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Using the intertwining operator technique we construct Darboux transformations for the wave
equation with position-dependent effective mass and with linearly energy-dependent potentials. The
formally adjoint generators of supersymmetry and two formally self-adjoint superpartner Hamiltonians
are constructed and they close a quadratic pseudosuperalgebra. The Darboux transformations are
constructed in differential and integral forms and an interrelation is established between them. The
approach is applied to generation of isospectral potentials with additional or removal bound states or
construction of new partner potentials without changing the spectrum, i.e., fully isospectral potentials.
The method is illustrated by some concrete examples. The in�uence of distance between levels on
the form of potentials is investigated. In particular, asymmetric double well potentials are generated.
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INTRODUCTION

The problem of exact solvability of the Schréodinger equation has been exten-
sively considered since the beginning of quantum mechanics [1]. A factorization
technique was introduced by Schréodinger and was used to solve harmonic os-
cillator, hydrogen atom, Kepler motion. It should be noted that factorization is
closely connected with the Darboux transformation [2] and the supersymmetry
approach introduced by Witten in quantum mechanics [3]. Many interesting ex-
actly solvable models have been constructed for Schréodinger equation using the
Darboux and Bargmann transformation techniques [4Ä15]. In the last few years,
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the research efforts on the topic of algebraic methods have been considerably
intensiˇed [16Ä28] due to the rapid development of nanoelectronics, the basic
elements of which are low-dimensional structures such as quantum wells, wires,
dots, and superlattices [29Ä33]. The Darboux transformations are one of the most
powerful methods permitting to extend the class of new exactly solvable models.
It has been constructed for a variety of linear and nonlinear equations. Among the
linear equations to which the Darboux transformations are applicable, there are
Pauli and Dirac equations [4, 7, 8], conventional Schréodinger equations (see the
reviews in [8Ä11]), the class of Schréodinger equations with position-dependent
effective mass [22Ä26], and Schréodinger-type equations with energy-dependent
potentials [15, 34]. The Darboux transformations are essentially based on inter-
twining relations and differ from other transformations, that are mostly based on
a change of coordinates like point canonical method.

In the present paper, we apply the intertwining operator method to the
Schréodinger-type equations with position-dependent effective mass and with lin-
early energy-dependent potentials and construct ˇrst- and second-order Darboux
transformations, chains of transformations, factorization, and ®pseudosupersym-
metry¯. Darboux transformations for the Schréodinger equation with position-
dependent mass, for the wave equation with linearly energy-dependent potentials,
as well as Darboux transformations for the conventional Schréodinger equation can
be seen as special cases of Darboux transformations for the generalized equation.
The position-dependent mass Schréodinger equation is used in different ˇelds of
physics, for example, in atomic and nuclear physics for investigation of spec-
tral properties [35, 36], for description of quantum properties of helium clusters
and metal clusters [37, 38], as well as in nanoelectronics and optoelectronics for
investigation of semiconductor heterostructures [29Ä33], in which the carrier ef-
fective mass depends on position. Although algebraic methods have been used
in obtaining exact solutions for Schréodinger equation with position-dependent
mass, however, their applications are very complicated for realization and there
remain a lot of problems to study. For instance, much attention has been given
to the investigation of double-well potentials for conventional Schréodinger equa-
tion [39Ä41]. Nevertheless, this problem has not been investigated for quantum
systems endowed with position-dependent mass.

Wave equations with energy-dependent potentials are widely used in relativis-
tic and nonrelativistic quantum mechanics for a long time [42Ä53], in particular,
for investigation of waveguide devices in such modern ˇelds of physics as opto-
electronics [33, 54] and photoelectronics [57]. The efforts of many authors have
been concentrated on the inverse eigenvalue problems on the determination of q(x)
and v(x) from the eigenvalues of the operator [43Ä48], One can cite more recent
investigations, related to a polynomial form of potential coefˇcients [49, 52, 53]
in the second-order differential operator as well as the intertwining technique for
wave equations with linearly energy-dependent potentials [34].
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The aim of the present paper is to consider a more general problem of gener-
ating exact solutions for one-dimensional wave equation with position-dependent
mass and with a linear energy-dependent potential by using the intertwining
transformation technique. At the beginning the problem with the second-order
differential operator of a general form was considered within the classical string
model (see [5] and references therein). Similar problems arise in the physics
of Earth [43, 55], in acoustic and electromagnetism [56]. In recent time, the
rapid progress has been observed in quantum optics, optoelectronics [33], and
photoelectronics [57], where the wave equation of a general form is used for the
description of wave guide structures as well as the effective position-dependent
mass equation, and the wave equation with energy-dependent potentials without
effective mass is applied. We think that the development of Darboux or equiv-
alent algebraic transformations for the second-order differential equations of a
general form extends the capabilities for investigations in these ˇelds.

The presence of the energy-dependent potential has a few particularities [44].
The main of them leads to the modiˇcation of the scalar product, which in contrast
to common Schréodinger equation is most considered with the weight function. In-
stead of Hermitian Hamiltonians it is necessary to work with formally self-adjoint
Hamiltonians [58] or, in another terminology, with crypto-Hermitian Hamiltoni-
ans [44] or pseudo-Hermitian Hamiltonians [59]. It is known, the Schréodinger
equation and the effective mass Schréodinger equation allow a supersymmetry
approach and it connects with their respective Darboux transformations. In the
case of the generalized Schréodinger-type equation it is necessary to use formally
adjoint operators in construction of close pseudosupersymmetry algebra, and this
problem should be studied.

The Darboux transformations can be presented not only in a differential form
and in an integral form, too. The technique of iterated integral operators for
Schréodinger equation is based on the integral GelfandÄLevitan and Marchenko
equations [60Ä62]. For example, the Darboux transformations in the integral
form were considered for the conventional Schréodinger equation in [63, 64], the
Darboux transformations in the differential and in the integral form and their re-
lationships were studied for the system of Schréodinger equations in [65], and for
the Schréodinger equation with variable energy and angular momentum in [66,67].
As we know, the ˇrst attempts to construct the second-order Darboux transforma-
tions in the integral form for the Schréodinger equation with position-dependent
mass and weighted energy were made in [68]. A combination of the differential
and integral Darboux transformations makes the approach more �exible and pow-
erful. Indeed, the integral transformations are preferable at the reconstruction of
totally isospectral Hamiltonians, at the construction of Hamiltonians differing by
one bound state from the initial one, when this bound state is removed or added
at arbitrary energy. In this case differential transformations, accomplished on the
excited states, give singular potentials.
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In this paper we will focus on Darboux transformations of an arbitrary order
applied to the generalized Schréodinger equation with position-dependent mass and
energy-dependent potentials. As a ˇrst step, we plan to consider a case of ˇrst-
order intertwining operators and their supersymmetry interpretation. Although
supersymmetry relations coincide in form with the standard supersymmetry ones,
the intertwining transformation operators are different. These operators are for-
mally adjoint, have a more complicate form and have to factorize the pair of
pseudo-Hermitian Hamiltonians. Here, we shall establish a correspondence be-
tween the spaces of solutions of the initial and transformed equations. We have
to note that some of the results can be obtained from the previous paper [27],
where a similar intertwining technique is used for the generalized Schréodinger
equations in (1 + 1) dimensions. But in this paper considerations do not relate
with pseudosupersymmetry and, as it is natural for time-dependent equations,
generation of isospectral potentials is not considered. At the second step, we
shall consider nth-order transformations by iteration. Then, we shall elaborate
Darboux transformations in the integral form and show relations with Darboux
transformations in the differential form. The procedure can be used for generating
families of Hamiltonians with a predetermined spectrum, removing or adding new
bound states. To explain our ˇndings, we consider a few different examples of
our approach and show how to generate completely isospectral potentials or to
construct potentials with addition or moving of bound states from the spectrum
of the initial Hamiltonian. We analyze the in�uence of the distances between
the energy levels on the shape of potentials, which can be very complex. We
construct asymmetric double-well and even triple-well potentials for the effective
mass Schréodinger equation.

The paper is organized as follows. Section 1 is devoted to the generalized
Darboux transformation of the ˇrst order and corresponding supersymmetry for-
malism. In Sec. 2 we construct chains of Darboux transformations by iteration
of ˇrst-order Darboux transformations. In Sec. 3 we derive transformations in an
integral form and establish a relationship with differential Darboux transforma-
tions, afterwards we consider totally isospectral potentials. In Sec. 4 we illustrate
our generalized transformations by concrete examples.

1. THE INTERTWINING RELATIONS AND SUPERSYMMETRY

As is well known, Darboux transformations (or supersymmetry) in nonrela-
tivistic quantum mechanics allow one to produce Hamiltonians whose spectra can
differ in one bound state [8]. We will extend the approach to the one-dimensional
Schréodinger-type equation with position-dependent mass and weighted energy[

d

dx

(
1

m(x)

)
d

dx

]
φ(x) + v(x)φ(x) = q(x) E φ(x). (1)
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Here m(x) stands for the particle's effective mass, q(x) E is a linearly energy-
dependent potential and v(x) denotes the potential, φ(x) is the wave function and
E denotes real-valued energy, and we use atomic units. The potential functions
v, q, and m are assumed to be real and integrable on [a, b] on which m(x), q(x),

and v(x) are deˇned, and v(x) ∈ L1
1, i.e.,

b∫
a

dx|v(x)|(1 + |x|) < ∞. We assume

that m(x) �= 0 and q(x) �= 0 on the interval [a, b]. In principle, the conditions
can be more weak if it is necessary to consider the physical situation with an
abrupt interface. It means that effective mass has discontinuities at some points
of [a, b]. We assume that potential functions v(x) remain ˇnite, but not neces-
sarily continuous, the function φ(x) must be continuous φ−(x) = φ+(x) and its

derivative should satisfy the condition

(
1

m(x)
d φ(x)

d x

)
−

=
(

1
m(x)

d φ(x)
d x

)
+

,

where subindices − and + denote the left- and right-hand sides of mass discon-
tinuity [16,22]. Even if the potential function has points of singularities, one can
use the Darboux transformation method, reconstructing potential excluding the
points of singularities (see, e.g., [4]).

The presence of a linearly energy-dependent potential leads to the modiˇca-
tion of the scalar product with the weight of q(x): (f, χ)q =

∫
f∗(x)q(x)χ(x) dx.

As a consequence, in contrast to conventional Schréodinger equation, the role of the
self-adjoint operator plays the operator H† = q−1H+q instead of H+. It can be

shown that the operator H† = H, where H = − 1
q(x)

[
d

dx

(
1

m(x)

)
d

dx

]
+

v(x)
q(x)

is

the second-order differential operator of our wave equation (1). The correspond-

ing eigenfunctions should satisfy the following conditions:
b∫

a

dx q(x)|φ(x)|2<∞,

which is an analog of the square integrability of the Schréodinger equation eigen-
functions. In Russian literature [58] an operator D† adjoint to D and deˇned by
D† = q−1D+q with q(x) �= 0 is called a formally adjoint operator. If D† = D,
then it is called a formally self-adjoint operator. Apparently, such kind of operator
is a particular case of pseudo-Hermitian operators. By the deˇnition [59], opera-
tors D are said to be pseudo-Hermitian with respect to q if D† = q−1D+q = D.
The operator H of (1) satisˇes this condition.

In this section we will brie�y present the method of intertwining the oper-
ators of the ˇrst order, then we will analyze the supersymmetry and the n-fold
iteration of the ˇrst-order Darboux transformations. The point canonical transfor-
mation method is often used (see, e.g., [27,28]) to convert a general second-order
differential equation into another solvable equation. In particular, within the
point canonical transformations the Schréodinger equation with position-dependent
mass and a linearly energy-dependent potential can be transformed in the form
of the constant mass Schréodinger equation by changing the coordinate and wave
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function. Evidently, this transformation generates isospectral potentials for the
Schréodinger-type equation of a general form and Schréodinger equation with con-
stant mass (see, e.g., [28]). At the same time, in the recent paper [26] it has
been shown, the energy spectrum of the position-dependent mass Hamiltonians,
in general, is not isospectral with the constant mass Hamiltonians. Evidently,
this problem needs further investigations. In general, m(x) and q(x) could lead
to a very complex effective potential, for which the solution of the Schréodinger
equation can be more complicated than the solution of the initial equation with
m(x) and q(x). Note also, if we are going from the Schréodinger equation with
the effective potential and constant mass to the position-dependent mass equation,
we can reconstruct different mass functions. The procedure is not uniqueness. It
should be noted, the procedure of point canonical transformation demands exis-
tence of the second-order derivatives of m(x) and q(x), which are included in
the effective potential, and it is impossible to consider the situation with abrupt
interfaces.

All these reasons motivate investigations on the development of algebraic
methods for solving the Schréodinger-type equation in a general form without
transforming this equation into the common Schréodinger equation.

1.1. The First-Order Darboux Transformations. Let us consider two gen-
eralized Schréodinger equations

Hφ = Eφ, H = − 1
q(x)

[
d

dx

(
1

m(x)

)
d

dx

]
+

v(x)
q(x)

, (2)

H̃φ̃ = Eφ̃, H̃ = − 1
q(x)

[
d

dx

(
1

m(x)

)
d

dx

]
+

ṽ(x)
q(x)

, (3)

where Hamiltonians H and H̃ differ only in potentials v and ṽ. In the conven-
tional intertwining technique for the Schréodinger equation two one-dimensional
Hamiltonians H = −∂xx + v and H̃ = −∂xx + ṽ and corresponding solutions φ

and φ̃ are related by means of a ˇrst-order differential operator L

LH = H̃L, (4)

φ̃ = Lφ. (5)

As is known, the method of intertwining differential operators provides a universal
approach to generating new exactly solvable equations [69, 70]. We expand
the intertwining relations on our generalized equation in order to determine the
intertwining operator L, a new potential, and solutions of transformed equation (3)
assuming that the solutions to the initial equation (2) are known. We seek for the
intertwiner L in the form of a linear, ˇrst-order differential operator

L = A(x) + B(x)
d

dx
, (6)
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where the coefˇcients A and B are to be determined. To this end, we insert (6)
and the explicit form of the Hamiltonians H and H̃ into the intertwining rela-
tion (4) and apply it to the solution φ of (2). Assuming the linear independence
of derivative operators of different order dk/dxk, k = 0, 1, 2, 3, we obtain the
following system of equations for A, B, and ṽ

2
qm

B′ = B

(
1

qm

)′
, (7)

2
m

A′ +
1
m

B′′ +
(

1
m

)′
B′ − Bq

[
1
q

(
1
m

)′
]′

= B (ṽ − v) , (8)

1
m

A′′ +
(

1
m

)′
A′ + Bq

(
v

q

)′
= A(ṽ − v), (9)

where the prime denotes differentiation with respect to x and arguments have
been omitted. From (7) it follows

B =
β

√
qm

, (10)

where β is an arbitrary constant of integration. Equations (8) and (9) allow us to
determine the potential ṽ and the function A. Multiplying (8) by A and (9) by B
and subtracting the resulting equations we obtain the equation with respect to A

− A′′

qm
+

(
2A′

qmB
+

B′′

qmB
+

1
q

(
1
m

)′
B′

B
−
[

1
q

(
1
m

)′
]′)

A−

− B

(
v

q

)′
− 1

q

(
1
m

)′
A′ = 0. (11)

In order to solve this equation, we introduce a new auxiliary function K deˇned
by K = A/B. Taking (10) into account, after simpliˇcation we arrive at the
following nonlinear equation:

d

dx

[
1

qm

(
−K ′ + K2

)]
− d

dx

(
v

q

)
− d

dx

[
1
q

(
1
m

)′
K

]
= 0,

from which the generalized Riccati equation follows

1
qm

(
−K ′ + K2

)
− v

q
− 1

q

(
1
m

)′
K = −λ, (12)

where λ is an arbitrary integration constant. Equation (12) turns into the conven-
tional Riccati equation in particular cases of m = const and q = const. With B
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from (10) and A = KB the potential ṽ can be expressed from (8) in terms of K
and known potentials v, m, and q

ṽ = v + 2
√

q

m

d

dx

K
√

qm
−
√

q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
. (13)

The potential ṽ will be ˇnally determined after ˇnding the function K from the
Riccati equation (12), that can be linearized and integrated by introducing an
auxiliary function U = U(x)

K = −U ′

U . (14)

Assuming that U is twice continuously differentiable and substituting (14) into (12)
we get the equation

− 1
m

U ′′ −
(

1
m

)′
U ′ + v U = qλU , (15)

which is identical to the initial equation (2) at E = λ. Since the solutions of (2)
with the given potentials v, q, and m are known at all energies E , hence we know
the solution U . Once U is given, the function K is calculated via (14), which in
turn determines A by means of A = BK and (10)

A = − 1
√

qm

U ′

U .

The constant of integration β has been taken to one. By insertion of K in (13)
we obtain the explicit form of the transformed potential

ṽ = v − 2
√

q

m

d

dx

[
1

√
qm

U ′

U

]
−
√

q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
. (16)

Finally, the intertwiner L and the transformation solution φ̃ are determined
from (6) and (5), respectively,

L =
1

√
qm

(
d

dx
+ K

)
=

1
√

qm

[
d

dx
− U ′

U

]
, (17)

φ̃ = Lφ =
1

√
qm

[
d

dx
− U ′

U

]
φ. (18)

From (16)Ä(18) it follows that the transformed potential ṽ, the intertwiner L,
and solutions φ̃ depend not only on the potential v, but also on the additional
potentials m and q. Quite obviously, in order to avoid the creation of singularities
in K , A, and ṽ one must look for nodeless U(x). It is valid if the transformation
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function U corresponds to the ground state provided m(x) and q(x) do not
lead to the extra singularities, which are not present in the initial potential. It
is easy to check that all expressions reduce to the well-known ones for the
Schréodinger equation if potential functions m and q are taken to be constant.
When q = const or m = const we get ˇrst-order Darboux transformations for
position-dependent mass Schréodinger equation [25] or for Schréodinger equation
with weighted energy [34] as particular cases of our approach.

Solutions at energy of transformation. Note that relation (18) connects the
solutions of two equations (2) and (3) at arbitrary energy except for solutions at
energy of transformation, E = λ. Evidently, at E = λ the action of Darboux
transformation (17) on the function U and on functions φ linearly-dependent on
U gives us LU = 0. In order to obtain a solution of the transformed equation (3)
at energy λ, we replace U by a linearly-independent solution Û

Û = U
x∫

x0

dx′ m(x′)
|U(x′)|2 . (19)

The limits of integration depend on the boundary conditions. The direct sub-
stitution of Û into (15) shows that Û really solves the generalized Schréodinger
equation. The action of L on the function Û gives us a solution η of the trans-
formed equation (3) at energy λ

η = LÛ =
√

m

q

1
U . (20)

By using the generalized Liouville formula (19) once more, one can get a second
solution η̂ of (3) at energy λ. For this, U is replaced by η in (19) and with (20)
we get

η̂ = η

x∫
x0

dx′ m(x′)
|η(x′)|2 =

√
m

q

1
U

x∫
x0

dx′q(x′)| U(x′)|2. (21)

Thus, if we know all solutions of the initial equation (2), we can determine all
solutions of the transformed equation (3), including the solutions at energy of
transformation. Notice that if the transformation function U replies to the bound
state of H, then the function η deˇned by (20) at the energy of transformation
λ cannot be normalized. Such bound state is excluded from the spectrum of H.
Therefore, the Hamiltonians H and H̃ are isospectral except for the bound state
with energy λ, which is removed from the spectrum of H. In the next section
we show how one can construct a Hamiltonian with an additional bound state by
using the algebra of supersymmetry (SUSY).
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1.2. Supersymmetry. As is well known, the SUSY algebra provides a re-
lation between superpartner Hermitian Hamiltonians, which can be presented in
a factorized form in terms of Darboux transformation operators L and its ad-
joint L+. Since instead of Hermitian Hamiltonian we have pseudo-Hermitian
Hamiltonian (2) with respect to q(x), H† = q−1H+q = H and q �= 0, in or-
der to construct superalgebra we need in formally adjoint operators. Hence,
instead of operator L+ it is necessary to consider the operator L† = q−1L+q.
Therefore, the operator L† adjoint to L = A + Bd/dx is determined as L† =
q−1 (A − Bd/dx − dB/dx) q. After simpliˇcation we arrive at

L† =
1

√
qm

(
− d

dx
+ K

)
− 1

q

d

dx

√
q

m
. (22)

Since the operators H and H̃ are formally self-adjoint (pseudo-Hermitian), H† =
H and H̃† = H̃ and with account L† = q−1L+q the intertwining relation adjoint
to (4) reads

HL† = L†H̃. (23)

The generalized Schréodinger equations (2) and (3) can then be written as one
single matrix equation in the form(

H− λ 0
0 H̃ − λ

)(
φ

φ̃

)
= 0. (24)

On deˇning Hs = diag (H, H̃) and Φ = (φ, φ̃)T , the above matrix Schréodinger
equation (24) can be written as

[Hs − λI] Φ = 0, (25)

where I is the 2×2 unity matrix. Similar to the case of the standard Schréodinger
equation, we deˇne two supercharge operators Q, Q† as follows:

Q =
(

0 0
L 0

)
, Q† =

(
0 L†

0 0

)
, (26)

where L and L† are the operators given by (17) and (22), respectively. Since
Q† can be determined as Q† = q−1Q+q and with account of L† = q−1L+q one
can conclude that the operator Q† is pseudoadjoint to Q. One can show that
the matrix operators Q, Q†, and Hs satisfy the following anticommutation and
commutation relations:

{Q, Q} =
{
Q†, Q†} = 0, (27)

[Q, Hs] =
[
Hs, Q

†] = 0, (28)
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where {·, ·} and [·, ·] are the anticommutator and the commutator, respectively.
The relations (27) are trivially fulˇlled, because the matrices in (26) are nilpotent.
It is easily seen that equations (28) are equivalent to the intertwining ones (4)
and (23).

Now, let us consider the complementing relations of the supersymmetric
algebra, that is, the anticommutators {Q, Q†} and {Q†, Q}. For this, we calculate
the operators L†L and LL†, and consider the connections of them with our
Hamiltonians H and H̃. By using (17) and (22), we arrive after some algebraic
transformations at

L†L = − 1
qm

∂xx − 1
q

(
1
m

)′
∂x +

1
qm

(
|K|2 − K ′)− 1

q

(
1
m

)′
K, (29)

LL† = − 1
qm

∂xx − 1
q

(
1
m

)′
∂x +

1
qm

(
|K|2 + K ′)+

1
m

(
1
q

)′
K−

− 1
√

qm

[
1
q

(√
q

m

)′]′

. (30)

We express the potential v from the Riccati equation (12) in the form

v =
1
m

(
−K ′ + K2

)
−
(

1
m

)′
K + qλ. (31)

Using this in (13), we get the following representation for the transformed poten-
tial:

ṽ =
1
m

(K2 + K ′) +
q

m

(
1
q

)′
K −

√
q√
m

d

dx

[
1
q

(√
q

m

)′]
+ qλ. (32)

One can easily see that the potential difference is determined as

ṽ − v = 2
√

q

m

d

dx

K
√

qm
−
√

q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
. (33)

On further employing (31) and (32), the formulae (29) and (30) can be rewritten as

L†L = −1
q

[
∂

∂x

(
1
m

)
∂

∂x

]
+

v

q
− λ = H− λ, (34)

LL† = −1
q

[
∂

∂x

(
1
m

)
∂

∂x

]
+

ṽ

q
− λ = H̃ − λ. (35)

As can be easily seen, the anticommutation relation is

{Q, Q†} =
(

L†L 0
0 LL†

)
=
(

H− λ 0
0 H̃ − λ

)
= Hs − λI. (36)
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In components, the latter equality reads

H = L†L + λ, (37)

H̃ = LL† + λ. (38)

One can conclude that the operators Hs, Q, and Q† close a superalgebra and one
can associate a pseudosupersymmetry with a quantum system described by the
Hamiltonian Hs.

Note that as soon as the initial Hamiltonian H is presented in the factorized
form (37), one can get its supersymmetric partner in a factorized form (38), too.
Indeed, multiplying equation (37) from the left by L and taking into account the
intertwining relation (23) we get

LHφ = L(L†L + λ)φ = (LL† + λ)Lφ = H̃Lφ. (39)

It means, that H̃ = LL† + λ.
In summary, we obtained the explicit forms of the supersymmetric partner

Hamiltonians H and H̃. The Hamiltonians (37) and (38) are compatible with
their deˇnitions (2) and (3), respectively, if the transformed potentials v and
ṽ are given by (31) and (32). Finally, taking the difference of the factorized
Hamiltonians (37) and (38) gives the potential difference (13) that we obtained
for our Darboux transformation. Hence, the Darboux transformation is equivalent
to the supersymmetry formalism.

The intertwining relation (23) means that the operator L† is also the transfor-
mation operator and realizes the transformation from the solutions of (3) to the
solutions of (2). Evidently, one can interchange the role of the initial generalized
Schréodinger equation (2) and its transformed counterpart (3). To this end, let us
express the operators L and L† in terms of functions η given in (20), which are
solutions to the equation (3) at energy of transformation λ. First, we rewrite K
by using U from the relation (20)

K = −U ′

U =
1
2

q′

q
− 1

2
m′

m
+

η′

η
.

Using this in (17) and (22), we obtain after simpliˇcations

L† =
1

√
qm

(
− d

dx
+

η′

η

)
, L =

1
√

qm

(
d

dx
+

η′

η

)
+

1
q

d

dx

√
q

m
. (40)

Obviously, the function η is also a transformation function. Notice, L†η = 0,
meaning that η belongs to the kernel of the operator L†. As one can see from (40)
and (21), the application of the operator L† to the second linearly-independent
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solution η̂ of equation (3) gives back the solutions U of the initial problem at
energy of transformation. Indeed,

L†η̂ =
1

√
qm

(
− d

dx
+

η′

η

)
η

x∫
x0

dx′ m(x′)
|η(x′)|2 = −

√
m

q

1
η

= −U .

Hence, the solution at energy of transformation λ takes the form

U =
√

m

q

1
η

(41)

and, in principle, can reply to the new bound state. The second linearly-indepen-
dent solution Û of (2) at energy λ can be written in terms of η as follows:

Û =
√

m

q

1
η

x∫
dx′q|η|2. (42)

Introducing the function K̃ = K̃(x) by K̃ = η′/η and taking into account
1

√
qm

(
1
2

q′

q
− 1

2
m′

m

)
=

1
q

d

dx

√
q

m
, the expressions (40) for operators L† and L

can be rewritten as

L† =
1

√
qm

(
− d

dx
+ K̃

)
, L =

1
√

qm

(
d

dx
+ K̃

)
+

1
q

d

dx

√
q

m
. (43)

Using (33), the potential v can be expressed in terms of ṽ as follows:

v = ṽ −
√

q

m

[
2

d

dx

(
K̃

√
qm

)
+

d

dx

(
1
q

d

dx

(√
q

m

))]
, K̃ =

η′

η
(44)

and corresponding solutions φ are given by

φ = L† φ̃ =
1

√
qm

[
− d

dx
+

η′

η

]
φ̃. (45)

Thus, the function η becomes a transformation function for the operator L†, which
performs the transformation from the potential ṽ to the potential v and from the
solutions of (3) to the solutions of (2). If within the ˇrst procedure (17), (18) we
constructed the potential ṽ with one bound state removed, now we can construct
the potential v with an additional bound state. Note that we have established
a one-to-one correspondence between the spaces of solutions of equations (2)
and (3). The operators L and L† realize this correspondence for any E �= λ. If
E = λ, the correspondence is ensured by mapping η ←→ Û and η̂ ←→ U .
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In particular cases our generalized Darboux transformations are reduced cor-
rectly to the known expressions. In the case with a constant weighted energy
potential, e.g., q(x) = 1, from our supersymmetry approach we get the super-
symmetry for the effective mass Schréodinger equation [23, 25]. In the case with
constant mass m(x) = m0 from our approach we obtain the supersymmetry for
Schréodinger equation with weighted energy [34]. Finally, if m(x) = m0 and
q(x) = 1, our expressions of supersymmetric algebra are correctly reduced to the
conventional ones for the standard Schréodinger equation (see, e.g., [8]).

2. HIGHER-ORDER DARBOUX TRANSFORMATIONS

In this section by considering iterative applications of the ˇrst-order Darboux
transformations n times, we obtain the nth-order Darboux transformation and
show that the nth-order Darboux transformation can be expressed in terms of
solutions of an initial equation, with no use of the solutions to intermediate
equations.

2.1. Chain of Darboux Transformations. Now we consider iteration of
one-step transformations we have obtained in the previous section, in order to
construct the higher-order Darboux transformations. To this end, we show that
the intertwining operator L of the nth-order can be obtained from a sequence
of n ˇrst-order Darboux transformations, like conventional Schréodinger equation,
and create a chain of exactly solvable Hamiltonians H1,H2, . . . ,Hn. Let us
deˇne the second-order Darboux transformation as a sequence of two ˇrst-order
Darboux transformations L1 and L2

L = L2L1, (46)

where L1 is actually L given in (17). Let U1 be an auxiliary solution of (2) at
energy λ1. Then we have

L1 =
1

√
qm

(
d

dx
+ K1

)
, K1 = −U ′

1

U1
. (47)

The operator L2 is determined as follows:

L2 =
1

√
qm

(
d

dx
+ K2

)
, K2 = −χ′

1

χ1
. (48)

The function χ1 is obtained by means of the ˇrst-order Darboux transforma-
tion (47), applied to an auxiliary solution U2 of equation (2) at energy λ2

χ1 = L1U2 =
1

√
qm

(
d

dx
+ K1

)
U2. (49)
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Clearly, χ1 is the solution of the transformed Eq. (3) with the potential v1 = ṽ,
deˇned as in (13), and χ1 can be taken as a new transformation function for the
Hamiltonian H1 = H̃ to generate a new potential

v2 = v1 + 2
√

q

m

d

dx

K2√
qm

−
√

q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
(50)

and corresponding solutions

φ2 = L2φ1 =
1

√
qm

(
d

dx
+ K2

)
φ1, φ1 = L1φ. (51)

The function φ1 = φ̃, deˇned as in (18), is the solution of Eq. (3) with the
Hamiltonian H1 = H̃. In summary, the action of the 2nd-order operator (46) on
solutions φ of the generalized equation (2) leads to solutions φ2 of

H2φ2(x) = Eφ2(x), H2 = −1
q

[
d

dx

(
1
m

)
d

dx

]
+

v2

q
(52)

given by
φ2 = Lφ = L2L1φ. (53)

Iterating the procedure n times in regard to the given operator H leads to the
operator Hn, which satisˇes the intertwining relation:

LH = HnL. (54)

The transformed potentials vn satisfy the following recursion relation

vn = vn−1 + 2
√

q

m

d

dx

Kn√
qm

−
√

q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
, (55)

the corresponding solutions are

φn = Lφ = Lnφn−1 = LnLn−1 · · · L1φ, (56)

where L is the nth-order operator:

L = LnLn−1 · · · L1, Ln =
1

√
qm

(
d

dx
+ Kn

)
, Kn = −

χ′
n−1

χn−1
. (57)

Thus, the chain of n ˇrst-order Darboux transformations results in a chain
of exactly solvable Hamiltonians H → H1 → . . . → Hn. When L is the
nth-order differential operator and the intertwining relation (54) is valid, the
so-called nth-order supersymmetry arises, like for the ordinary Schréodinger equa-
tion [12].
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2.2. Darboux Transformation of the nth Order. Now we show that iteration
procedure of the 1st-order Darboux transformations in (55)Ä(57) can be removed,
and transformed potentials vn and solutions φn can be expressed in terms of the
initial potentials v, m, and q and the family {Uj}, j = 1, 2, . . . , n of auxiliary
solutions of the initial equation (2) at energies λj . Consider now the 2nd-order
transformation in detail. Using the explicit expression for v1 which appears in the
ˇrst-order Darboux transformation (13), we present formula (50) for the potential
v2 as

v2 = v + 2
√

q

m

d

dx

K
√

qm
− 2

√
q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
, K = K1 + K2. (58)

In order to ˇnd K , transform K2 = −χ′
1/χ1, representing χ1 as

χ1 =
1

√
qm

W1,2

U1
, (59)

where W1,2 = U1U ′
2 − U ′

1U2 is the Wronskian of the functions U1 and U2.
Substituting (59) into formula (48) for K2, we get

K2 = −χ′
1

χ1
= − d

dx

[
ln
(

1
√

qm

W1,2

U1

)]
, (60)

and with account of K1 = −U ′
1/U1 we obtain

K = − d

dx

[
ln

W1,2√
qm

]
. (61)

With the last expression after some manipulations, the new potential v2 can be
expressed as

v2 = v − 2
√

q√
m

d

dx

[
1

W1,2

d

dx

W1,2√
qm

]
− 2

√
q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
(62)

and ˇnally in the form

v2 = v − 2
√

q

m

d

dx

⎡⎢⎣
√

m
d

dx
(W1,2/m)

√
q W1,2

⎤⎥⎦ . (63)

Find now the corresponding functions φ2. To this end, let us transform the
relation (51). By analogy with χ1 the function φ1 can be written in terms of the
Wronskian W1,E = U1φ

′ − U ′
1φ:

φ1 =
1

√
qm

W1,E
U1

. (64)
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Let us now calculate the derivative of φ1

φ′
1 = (L1φ)′ =

(
1

√
qmU1

)′
W1,E +

1
√

qm
φ′′ − 1

√
qm

U ′′
1

U1
φ.

Making use of the last expression and the relation (60) for K2 in (51), we obtain,
after some simpliˇcation, the solutions as follows:

φ2 =
1

qm

(
φ′′ − U ′′

1

U1
φ

)
− 1

qm

W ′
1,2

W1,2

W1,E
U1

=
1

qm

W1,2,E
W1,2

. (65)

It is easily seen from (63) and (65) that due to the 2nd-order Darboux trans-
formations, the potential and solutions are completely expressed in terms of the
known potential functions, v, m, and q and the solutions U1,U2, φ(E) of the ini-
tial equation, with no use of the solutions to the intermediate equation with the
potential v1(x).

Clearly, for the next transformation step to be made, one should take a new
transformation function χ2, that corresponds to the potential v2 at energy λ3.
The solution χ2 can be obtained by applying the operator L = L2L1 to the
transformation solution U3 at energy λ3, that is,

χ2 = L2L1U3.

According to (65), the solution χ2 can be written as

χ2 =
1

qm

W123

W12
(66)

and can be used to produce a new transformed operator L3, given by

L3 =
1

√
qm

(
d

dx
+ K3

)
, K3 = −χ′

2

χ2

for generating a new potential v3 with corresponding solutions φ3 and so on
according to (55)Ä(57). In this way, we can express the transformed potentials
vn of any order in terms of the initial potentials v, q, effective mass m and the
family of auxiliary solutions Uj , j = 1, 2, . . . , n of the initial equation (2) at
energies λj , which differ from each other:

vn = v+2
√

q

m

d

dx

K
√

qm
−n

√
q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
, K = K1+K2+. . .+Kn.

(67)
This construction enables us to generate a family of new Hamiltonians of any or-
der and corresponding solutions directly from the initial Hamiltonian and solutions
without generating intermediate Hamiltonians. For the constructing the Darboux
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transformations of nth order for the conventional Schréodinger equations one can
use not only eigenfunctions of the initial Hamiltonian and its associated func-
tions [14]. It would be also interesting to generate the Darboux transformations
for the generalized Schréodinger equations by using associated functions.

3. THE INTEGRAL FORM OF DARBOUX TRANSFORMATIONS

In this section the generalized Darboux transformations are represented in
the integral form and applied to the construction of Hamiltonians with the same
spectrum as the initial one (totally isospectral Hamiltonians), and differing by one
bound state and by two bound states.

3.1. First- and Second-Order Integral Transformations. At the beginning,
consider the ˇrst-order transformation. Multiplying both sides of Eq. (2) for φ
by U1 and subtracting from the obtained expression Eq. (2) for U1 multiplied by
φ, we arrive at

d

dx

(
W1,E
m

)
= (λ1 − E)qU1φ. (68)

The last expression can be easily integrated:

W1,E = m

⎛⎝(λ1 − E)

x∫
q(x′)U1(x′)φ(x′) dx′ + C

⎞⎠ , (69)

where C is a constant of integration. Inserting the integration result into for-
mula (64) for φ1, we arrive at the integral form for the 1st-order transformed
solutions:

φ1 =
√

m

q

1
U1

⎛⎝C + (λ1 − E)

x∫
q(x′)U1(x′)φ(x′) dx′

⎞⎠ . (70)

The auxiliary solutions χ1, taken at the energy E = λ2, can be written as

χ1 =
√

m

q

1
U1

⎛⎝C1 + (λ1 − λ2)

x∫
q(x′)U1(x′)U2(x′) dx′

⎞⎠ , (71)

where it was used W1,2 = m
(
(λ1 − λ2)

x∫
q U1U2 dx′ + C1

)
. The integration

limits depend on the boundary conditions.
Now consider the second-order transformation. By analogy, using

Wχ1,φ1 = m

⎛⎝(λ2 − E)

x∫
q(x′)χ1(x′)φ1(x′) dx′ + C

⎞⎠
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in (51), we shall get the integral form for the 2nd-order transformed solutions
presented in terms of the 1st-order solutions φ1 and χ1

φ2 =
1

√
qm

Wχ1,φ1

χ1
=
√

m

q

1
χ1

⎛⎝C + (λ2 − E)

x∫
q(x′)χ1(x′)φ1(x′) dx′

⎞⎠ .

(72)
Evidently, the solutions φ2 can be expressed directly in terms of the solutions
to the initial equation (2). For this, transform the expression (65) for φ2 having

regard to Eq. (2) for φ and U1; using (69) and
1
m

[W1,2]′ =
[
W1,2

m

]′
−
[

1
m

]′
W1,2

we obtain

φ2 = (λ1 − E)φ − U2(λ1 − λ2)W1,E

m
[
C1 + (λ1 − λ2)

x∫
q(x′)U1(x′)U2(x′) dx′

] =

= (λ1 − E)φ −
U2

[
C + (λ1 − E)

x∫
q(x′)U1(x′)φ(x′) dx′

]
c1 +

x∫
q(x′)U1(x′)U2(x′) dx′

, (73)

where we have introduced c1 = C1/(λ1 − λ2). Using the integral presentation of
Wronskian in (63), the transformed potential v2 can be written as

v2 = v − 2
√

q

m

d

dx

⎛⎝ 1
√

qm

qU2 U1

c1 +
x∫
dx′q(x′)U1(x′)U2(x′)

⎞⎠ . (74)

Thus, we get the integral form of the ˇrst- and second-order Darboux transfor-
mations for the potentials and solutions. Note, the spectrum of Hamiltonian H2

with the potential v2 differs from the spectrum of the initial Hamiltonian H by
two bound states λ1 and λ2.

The formulae (74) and (73) can be rewritten in a more simple form

v2(x) = v(x) − 2

√
q(x)
m(x)

d

dx

(
1√

q(x)m(x)
K(x, x)

)
, (75)

φ2(x) = φ(x) −
x∫

K(x, x′)φ(x′) dx′ (76)

with the operator kernel K(x, x′) determined as

K(x, x′) =
U2(x) q(x′)U1(x′)

c1 +
x∫
dx′ q(x′)U1(x′)U2(x′)

. (77)
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In (76) the constant C, connected with the Wronskian W1,E , is chosen to be
zero. It is interesting to note, that at q(x) = const and m(x) = const the
formulae (75) and (76) look like the inverse-problem ones for potentials and
solutions [61, 62] obtained with the degenerate kernels K(x, x′) except for the
form of transformation operator (77). The operator kernel (77) differs from
the inverse-problem kernel K(x, x′) not only by q(x) �= const but by auxiliary
functions U1(x) and U2(x), which correspond to different energies λ1 �= λ2.
In the next section we shall consider the case when the 2nd-order Darboux
transformations allow one to change the spectrum of a given Hamiltonian on one
bound state that corresponds to U1(x) = U2(x).

3.2. Hamiltonians H2 Differing by One Bound State and Completely
Isospectral Hamiltonians. The ˇrst-order supersymmetry, above considered in
the differential and integral forms, gives us opportunities to construct isospectral
Hamiltonians differing by one bound state. It is interesting to note, if we use
Darboux transformation in its integral form, then we directly from (70) obtain
the solution of the partner equation (3) at energy of transformation E = λ1 which
with an accuracy of an arbitrary constant coincides with (20)

η =
√

m

q

C

U1
.

Now we show how to use double Darboux transformations to generate Hamil-
tonians H2, the spectrum of which differs from the spectrum of the initial Hamil-
tonian H by one bound state, and how to construct a family of isospectral Hamil-
tonians H2, the spectrum of which completely coincides with the spectrum of H.
For the 2nd-order transformation we used the transformation function χ1(x) ob-

tained within the ˇrst step, χ1 = L1U2 =
1

√
qm

(
d

dx
− U1

′

U1

)
U2 with λ1 �= λ2.

But for λ2 = λ1, we have U2 = U1 and it leads to χ1 = L1U2 = 0. For the
second transformation one can use the function χ1 constructed by means of a
linear combination of the solutions η and η̂: χ1 = c1η + c2η̂. For our aim we
take a linear combination as follows:

χ1 = c1η + η̂ =
√

m

q

1
U1

⎛⎝c1 +

x∫
dx′q(x′)| U1(x′)|2

⎞⎠ . (78)

By analogy with (61) we calculate K = K1 + K2 with K1 = −U1
′/U1 and

K2 = −χ′
1/χ1. After simpliˇcation we have

K2 =
U ′

1

U1
−

d

dx

[√
m

q

(
c1 +

x∫
dx′q | U1| 2

)]
√

m/q
(
c1 +

x∫
dx′q | U1|2

)
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and

K = − d

dx

(
ln
√

m

q

)
− q | U1|2(

c1 +
x∫
dx′q | U1|2

) . (79)

Plugging the last expression into formula (58) which deˇnes the potential, after
some transformations we arrive at

v2 = v − 2
√

q

m

d

dx

⎛⎝√ q

m

|U1|2

c1 +
x∫
dx′ q(x′) | U1(x′)|2

⎞⎠ . (80)

With χ1 deˇned by (78) and φ1 represented by its integral form (70), the rela-
tion (72) leads to

φ2 = φ(λ1 − E) − U1

c1 +
x∫
q(x′)U2

1 (x′) dx′
×

×

⎛⎝C + (λ1 − E)

x∫
q(x′)U1(x′)φ(x′) dx′

⎞⎠ . (81)

It should be noted, that in contrast to the differential approach, the relations (80)
and (81) for the new potential v2 and the solution φ2 can be obtained directly
from (74) and (73), which replies the transformations with two bound states, if
one takes U1 = U2.

It is worth noting that the auxiliary function χ1 can be determined as follows:

χ1 = η + Γη̂ =
√

m

q

1
U1

⎛⎝1 + Γ

x∫
dx′ q(x′)U2

1 (x′)

⎞⎠ . (82)

Then the potential v2 and solutions φ2 are rewritten in the form

v2 = v − 2
√

q

m

d

dx

⎛⎝√ q

m

ΓU2
1

1 + Γ
x∫
dx′ q(x′)U2

1 (x′)

⎞⎠ , (83)

φ2 = (λ1 − E)φ − ΓU1

1 + Γ
x∫
q(x′)U2

1 (x′) dx′
×

×

⎡⎣C + (λ1 − E)

x∫
q(x′)U1(x′)φ(x′) dx′

⎤⎦ . (84)
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In principle, the formulae (82)Ä(84) coincide with (78), (80), (81) at Γ = 1/c1,
but they are more suitable for physical applications. Here, the constant Γ plays
a role of a normalization constant of the new bound state λ1 provided the other
spectral characteristics coincide.

By analogy with the differential Darboux transformations, the solution of
the generalized equation (1) with the potential (83) at energy of transformation
E = λ1 can be achieved by means of operator L2 acting on the solution η
from (20), obtained within the ˇrst transformation step

η2 = L2η =
1

√
qm

(
d

dx
− χ′

1

χ1

)√
m

q

1
U1

. (85)

After transformations (85) with the account of (82) we get

η2 = − ΓU1

1 + Γ
x∫
dx′ q(x′)U2

1 (x′)
. (86)

Note, the solution η2 can be directly obtained from (84) at E = λ1. Obtaining
solutions at energies of transformation from the general formulae at arbitrary
energies is one of advantages of integral transformations. The relations for
potential (83) and solutions (84) can be rewritten in the form (75) and (76)
with the operator kernel K(x, x′) determined as

K(x, x′) =
ΓU1(x) q(x′)U1(x′)

1 + Γ
x∫
dx′ q(x′)U2

1 (x′)
.

At m(x) = const = m0 and q(x) = const our generalized expressions are
correctly reduced to the integral equations of inverse problem for the stan-
dard Schréodinger equation with the degenerate kernel of transformation (see,
e.g., [6, 61,71]).

It is worth mentioning that the double Darboux transformation with elim-
inating or adding one bound state at arbitrary energy allows one to avoid the
problems with singularities of the transformation kernel K(x) and, as a con-
sequence, to avoid the problems with singularities of the constructed potentials
and solutions. We assume, that m(x) and q(x) do not lead to the additional
singularities on the tested interval. Let us compare the formulae for the ˇrst-
order transformation (17), (13) and for the second-order one (79), (83). One
can see, if the ˇrst step procedure is based on any arbitrary solution U of the
generalized equation (2), rather than the ground state wave function, the superpo-
tential K = −U ′/U becomes singular. Singularities are localized at the zeros of
excited wave functions. It leads to singularities of constructed potentials and solu-
tions. Unlike the 1st-order transformations, the transformation kernel K(x) of the
2nd-order (79) has no singularities at zeros of excited wave functions. It means
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that one can make transformations on an arbitrary bound state (not only on the
ground state) and construct the potentials and corresponding solutions without
additional singularities.

It is interesting to note that by using the double Darboux transformations (83)Ä
(86) we can construct new potentials v2 without changing the spectrum of the
initial potential v, i.e., fully isospectral potentials as for the ordinary Schréodinger
equation. Indeed, if the bound state λ1 belongs to the spectrum of the initial
Hamiltonian H and Γ = N2

2 − N2 is a difference between the normalization
constants of the bound state λ1 for H2 and H, formulae (83)Ä(86) give us a
family of isospectral potentials and corresponding solutions, since the normaliza-
tion constants can be chosen arbitrary. In quantum mechanics, potentials whose
spectra coincide and differ only in the normalizations factors N2 and N of bound
states are called phase-equivalent potentials. Note, the phase-equivalent potentials
have different shapes. They can be more deeper and narrow or more shallow and
wider and possess the same spectral data, except for normalization constants.

If we assume, the transformation function U1(x) to be taken at energy of the
bound state, which we would like to add to the initial spectrum, and Γ = N2

2 is the
corresponding normalization constant, then formula (83) give us the possibility to
construct a family of two-parametric potentials with a new bound state λ1 and an
arbitrary Γ, whereas the other spectral characteristics of the spectra produced by
the potentials v2(x) and v(x), coincide. Note, constructed potentials v2(x) from
this family are isospectral among themselves, since posses the coinciding spectra
and differ only by the normalization constants. Remind that our eigenfunctions
are normalized with weight of q(x): Γ−1 =

∫
q(x)|φ(x)|2 dx.

4. APPLICATION

4.1. The 1st Example. As an illustrative example we present the transformed
potential and solutions corresponding to the ˇrst, second, and third-order Darboux
transformations. We start with the generalized Schréodinger equation (1) with the
repulsive Coulomb potential v(x) = 1/(4 x)

−
[

d

dx

(
1

m(x)

)
d

dx

]
φ(x) +

1
4x

φ(x) = q(x) Eφ(x), (87)

where we choose effective mass as m = 1/x and q = x. The general solution of
this equation can be written as

φ(x) =
C1 sin (kx)

k
√

x
+

C2 cos (kx)
k
√

x
. (88)

Now we would like to generate potentials with one bound state at energy E1 =
−κ2

1 and obtain corresponding solutions by the ˇrst-order supersymmetry transfor-
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mations (44) and (45) applied to a special case η = η1 of the general solution (88)

η1 =
C cosh (κ1x)

κ1
√

x
.

We obtain the transformation operator K̃1 = η′
1/η1 in the form

K̃1 = − 1
2x

+ κ1 tanhκ1x,

the potential v1 and corresponding solutions φ1 at E �= E1

v1(x) =
1
4x

− 2xκ2
1

(
1 − tanh2 (κ1x)

)
=

1
4x

− 2xκ2
1

cosh2 (κ1x)
, (89)

φ1 =
[
− d

dx
+ K̃1

]
φ =

[
− d

dx
− 1

2x
+ κ1 tanh κ1x

]
φ. (90)

The solution at energy of transformation E = λ1 = −κ2
1 is deˇned in accordance

with (41) as

U =
√

m

q

1
η1

=
√

κ1√
x cosh (κ1x)

(91)

and corresponds to the bound state. Note, by varying φ in (90) we recover all
solutions of (1) with the transformed potential (89) and with m = 1/x and q = x.

In the case when φ is chosen to be φ(x) =
C sin (kx)

k
√

x
we obtain

φ1 = −C cos (kx)√
x

+
Cκ1 tanh (κ1x) sin (kx)

k
√

x
. (92)

If φ is chosen as φ =
C exp (±ikx)

k
√

x
, we get the following partial solutions:

φ±
1 = (∓ik + κ1 tanh (κ1x))

C exp (±ikx)
k
√

x
. (93)

Thus, we presented the simplest example of exactly solvable problem for the
generalized equation (1) with q(x) = x, m(x) = 1/x and with a real poten-
tial (89), which is singular at zero. The potentials, obtained at different energies
of transformation, are depicted in Fig. 1, a.

Now employing Darboux transformations of the second order, we shall con-
struct potentials and solutions of the generalized equation with two bound states.
We deˇne the auxiliary functions η1 and η2 as follows:

η1 =
cosh (κ1x)
√

κ1x
, η2 =

sinh (κ2x)
√

κ2x
.
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Fig. 1. a) Potentials v1(x) corresponding to one bound state created at different energies.
b) Completely isospectral potentials with bound state energy E = −16.0, dashed line
corresponds to the initial potential v1, solid line corresponds to its isospectral potentials.
c) Potentials vn, n = 1, 2, 3 having one, two, and three bound states, respectively

For the second step we have K̃ = K̃1 + K̃2, where

K̃1 =
η′
1

η1
, K̃2 =

χ′
1

χ1
, χ1 =

1
√

qm

(
−η′

2 + K̃1η2

)
, K̃ = − d

dx

(
ln

W1,2√
qm

)
.

The transformed potential v2 having two bound states at energies λ1 = −κ2
1 and

λ2 = −κ2
2 can be written as

v2 = v −
2
√

q√
m

d

dx

(
K̃

√
qm

)
− 2

√
q

m

d

dx

[
1
q

d

dx

(√
q

m

)]
. (94)

Finally, for our choice of v, m, and q we obtain

v2 =
9
4x

− 2x
d2

dx2
ln W1,2, (95)

where W1,2 = W (η1, η2) =
1

x
√

κ2κ1
(κ2 cosh (κ1x) cosh (κ2x)−κ1 sinh (κ2x)×

sinh (κ1x)) and the corresponding solutions are

φ2 =
√

κ1x

cosh (κ1x)

(
d

dx
W1,E − d(ln W1,2)

dx
W1,E

)
,
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where W1,E =
C

xk
√

κ1
(k cosh (κ1x) cos (kx) − κ1 sinh (κ1x) sin (kx)) if φ(x)

is chosen as φ(x) =
C sin (kx)

k
√

x
. We put κ1 < κ2. The potentials having two

bound states are depicted in Fig. 1, c.
By using (55) one can construct the potential v3 for the generalized Schréodinger

equation (3) having three bound states

v3 =
13
4x

− 2x
d2

dx2
ln W1,2,3, (96)

where the auxiliary functions η1, η2, and η3 determined as

η1 =
cosh (κ1x)√

κ1 x
, η2 =

sinh (κ2x)√
κ2 x

, η3 =
cosh (κ3x)√

κ3 x

give us the Wronskian W1,2,3

W1,2,3 =
1

x3/2
√

κ1κ2κ3

[
cosh (κ1x) cosh (κ2x)κ2 sinh (κ3x)κ2

3−

− cosh (κ1x) sinh (κ2x)κ2
2 cosh (κ3x)κ3−

− sinh (κ1x)κ1 sinh (κ2x) sinh (κ3x)κ2
3+

+ sinh (κ1x)κ1 sinh (κ3x) sinh (κ2x)κ2
2+

+ cosh (κ1x) sinh (κ2x)κ2
1 cosh (κ3x)κ3−

− cosh (κ1x)κ2
1 cosh (κ2x)κ2 sinh (κ3x)

]
. (97)

As an illustrative example we present the potentials v1, obtained at energy of
transformation E1 = −2.25, v2, obtained at the energies E1 = −2.25, E2 = −4.0,
and v3, calculated at the energies of transformation E1 = −2.25, E2 = −4.0,
E3 = −25.0. They are depicted in Fig. 1, c.

Now we are going to construct isospectral potentials. As an initial poten-
tial we take the potential v1, obtained within the ˇrst-order intertwining (89).
Using (83) and changing v by v1 from (89) and U1 by U from (91) after simpli-
ˇcation we obtain a family of potentials with the same eigenvalue and different
values Γ

v3(x) =
1
4x

− 2xκ2
1

cosh2 (κ1x)
− 2x

d2

dx2
ln [1 + Γ tanh κ1x] . (98)

The initial potential v1 and its isospectral potentials (98) are presented in Fig. 1, b.
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4.2. The 2nd Example. As the following example let us consider creation of
new bound states for effective mass Schréodinger equation

−
[

d

dx

(
1

m(x)

)
d

dx

]
φ(x) + v(x)φ(x) = E φ(x) (99)

that corresponds to the generalized equation (1) with q(x) = 1. We choose
effective mass in the form m(x) = α2/x2, the initial potential v(x) = 0 and start
with the equation

−
[

d

dx

(
1

m(x)

)
d

dx

]
φ(x) = E φ(x). (100)

The general solution of equation(100) can be written as

φ(x) =
α√
x

[c1 sin (αν ln (x)) + c2 cos (αν ln (x))] , (101)

where c1, c2 are free constants and ν2 = (−1 + 4α2k2)/4α2. Recently in [25]
we have constructed the potentials for effective mass Schréodinger equation (99)
with creation of one and two bound states without investigation of potential forms.
Here we would like to apply our technique to construction of double-well and even
triple-well potentials with creation of two and three bound states, to generation of
completely isospectral potentials and to investigation of the in�uence of position-
dependent mass on the form of constructed potentials.

Construction of completely isospectral potentials. As an initial potential we
take the modiˇed PéoschlÄTeller potential v1, obtained in [25] within the 1st-order
Darboux transformation

v1 = − 2γ2

cosh2 (αγ ln (x))
. (102)

It can be easily obtained from (44) at q(x) = 1 with a particular solution of η1

given as η1(x) =
√

α/x cosh (αγ1 ln (x)). The solution at energy of transfor-
mation E1 = −κ2

1 is

U =

√
m(x)

η1(x)
=

√
α√

x cosh (αγ ln (x))
(103)

and corresponds to the bound state. Using (83) and replacing v by v1 from (102)
and U1 by U from (103) after simpliˇcation we obtain two-parametric family of
isospectral potentials

v3 = − 2γ2

cosh2 (αγ ln (x))
− 2x

α

d

dx

[
x

α

d

dx
ln P

]
, (104)
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where

P = 1 + Γ

x∫
α

x cosh2 (αγ ln (x))
dx.

All these potentials v3 posses a single bound state each with the same energy
E1 = −κ2

1 as the initial potential v1, as well as the normalization constants
including in Γ can be chosen arbitrary. In Fig. 2, a we have plotted the initial po-
tential calculated by formula (102) and its strictly isospectral potentials, calculated
by (104) at different Γ.

Fig. 2. a) Completely isospectral potentials with bound state energy E = −2.0, dashed
line corresponds to the initial potential v1, solid lines correspond to isospectral partner
potentials. b) The change in form of potentials v2(x) with two bound states as the levels
approach each other: 1 Å E1 = −2.0, E2 = −6.0; 2 Å E1 = −2.0, E2 = −3.75. c) The
in�uence of m(x) on the behavior of transformed potentials v2(x) with two bound states
E1 = −2.0, E2 = −3.75

In�uence of distance between levels and effective mass on the form of poten-
tials. By using second-order intertwining let us construct a potential with creation
of two bound states. For this, we deˇne the auxiliary transformation functions as
follows:

η1(x) =
√

α

x
cosh (αγ1 ln (x)) , η2(x) =

√
α

x
sinh (αγ2 ln (x)) , (105)

where γ2
i = −(1 + 4α2κ2

i )/4α2, i = 1, 2. We put κ1 < κ2. The potential
v2, obtained within the second-order Darboux transformation, can be expressed
from (94) with q(x) = 1

v2 = v − 2√
m

d

dx

[
1

W1,2

d

dx

W1,2√
m

]
− 2√

m

d2

dx2

1√
m

. (106)
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This formula coincides with expression obtained in [25] for effective mass
Schréodinger equation. For our choice of m(x) the last term vanishes and the
potential is written as

v2 = −2x

α

d

dx

[
x

α

d

dx
ln W1,2

]
, (107)

where Wronskian is determined as

W12 =
α2

x2

(
γ2 cosh (αγ2 ln (x)) cosh (αγ1 ln (x))−

− γ1 sinh (αγ1 ln x) sinh (αγ2 ln (x))
)
.

The potentials having two bound states are presented in Fig. 2, b, c. The graphs in
(Fig. 2, b) depict the forms of constructed potentials in dependence on the distance
between energy levels. One can see, if the levels are close to each other, then
we construct asymmetric double-well potentials (curve 2 in Fig. 2, b) otherwise,
we construct asymmetric potentials (curve 1 in Fig. 2, b). Note, double-well
potentials have attracted some attention over the last years (see, e.g., [10,40,41]).
Asymmetric double-well potentials for the ordinary Schréodinger equation were
investigated in [39] with introducing a special parameter of asymmetry. In our
case asymmetry in forms is a consequence of position-dependent mass m(x) that
is singular at zero. The in�uence of m(x) on the form of constructed potential
v(x) is demonstrated in Fig. 2, c, b. Our analysis shows that the larger α, the
shallow and narrow constructed potential (see Fig. 2, b, curve 2 and Fig. 2, c). In
other words, increasing m(x) leads to decreasing potential v(x).

The next considered example illustrates the possibility to construct potentials
having three bound states, for all that we can generate double-well potentials
and even triple-well potentials. Employing the third-order Darboux transforma-
tions (67) with q(x) = 1, the potential v3 can be written as

v3 = −2x

α

d

dx

[
x

α

d

dx
ln W1,2,3

]
. (108)

The Wronskian W1,2,3 is determined by the auxiliary functions η1(x), η2(x),
η3(x), where η1(x), η2(x), are deˇned in (105) and η3 is given as η3(x) =√

α/x cosh (αγ3 ln (x)). The potentials v3 calculated by formula (108) are plot-
ted in Fig. 3. As in the previous case with two bound states, the forms of
constructed potentials depend on the space between energy levels. We can see if
levels are sufˇciently distant from one another, we construct simple asymmetric
potentials presented in Fig. 3, a (curve 1), if two levels out of three are close to
each other, we construct asymmetric double-well potentials (Fig. 3, a, curve 2), if
three levels are close to each other, we construct asymmetric triple-well potentials
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Fig. 3. The change in form of potentials V3(x) with three bound states as the levels come
close to each other. a) 1 Å E1 = −1.0, E2 = −3.75, E3 = −6.25; 2 Å E1 = −1.0,
E2 = −3.75, E3 = −5.0; b) E1 = −2.0, E2 = −3.75, E3 = −5.0; c) E1 = −2.0,
E2 = −4.75, E3 = −6.0

(Fig. 3, b and c). As a ˇnal remark, let us note that different distances between
levels give us different shapes of potentials. It can be very important for con-
struction and investigation of quantum systems with needed spectral properties,
e.g., in nanoelectronics [41].

CONCLUSION

By application of the intertwining operator technique to generalized Schréo-
dinger equation with position-dependent mass and with energy-dependent po-
tentials, Darboux transformations of an arbitrary order have been constructed.
The formally adjoint generators of supersymmetry and two formally self-adjoint
superpartner Hamiltonians are constructed and they close a quadratic pseudo-
superalgebra. The integral Darboux transformation method is elaborated for the
generalized Schréodinger equation. An interrelation is found between the differ-
ential and integral transformations. The integral Darboux transformations are
applied to generation of isospectral Hamiltonians differing by one and by two
bound states from the spectrum of the initial one. It is shown how to produce
completely isospectral Hamiltonians to a given initial one. Concrete examples
demonstrate how to apply the Darboux transformation technique for modeling
quantum well potentials with a given spectrum. Hamiltonians with a different
number of levels have been produced and the in�uence of the distance between
the levels on the shape of the constructed potentials has been investigated. In
particular, asymmetric double-well and triple-well potentials are built. The in�u-
ence of position-dependent mass on the behavior of the constructed potentials is
studied, too.
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In concluding remarks, it will be worthwhile to discuss the following ques-
tions: A special interest presents the physical situation with a smooth initial
potential and discontinuities in the effective mass. Some exactly solvable models
with smooth potentials and step mass functions were obtained in [16]. It would
be useful to elaborate the extended supersymmetry to generate a nonlinear su-
peralgebra, to reconstruct complex potentials having a real spectrum, and to use
not only eigenfunctions of the initial Hamiltonian and its associated functions for
constructing Darboux transformations of the nth order as it is developed for the
conventional Schréodinger equation [12,14,72,73]. The intertwining technique can
be a useful tool to study such kind problems.
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