NAMBU-POISSON DYNAMICS
 WITH SOME APPLICATIONS
 N. Makhaldiani*
 Joint Institute for Nuclear Research, Dubna

Short introduction in NPD with several applications to (in)finite dimensional problems of mechanics, hydrodynamics, M-theory and quanputing is given.

PACS: 11.15.-q; 11.30.Pb; 11.30.-j; 47.32.-C; 03.65.-w; 03.65.Yz; 03.67.-a

> Nabu - Babylonian God of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical description of the physical theories [1]. But HM is in a sense blind; e.g., it does not make a difference between two opposites: the ergodic Hamiltonian systems (with just one integral of motion) [2] and (super)integrable Hamiltonian systems (with maximal number of the integrals of motion).

Nambu mechanics (NM) [3,4] is a proper generalization of the HM, which makes the difference between dynamical systems with different numbers of integrals of motion explicit (see, e.g., [5]).

1. HAMILTONIZATION OF DYNAMICAL SYSTEMS

Let us consider a general dynamical system described by the following system of the ordinary differential equations [6]:

$$
\begin{equation*}
\dot{x}_{n}=v_{n}(x), \quad 1 \leqslant n \leqslant N, \tag{1}
\end{equation*}
$$

\dot{x}_{n} stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

$$
\begin{equation*}
v_{n}(x)=\varepsilon_{n m} \frac{\partial H_{0}}{\partial x_{m}}, \quad 1 \leqslant n, \quad m \leqslant 2 M \tag{2}
\end{equation*}
$$

[^0]the system (1) is Hamiltonian one and can be put in the form
\[

$$
\begin{equation*}
\dot{x}_{n}=\left\{x_{n}, H_{0}\right\}_{0}, \tag{3}
\end{equation*}
$$

\]

where the Poisson bracket is defined as

$$
\begin{equation*}
\{A, B\}_{0}=\varepsilon_{n m} \frac{\partial A}{\partial x_{n}} \frac{\partial B}{\partial x_{m}}=A \frac{\overleftarrow{\partial}}{\partial x_{n}} \varepsilon_{n m} \frac{\vec{\partial}}{\partial x_{m}} B \tag{4}
\end{equation*}
$$

and summation rule under repeated indices has been used.
Let us consider the following Lagrangian:

$$
\begin{equation*}
L=\left(\dot{x}_{n}-v_{n}(x)\right) \psi_{n} \tag{5}
\end{equation*}
$$

and the corresponding equations of motion

$$
\begin{equation*}
\dot{x}_{n}=v_{n}(x), \quad \dot{\psi}_{n}=-\frac{\partial v_{m}}{\partial x_{n}} \psi_{m} \tag{6}
\end{equation*}
$$

The system (6) extends the general system (1) by linear equation for the variables ψ. The extended system can be put in the Hamiltonian form [7]

$$
\begin{equation*}
\dot{x}_{n}=\left\{x_{n}, H_{1}\right\}_{1}, \quad \dot{\psi}_{n}=\left\{\psi_{n}, H_{1}\right\}_{1}, \tag{7}
\end{equation*}
$$

where first-level (order) Hamiltonian is

$$
\begin{equation*}
H_{1}=v_{n}(x) \psi_{n} \tag{8}
\end{equation*}
$$

and (first-level) bracket is defined as

$$
\begin{equation*}
\{A, B\}_{1}=A\left(\frac{\overleftarrow{\partial}}{\partial x_{n}} \frac{\vec{\partial}}{\partial \psi_{n}}-\frac{\overleftarrow{\partial}}{\partial \psi_{n}} \frac{\vec{\partial}}{\partial x_{n}}\right) B \tag{9}
\end{equation*}
$$

Note that when the Grassmann grading [8] of the conjugated variables x_{n} and ψ_{n} is different, the bracket (9) is known as Buttin bracket [9].

In the Faddeev-Jackiw formalism [10] for the Hamiltonian treatment of systems defined by first-order Lagrangians, i.e., by a Lagrangian of the form

$$
\begin{equation*}
L=f_{n}(x) \dot{x}_{n}-H(x), \tag{10}
\end{equation*}
$$

motion equations

$$
\begin{equation*}
f_{m n} \dot{x}_{n}=\frac{\partial H}{\partial x_{m}} \tag{11}
\end{equation*}
$$

for the regular structure function $f_{m n}$, can be put in the explicit Hamiltonian (Poisson; Dirac) form

$$
\begin{equation*}
\dot{x}_{n}=f_{n m}^{-1} \frac{\partial H}{\partial x_{m}}=\left\{x_{n}, x_{m}\right\} \frac{\partial H}{\partial x_{m}}=\left\{x_{n}, H\right\} \tag{12}
\end{equation*}
$$

where the fundamental Poisson (Dirac) bracket is

$$
\begin{equation*}
\left\{x_{n}, x_{m}\right\}=f_{n m}^{-1}, \quad f_{m n}=\partial_{m} f_{n}-\partial_{n} f_{m} \tag{13}
\end{equation*}
$$

The system (6) is an important example of the first-order regular Hamiltonian systems. Indeed, in the new variables,

$$
\begin{equation*}
y_{n}^{1}=x_{n}, \quad y_{n}^{2}=\psi_{n} \tag{14}
\end{equation*}
$$

Lagrangian (5) takes the following first-order form:

$$
\begin{gather*}
L=\left(\dot{x}_{n}-v_{n}(x)\right) \psi_{n} \Rightarrow \frac{1}{2}\left(\dot{x}_{n} \psi_{n}-\dot{\psi}_{n} x_{n}\right)-v_{n}(x) \psi_{n}=\frac{1}{2} y_{n}^{a} \varepsilon^{a b} \dot{y}_{n}^{b}-H(y)= \\
= \\
f_{n}^{a}(y) \dot{y}_{n}^{a}-H(y), \quad f_{n}^{a}=\frac{1}{2} y_{n}^{b} \varepsilon^{b a}, \quad H=v_{n}\left(y^{1}\right) y_{n}^{2} \tag{15}\\
\\
f_{n m}^{a b}=\frac{\partial f_{m}^{b}}{\partial y_{n}^{a}}-\frac{\partial f_{n}^{a}}{\partial y_{m}^{b}}=\varepsilon^{a b} \delta_{n m}
\end{gather*}
$$

corresponding motion equations and the fundamental Poisson bracket are

$$
\begin{equation*}
\dot{y}_{n}^{a}=\varepsilon_{a b} \delta_{n m} \frac{\partial H}{\partial y_{m}^{b}}=\left\{y_{n}^{a}, H\right\}, \quad\left\{y_{n}^{a}, y_{m}^{b}\right\}=\varepsilon_{a b} \delta_{n m} \tag{16}
\end{equation*}
$$

To the canonical quantization of this system corresponds

$$
\begin{equation*}
\left[\hat{y}_{n}^{a}, \hat{y}_{m}^{b}\right]=i \hbar \varepsilon_{a b} \delta_{n m}, \quad \hat{y}_{n}^{1}=y_{n}^{1}, \quad \hat{y}_{n}^{2}=-i \hbar \frac{\partial}{\partial y_{n}^{1}} \tag{17}
\end{equation*}
$$

In this quantum theory, classical part, motion equations for y_{n}^{1}, remain classical.
1.1. Modified Bochner-Killing-Yano (MBKY) Structures. Now we return to our extended system (6) and formulate conditions for the integrals of motion $H(x, \psi)$

$$
\begin{equation*}
H=H_{0}(x)+H_{1}+\ldots+H_{N} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{n}=A_{k_{1} k_{2} \ldots k_{n}}(x) \psi_{k_{1}} \psi_{k_{2}} \ldots \psi_{k_{N}}, \quad 1 \leqslant n \leqslant N \tag{19}
\end{equation*}
$$

we are assuming Grassmann valued ψ_{n} and the tensor $A_{k_{1} k_{2} \ldots k_{n}}$ are skewsymmetric. For integrals (18) we have

$$
\begin{equation*}
\dot{H}=\left\{\sum_{n=0}^{N} H_{n}, H_{1}\right\}=\sum_{n=0}^{N}\left\{H_{n}, H_{1}\right\}=\sum_{n=0}^{N} \dot{H}_{n}=0 \tag{20}
\end{equation*}
$$

Now we see, that each term in the sum (18) must be conserved separately. In particular for Hamiltonian systems (2), zeroth, H_{0}, and first-level H_{1}, (8), Hamiltonians are integrals of motion. For $n=0$

$$
\begin{equation*}
\dot{H}_{0}=H_{0, k} v_{k}=0 \tag{21}
\end{equation*}
$$

for $1 \leqslant n \leqslant N$ we have

$$
\begin{align*}
& \dot{H}_{n}=\dot{A}_{k_{1} k_{2} \cdots k_{n}} \psi_{k_{1}} \psi_{k_{2}} \cdots \psi_{k_{N}}+A_{k_{1} k_{2} \cdots k_{n}} \dot{\psi}_{k_{1}} \psi_{k_{2}} \cdots \psi_{k_{N}}+\ldots \\
&+A_{k_{1} k_{2} \cdots k_{n}} \psi_{k_{1}} \psi_{k_{2}} \cdots \dot{\psi}_{k_{N}}=\left(A_{k_{1} k_{2} \cdots k_{n}, k} v_{k}-A_{k k_{2} \cdots k_{n}} v_{k_{1}, k}-\ldots\right. \\
&\left.-A_{k_{1} \cdots k_{n-1} k} v_{k_{n}, k}\right) \psi_{k_{1}} \psi_{k_{2}} \cdots \psi_{k_{N}}=0 \tag{22}
\end{align*}
$$

and there is one-to-one correspondence between the existence of the integrals (19) and the existence of the nontrivial solutions of the following equations:

$$
\begin{align*}
\frac{D}{D t} A_{k_{1} k_{2} \cdots k_{n}}=A_{k_{1} k_{2} \cdots k_{n}, k} v_{k}-A_{k k_{2} \cdots k_{n}} v_{k_{1}, k} & -\ldots \\
& -A_{k_{1} \cdots k_{n-1} k} v_{k_{n}, k}=0 \tag{23}
\end{align*}
$$

For $n=1$ the system (23) gives

$$
\begin{equation*}
A_{k_{1}, k} v_{k}-A_{k} v_{k_{1}, k}=0 \tag{24}
\end{equation*}
$$

and this equation has at list one solution, $A_{k}=v_{k}$. If we have two (or more) independent first order integrals

$$
\begin{equation*}
H_{1}^{(1)}=A_{k}^{1} \Psi_{k} ; \quad H_{1}^{(2)}=A_{k}^{2} \Psi_{k}, \ldots \tag{25}
\end{equation*}
$$

we can construct corresponding (reducible) second (or higher) order MBKY tensor(s)

$$
\begin{gather*}
H_{2}=H_{1}^{(1)} H_{1}^{(2)}=A_{k}^{1} A_{l}^{2} \Psi_{k} \Psi_{l}=A_{k l} \Psi_{k} \Psi_{l} \\
H_{M}=H_{1}^{(1)} \cdots H_{M}^{(M)}=A_{k_{1} \cdots k_{M}} \Psi_{k_{1}} \cdots \Psi_{k_{M}} \tag{26}\\
A_{k_{1} \ldots k_{M}}=\left\{A_{k_{1}}^{(1)} \cdots A_{k_{M}}^{(M)}\right\}, \quad 2 \leqslant M \leqslant N
\end{gather*}
$$

where under the bracket operation, $\left\{B_{k_{1}, \ldots, k_{N}}\right\}=\{B\}$ we understand complete antisymmetrization. The system (23) defines a generalization of the Bochner-Killing-Yano structures of the geodesic motion of the point particle, for the case of the general (1) (and extended (6)) dynamical systems. Having $A_{M}, 2 \leqslant M \leqslant$ N independent MBKY structures, we can construct corresponding second order Killing tensors and Nambu-Poisson dynamics. In the superintegrable case, we have maximal number of the motion integrals, $N-1$.

The structures defined by the system (23) we call the Modified Bochner-Killing-Yano structures or MBKY structures for short, [11].
1.2. Point Vortex Dynamics (PVD). PVD can dy defined (see, e.g., [12, 13]) as the following first order system:

$$
\begin{equation*}
\dot{z}_{n}=i \sum_{m \neq n}^{N} \frac{\gamma_{m}}{z_{n}^{*}-z_{m}^{*}}, \quad z_{n}=x_{n}+i y_{n}, \quad 1 \leqslant n \leqslant N \tag{27}
\end{equation*}
$$

Corresponding first order Lagrangian, Hamiltonian, momenta, Poisson brackets and commutators are

$$
\begin{gather*}
L=\sum_{n} \frac{i}{2} \gamma_{n}\left(z_{n} \dot{z}_{n}^{*}-\dot{z}_{n} z_{n}^{*}\right)-\sum_{n \neq m} \gamma_{n} \gamma_{m} \ln \left|z_{n}-z_{m}\right| \\
H=\sum_{n \neq m} \gamma_{n} \gamma_{m} \ln \left|z_{n}-z_{m}\right|=\frac{1}{2} \sum_{n \neq m} \gamma_{n} \gamma_{m}\left(\ln \left(z_{n}-z_{m}\right)+\ln \left(p_{n}-p_{m}\right)\right) \\
p_{n}=\frac{\partial L}{\partial \dot{z}_{n}}=-\frac{i}{2} \gamma_{n} z_{n}^{*}, \quad p_{n}^{*}=\frac{\partial L}{\partial \dot{z}_{n}^{*}}=\frac{i}{2} \gamma_{n} z_{n} \tag{28}\\
\left\{p_{n}, z_{m}\right\}=\delta_{n m}, \quad\left\{p_{n}^{*}, z_{m}^{*}\right\}=\delta_{n m}, \quad\left\{x_{n}, y_{m}\right\}=\delta_{n m} \\
{\left[p_{n}, z_{m}\right]=-i \hbar \delta_{n m} \Rightarrow\left[x_{n}, y_{m}\right]=-i \frac{\hbar}{\gamma_{n}} \delta_{n m}}
\end{gather*}
$$

So, quantum vortex dynamics corresponds to the noncommutative space. It is natural to assume that vortex parameters are quantized as

$$
\begin{equation*}
\gamma_{n}=\frac{\hbar}{a^{2}} n, \quad n= \pm 1, \pm 2, \ldots \tag{29}
\end{equation*}
$$

and a is a characteristic (fundamental) length.

2. NAMBU DYNAMICS

In the canonical formulation, the equations of motion of a physical system are defined via a Poisson bracket and a Hamiltonian, [6]. In Nambu's formulation, the Poisson bracket is replaced by the Nambu bracket with $n+1, n \geqslant 1$, slots. For $n=1$, we have the canonical formalism with one Hamiltonian. For $n \geqslant 2$, we have Nambu-Poisson formalism, with n Hamiltonians, [3, 4].
2.1. System of Three Vortexes. The system of N vortexes (27) for $N=3$, and

$$
\begin{equation*}
u_{1}=\ln \left|z_{2}-z_{3}\right|^{2}, \quad u_{2}=\ln \left|z_{3}-z_{1}\right|^{2}, \quad u_{3}=\ln \left|z_{1}-z_{2}\right|^{2} \tag{30}
\end{equation*}
$$

reduces to the following system:

$$
\begin{equation*}
\dot{u}_{1}=\gamma_{1}\left(\mathrm{e}^{u_{2}}-\mathrm{e}^{u_{3}}\right), \quad \dot{u}_{2}=\gamma_{2}\left(\mathrm{e}^{u_{3}}-\mathrm{e}^{u_{1}}\right), \quad \dot{u}_{3}=\gamma_{3}\left(\mathrm{e}^{u_{1}}-\mathrm{e}^{u_{2}}\right) \tag{31}
\end{equation*}
$$

The system (31) has two integrals of motion

$$
H_{1}=\sum_{i=1}^{3} \frac{\mathrm{e}^{u_{i}}}{\gamma_{i}}, \quad H_{2}=\sum_{i=1}^{3} \frac{u_{i}}{\gamma_{i}}
$$

and can be presented in the Nambu-Poisson form [14]

$$
\dot{u}_{i}=\omega_{i j k} \frac{\partial H_{1}}{\partial u_{j}} \frac{\partial H_{2}}{\partial u_{k}}=\left\{x_{i}, H_{1}, H_{2}\right\}=\omega_{i j k} \frac{\mathrm{e}^{u_{j}}}{\gamma_{j}} \frac{1}{\gamma_{k}},
$$

where

$$
\omega_{i j k}=\epsilon_{i j k} \rho, \rho=\gamma_{1} \gamma_{2} \gamma_{3},
$$

and the Nambu-Poisson bracket of the functions A, B, C on the three-dimensional phase space is

$$
\begin{equation*}
\{A, B, C\}=\omega_{i j k} \frac{\partial A}{\partial u_{i}} \frac{\partial B}{\partial u_{j}} \frac{\partial C}{\partial u_{k}} . \tag{32}
\end{equation*}
$$

This system is superintegrable: for $N=3$ degrees of freedom, we have maximal number of the integrals of motion $N-1=2$.
2.2. Extended Quantum Mechanics. As an example of the infinite dimensional Nambu-Poisson dynamics, let me conside the following extension of Schrödinger quantum mechanics [15]:

$$
\begin{align*}
V_{t} & =\Delta V-\frac{V^{2}}{2} \tag{33}\\
i \psi_{t} & =-\Delta \psi+V \psi . \tag{34}
\end{align*}
$$

An interesting solution to the equation for the potential (34) is

$$
\begin{equation*}
V=\frac{4(4-d)}{r^{2}}, \tag{35}
\end{equation*}
$$

where d is the dimension of the space. In the case of $d=1$, we have the potential of conformal quantum mechanics.

The variational formulation of the extended quantum theory, is given by the following Lagrangian:

$$
\begin{equation*}
L=\left(i V_{t}-\Delta V+\frac{1}{2} V^{2}\right) \psi . \tag{36}
\end{equation*}
$$

The momentum variables are

$$
\begin{equation*}
P_{v}=\frac{\partial L}{\partial V_{t}}=i \psi, \quad P_{\psi}=0 . \tag{37}
\end{equation*}
$$

As Hamiltonians of the Nambu-theoretic formulation, we take the following integrals of motion:

$$
\begin{align*}
& H_{1}=\int d^{d} x\left(\Delta V-\frac{1}{2} V^{2}\right) \psi, \\
& H_{2}=\int d^{d} x\left(P_{v}-i \psi\right), \tag{38}\\
& H_{3}=\int d^{d} x P_{\psi} .
\end{align*}
$$

We invent unifying vector notation, $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)=\left(\psi, P_{\psi}, V, P_{v}\right)$. Then it may be verified that the equations of the extended quantum theory can be put in the following Nambu-theoretic form:

$$
\begin{equation*}
\phi_{t}(x)=\left\{\phi(x), H_{1}, H_{2}, H_{3}\right\} \tag{39}
\end{equation*}
$$

where the bracket is defined as

$$
\begin{align*}
\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\} & =i \varepsilon_{i j k l} \int \frac{\delta A_{1}}{\delta \phi_{i}(y)} \frac{\delta A_{2}}{\delta \phi_{j}(y)} \frac{\delta A_{3}}{\delta \phi_{k}(y)} \frac{\delta A_{4}}{\delta \phi_{l}(y)} d y= \\
= & i \int \frac{\delta\left(A_{1}, A_{2}, A_{3}, A_{4}\right)}{\delta\left(\phi_{1}(y), \phi_{2}(y), \phi_{3}(y), \phi_{4}(y)\right)} d y=i \operatorname{det}\left(\frac{\delta A_{k}}{\delta \phi_{l}}\right) \tag{40}
\end{align*}
$$

2.3. M Theory. The basic building blocks of M theory are membranes and $M 5$-branes. Membranes are fundamental objects carrying electric charges with respect to the 3 -form C-field, and $M 5$-branes are magnetic solitons. The NambuPoisson 3-algebras appear as gauge symmetries of superconformal Chern-Simons non-Abelian theories in $2+1 \mathrm{E}$ dimensions with the maximum allowed number of $N=8$ linear supersymmetries.

The Bagger and Lambert [16] and Gustavsson [17] (BLG) model is based on a 3-algebra,

$$
\begin{equation*}
\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c} T^{d} \tag{41}
\end{equation*}
$$

where T^{a} are generators and $f_{a b c d}$ is a fully antisymmetric tensor. Given this algebra, a maximally supersymmetric Chern-Simons Lagrangian is

$$
\begin{gather*}
L=L_{\mathrm{CS}}+L_{\text {matter }}, \\
L_{\mathrm{CS}}=\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f_{a b c d} A_{\mu}^{a b} \partial_{\nu} A_{\lambda}^{c d}+\frac{2}{3} f_{c d a g} f_{e f b}^{g} A_{\mu}^{a b} A_{\nu}^{c d} A_{\lambda}^{e f}\right), \tag{42}\\
L_{\text {matter }}=\frac{1}{2} B_{\mu}^{I a} B_{a}^{\mu I}-B_{\mu}^{I a} D^{\mu} X_{a}^{I}++\frac{i}{2} \bar{\psi}^{a} \Gamma^{\mu} D_{\mu} \psi_{a}+\frac{i}{4} \bar{\psi}^{b} \Gamma_{I J} x_{c}^{I} x_{d}^{J} \psi_{a} f^{a b c d}- \\
-\frac{1}{12} \operatorname{tr}\left(\left[X^{I}, X^{J}, X^{K}\right]\left[X^{I}, X^{J}, X^{K}\right]\right), \quad I=1,2, \ldots, 8,
\end{gather*}
$$

where $A_{\mu}^{a b}$ is gauge boson, ψ^{a} and $X^{I}=X_{a}^{I} T^{a}$ are matter fields. If $a=1,2,3,4$, then we can obtain an $S O(4)$ gauge symmetry by choosing $f_{a b c d}=f \varepsilon_{a b c d}, f$ being a constant. It turns out to be the only case that gives a gauge theory with manifest unitarity and $N=8$ supersymmetry.

The action has the first order form so we can use the formalism of the first section. The motion equations for the gauge fields

$$
\begin{equation*}
f_{a b c d}^{n m} \dot{A}_{m}^{c d}(t, x)=\frac{\delta H}{\delta A_{n}^{a b}(t, x)}, \quad f_{a b c d}^{n m}=\varepsilon^{n m} f_{a b c d} \tag{43}
\end{equation*}
$$

take canonical form

$$
\begin{gather*}
\dot{A}_{n}^{a b}=f_{n m}^{a b c d} \frac{\delta H}{\delta A_{m}^{c d}}=\left\{A_{n}^{a b}, A_{m}^{c d}\right\} \frac{\delta H}{\delta A_{m}^{c d}}=\left\{A_{n}^{a b}, H\right\}, \\
\left\{A_{n}^{a b}(t, x), A_{m}^{c d}(t, y)\right\}=\varepsilon_{n m} f^{a b c d} \delta^{(2)}(x-y) \tag{44}
\end{gather*}
$$

3. DISCRETE DYNAMICAL SYSTEMS

Computers are physical devices and their behavior is determined by physical laws. The Quantum Computations [18, 19], Quantum Computing, Quanputing [20], is a new interdisciplinary field of research, which benefits from the contributions of physicists, computer scientists, mathematicians, chemists and engineers.

Contemporary digital computer and its logical elements can be considered as a spatial type of discrete dynamical systems [21]

$$
\begin{equation*}
S_{n}(k+1)=\Phi_{n}(S(k)), \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}(k), \quad 1 \leqslant n \leqslant N(k) \tag{46}
\end{equation*}
$$

is the state vector of the system at the discrete time step k. Vector S may describe the state and Φ transition rule of some Cellular Automata [22]. The system of the type (45) appears in applied mathematics as an explicit finite difference scheme approximation of the equations of the physics [23].

Definition: We assume that the system (45) is time-reversible if we can define the reverse dynamical system

$$
\begin{equation*}
S_{n}(k)=\Phi_{n}^{-1}(S(k+1)) \tag{47}
\end{equation*}
$$

In this case the following matrix:

$$
\begin{equation*}
M_{n m}=\frac{\partial \Phi_{n}(S(k))}{\partial S_{m}(k)} \tag{48}
\end{equation*}
$$

is regular, i.e., has an inverse. If the matrix is not regular, this is the case, for example, when $N(k+1) \neq N(k)$, we have an irreversible dynamical system (usual digital computers and/or corresponding irreversible gates).

Let us consider an extension of the dynamical system (45) given by the following action function:

$$
\begin{equation*}
A=\sum_{k n} l_{n}(k)\left(S_{n}(k+1)-\Phi_{n}(S(k))\right) \tag{49}
\end{equation*}
$$

and corresponding motion equations

$$
\begin{gather*}
S_{n}(k+1)=\Phi_{n}(S(k))=\frac{\partial H}{\partial l_{n}(k)} \\
l_{n}(k-1)=l_{m}(k) \frac{\partial \Phi_{m}(S(k))}{\partial S_{n}(k)}=l_{m}(k) M_{m n}(S(k))=\frac{\partial H}{\partial S_{n}(k)} \tag{50}
\end{gather*}
$$

where

$$
\begin{equation*}
H=\sum_{k n} l_{n}(k) \Phi_{n}(S(k)) \tag{51}
\end{equation*}
$$

is discrete Hamiltonian. In the regular case, we put the system (50) in an explicit form

$$
\begin{align*}
S_{n}(k+1) & =\Phi_{n}(S(k)) \tag{52}\\
l_{n}(k+1) & =l_{m}(k) M_{m n}^{-1}(S(k+1))
\end{align*}
$$

From this system it is obvious that, when the initial value $l_{n}\left(k_{0}\right)$ is given, the evolution of the vector $l(k)$ is defined by evolution of the state vector $S(k)$. The equation of motion for $l_{n}(k)$ is linear and has an important property that linear superpositions of the solutions are also solutions.

Statement. Any time-reversible dynamical system (e.g., a time-reversible computer) can be extended by corresponding linear dynamical system (quantumlike processor) which is controlled by the dynamical system and has a huge computational power [20,21, 24, 25].
3.1. (de)Coherence Criterion. For motion equations (50) in the continual approximation, we have

$$
\begin{gather*}
S_{n}(k+1)=x_{n}\left(t_{k}+\tau\right)=x_{n}\left(t_{k}\right)+\dot{x}_{n}\left(t_{k}\right) \tau+O\left(\tau^{2}\right) \\
\dot{x}_{n}\left(t_{k}\right)=v_{n}\left(x\left(t_{k}\right)\right)+O(\tau), \quad t_{k}=k \tau \\
v_{n}\left(x\left(t_{k}\right)\right)=\left(\Phi_{n}\left(x\left(t_{k}\right)\right)-x_{n}\left(t_{k}\right)\right) / \tau \tag{53}\\
M_{m n}\left(x\left(t_{k}\right)\right)=\delta_{m n}+\tau \frac{\partial v_{m}\left(x\left(t_{k}\right)\right)}{\partial x_{n}\left(t_{k}\right)}
\end{gather*}
$$

(de)Coherence criterion: The system is reversible, the linear (quantum, coherent, soul) subsystem exists, when the matrix M is regular,

$$
\begin{equation*}
\operatorname{det} M=1+\tau \sum_{n} \frac{\partial v_{n}}{\partial x_{n}}+O\left(\tau^{2}\right) \neq 0 \tag{54}
\end{equation*}
$$

For the Nambu-Poisson dynamical systems (see, e.g., [5])

$$
\begin{gather*}
v_{n}(x)=\varepsilon_{n m_{1} m_{2} \ldots m_{p}} \frac{\partial H_{1}}{\partial x_{m_{1}}} \frac{\partial H_{2}}{\partial x_{m_{2}}} \cdots \frac{\partial H_{p}}{\partial x_{m_{p}}}, \quad p=1,2,3, \ldots, N-1, \\
\sum_{n} \frac{\partial v_{n}}{\partial x_{n}} \equiv \operatorname{div} v=0 . \tag{55}
\end{gather*}
$$

REFERENCES

1. Faddeev L. D., Takhtajan L. A. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer, 1990.
2. Sinai Ya. G. Topics in Ergodic Theory. Princeton, NJ: Princeton Univ. Press, 1993.
3. Nambu Y. // Phys. Rev. D. 1973. V.7. P. 2405.
4. Whittaker E.T. A Treatise on the Analytical Dynamics. Cambridge, 1927.
5. Makhaldiani N. Nambu-Poisson Dynamics of Superintegrable Systems // At. Nucl. 2007. V. 70. P. 564.
6. Arnold V. I. Mathematical Methods of Classical Mechanics. N. Y.: Springer, 1978.
7. Makhaldiani N., Voskresenskaya O. On the Correspondence between the Dynamics with Odd and Even Brackets and Generalized Nambu's Mechanics. JINR Commun. E2-97-418. Dubna, 1997.
8. Berezin F. A. Introduction to Superanalysis. Dordrecht: Reidel, 1987.
9. Buttin C. // C. R. Acad. Sci. Paris. 1969. V.269. P. 87.
10. Faddeev L. D., Jackiw R. // Phys. Rev. Lett. 1988. V.60. P. 1692.
11. Makhaldiani N. The Algebras of the Integrals of Motion and Modified Bochner-Killing-Yano Structures of the Point Particle Dynamics. JINR Commun. E2-99-337. Dubna, 1999.
12. Aref H. // Ann. Rev. Fluid Mech. 1983. V. 15. P. 345.
13. Meleshko A. V., Konstantinov N. N. Dynamics of Vortex Systems. Kiev: Nauk. Dumka, 1993.
14. Makhaldiani N. The System of Three Vortexes of Two-Dimensional Ideal Hydrodynamics as a New Example of the (Integrable) Nambu-Poisson Mechanics. JINR Commun. E2-97-407. Dubna, 1997; solv-int/9804002.
15. Makhaldiani N. New Hamiltonization of the Schrödinger Equation by Corresponding Nonlinear Equation for the Potential. JINR Commun. E2-2000-179. Dubna, 2000.
16. Bagger J., Lambert N. Modeling Multiple M2's // Phys. Rev. D. 2007. V. 75. P. 045020; arXiv:hep-th/0611108.
17. Gustavsson A. Algebraic Structures on Parallel M2-Branes // Nucl. Phys. B. 2009. V. 811. P. 66; arXiv:0709.1260 [hep-th].
18. Benenti G., Casati G., Strini G. Principles of Quantum Computation and Information. V.I: Basic Concepts. Singapore: World Sci., 2004; V.II: Basic Tools and Special Topics. Singapore: World Sci., 2007.
19. Nielsen M. A., Chuang I. L. Quantum Computation and Quantum Information. Cambridge: Cambridge Univ. Press, 2000.
20. Makhaldiani N. Theory of Quanputers // Sovremennaia Matematica i ee Prilozhenia. 2007. V.44. P. 113; J. Math. Sci. 2008. V. 153. P. 159.
21. Makhaldiani N. How to Solve the Classical Problems on Quantum Computers. JINR Commun. E2-2001-137. Dubna, 2001.
22. Toffoli T., Margolus N. Cellular Automata. Machines: MIT Press, 1987.
23. Samarskii A., Gulin A. Numerical Methods. M.: Nauka, 1989.
24. Makhaldiani N. Classical and Quantum Problems for Quanputers. quant-ph/0210184, 2002.
25. Makhaldiani N. Regular Method of Construction of the Reversible Dynamical Systems and Their Linear Extensions — Quanputers // At. Nucl. 2011. V. 74. P. 1040.

[^0]: *E-mail: mnv@jinr.ru

