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NAMBUÄPOISSON DYNAMICS
WITH SOME APPLICATIONS

N. Makhaldiani∗
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Short introduction in NPD with several applications to (in)ˇnite dimensional problems of me-
chanics, hydrodynamics, M-theory and quanputing is given.
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Nabu Å Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [1]. But HM is in a sense blind; e.g., it does
not make a difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) [2] and (super)integrable Hamiltonian systems
(with maximal number of the integrals of motion).

Nambu mechanics (NM) [3, 4] is a proper generalization of the HM, which
makes the difference between dynamical systems with different numbers of inte-
grals of motion explicit (see, e.g., [5]).

1. HAMILTONIZATION OF DYNAMICAL SYSTEMS

Let us consider a general dynamical system described by the following system
of the ordinary differential equations [6]:

ẋn = vn(x), 1 � n � N, (1)

ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1 � n, m � 2M, (2)
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the system (1) is Hamiltonian one and can be put in the form

ẋn = {xn, H0}0, (3)

where the Poisson bracket is deˇned as

{A, B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←
∂

∂xn
εnm

→
∂

∂xm
B, (4)

and summation rule under repeated indices has been used.
Let us consider the following Lagrangian:

L = (ẋn − vn(x))ψn (5)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n = −∂vm

∂xn
ψm. (6)

The system (6) extends the general system (1) by linear equation for the variables
ψ. The extended system can be put in the Hamiltonian form [7]

ẋn = {xn, H1}1, ψ̇n = {ψn, H1}1, (7)

where ˇrst-level (order) Hamiltonian is

H1 = vn(x)ψn (8)

and (ˇrst-level) bracket is deˇned as

{A, B}1 = A

( ←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn

)
B. (9)

Note that when the Grassmann grading [8] of the conjugated variables xn and ψn

is different, the bracket (9) is known as Buttin bracket [9].
In the FaddeevÄJackiw formalism [10] for the Hamiltonian treatment of sys-

tems deˇned by ˇrst-order Lagrangians, i.e., by a Lagrangian of the form

L = fn(x)ẋn − H(x), (10)

motion equations

fmnẋn =
∂H

∂xm
, (11)

for the regular structure function fmn, can be put in the explicit Hamiltonian
(Poisson; Dirac) form

ẋn = f−1
nm

∂H

∂xm
= {xn, xm} ∂H

∂xm
= {xn, H}, (12)
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where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1
nm, fmn = ∂mfn − ∂nfm. (13)

The system (6) is an important example of the ˇrst-order regular Hamiltonian
systems. Indeed, in the new variables,

y1
n = xn, y2

n = ψn, (14)

Lagrangian (5) takes the following ˇrst-order form:

L = (ẋn − vn(x))ψn ⇒ 1
2
(ẋnψn − ψ̇nxn) − vn(x)ψn =

1
2
ya

nεabẏb
n − H(y) =

= fa
n(y)ẏa

n − H(y), fa
n =

1
2
yb

nεba, H = vn(y1)y2
n,

(15)
fab

nm =
∂f b

m

∂ya
n

− ∂fa
n

∂yb
m

= εabδnm;

corresponding motion equations and the fundamental Poisson bracket are

ẏa
n = εabδnm

∂H

∂yb
m

= {ya
n, H}, {ya

n, yb
m} = εabδnm. (16)

To the canonical quantization of this system corresponds

[ŷa
n, ŷb

m] = i�εabδnm, ŷ1
n = y1

n, ŷ2
n = −i�

∂

∂y1
n

. (17)

In this quantum theory, classical part, motion equations for y1
n, remain classical.

1.1. Modiˇed BochnerÄKillingÄYano (MBKY) Structures. Now we return
to our extended system (6) and formulate conditions for the integrals of motion
H(x, ψ)

H = H0(x) + H1 + . . . + HN , (18)

where
Hn = Ak1k2...kn(x)ψk1ψk2 . . . ψkN , 1 � n � N, (19)

we are assuming Grassmann valued ψn and the tensor Ak1k2...kn are skew-
symmetric. For integrals (18) we have

Ḣ =

{
N∑

n=0

Hn, H1

}
=

N∑
n=0

{Hn, H1} =
N∑

n=0

Ḣn = 0. (20)

Now we see, that each term in the sum (18) must be conserved separately.
In particular for Hamiltonian systems (2), zeroth, H0, and ˇrst-level H1, (8),
Hamiltonians are integrals of motion. For n = 0

Ḣ0 = H0,kvk = 0, (21)
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for 1 � n � N we have

Ḣn = Ȧk1k2···knψk1ψk2 · · ·ψkN + Ak1k2···kn ψ̇k1ψk2 · · ·ψkN + . . .

+ Ak1k2···knψk1ψk2 · · · ψ̇kN = (Ak1k2···kn,kvk − Akk2···knvk1,k − . . .

− Ak1···kn−1kvkn,k)ψk1ψk2 · · ·ψkN = 0, (22)

and there is one-to-one correspondence between the existence of the integrals (19)
and the existence of the nontrivial solutions of the following equations:

D

Dt
Ak1k2···kn = Ak1k2···kn,kvk − Akk2···knvk1,k − . . .

− Ak1···kn−1kvkn,k = 0. (23)

For n = 1 the system (23) gives

Ak1,kvk − Akvk1,k = 0 (24)

and this equation has at list one solution, Ak = vk. If we have two (or more)
independent ˇrst order integrals

H
(1)
1 = A1

kΨk; H
(2)
1 = A2

kΨk, . . . , (25)

we can construct corresponding (reducible) second (or higher) order MBKY ten-
sor(s)

H2 = H
(1)
1 H

(2)
1 = A1

kA2
l ΨkΨl = AklΨkΨl,

HM = H
(1)
1 · · ·H(M)

M = Ak1···kM Ψk1 · · ·ΨkM , (26)

Ak1...kM = {A(1)
k1

· · ·A(M)
kM

}, 2 � M � N,

where under the bracket operation, {Bk1,...,kN} = {B} we understand complete
antisymmetrization. The system (23) deˇnes a generalization of the BochnerÄ
KillingÄYano structures of the geodesic motion of the point particle, for the case
of the general (1) (and extended (6)) dynamical systems. Having AM , 2 � M �
N independent MBKY structures, we can construct corresponding second order
Killing tensors and NambuÄPoisson dynamics. In the superintegrable case, we
have maximal number of the motion integrals, N − 1.

The structures deˇned by the system (23) we call the Modiˇed BochnerÄ
KillingÄYano structures or MBKY structures for short, [11].

1.2. Point Vortex Dynamics (PVD). PVD can dy deˇned (see, e.g., [12,13])
as the following ˇrst order system:

żn = i

N∑
m �=n

γm

z∗n − z∗m
, zn = xn + iyn, 1 � n � N. (27)
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Corresponding ˇrst order Lagrangian, Hamiltonian, momenta, Poisson brackets
and commutators are

L =
∑

n

i

2
γn(znż∗n − żnz∗n) −

∑
n�=m

γnγm ln |zn − zm|,

H =
∑
n�=m

γnγm ln |zn − zm| =
1
2

∑
n�=m

γnγm(ln (zn − zm) + ln (pn − pm)),

pn =
∂L

∂żn
= − i

2
γnz∗n, p∗n =

∂L

∂ż∗n
=

i

2
γnzn, (28)

{pn, zm} = δnm, {p∗n, z∗m} = δnm, {xn, ym} = δnm,

[pn, zm] = −i�δnm ⇒ [xn, ym] = −i
�

γn
δnm.

So, quantum vortex dynamics corresponds to the noncommutative space. It is
natural to assume that vortex parameters are quantized as

γn =
�

a2
n, n = ±1,±2, . . . , (29)

and a is a characteristic (fundamental) length.

2. NAMBU DYNAMICS

In the canonical formulation, the equations of motion of a physical system are
deˇned via a Poisson bracket and a Hamiltonian, [6]. In Nambu's formulation,
the Poisson bracket is replaced by the Nambu bracket with n + 1, n � 1, slots.
For n = 1, we have the canonical formalism with one Hamiltonian. For n � 2,
we have NambuÄPoisson formalism, with n Hamiltonians, [3, 4].

2.1. System of Three Vortexes. The system of N vortexes (27) for N = 3,
and

u1 = ln |z2 − z3|2, u2 = ln |z3 − z1|2, u3 = ln |z1 − z2|2 (30)

reduces to the following system:

u̇1 = γ1(eu2 − eu3), u̇2 = γ2(eu3 − eu1), u̇3 = γ3(eu1 − eu2). (31)

The system (31) has two integrals of motion

H1 =
3∑

i=1

eui

γi
, H2 =

3∑
i=1

ui

γi
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and can be presented in the NambuÄPoisson form [14]

u̇i = ωijk
∂H1

∂uj

∂H2

∂uk
= {xi, H1, H2} = ωijk

euj

γj

1
γk

,

where
ωijk = εijkρ, ρ = γ1γ2γ3,

and the NambuÄPoisson bracket of the functions A, B, C on the three-dimensional
phase space is

{A, B, C} = ωijk
∂A

∂ui

∂B

∂uj

∂C

∂uk
. (32)

This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion N − 1 = 2.

2.2. Extended Quantum Mechanics. As an example of the inˇnite di-
mensional NambuÄPoisson dynamics, let me conside the following extension of
Schréodinger quantum mechanics [15]:

Vt = ΔV − V 2

2
, (33)

iψt = −Δψ + V ψ. (34)

An interesting solution to the equation for the potential (34) is

V =
4(4 − d)

r2
, (35)

where d is the dimension of the space. In the case of d = 1, we have the potential
of conformal quantum mechanics.

The variational formulation of the extended quantum theory, is given by the
following Lagrangian:

L =
(

iVt − ΔV +
1
2
V 2

)
ψ. (36)

The momentum variables are

Pv =
∂L

∂Vt
= iψ, Pψ = 0. (37)

As Hamiltonians of the Nambu-theoretic formulation, we take the following inte-
grals of motion:

H1 =
∫

ddx

(
ΔV − 1

2
V 2

)
ψ,

H2 =
∫

ddx(Pv − iψ), (38)

H3 =
∫

ddxPψ .
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We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ, Pψ, V, Pv). Then
it may be veriˇed that the equations of the extended quantum theory can be put
in the following Nambu-theoretic form:

φt(x) = {φ(x), H1, H2, H3}, (39)

where the bracket is deˇned as

{A1, A2, A3, A4} = iεijkl

∫
δA1

δφi(y)
δA2

δφj(y)
δA3

δφk(y)
δA4

δφl(y)
dy =

= i

∫
δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy = i det

(
δAk

δφl

)
. (40)

2.3. M Theory. The basic building blocks of M theory are membranes and
M5-branes. Membranes are fundamental objects carrying electric charges with
respect to the 3-form C-ˇeld, and M5-branes are magnetic solitons. The NambuÄ
Poisson 3-algebras appear as gauge symmetries of superconformal ChernÄSimons
non-Abelian theories in 2 + 1E dimensions with the maximum allowed number
of N = 8 linear supersymmetries.

The Bagger and Lambert [16] and Gustavsson [17] (BLG) model is based on
a 3-algebra,

[T a, T b, T c] = fabc
d T d, (41)

where T a are generators and fabcd is a fully antisymmetric tensor. Given this
algebra, a maximally supersymmetric ChernÄSimons Lagrangian is

L = LCS + Lmatter,

LCS =
1
2
εμνλ

(
fabcdA

ab
μ ∂νAcd

λ +
2
3
fcdagf

g
efbA

ab
μ Acd

ν Aef
λ

)
,

(42)

Lmatter =
1
2
BIa

μ BμI
a −BIa

μ DμXI
a ++

i

2
ψ̄aΓμDμψa +

i

4
ψ̄bΓIJxI

cx
J
d ψafabcd−

− 1
12

tr ([XI , XJ , XK ][XI , XJ , XK ]), I = 1, 2, . . . , 8,

where Aab
μ is gauge boson, ψa and XI = XI

aT a are matter ˇelds. If a = 1, 2, 3, 4,
then we can obtain an SO(4) gauge symmetry by choosing fabcd = fεabcd, f
being a constant. It turns out to be the only case that gives a gauge theory with
manifest unitarity and N = 8 supersymmetry.

The action has the ˇrst order form so we can use the formalism of the ˇrst
section. The motion equations for the gauge ˇelds

fnm
abcdȦ

cd
m (t, x) =

δH

δAab
n (t, x)

, fnm
abcd = εnmfabcd (43)
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take canonical form

Ȧab
n = fabcd

nm

δH

δAcd
m

= {Aab
n , Acd

m} δH

δAcd
m

= {Aab
n , H},

(44)
{Aab

n (t, x), Acd
m (t, y)} = εnmfabcdδ(2)(x − y).

3. DISCRETE DYNAMICAL SYSTEMS

Computers are physical devices and their behavior is determined by physi-
cal laws. The Quantum Computations [18, 19], Quantum Computing, Quanput-
ing [20], is a new interdisciplinary ˇeld of research, which beneˇts from the
contributions of physicists, computer scientists, mathematicians, chemists and
engineers.

Contemporary digital computer and its logical elements can be considered as
a spatial type of discrete dynamical systems [21]

Sn(k + 1) = Φn(S(k)), (45)

where

Sn(k), 1 � n � N(k) (46)

is the state vector of the system at the discrete time step k. Vector S may describe
the state and Φ transition rule of some Cellular Automata [22]. The system of the
type (45) appears in applied mathematics as an explicit ˇnite difference scheme
approximation of the equations of the physics [23].

Deˇnition: We assume that the system (45) is time-reversible if we can deˇne
the reverse dynamical system

Sn(k) = Φ−1
n (S(k + 1)). (47)

In this case the following matrix:

Mnm =
∂Φn(S(k))

∂Sm(k)
(48)

is regular, i.e., has an inverse. If the matrix is not regular, this is the case, for
example, when N(k + 1) �= N(k), we have an irreversible dynamical system
(usual digital computers and/or corresponding irreversible gates).

Let us consider an extension of the dynamical system (45) given by the
following action function:

A =
∑
kn

ln(k)(Sn(k + 1) − Φn(S(k))) (49)
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and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =
∂H

∂ln(k)
,

(50)

ln(k − 1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H

∂Sn(k)
,

where

H =
∑
kn

ln(k)Φn(S(k)) (51)

is discrete Hamiltonian. In the regular case, we put the system (50) in an explicit
form

Sn(k + 1) = Φn(S(k)),
(52)

ln(k + 1) = lm(k)M−1
mn(S(k + 1)).

From this system it is obvious that, when the initial value ln(k0) is given, the
evolution of the vector l(k) is deˇned by evolution of the state vector S(k). The
equation of motion for ln(k) is linear and has an important property that linear
superpositions of the solutions are also solutions.

Statement. Any time-reversible dynamical system (e.g., a time-reversible
computer) can be extended by corresponding linear dynamical system (quantum-
like processor) which is controlled by the dynamical system and has a huge
computational power [20,21,24,25].

3.1. (de)Coherence Criterion. For motion equations (50) in the continual
approximation, we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + ẋn(tk)τ + O(τ2),
ẋn(tk) = vn(x(tk)) + O(τ), tk = kτ,

(53)
vn(x(tk)) = (Φn(x(tk)) − xn(tk))/τ,

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
.

(de)Coherence criterion: The system is reversible, the linear (quantum, coherent,
soul) subsystem exists, when the matrix M is regular,

detM = 1 + τ
∑

n

∂vn

∂xn
+ O(τ2) �= 0. (54)
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For the NambuÄPoisson dynamical systems (see, e.g., [5])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

· · · ∂Hp

∂xmp

, p = 1, 2, 3, . . . , N − 1,

(55)∑
n

∂vn

∂xn
≡ div v = 0.
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