct the differential equations for cur-
rent fields. For example, for the current field in the plane x = 0 we have

dy Bz B
- =—— dy — —zdz = 0. 155
Az~ Ay YT A (133)
Integrating this equation we find
2 2
y2+022zconstzc—>y—+z—:1, (156)
¢ cjo
where 0 = —B/A. Depending on the sign of ¢ this curve will be either an ellipse

or a hyperbola. The careful analysis [6] of the § dependence of o shows that in
the case of the scissors mode o > 0 for all permitted ¢ (i.e., —3/4 < 6 < 3/2)
and in the case of IVGQR ¢ < 0 for all permitted §. Therefore the curve (156) is
an ellipse for the scissors mode and it is a hyperbola for IVGQR (see Figs. 1,2).

One can easily see in Fig. 1 that the main constituent of the scissors-mode
motion is the rotation (out of phase rotation of neutrons and protons). It is also
seen that the rotation is accompanied by the distortion of the nuclear shape — at
least it is evident that the long semiaxis becomes smaller. To get a quantitative
measure for the contribution of each kind of motion, it is sufficient to write the
displacement & as the superposition of a rotational component with the coefficient
a and an irrotational one with the coefficient b [4]:

€ = ae, x 1+ bV(y2) = a0, ~z,) + b(0, z,y).

Comparing the components &, = (b—a)z, {, = (b+a)y with &, &3 in (154),
we find

b—a=vV2J3B, b+a=+V2JuA—a=nl+0), b=nl-o0),

where 1 = jggA/ V2. So, for the scissors mode in the small § limit we have

3 3 b 3 3 3
=2(1-2 == —~Z51+28)~ 2 1
a 77< 45) , b 2775, 4(5< 45> d, (157)

i.e., the current of the scissors mode is dominated by the rotational motion. The
contributions of the two kinds of motion to the IVGQR are

1 1 a 1 1 1

i.e., the current of the IVGQR is dominated by the irrotational motion.
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z

Fig. 1. Schematic picture of isovector dis-
placements for the scissors mode. Thin
ellipses are the lines of currents. The
thick oval is the initial position of the nu-
cleus’ surface (common for protons and
neutrons). The dashed oval is the final
position of the protons’ (or neutrons’) sur-
face as a result of infinitesimal displace-
ments shown by the arrows

Fig. 2. Schematic picture of isovector
displacements for the high-lying mode
(IVGQR). The lines of currents are shown
by thin lines (hyperbolae). The thick oval
is the initial position of the nucleus’ sur-
face (common for protons and neutrons).
The dashed oval is the final position of the
protons’ (or neutrons’) surface as a result
of infinitesimal displacements shown by
the arrows

Transition currents are calculated in WFM analogously to transition proba-
bilities. The pole structure of the right-hand side of Eq. (150) tells us that the
transition current can be calculated by means of an expression similar to (34):

(0] J;(r)|v) = h lim (- Q, )9 (r)E; (r, t) exp (iQt) /(v|W|0).  (159)
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For the &; from above we obtain (using formulae (129) and (124))

(Ol J3(r)l) = —iﬂuneq(r)\%[mlﬁzl — Ror|[v)z1 + (0| Ro—1 + Rou )],

- B N «
<0|J2(I‘)|ll> = Quneq(r)ﬁ<0|R2_1 + R21|l/>.133, (160)

(0J: ()[p) = —munw(r)\%mmg_l ~ Bt |)as,
As is seen, transition currents are proportional to transition probabilities.

If necessary, one can find the next term of the series (151). To calculate
the respective coefficients G; jxi (t) in the WFM method one is obliged to derive
(and solve) the set of dynamical equations for higher (fourth) order moments of
the Wigner function. Examples of similar calculations for third-rank tensors can
be found in [12].

5.2. RPA Method. The procedure of constructing the flow distributions in
RPA is more complicated. It is necessary at first to calculate transition currents.
Having solutions (72) for X” ., Y., one can do it with the help of formula (85):

mi> T mi>

S . v . v '4"/Q’,*" 'n,'Q* i
OUO) = S i X+ Vi) = 6, 3 { i - Jos T}
mi 1 mt 1 mt

ma

_ Z jim Q;,‘km, _ jmi Q:nz 4
v El/ - Eu + €0

€0
mi(AN=0)

jz’m Q;,‘km . jmi Qrm'
oy [l e

€2
mi(AN=2)

The operator Q has a finite number of particle hole matrix elements Q,,;, so, in
principle, the sums in (161) can be calculated exactly. The same is true for the
coefficients ¢, (124). Therefore, in accordance with (150) one could hope to find
the exact RPA result for the velocity distribution du(r, t). Unfortunately, because
of the pole structure of coefficients ¢, (2), it can be done for any ) except the
required frequency €2, corresponding to the considered mode (resonance). Of
course, it is clear that in the case of 2 close enough to €2, the main contribution
into du comes from the single matrix element (0|.J(r)|v). That is why, to get an
idea about the distribution of currents in the RPA eigenstate |v) it is sufficient
to know the transition matrix element (0|.J(r)|). However, even in this simple
model one cannot find a compact analytical expression for sums in (161) — the
field of velocities can be constructed only numerically.

As we have already seen it is much more convenient to deal with lines
of currents. The differential equation for them can be derived with the help of
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formula (150). With a e~** time dependence we rewrite it in the more convenient

form
—nI(r)ii(r) = Y _[(0]Ji(r)|o)cs — (o] Ji(r)|0)es]

o

and define the ratio

0[Jo(r 0)Coy — olJ r)|0)c,
62(e) Z;KIQ()H (o]J2(r)|0)co]

&) S0l m)l0)es — (o]Js()]0)e]

g

Remembering the definition of &; and c,, multiplying the numerator and the
denominator of the right-hand side by (€ — Q) and taking the limit Q@ — Q,,
we arrive to the differential equation

dy (0] J2(r)lv)

V) 162
d= ~ (01s(r)] (1o

v)’
which determines the lines of currents for the resonance state |v).

5.3. Green’s Function Method. The distribution function being known, one
can calculate the distribution of nuclear currents j™(r,t) = mn7(r,t)u”(r,t).
There are no any currents in the equilibrium state, so we have

3
gmw—mmuﬁmynw—/éﬂpmh@p»

3
- (CT 0o+ C7 (0] [ b ioter ) =

Qmwx

z 2
= ———W[Zmep —m?

W, 3 wi(@® +y%) = mPWZ2?PRO] (Hwy + OT (w-] =

- _ﬁng(r)[c;(tm +CI(tw-], (163)

where the following notation is introduced:

t

CL(t) = /dt ZT(t') cos wy(t' —t).

— 00

Deriving (163) we used the approximation (17) which means, in particular, that
wf = w? and n{ = nf =ng/2. Another component of the flow is

3 X
jZ(r7t)=/édh)3 p-fi(r,p,t) = — 27;;2 n(£)[C(Hwy — CT(H)w_]. (164)
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With the help of the isovector counterpart of formulae (138) the functions C7 (¢)
can be written via dynamical variables

T T w T T w— T
CI(t)= |Li(t) - f , )] /¢ CL(t) =~ Ll(t)—zfy(t) /¢
. 2n3el, 2 . .
with ¢ = W Ok = Bmw,w, /6ko, and the required combinations are
Cl(t)wy +CT (t)w— = —2w,[L7(t) + IyT(t)]/C,

(165)
Clt)ws — O (- = 2w [L3(1) — IT(1)/C.
We are interested in isovector flows j, = j» — 42 and j, = j* — j2. With the
help of the first and last equations of (25) we find

,2 =
Ci(Hwy + O (Hw_ = —2w,idm [1 + 292( oz)é} %,
(166)
_ _ . @2 @1
Ci(t)ws — C_(H)w_T = —2w,iQdm |1 — (1—-a)f| =—.
92 ¢
As a result, we have the explicit expressions for currents
- iQ @? - Wy
Ju(r,t) = i {1 — 2§(1 — a)é} Ql(t)no(r)w—z(x +y),
(167)
- Q)

Ju(r,t) =

x

% {1+2_2( —a)é} Ql(t)no(r)%z.

Following the recipe of Subsec. 5.2 (formula (162)) we can derive the differential
equation for lines of currents, for example, in the plane z = 0:

-2
dz j Td yw 02 - &Z (168)
z
Il—QW(l—a)é

with A and B defined by (153). Obviously, this expression coincides exactly with
formula (155). It is necessary to emphasize the principal point: the result (168)
is obtained from the GF method in a direct way, whereas deriving formula (155)
we made the strong approximation about truncating the expansion (151) which
parameterizes the displacements. The agreement of both expressions is not sur-
prising — at the end of Sec.5 we have shown that in the case of the harmonic
oscillator with multipole—multipole residual interactions the WFM and GF meth-
ods give identical results.
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5.4. Summary of Flow Calculations. In conclusion, in full RPA one must
calculate the currents numerically leading to fine details (shell effects) whereas
in WFM and GF treatments one obtains their gross structure with analytical
formulas. The latter feature is quite important in order to understand the real
character of the motion under study since current patterns produced numerically
from complicated formulas with a lot of summations like in (161) can hardly be
interpreted physically. A good example is the interplay of the scissors mode and
the isovector giant quadrupole resonance. Looking only at the flow patterns (see
Figs. 1, 2) one would not be able to tell that the former is mostly rotational with a
small amount of an irrotational component and the other way round for the latter,
as can be seen from Eqgs. (157), (158).

CONCLUSION

In this paper, we made an exhaustive comparison of different methods to treat
collective excitations in nuclei, like the scissors mode, isovector and isoscalar
giant quadrupole resonances. This comparison was exemplified by the harmonic
oscillator plus separable quadrupole—quadrupole force model, but it has a more
general character.

We investigated the WFM, RPA, and Green’s Function (GF) methods. Un-
der certain circumstances all three methods give essentially the same results. For
example, all methods give in our model the same analytical expressions for en-
ergies and transition probabilities for all the excitations considered. It turned
out that the WFM and GF methods are very close to one another. Contrary
to the RPA, both work in phase space and incorporate semiclassical aspects,
with no need to introduce a single particle basis. Finally, both the meth-
ods yield identical sets of dynamical equations for the moments. However,
in the case of realistic forces the GF method loses its simplicity and a more
complicated pseudoparticle method [39] has to be applied, whereas the WFM
method continues to be a convenient and powerful tool for the description of
the collective motions, as was demonstrated in [14-17] by employing Skyrme
forces.

To show the analytical equivalence between the WFM and RPA methods one
needs to introduce the dynamical equations for the transition matrix elements.
They can be derived either from the RPA equations for the amplitudes Xj,,
Y}q or from the WFM dynamical equations for the moments. This proves the
identity of eigenvalues in both methods under the condition that a complete basis
is used in both the cases. However, both the methods behave differently when the
dimension of the space is reduced. Actually, the WFM is designed to use only
rather a few moments of low rank, which play the role of collective coordinates
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of the model. The restricted number of eigenvalues approximate the collective
states in an optimal way, representing, e.g., their centroid positions, as this was
shown in [14,15,17,34]. In this sense, the WFM has similarity with the sum
rule approach [9] which works, however, only in the cases when practically all
strength is exhausted by one state, whereas the WFM method works also in
situations when the strength is distributed among several excitations. On the
contrary, in the RPA one needs in general rather large space to correctly account
for the collectivity of, e.g., the giant resonances. This demonstrates very well the
difference between the two approaches: the RPA describes the fine structure of
collective excitations, whereas the WFM method yields the corresponding gross
structure.

It makes no sense to speak about advantages or disadvantages of one of the
two discussed methods — they are complementary. Of course, RPA gives com-
plete, exhaustive information concerning the microscopic (particle-hole) structure
of collective excitations. However, sometimes a considerable additional effort is
required to understand their physical nature. On the contrary, the WFM method
gives direct information on the physical nature of excitations. One should note
that from the quantum mechanical point of view Wigner function moments (being
the average values of some operators) are the quantum observables, which relieves
the physical interpretation of the corresponding excitation. Our results serve as a
very good illustration of this situation. What do we learn about the scissors mode
and IVGQR from each of the two methods? RPA says that the scissors mode
is mostly created by AN = 0 particle-hole excitations with a small admixture
of AN = 2 particle-hole excitations and vice versa for IVGQR. Without further
effort — this is about all. One does not even suspect the key role of the relative
angular momentum in the creation of the scissors mode. On the other hand, the
WFEM method directly reveals that the scissors mode appears due to oscillations
of the relative angular momentum with a small admixture of the quadrupole mode
and vice versa for IVGQR. Further, it informs us about the extremely important
role of the Fermi surface deformation in the formation of the scissors mode.

The principal difference between the two methods is revealed in their practical
use (applications). The RPA equations (70) are written in the very general and
convenient for calculations form: the equations for every new pair of amplitudes
Xiq, Yiq are obtained simply by changing the indices k,g. As a result, there are
no big problems to write the set of equations of arbitrary large dimension which
can be solved by modern computers without any difficulties. The situation with
moments is quite different. It is difficult to write in general terms the dynamical
equation for tensors of arbitrary rank n. The equations for Cartesian tensors of
every rank must be derived separately (see the text after formula (4)). Even
the procedure of the reduction of Cartesian tensors to irreducible ones becomes
practically hopeless for large n. And, as a matter of fact, there is no necessity in
further increasing n, because it contradicts the grand idea of the WFM method —
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to describe the main features of the phenomenon (its gross structure) by the
minimal set of the most essential physical characteristics. Nevertheless, taking
into account moments of higher and higher rank, one can produce a more and
more detailed description of the phenomenon, achieving (at least in principle) the
maximally fragmented picture given by the experiment (and RPA).

Two new mathematical results are obtained for the HO + QQ model. We have
proved exactly, without any approximations, the orthogonality of the «spurious»
state to all physical states. In this sense, we have generalized the result of
Lo Iudice [29] derived in a small deformation approximation. The analytical
expressions are derived for the normalization factor of the synthetic scissors state
and overlaps of this state with eigenstates of the model. We suggested also the
differential equation to construct the current lines in the RPA.

Future work in this direction will deal with superfluidity and spin degrees of
freedom.

APPENDIX A

It is known that the deformed harmonic oscillator Hamiltonian can be ob-
tained in a Hartree approximation «by making the assumption that the isoscalar
part of the QQ force builds the one-body container well» [21]. In our case it is
obtained quite easily by summing the expressions for V? and V™ (formula (7)):

Vir,t) = = (VP(r,t) + V(r, 1)) =

N =

2

1
= §mw2r2 + Ko H;;—H“szu(t)qzu(r)- (A.1)

In the state of equilibrium (i.e., in the absence of an external field) Qoy1 =
4
@Q2+2 = 0. Using the definition [37] Q20 = Qoo§5 and the formula ¢o0 =

222 — 22 — y? we obtain the potential of the anisotropic harmonic oscillator
m
V(r) = Flwi(@® + %) + wlz?]
with oscillator frequencies
w2 =w? =w?(1+409), w?=uw?-200),

Y

8Qo0
mw2 ' . . . .

reproduced by the harmonic oscillator wave functions, which allows one to fix

the value of 0. We have

h (X, X X, h (¥, X
QOO_E<_+_y+_>7 Q20_2_<___>7

Wy Wy W m\w, Wy

where 0 = —Kg The definition of the deformation parameter 6 must be
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A
1
where >, = Z (nx + 5) and n, is the oscillator quantum number. Using the

i=1 ?

self-consistency condition [37]
YWz = Mywy = MW, = Lgwo,

where ¥y and wq are defined in the spherical case, we get

Q20 w2 — w? 206 4

= = -4
Qoo w2+2w2 1-06 3
Solving the last equation with respect to o, we find

2
o= .
3426

Therefore, the oscillator frequencies and the strength constant can be written as

(A2)

4 2 ma?
2 _ 2 _ —2 1 iy 2 _ —2 1— =46 = — A3
wy =w, = ( + 30), wx=u 30 /) Fo 4Qo0 (A.3)

with @* = w?/(1 4+ 26). The condition for volume conservation wywyw. =
const = w3 makes w §-dependent

2 _ o 1+ (2/3)6
0 = .
(L+(4/3)8)" (1 - (2/3)9)"/°
So the final expressions for oscillator frequencies are

5 o o f1+(4/3)0 1/3 s o (1-(2/3)6 2/3
= W, = W (m) ’ z = o(m) . (A4)

w y

It is interesting to compare these expressions with the very popular [9,37]
parameterization

2 4
2 2 2 / 2 2
wm—wy—w' <1+—35>, W, =w <1——3($,>

The volume conservation condition gives

2
2 __ “o

(1+(2/3)0)*% (1~ (4/3)6)"*

so the final expressions for oscillator frequencies are

2 o o (14230 2 o (1= (435N
W, = wy = Wy (m) , W, =Wy (m) . (AS)
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The direct comparison of expressions (A.4) and (A.5) allows one to establish the
following relation between ¢ and 4’

0 s
1426’ 1—26"

One more parameterization of oscillator frequencies can be found in the re-

i 4]:
view [ ] W”Q wl/Q
2_,2___ Y 0 2_ ¥
z Y1 —(2/3)8" 214 (4/3)8"

One has from the volume conservation condition

2/3 1/3
2 4
n2 _ 2 1— 24" 1 2"
w wh ( 3 + 3 )

so the final expressions for oscillator frequencies are

2 2 9 1+ (4/3)8” 1/3 s s 1-(2/3)8" 2/3
G-d-i(thme) () o 0o

z y
that coincide exactly with (A.4), i.e., 6" = 4.

It is easy to see that equations (A.4) correspond to the case when the de-
formed density n(r) is obtained from the spherical density ng(r) by the scale
transformation [20]

w

(z,y,2) — (we™/? ye/? ze7®)
with

(A7)

1/3
o (1+(4/3)8 :§e3a—1
1-(2/3)6 ’ 2e3 27
which conserves the volume and does not destroy the self-consistency, because
the density and potential are transformed in the same way.
It is necessary to note that Qoo also depends on 9§

hi(Se %y 2\ h 2 1
Qoo——<—+—y+—>——20um<—2+—2)—
m m w

0 1
(1+ (4/3))"? (1 - (2/3)6)**

3
where QY, = AgRQ7 R = rgAY/3. As a result, the final expression for the
strength constant becomes

_mw% (1 - (2/3)6)1/3 B _mw% s
408 \1+(4/3)8) — 4Q5

that coincides with the respective result of [20].

Ro =



1836 BALBUTSEV E.B.

APPENDIX B
To calculate the sums Qg = Z |Qmi|2 and @y = Z |Qmi|2
mi(AN=0) mi(AN=2)

we employ the sum-rule techniques of Suzuki and Rowe [20]. The well-known
harmonic oscillator relations

anL = \/ ﬁ(ﬁwmq + Vg + ]-wanrl)v

(B.1)
R . [mhwy
panw =1 9 (V nzl/anq — Vg + ]-wanrl)
allow us to write
xzwnanz = zm\/m(\/ nznzwnxflwnzfl'k
(nx + ]- nz + ]- wanrlwanrl + (nz + 1)nzwnw+1wn271+
+ V nz(nz + 1)?/1nw711/)nz+1), (B 2)

miwgw, T Qm\/m(vnfnzw%—lwnz—l-f—
(nz + 1) (2 + D)Yn, 1Un, 41 — V(e + 1)n2tbn, 190, —1—
Ny (TLZ + 1)wnw71'¢)nz+1).

These formulae demonstrate in an obvious way that the operators

1 1 A 1 A
Py= 3 (zx + fpxpz) and P = <zx - 27pzpz>
2 MWW, 2 MWW,

contribute only to the excitation of the AN = 0 and AN = 2 states, respec-
tively. Following [20], we express the zz component of 72Yy; = 1/5/167Q =

—+/15/87mz(x + iy) as

zx =Py + Ps.

Hence, we have

O|ZP0 )|mi)
H, ZPO

_602
> Ry

(0] Z ZsTs|mi)

s=1

w0 3

mi(AN=0)

1
= 50l 0), (B.3)
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where ¢g = h(w; — w,). The above commutator is easily evaluated for the
Hamiltonian with the potential (A.1) as

A A
O[> Pols), |H,Y  Po(s)| | 0) =
s=1 s=1
A A
(O _=20) (0] Y =2l0)
= —¢ s=1 - —==1 (B.4)
2m Wy Wy
Taking into account the axial symmetry and using the definitions
A A 4
Qoo = (0| ;(%2 +22)[0), Q20 = 2(0) ;@2 —23)[0), Q20 = Quo30,

we transform this expression to

A

ZPO(S)a

s=1

(0] 0) =

A
H,>  Py(s)

L (1+ (4/3)5 1- (2/3)5) s

6m . W,

With the help of the self-consistent expressions for w,, w, (A.3) one comes to
the following result:

A
01> Ro(s),
s=1

A
H,>  Py(s)
s=1

2 2 2
|0>_%€_0:h_ 9% (ﬂ—ﬂ) . (B.6)

6m w2  6m W, Wy

By using the fact that the matrix elements for the zy component of 72Ys; are

identical to those for the zx component, because of axial symmetry, we finally
obtain

602

mi(AN=0)

2
_iQOO 2

= —€n =
167w mw? °

A
(01 r2Ya1|mi)

s=1

_ 5 Qe (1+(/3)0)"
C 16 m w? <1—(2/3)5) - (B.7)
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By calculating the double commutator for the P, operator, we find

A 2 5 Q
2 . 00 2 —
€2 Z <0|er}61|mz> 167’(’ mio2 €2 =
mi(AN=2) s=1
5 Q0 e [1+(4/3)5\"*
= 0 (ST (B8
16 m wi \1—(2/3)d

where €2 = A(w, + w,).

We need also the sums Qf and QF calculated separately for neutron and
proton systems with the mean fields V™ and VP, respectively. The necessary
formulae are easily derivable from the already obtained results. There are no any
reasons to require the fulfillment of the self-consistency conditions for neutrons
and protons separately, so one has to use formula (B.5). The trivial change of
notation gives

4
> PR(s)

(0]

Z
HP.> " Py(s)

o, (1+<4/3>5 1 (2/3)5 )
N . (B.9)

= €
6m 000 w? w?

Z
<0| Z T§Y21 |mz>

s on <1+(4/3>5 L (2/3)0

B.10
= 167 m 000 Wk Wt )’ (8.10)

p
DY

mi(AN=0)

zZ
(01 Y r2Yar|mi)| =

s=1

p
G D

mi(AN=2)

L (1+(4/3)5p+1—(2/3)5p). B11)

T 16w m 2¥00 w? w?

The nontrivial information is contained in oscillator frequencies of the mean fields
VP and V" (formula (7))

(@D)? = w? |1~

2 | 4
2 Q + RQ)| @2 L k0l + k).

(B.12)

n [ 2 n - ] n 4 n -
(@20 = (L= (k@ + QB (2= L (ko + KBy
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The above-written formulae can also be used to calculate the analogous
sums for operators containing various combinations of momenta and coordinates,
for example, components of an angular momentum, tensor products (rp)s; and
(p?)21. By definition I = yp. — 2Py, I, = zp, — xp.. In accordance with (B.1),
we have

R h fw,
xpzwnwwnz = _ZE w_(\/ nznzwnxflwnzfl_
x

— V(e + D1z + Dtbn, 11%n, 41 + v/ (g + Dnatbn, 41%n, —1—
— ez + Db, 190 41). (B.13)

Therefore,

le/anl/an = Zg <H% — 4/ %) X
b [w,  [ws
X (\/nxnzwnw—lwnz—l_ vV (nx+1)(n2+1)1pnm+11pnz+1)-HE ( w_+ w_> X
X (V(ne + D1t 4190 -1 — Ve (e + Don, —19n.41).  (B.14)

Having formulae (B.2) and (B.14), one derives the following expressions for
matrix elements coupling the ground state with AN = 2 and AN = 0
excitations:

)

. h(w2 — w2 s+ 1D, +1
(e + s + 1|10y = 122 wz)\/(" * U(n: +1)
2 Wyt w, WaWy

47 _ fb(wﬁ —w?) [(ne +1n,
(ng +1,m, —112|0) =4
2 wy —wy WyWy
(B.15)
h 1 1
(ng + 1,m, + 1]a2]0) = _\/w
2m Wels
h 1
(ngy +1,n, — 1zz|0) = — M
2m Wals
It is easy to see that
2 _ 2
(o +1,ms + 1)5J0) = im 2= 10 41 4 1]w2(0),
We + W,
(wi — w?)

(ng +1,n. — 1|1,]0) = im (ng +1,n, — 1]x2|0).

xT z



1840 BALBUTSEV E.B.

Due to the degeneracy of the model all particle hole excitations with AN = 2
have the same energy €2 and all particle hole excitations with AN = 0 have the
energy eg. This fact allows one to join the last two formulae into one general
expression

2 9
(b1 210) = it 2= gzl
p

Taking into account the axial symmetry we have an analogous formula for Ii:

o (R0
(o] 1210) = —itm =2 [0,

ph

The magnetic transition operator (37) is proportional to the angular momentum:

~ ) 3 . o
fir1 = e \/ 5=(I2 F il1). Therefore, we can write
dme V 27

eh (w2 -w?)

(Phlfra]0) = =5 === ph|r* Yo 0). (B.16)
- . . 1 IR N
Similar calculations for the tensor product (rp)a; = —5[ Dz + P +1(2Py +yD2)]

lead to the following relation:

R .m |2
(Ph|(rp)2[0) = 50\ | T eon (PhIr?Yaua [0) = iepn (phlrd [0).  (B.17)

Two kinds of particle hole matrix elements are obtained from the second
formula of (B.2):

(ny +1)(n, +1)

2wz 2w, ’

<nz +1,n, + 1|ﬁzﬁz|0> = _hmwzwz\/

1
(ng + 1,n, — 1p2p.|0) = hmw,w, M
2w2w,
Simple comparison with (B.15) shows that

(ngy + 1,n, + 1pep.|0) = —m*wew, (n, + 1,1, + 1]x2(0),
(ng +1,m, — 1p2p.0) =m 2wz (ng +1,m, — 1]zz|0).

With the help of the obvious relations

2., 2 232 2., 2 232
2waw, =wy +wi —e5/h,  —2w,w, = wi +w. —e€5/h
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these two formulae can be joined into one expression

2
L m
(ph|p.p.|0) = 7(%2” +w? - eih/h2)<ph|xz|0>.

By definition p3, = —p.(p, + ipy) and 73, = —z(x + iy), hence,

[ I )

11.

12.
13.
14.
15.
16.

17.
18.

19.

[ V)

~ m
(Ph[p5:]0) = - (wF +w? — eu/A%) (phlr3,(0). (B.18)
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