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Using two different approaches, we perform detailed calculations of the one-loop (Next-to-
Leading Order (NLO)) electroweak radiative corrections to the parity violating e−e− → e−e−(γ)
scattering asymmetry. The ˇrst approach, more classical, relies on calculations ®by hand¯ with
reasonable approximations, the second approach relies on program packages FeynArts, FormCalc,
LoopTools, and FORM. The detailed numerical analysis of the various contributions is provided for a
wide range of energies relevant for the ultra-precise 11 GeV MOLLER experiment planned at the JLab,
as well as future experiments at the International Linear Collider (ILC). The numerical results obtained
within the on-shell renormalization scheme using two different sets of renormalization conditions are
in excellent agreement. We also calculate the total NLO correction in the Constrained Differential
Renormalization (CDR) scheme. Analysis of the results, along with the increasing experimental
precision, shows that it is feasible that the corrections at the Next-to-Next-to-Leading Order (NNLO)
level may be important for the next generation of experiments.

PACS: 12.15.Lk; 13.88.+e; 25.30.Bf

INTRODUCTION

The Méoller scattering measurements are not only one of the oldest and the
best-established tools of modern physics, but also a clean, powerful probe of
New Physics (NP) effects [1, 2]. More recently, the signiˇcant interest to this
process from both theoretical and experimental communities has been reignited by
two precision experiments: E-158 [3,4] at SLAC, which made the ˇrst observa-
tion of parity violation in electronÄelectron scattering, and MOLLER experiment
planned at JLab [5,6]. Both are dedicated to measuring the Parity-Violating (PV)
asymmetry in the e−e− → e−e−(γ) scattering at low energies. The MOLLER
experiment aims to measure the PV asymmetry in the scattering of longitudinally
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polarized electrons off unpolarized electrons with a combined statistical and sys-
tematic uncertainty of 36 parts per billion [5]. With the estimated systematic
contribution of 1%, the measurement will still be statistics-limited, and further
improvements in precision might be possible with additional running time. The
measurement of the electron's weak charge Qe

W with a 2.3% accuracy planned
by MOLLER would yield the most precise single measurement of the weak mix-
ing angle sin2 θW , with a fractional accuracy of 0.1%, at an average momentum
transfer Q2 = 0.0056 GeV2. At this precision, MOLLER can shed light on
the discrepancy between the hadronic and leptonic determinations of sin2 θW at
the Z-boson pole. Furthermore, the difference between the values of sin2 θW

determined at the Z-boson pole and at low Q2 is sensitive to the NP effects
at TeV scales.

Before physics of interest can be extracted from the experimental data, ra-
diative effects must be carefully treated. MOLLER's stated precision goal is
signiˇcantly more ambitious than that of its predecessor E-158, so very precise
theoretical input for this measurement will be crucial. In spite of signiˇcant earlier
theoretical effort dedicated to calculations of Electroweak Radiative Corrections
(EWC) (see the early review papers [7] and [8], more recent [9] and [10], and
numerous additional references in our paper [11]), we believe that a new level
of accuracy is required for the next-generation, high-precision experiments. To
match the expected experimental systematic uncertainty, it is desirable to keep the
theoretical uncertainty due to the radiative corrections at or below the 0.1% level.
Obviously, calculating large sets of one-loop Feynman diagrams by hand is a
tedious task. Recently, program packages such as FeynArts [12], FormCalc [13],
LoopTools [13] and FORM [14] have created the possibility of handling the sub-
stantial number of diagrams reasonably quickly, minimizing probability of human
errors, and preventing the rapid error accumulation often unavoidable with purely
numerical methods. One of the key features of the presented work is to compare,
step by step, the complete one-loop set of EWC to the PV Méoller scattering asym-
metry calculated ˇrst by hand and then with FeynArts, FormCalc, and LoopTools
as base languages using two different renormalization conditions.

FeynArts is a Mathematica package which provides the generation and visual-
ization of Feynman diagrams and amplitudes involving Standard Model particles.
FormCalc, a Mathematica package, reads diagrams generated with FeynArts and
evaluates amplitudes with the help of the program FORM in the analytical form.
FORM, a successor to SCHOONSCHIP [15], is a Symbolic Manipulation System,
which is also essential for our computer algebra-based method, and is used by
FormCalc as a core program. LoopTools provides the many-point tensor coef-
ˇcient functions and is used to numerically evaluate scalar and tensor one-loop
integrals. In FormCalc, it is possible for the regularization to be done either by
dimensional reduction or by the usual dimensional regularization scheme. Af-
ter that, one may implement one of the two Renormalization Schemes (RS), the
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on-shell scheme or the Constrained Differential Renormalization (CDR) scheme.
For calculations done at the one-loop level, the CDR scheme is equivalent to
regularization done by dimensional reduction in the MS scheme with redeˇned

scale log M
2

= log μ2 + 2, where M and μ are the renormalization scales in the
CDR and in the dimensional regularization method, respectively [13].

A complete automatization would limit the range of applications, so these
packages are not ®black box¯; they require considerable human input on many
stages. We call our approach based on FeynArts, FormCalc, LoopTools, and
FORM ®semi-automated¯. On the other hand, these packages allow modiˇcations
to better suit speciˇc projects. In [16], for example, we adopted FeynArts and
FormCalc for the NLO calculations of the differential cross section in electronÄ
nucleon scattering. In general, the results obtained with these packages can be
presented in both analytical and numerical form. However, our equations for the
EWC to the scattering asymmetry obtained with FeynArts and FormCalc are too
lengthy and cumbersome, so we present only approximate equations obtained by
hand. However, as we show in the numerical analysis section, the agreement
between numerical results obtained with the two methods Å ®by hand¯ and
semi-automatic Å is excellent.

An additional way to ensure that our NLO EWC calculations are perfectly cor-
rect is the detailed comparison of results calculated with different renormalization
conditions within the same scheme. Of course, the sum of all radiative corrections
forming a full gauge-invariant set must be independent of the choice of renormal-
ization conditions. Paper [17], for example, clearly demonstrated the cancellation
of gauge dependencies in one-loop corrections from self-energies, tadpoles, vertex
and box diagrams to physical amplitudes for four-fermion processes. However,
the agreement between the results evaluated in different renormalization schemes
can be guaranteed only if we take into account all orders of perturbation ex-
pansion, not just NLO. Since in this article we are only dealing with one-loop
corrections, we do not expect the results produced in different schemes to be
identical. In fact, the difference we see between the results obtained with the on-
shell and CDR schemes indicates the need to consider higher-order corrections.
A detailed discussion was given, for example, in [18]. The NNLO corrections
will be our next task.

For now, we concentrate on achieving the best accuracy possible in one se-
lected scheme and perform NLO calculations using two methods and two sets
of renormalization conditions. For that, we choose the on-shell renormaliza-
tion scheme with two different sets of renormalization conditions, the approach
proposed by W.Hollik in [19] (see also [20]) and the approach suggested by
A.Denner in [21]. For brevity, we will call Hollik's renormalization condi-
tions HRC; and Denner's conditions, DRC. It is obvious that any renormalization
scheme is required to meet physical conditions, although it is possible to vary
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renormalization conditions for the sake of simplicity of the problem and still
keep the ˇnal gauge-invariant results unchanged. As a result, contributions to
the cross section coming from the different nongauge-invariant loop corrections
(self-energies and vertex corrections) could vary greatly depending on the choice
of renormalization conditions.

The ˇrst goal of this paper is to calculate the full set of one-loop EWC,
both numerically with no simpliˇcations using semi-automatic approach and ®by
hand¯, analytically in a compact asymptotic form [22Ä24], and compare the
results. Our second goal is to present comparison and analysis of the various
contributions to the cross-section asymmetry calculated within the HRC and DRC
renormalization conditions. Our third aim is to calculate the total NLO corrections
in the CDR scheme and estimate the importance of the NNLO corrections for such
high-precision experiments as MOLLER.

The rest of the paper is organized as follows. In Sec. 1 we provide details
of the basic notation, the lowest-order (Born or Leading Order (LO)) and NLO
contributions to Méoller scattering. The same section gives a short description of
photon emission which is essential for removal of nonphysical parameters from
regularized infrared divergent cross section. The details of the HRC and DRC
renormalization conditions and a discussion of gauge invariance can be found
in Sec. 2. Analysis of analytical and numerical results in the on-shell RS using
HRC and DRC renormalization conditions is given in the beginning of Sec. 3.
Later, in the same section, the CDR results are discussed. Section 4 includes the
analysis of possible effects of an additional new-physics massive neutral boson
on the observable asymmetry. Our conclusions and future plans are discussed in
Conclusion.

1. DEFINITIONS AND FRAMEWORK

In the Standard Model, the Born cross section for Méoller scattering with the
longitudinally polarized electrons

e−(k1) + e−(p1) → e−(k2) + e−(p2) (1)

can be represented in the form

σ0 =
πα2

s

∑
i,j=γ,Z

[
λi,j
− (u2DitDjt + t2DiuDju)+

+ λi,j
+ s2(Dit + Diu)(Djt + Dju)

]
, (2)

where σ ≡ dσ/d cos θ, and θ is the scattering angle of the detected electron
with momentum k2 in the center-of-mass system of the initial electrons. The
set of momenta of initial (k1 and p1) and ˇnal (k2 and p2) electrons (see Fig. 1)
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Fig. 1. Diagrams describing nonradiative Méoller scattering in the t- (a) and u-channels (b)

generates the standard set of Mandelstam variables,

s = (k1 + p1)2, t = (k1 − k2)2, u = (k2 − p1)2. (3)

We neglect the electron mass m whenever possible and, in particular, when
m2 � s,−t,−u.

A useful structure we employ in this paper is

Dir =
1

r − m2
i

(i = γ, Z; r = t, u), (4)

which depends on the Z-boson mass mZ or on the photon mass mγ ≡ λ. The
photon mass is set to zero everywhere with the exception of specially indicated
cases where the photon mass is taken to be an inˇnitesimal parameter that regu-
larizes an infrared divergence. In addition, we use the functions

λ±
i,k = λ1

i,k
B λ1

i,k
T ± λ2

i,k
B λ2

i,k
T , (5)

which are combinations of coupling constants and the degrees of polarizations
pB(T ) of the electrons with momentum k1 (p1) given by

λ1
i,j
B(T ) = λi,j

V − pB(T )λ
i,j
A , λ2

i,j
B(T ) = λi,j

A − pB(T )λ
i,j
V ,

(6)
λi,j

V = vivj + aiaj , λi,j
A = viaj + aivj .

Here, vector and axial-vector parts of the couplings have the following structure:

vγ = 1, aγ = 0,
(7)

vZ =
I3
e + 2s2

W

2sW cW
, aZ =

I3
e

2sW cW
.

It should be recalled that I3
e = −1/2 and sW (cW ) are the sine (cosine) of the

Weinberg mixing angle which is deˇned in terms of mZ and mW according to
the rules of the Standard Model (SM): cW = mW /mZ and sW =

√
1 − c2

W . The
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electron degrees of polarization pB(T ) are labeled such that the subscripts L and
R correspond to the values of pB(T ) = −1 and pB(T ) = +1, respectively. Here,
the ˇrst subscript indicates the degree of polarization for the momentum k1, while
the second indicates the degree of polarization for the momentum p1. Combining
the degrees of electron beam polarizations, we can obtain four measurable cross
sections. However, by the virtue of the rotational invariance, two of them are
identical: σLR = σRL. The three polarization cross sections can be used to
construct three independent asymmetries [25]. Of particular interest to us is the
parity-violating asymmetry ALR which is deˇned as follows:

ALR =
σLL + σLR − σRL − σRR

σLL + σLR + σRL + σRR
=

σLL − σRR

σLL + 2σLR + σRR
. (8)

This single-polarization asymmetry corresponding to the scattering of longitudi-
nally polarized electrons on unpolarized electrons is proportional to the combi-
nation 1 − 4s2

W , and is therefore highly sensitive to small changes in sW . That
is why the asymmetry ALR was used as the observable in E-158 and will be
measured in the future MOLLER experiment. At low energies and at Born level,
the PV asymmetry A0

LR is given by

A0
LR =

s

2m2
W

y(1 − y)
1 + y4 + (1 − y)4

1 − 4s2
W

s2
W

, y = − t

s
. (9)

The contribution of virtual particles (V contribution) to the cross section of
Méoller scattering is described by the three classes of diagrams: boson self-energies
(BSE) (they include γγ, γZ, and ZZ self-energies and are shown symbolically
in Fig. 2, a), vertex functions (Fig. 2, b and c), and two-boson exchange diagrams

�, Z

�, Z
�, Z �, Z

a b c

d e

�, ( )Z W �, ( )Z W�, Z �, Z

Fig. 2. One-loop t-channel diagrams for the Méoller process. The circles represent the
contributions of self-energies and vertex functions. The u-channel diagrams are obtained
via the interchange k2 ↔ p2
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(boxes) shown in Fig. 2, d, e. In the on-shell and CDR renormalization schemes
there is no contribution from the electron self-energies. The corresponding cross
section is given by the sum

σV = σBSE + σver + σbox. (10)

The detailed expressions for all the terms in this sum were given in our recent
paper [11].

Contributions coming from the vertex correction graphs (with a photon in
the loop), as well as the γγ and γZ boxes suffer from the well-known infrared
divergence. Regularization of this divergence can be done by giving the photon a
small unphysical mass λ. Obviously, the ˇnal result should be free of unphysical
parameters and hence such a dependence has to be removed. That can be done
if we consider additional contributions associated with photon emission diagrams
(bremsstrahlung). The detailed description of this contribution is also given
in [11]. The bremsstrahlung cross section can be broken down into two parts
(soft and hard) as

σR = σR
IR + σR

H (11)

by separating the integration domain according to k0 < ω and k0 > ω, where k0

is the photon energy (in the reference frame co-moving with the center of mass
of the primary electrons). The parameter ω corresponds to the maximum of the
emitted soft-photon energy. First, we follow the methods of paper [26] to get
a well-known result (see also [22Ä24, 27, 28]) for the soft-photon cross section
(where e is the base of the natural logarithm):

σR
IR =

α

π

(
4 log

2ω

λ
log

tu

em2s
− log2 s

em2
+ 1 − π2

3
+ log2 u

t

)
σ0. (12)

Next, we sum the IR-terms of V and R contributions,

σC = σV
IR + σR

IR =

=
α

π

(
4 log

2ω√
s

log
tu

em2s
− log2 s

em2
+ 1 − π2

3
+ log2 u

t

)
σ0 (13)

and get a result which is free of regularization parameter λ.
At this point, let us continue with the discussion of the details of renormal-

ization conditions we use in our calculations.

2. RENORMALIZATION CONDITIONS AND GAUGE INVARIANCE

To obtain the ultraviolet-ˇnite result and render the parameters of the Standard
Model real, we have to apply a renormalization procedure. For a gauge-invariant
set, physical results should be invariant under different renormalization condi-
tions. That is, although the contributions of the different types of diagrams can
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vary strongly for different renormalization conditions, the total impact of all one-
loop virtual effects on observable quantities must remain independent. In other
words, the contributions of separate self-energies and vertex correction functions
strongly depend on the details of the renormalization conditions, and to properly
account for the EWC, they should be taken as one gauge-independent set. We
will illustrate this for the case of the observable ALR, which is especially sensitive
to the renormalization conditions. In addition, we can verify that our results are
correct by comparing the computer-based (DRC) and ®by hand¯ (HRC) calcula-
tions. We now brie�y describe our two chosen renormalization conditions, DRC
and HRC, within the on-shell renormalization scheme.

Both use multiplicative renormalization constants, and, as a result, the elec-
troweak Lagrangian, originally written in terms of bare parameters, is separated
into a basic Lagrangian and a counterterm Lagrangian. The basic Lagrangian
has the same form as the bare one, but depends on renormalized parameters
and ˇelds. The counterterm Lagrangian depends on renormalization constants of
masses, charges, and ˇelds. Renormalization constants are ˇxed by the renor-
malization conditions, which are separated into two classes: the ˇrst determines
the renormalization of the parameters, and the second ˇxes the renormalization of
ˇelds. The ˇrst class is related to physical observables at a given order of pertur-
bation theory, and the second one is related to Green's functions and has no effect
on calculations of S-matrix elements. Both approaches use essentially the same
renormalization conditions to ˇx the parameters of the SM in the following way:

Re Σ̂W
T (m2

W ) = Re Σ̂ZZ
T (m2

Z) = Re Σ̂f (m2
f ) = 0,

(14)
Γ̂eeγ

μ

(
k2 = 0, p2 = m2

)
= ieγμ.

Here, Re Σ̂ZZ,W
T

(
m2

Z,W

)
and Γ̂eeγ

μ

(
k2 = 0, p2 = m2

)
are the real parts of the

truncated, transverse renormalized boson self-energy and electron vertex correc-
tion graphs, respectively. The longitudinal parts of the boson self-energy make
very small contributions and are not considered here. The ˇrst condition of
Eq. (14) ˇxes the mass renormalization of the W , Z bosons and fermions without
quark mixing. The second condition ˇxes the renormalization of electric charge,
and is derived from the Thomson limit when momentum transfer k2 = 0 and
external electrons are on their mass shell. As for the renormalization conditions
of the ˇelds, both approaches are quite different. In HRC, ˇeld renormalization
constants are determined from the following conditions:

Σ̂γZ
T (0) = 0,

∂

∂k2
Σ̂γ

T (0) = 0. (15)

However, in the DRC renormalization conditions, the ˇeld renormalization is
deˇned on-shell, as it was done for renormalization of the SM parameters. This
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explicitly introduces an additional set of conditions, besides Eq. (14) and (15),
which read

Re Σ̂γZ
T

(
m2

Z

)
= 0, Re

∂

∂k2
Σ̂ZZ

T

(
m2

Z

)
= 0, Re

∂

∂k2
Σ̂W

T

(
m2

W

)
= 0. (16)

As a result, in DRC, renormalization constants for the ˇelds of vector bosons are
calculated in a relatively simple way, without the mass-renormalization constants:

δZ
(D)
W = −Re

∂

∂k2
ΣW

T

(
m2

W

)
, δZ

(D)
Z = −Re

∂

∂k2
ΣZZ

T

(
m2

Z

)
,

δZ
(D)
Zγ =

2
m2

Z

ΣγZ
T (0) , δZ

(D)
γZ = − 2

m2
Z

Re ΣγZ
T

(
m2

Z

)
, (17)

δZ(D)
γ = − ∂

∂k2
Σγ

T (0) .

They can be presented through truncated and nonrenormalized self-energy graphs.
In comparison with HRC, where the renormalization conditions of Eq. (16) are
not present, ˇeld renormalization constants are deˇned in a different way and
depend on the mass renormalization constants:

δZ(H)
γ = − ∂

∂k2
Σγ

T (0) ,

δZ
(H)
Z =

∂

∂k2
Σγ

T (0) − 2
c2
W − s2

W

sW cW

ΣγZ
T (0)
m2

Z

+ 2
c2
W − s2

W

s2
W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
,

(18)

δZ
(H)
W =

∂

∂k2
Σγ

T (0) − 2
cW

sW

ΣγZ
T (0)
m2

Z

+
c2
W

s2
W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
,

δZ
(H)
Zγ =

cW sW

c2
W − s2

W

(
δZ

(H)
Z − δZ(H)

γ

)
.

The presence of the mass renormalization constants in the ˇeld-renormalization
Eq. (18) increases the values of the truncated and renormalized self-energy dia-
grams, and the dominant NLO contributions to the observable cross section come
from these diagrams. In DRC, the mass renormalization constants appear in
renormalization constants of the electroweak couplings, and hence we observe
comparable contributions coming from both self-energies and vertex corrections.
Of course, such a comparison has no physical meaning since neither self-energies
nor vertex corrections represent a gauge-invariant set on their own. As is well
known, only the sum of both groups is gauge-invariant; later, we show that both
approaches give exactly the same results for the observable asymmetry. We
would like to highlight that it is important to exercise caution when comparing
separate contributions arising from the different renormalization conditions. This
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Fig. 3. Truncated and renormalized γγ self-energies in both sets of renormalization con-
ditions. Plot b shows the low-energy domain
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Fig. 4. Truncated and renormalized ZZ and WW self-energies in both sets of renormal-
ization conditions

point is illustrated by Figs. 3, 4, and 5, where one can see various renormalized
vector boson self-energies calculated with both DRC and HRC.

Let us note that the same renormalization conditions are imposed on the
electromagnetic ˇeld. As we can see from Fig. 3, which shows the truncated
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Fig. 5. Truncated and renormalized γZ self-energies in both sets of renormalization con-
ditions. Plot b shows the low-energy domain

and renormalized γγ self-energies, there is no difference whatsoever between the
two sets of conditions. The situation is quite different if we look at the results
for the truncated and renormalized ZZ, γZ, and WW self-energies. In Figs. 4
and 5, we can see a substantial difference in the results obtained within the two
sets of renormalization conditions, where the DRC set systematically leads to
the self-energies being smaller in magnitude. As a result, with DRC, the self-
energy contributions to Méoller asymmetry are roughly a factor of two smaller in
value compared to the values given by HRC. However, adding the DRC vertex
corrections restores the total correction obtained with DRC to within 0.001%
of the HRC result at all energies relevant to the planned MOLLER experiment
at JLab.

Now we are ready to proceed to the analysis of the results. Subsubsec-
tion 3.1.1 is done in a manner independent of the renormalization conditions,
and all notations that follow below can be applied to both DRC and HRC of the
on-shell scheme.

3. RESULTS AND ANALYSIS

3.1. On-Shell Renormalization. For the numerical analysis, we use α =
1/137.035999, mW = 80.399 GeV, and mZ = 91.1876 GeV according to [29],
take electron, muon, and τ -lepton masses as me = 0.510998910 MeV, mμ =
0.105658367 GeV, mτ = 1.77684 GeV, and quark masses for loop contri-
butions as mu = 0.06983 GeV, mc = 1.2 GeV, mt = 174 GeV, md =
0.06984 GeV, ms = 0.15 GeV, and mb = 4.6 GeV. The light quark masses
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provide Δα
(5)
had(m2

Z) = 0.02757 [30], where

Δα
(5)
had(s) =

α

π

∑
f=u,d,s,c,b

Q2
f

(
log

s

m2
f

− 5
3

)
, (19)

Qf is the electric charge of fermion f in proton charge units q (q =
√

4πα).
We can see that the use of the light quark masses as parameters regulated by the
hadronic vacuum polarization is a better choice in this case. We checked that
variations of the light quark masses around the outlined values have a negligible
impact on the values of the polarization asymmetry, so the choice of quark
masses does not introduce a signiˇcant uncertainty to our results. An earlier
work by [9], relevant to observables measured at very low momentum transfers,
which determined the weak mixing angle in the MS-scheme, also argued that
the uncertainty from nonperturbative hadronic contributions is small compared
to anticipated experimental uncertainties. Although [28] argued that the most
signiˇcant source of theoretical uncertainty on scattering asymmetry comes from
the hadronic contributions to the γZ vacuum polarization, we ˇnd that in our
calculations hadronic contributions are under good control. Finally, for the mass
of the Higgs boson, we take mH = 115 GeV. A shift of the mH value due to
the recent CERN measurements of mH = 125−126 GeV (which is still to be
measured more exactly) does not change our results signiˇcantly.

Let us determine the physical impact of this contribution to the observable
ALR, by deˇning the relative corrections to the Born asymmetry as

δC
A =

AC
LR − A0

LR

A0
LR

,

where the index C stands for a speciˇc contribution, for example, C = BSE,
ver, box. Let indicies γSE, γZSE, and ZSE denote γγ-, γZ-, and ZZ-BSE
contributions, respectively. The main subject of the following analysis is ®weak¯
relative corrections, which are deˇned as all BSE contributions (including the
γγ-SE which is not weak by nature, but is needed here to account for all IR-ˇnite
contributions to the asymmetry) plus heavy vertex (HV) contributions (®heavy¯
means ®massive¯, i.e., Z or W boson), ZZ and WW boxes. In summary:
weak =BSE+HV +ZZ +WW .

3.1.1. Analysis of BSE Contributions to PV Asymmetry. We start with the
ZSE contribution, where

δZSE
A =

AZSE
LR − A0

LR

A0
LR

=

(σ0 + σZSE)
∣∣
LL−RR

σ0
00 + σZSE

00

−
σ0

∣∣
LL−RR

σ0
00

σ0
∣∣
LL−RR

σ0
00

≈
σZSE

∣∣
LL−RR

σ0
∣∣
LL−RR

.

(20)
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The operation E|LL−RR under expression E means ELL − ERR. Subscript
00 denotes the unpolarized cross section. The approximate equality is possible
because σZSE

00 /σ0
00 is very small. The denominator of the last fraction is calculated

directly from Eq. (2):

σ0|LL−RR = 16πα2vZaZs(Dγt + Dγu)(DZt + DZu) ≈

≈ −32πα2vZaZ s

m2
Z

(Dγt + Dγu). (21)

With simpliˇcations, the numerator of Eq. (20) is

σZSE|LL−RR ≈ πα2

s
DZZt

S (DγtMZγZγ
ev − DγuMZγZγ

od )
∣∣
LL−RR

+(t ↔ u) ≈

≈ −16πα2vZaZ s

m4
Z

(Dγt + Dγu)(Σ̂Z
T (t) + Σ̂Z

T (u)). (22)

Finally,

δZSE
A ≈ Σ̂Z

T (t) + Σ̂Z
T (u)

2m2
Z

. (23)

At small r (Eq. (4)) corresponding to Elab = 11 GeV and θ = 90◦, the corrections
are δZSE

A (HRC) ≈ 0.0309 vs. δZSE
A (DRC) ≈ −0.0105.

Similarly, for γZSE contribution

σγZSE|LL−RR ≈ πα2

s
DγZt

S

[
Dγt(MγγZγ

ev + MZγγγ
ev )−

− Dγu(MγγZγ
od + MZγγγ

od )
]∣∣

LL−RR
+(t ↔ u) ≈

≈ 16πα2aZ s

m2
Z

(Dγt + Dγu)

(
Σ̂γZ

T (t)
t

+
Σ̂γZ

T (u)
u

)
(24)

and

δγZSE
A ≈ − 1

2vZ

(
Σ̂γZ

T (t)
t

+
Σ̂γZ

T (u)
u

)
. (25)

For γZSE at Elab = 11 GeV and θ = 90◦, the corrections are δγZSE
A (HRC) ≈

−0.6028 vs. δγZSE
A (DRC) ≈ −0.2909. It is important to note that the deviation

in Σ̂γZ
T has a dramatic impact on such a sensitive observable as ALR. For

example, the uncertainty in Σ̂γZ
T of 1% will result in a change in δγZSE

A of up
to 0.05.

All terms with properties of Eq. (20) contribute additively to the total correc-
tion, for example,

δγZSE+ZSE
A ≈ δγZSE

A + δZSE
A . (26)

We call such contributions additive. γSE gives a nonadditive and small contribu-
tion that we consider later.
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3.1.2. Analysis of HV and Box Contribution to PV Asymmetry. Starting with
the Λ2-contribution, which comes from the triangle diagrams with an additional
massive boson, Z or W , we get

δΛ2
A ≈

σΛ2
∣∣
LL−RR

σ0
∣∣
LL−RR

. (27)

The numerator, with some approximations, is

σΛ2
∣∣
LL−RR

≈ 8α3vZaZs(Dγt + Dγu)
(

Λ2(t, mZ)
t

+
Λ2(u, mZ)

u

)
, (28)

so the correction is proportional to Λ2 in the following way:

δΛ2
A ≈ −αm2

Z

4π

(
Λ2(t, mZ)

t
+

Λ2(u, mZ)
u

)
. (29)

In HRC, we can simplify the result by using series expansion of Λ2 at small t:

Λ2(t, mZ) = − t

3m2
Z

(
2 log

−t

m2
Z

− 23
6

)
+ O

(
t

m2
Z

)
, (30)

which gives

δΛ2
A ≈ α

6π

(
log

tu

m4
Z

− 23
6

)
. (31)

The numerical value obtained from above at Elab = 11 GeV and θ = 90◦ gives
δΛ2
A ≈ −0.0125, which is in agreement with the exact (semi-automatic) numerical

calculations.
The Λ3-contribution, which represents the triangle diagrams with a 3-boson

vertex, WWγ or WWZ, is calculated in a similar way, so we present only the
ˇnal result:

δΛ3
A ≈ − 3αm2

Z

32πs2
WvZaZ

(
Λ3(t, mW )

t
+

Λ3(u, mW )
u

)
. (32)

After simpliˇcations and series expansion of Λ3 at small t,

Λ3(t, mW ) = − 5t

27m2
W

+ O
(

t

m2
W

)
, (33)

we ˇnd

δΛ3
A ≈ α

π

5
9(1 − 4s2

W )
. (34)
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Using Eq. (34) for Elab = 11 GeV and θ = 90◦, we obtain δΛ3
A ≈ 0.0118. Again,

this approximate value calculated ®by hand¯ is in very good agreement with the
exact result obtaned with our second, computer-based approach.

The box part is UV-ˇnite and does not require the renormalization procedure.
We divide the box contribution into QED (γγ and γZ boxes) and a heavy-box
part (HB = ZZ + WW ):

σbox = σbox
QED + σbox

HB . (35)

The types of boxes are shown in Fig. 2, d, e. The IR-divergent QED part of boxes
(the ˇrst term in Eq. (35)) is described in detail both analytically and numerically
in [11]. For the purely-weak part of the boxes (the second term), the equations
are derived in the low-energy approximation.

The total weak correction to ALR includes the HB cross section:

σbox
HB = −α3

s

∑
k=γ,Z

(Bk
ZZ + Bk

WW ) + (t ↔ u), (36)

where the expressions for Bk
ij take the form

Bk
ZZ = DktλBk

− δ1
ZZ + (Dkt + Dku)λBk

+ δ2
ZZ ,

Bk
WW = DktλCk

− δ1
WW + (Dkt + Dku)λCk

+ δ2
WW .

(37)

The combinations of the coupling constants are given in Eq. (5). Let us recall the
coupling constants for the heavy boxes:

vB = (vZ)
2

+ (aZ)
2
, aB = 2vZaZ , vC = aC = 1/(4s2

W ). (38)

At s, |t|, |u| � m2
Z , the corrections δ1,2

(ij) have the form:

δ1
ZZ =

3u2

2m2
Z

, δ2
ZZ = − 3s2

2m2
Z

,

(39)

δ1
WW =

2u2

m2
W

, δ2
WW =

s2

2m2
W

.

At last, after simpliˇcation at small t, for the relative corrections to PV
asymmetry coming from heavy boxes we ˇnd:

δZZ
A ≈ −3α

2π
vB, δWW

A ≈ α

4πs2
W (1 − 4s2

W )
. (40)

The numerical values obtained from the equations above at Elab = 11 GeV and
θ = 90◦ give δZZ

A ≈ −0.0013 and δWW
A ≈ 0.0238, which is once again in

good agreement with the exact results evaluated with the help of the FeynArts,
FormCalc, LoopTools and FORM program packages.
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3.1.3. Numerical Analysis on EWC to PV Asymmetry. In the table below,
we present the contributions to relative weak corrections calculated using two
different approaches. In the ˇrst approach, we use approximate and compact
expressions derived ®by hand¯ with the application of HRC. In the second, we
use computer-based analytical (FeynArts, FormCalc, and FORM) and numerical
(LoopTools) calculations, with DRC.

The Born asymmetry A0
LR and the structure of relative weak corrections to it for

Elab = 11 GeV at different θ

Contributions

θ,◦ (A0
LR, ppb)

20 30 40 50 60 70 80 90

(6.63) (15.19) (27.45) (43.05) (60.69) (77.68) (90.28) (94.97)

γγ-SE, DRC Ä0.0043 Ä0.0049 Ä0.0054 Ä0.0058 Ä0.0062 Ä0.0064 Ä0.0066 Ä0.0067
γγ-SE, HRC Ä0.0043 Ä0.0049 Ä0.0054 Ä0.0058 Ä0.0062 Ä0.0064 Ä0.0066 Ä0.0067

γZ-SE, DRC Ä0.2919 Ä0.2916 Ä0.2914 Ä0.2912 Ä0.2911 Ä0.2910 Ä0.2909 Ä0.2909
γZ-SE, HRC Ä0.6051 Ä0.6043 Ä0.6042 Ä0.6038 Ä0.6034 Ä0.6031 Ä0.6028 Ä0.6028

ZZ-SE, DRC Ä0.0105 Ä0.0105 Ä0.0105 Ä0.0105 Ä0.0105 Ä0.0105 Ä0.0105 Ä0.0105
ZZ-SE, HRC 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309 0.0309

HV, DRC Ä0.2946 Ä0.2633 Ä0.2727 Ä0.2703 Ä0.2714 Ä0.2712 Ä0.2711 Ä0.2710
HV, HRC Ä0.0015 Ä0.0012 Ä0.0010 Ä0.0009 Ä0.0008 Ä0.0007 Ä0.0007 Ä0.0007

ZZ-box, exact Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013
ZZ-box, approx. Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013 Ä0.0013

WW -box, exact 0.0239 0.0238 0.0238 0.0239 0.0239 0.0238 0.0238 0.0238
WW -box, approx. 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238 0.0238

Total weak, DRC,
exact Ä0.5643 Ä0.5430 Ä0.5508 Ä0.5489 Ä0.5500 Ä0.5495 Ä0.5493 Ä0.5493
Total weak, HRC,
approx. Ä0.5526 Ä0.5514 Ä0.5511 Ä0.5505 Ä0.5500 Ä0.5496 Ä0.5493 Ä0.5493

The table demonstrates that the γγ-SE contribution is small, nonadditive and,
as expected, is the same whether obtained in HRC or in DRC. The
γZ-SE, ZZ-SE, and HV contributions are rather sizeable, are all additive, and
are different for HRC and DRC. The ZZ-box contribution is small, and the
WW -box one is dominant for the weak box correction. Both the ZZ box and
WW box are additive and their sum is in excellent agreement regardless the
method of calculations. The total relative weak correction is signiˇcant and in
excellent agreement with the different methods. That conˇrms that we are dealing
with a gauge-invariant set of graphs. The discrepancy between the two approaches
is ∼ 0.0001 at θ = 90◦, but becomes larger with decreasing θ.

In Fig. 6, we can see the relative weak corrections shown by solid line for
DRC (exact) and dotted line for HRC (approximate). The dashed line shows the
QED correction obtained by including soft bremsstrahlung to the Born asymme-
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Fig. 6. The relative weak (solid line in DRC (semi-automated) and dotted line in HRC
(®by hand¯)) and QED (dashed line) corrections to the Born asymmetry A0

LR versus
√

s
at θ = 90◦. The solid circle corresponds to our predictions for the MOLLER experiment

try A0
LR. We can see that for low-energy region 1 <

√
s < 30 GeV, the results

calculated by the two methods are in excellent agreement. It is worth mentioning
here that the semi-automated numerical calculations of boxes in the region of√

s � 1 GeV suffer from the numerical instability due to Landau singularities.
As for our approximated calculations, we have used the small-energy approxima-
tion with the expansion parameters taken as r/m2

Z,W for energies
√

s < 30 GeV.
In any case, for the 11 GeV relevant for the planned JLab experiment, the con-
sistency of our calculations in both approaches is obvious, with a difference of
∼ 0.01% or less. The dotted line for

√
s > 500 GeV in Fig. 6 is obtained

using HRC with the help of equations from [31], which used the high-energy
approximation. We can see good agreement between our results for the high-
energy region

√
s > 500 GeV which becomes better with energy increase. For√

s � 50 GeV we have excellent agreement with the result of [27] if we use their
SM parameters (see [11]). Furthermore, the relative QED correction (see Fig. 8
in [27] and dashed line in Fig. 6 here) is also in good qualitative and numerical
agreement. In this case, we apply the same cut on the soft photon emission
energy as in [27] (ω/

√
s = 0.05). At the low-energy point corresponding to the

E-158 experiment, and using our set of input parameters (α, mW , and mZ ), we
ˇnd that δweak

A ≈ −54%. If we translate our input parameters to the set α, GF ,
and mZ according to [27], we obtain good agreement with the result of [32].
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3.2. Constrained Differential Renormalization. The CDR (Constrained Dif-
ferential Renormalization) scheme, which provides renormalized expressions for
Feynman graphs preserving the Ward identities, was introduced at the one-loop
level in [33]. The [34] expands on [33] to introduce the techniques for one-loop
calculations in any renormalizable theory in four dimensions. The procedure has
been implemented in FormCalc and LoopTools, which allows us to evaluate NLO
EWC in CDR. Since our ®scheme of choice¯ at the moment is on-shell, which is
more suitable for calculating EWC beyond one-loop, we do not provide the same
detailed analysis and step-by-step comparison between the two methods for CDR
as we do for on-shell. The reason we evaluate NLO EWC in CDR is to obtain
some indication of the size of the higher-order effects (NNLO and beyond) to see
if there is enough motivation to do these very involved calculations in the future.

In Fig. 7, we can see the relative total correction

δtot =
σtot − σ0

σ0

to the unpolarized cross section versus
√

s at θ = 90◦ for different RS: on-shell
and CDR. In the region of small energies, the difference between the two schemes
is almost constant and rather small (∼ 0.01), but grows at

√
s � mZ . It is well

known that in the region of small energies, the correction to the cross section
is dominated by the QED contribution. However, in the high-energy region, the
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Fig. 7. The relative total corrections to the unpolarized cross section versus
√

s at θ = 90◦.
The ˇlled circle corresponds to our predictions to the MOLLER experiment. Solid line
corresponds to CDR; and dotted line, to on-shell RS
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weak correction becomes comparable to QED. Since the difference between the
on-shell and CDR results grows substantially as the weak correction becomes
larger, it is clear that for an observable such as the PV asymmetry the difference
between the on-shell and CDR schemes will be sizeable for the entire spectrum of
energies

√
s < 2000 GeV. Because of that, we expect that the NNLO correction

to the PV asymmetry may become important to PV precision physics in the future.

0

�0.2

�0.4

�0.6

�0.8

�1
10�1 1 10 102 103

	s, GeV


A

0.2

0.4

CDR

CDR

On-shell

On-shell

Fig. 8. The relative weak (lower lines) and QED (upper lines) corrections to the Born
asymmetry A0

LR versus
√

s at θ = 90◦. The ˇlled circle corresponds to our predictions to
the MOLLER experiment. Solid lines correspond to CDR; and dotted lines, to on-shell RS

Figure 8 shows the relative weak (lower lines), and QED (upper lines) cor-
rections to the Born asymmetry A0

LR versus
√

s at θ = 90◦. The difference is
signiˇcant and is growing with increasing

√
s. According to our calculations for

Elab = 11 GeV, ω = 0.05
√

s and θ = 90◦, the total radiative correction to PV
asymmetry is −69.8% with on-shell and −58.5% with CDR. The difference is
not at all surprising. For E-158, for example, the one-loop weak corrections were
found to be about Ä40% in the MS scheme [32] and about Ä50% in the on-shell
scheme [24,28].

The physical, NLO-corrected asymmetries, computed in both on-shell and
CDR schemes, are compared in Fig. 9. Here, for consistency with the MS deˇ-
nition of the couplings to O(α) [35], we use ŝ2

Z ≡ sin2 θ̂W (MZ) = 0.2313 [29]
in the expression of the Born asymmetry. We ˇnd that the predictions for the
physical PV asymmetry, computed to the same order in perturbation theory in
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Fig. 9. The NLO-corrected asymmetries vs.
√

s at θ = 90◦, computed in on-shell RS
(solid line) and CDR (dotted line). The CDR Born asymmetry uses the MS deˇnition of
ŝ2

Z ≡ sin2 θ̂W (MZ) = 0.2313 [29]

two different schemes, differ by about 3%. The difference is an indication of the
order of magnitude of the higher-order, NNLO and beyond, terms.

The [28] estimated that the higher-order corrections are suppressed by
∼ 0.1% relative to the one-loop result, possibly 5% in some cases, and thus
are not signiˇcant source of uncertainty. However, we conclude that although the
corrections at the NNLO level were not mandated by the previously achievable
experimental precision, they may become important for the next generation of
experiments.

4. EFFECT OF ADDITIONAL MASSIVE NEUTRAL BOSON

Let us now add a very simple NP assumption to our SM calculations and
show how this NP contribution affects the observable asymmetry. The reason we
want to do it in here is to investigate if the two complimentary methods we used
in the previous sections, ®by-hand¯ and semiautomated, can be applied in the NP
domain. As we mention in Introduction, FeynArts, FormCalc, LoopTools, and
FORM are not ®black box¯ programs and can be modiˇed for speciˇc projects,
including adding the NP sector. As was already concluded in [36] and [37], the
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proposed MOLLER measurement could be in�uenced by radiative loop effects of
new-physics particles. This type of calculation is out of scope of this paper, but
we plan to provide a full estimation in our future publication. For now, we assume
that there is just one additional neutral boson (ANB), or Z ′ boson, with the usual
V − A structure of interaction with fermions, vector(axial) coupling constants
vZ′

(aZ′
), and mass mZ′ . From the analysis done in the previous section, we

can clearly see that in the low-energy region, where s, |t|, |u| � m2
Z < m2

Z′ ,
contributions are mainly suppressed by propagator factors like DZ′r. In this
section, our goal is to analyze the contribution of Z ′-Born and ZZ ′-box diagrams
to the observable scattering asymmetry for the MOLLER experiment. The only
signiˇcant contribution to the Born asymmetry comes from the interference terms
from the Z ′ and photon diagrams. The relative correction to the Born asymmetry
coming from Z ′ boson is additive, and is given by

δZ′

A =
vZ′

aZ′

vZaZ

m2
Z

m2
Z′

. (41)

According to [5], the goal of MOLLER is to measure the PV asymmetry to
a precision of 2% (0.73 ppb). With this uncertainty, and assuming the identical
coupling constants for Z and Z ′, it should be possible to detect ANB with a
mass up to mZ′ =

√
m2

Z/0.02 ≈ 7mZ . The sensitivity of MOLLER to Z ′

increases if its parity-violating couplings are larger than those of Z0, making the
measurements of PV complementary to the direct searches at high energies.

The one-loop diagrams including ANB give signiˇcantly smaller contribu-
tions. As an example, let us consider ZZ ′ box. As before, we perform our calcu-
lations by both approximate (®by-hand¯) and exact (with FeynArts and FormCalc)
methods, and get an excellent agreement. The expressions derived as a result of
our approximate approach are presented below.

For the ZZ ′-box contribution, the cross section can be expressed by the
following short equation:

σZZ′-box =
3α3

s
L

∑
k=γ,Z

[
λB′k
− (Dktu2 + Dkut2) − 2λB′k

+ s2(Dkt + Dku)
]
+

+ (Z ↔ Z ′), (42)

where

L =

1∫
0

z2dz

1∫
0

xdx

1∫
0

dy

m2
Zz(x − 1) + (t − m2

Z′)(1 − z)
≈

≈ 1
m2

Z − m2
Z′

log
mZ′

mZ
, (43)
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and the functions λB′k
± are expressed through

vB′
= vZvZ′

+ aZaZ′
, aB′

= vZaZ′
+ vZ′

aZ . (44)

According to the methods described in Subsubsec. 3.1.1, we can now calculate
the relative correction to the observable asymmetry from the ANB contribution
(i.e., from ZZ ′ box) δANB

A as

δANB
A =

6αm2
Z

π

vB′
aB′

vZaZ
L. (45)

This correction is additive and becomes less important with increasing mZ′ .
However, this suppression is not very dramatic due to the growing log in the
numerator. If we take the MOLLER kinematics and assume that vZ′

= vZ , aZ′
=

aZ , then for rm ≡ mZ′/mZ = 1 the correction is twice the contribution from ZZ
box: δANB

A ≈ −0.0025465. As rm grows, the correction decreases: at rm = 2
the correction is δANB

A ≈ −0.0011768, and for rm = 10 the correction is δANB
A ≈

−0.0001185. At rm = 20, the correction becomes completely negligible: δANB
A ≈

−0.0000382. However, the possible contributions of new-physics particles to the
Méoller scattering deserves further attention, and we intend to continue our work
in this direction.

One of the simplest supersymmetric SM extensions is the Minimal Supersym-
metric Standard Model (MSSM), and it gives a useful framework for discussing
SUSY phenomenology. For e−e− scattering, MSSM contributions will arise at
the one-loop order, and the large suppression of the SM weak charge makes the
weak charge sensitive to the effects of new physics. According to [36], the loop
corrections in the MSSM can be as large as ∼ 4% for the weak charge of the
proton and ∼ 8% for the weak charge of the electron, which is close to the cur-
rent level of experimental and theoretical precision available for the low-energy
studies. Obviously, before we can interpret these high-precision scattering exper-
iments in terms of possible new physics, it is crucial to have the SM EWC under
a very ˇrm control.

CONCLUSION

In the presented work, we perform detailed calculations of the complete
one-loop set of electroweak radiative corrections to the parity violating e−e− →
e−e−(γ) scattering asymmetry both at low and high energies using the on-shell
renormalization conditions proposed in [19] (see also [20]) and the conditions sug-
gested in [21]. Although contributions from the self-energies and vertex diagrams
calculated with the two sets of renormalization conditions differ signiˇcantly, our
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full gauge-invariant set still guarantees that the total relative weak corrections are
in excellent agreement for the two methods of calculation.

Obviously, it is important to exercise caution when comparing separate con-
tributions arising from the different renormalization conditions unless these con-
tributions form a gauge-invariant set (like boxes). Although this is a well-known
fact, in principle, it is still useful to demonstrate this in detail numerically for
a speciˇc example. We hope that our results illustrating the structure of rela-
tive weak corrections evaluated at different renormalization conditions will be of
educational value to researchers staring work in this area.

In addition, we compare the asymptotic results obtained analytically, ®by
hand¯ (with HRC), with some approximations, and semi-automatically (with
DRC), with no approximations required. As a result, we have a good agree-
ment for the whole 0 <

√
s < 50 GeV energy region. More speciˇcally, for the

kinematics relevant to the 11 GeV MOLLER experiment planned at JLab, our
agreement within two approaches for the complete one-loop set of electroweak
radiative corrections is better than 0.1%. We found no signiˇcant theoretical
uncertainty coming from the largest possible source, the hadronic contributions
to the vacuum polarization. The dependence on other uncertain input parameters,
like the mass of the Higgs boson, is extremely weak and well below 0.1%. We
conclude that the excellent agreement we obtained between the results calculated
®by hand¯ and semi-automatically serves as a good illustration of opportunities
offered by FeynArts, FormCalc, LoopTools, and FORM.

Considering the large size of the obtained radiative effects, it is obvious
that the careful procedure for taking into account radiative correction is essential.
Our plans include the construction of a Monte Carlo generator for the simulation
of radiative events within Méoller scattering to make our work directly useful to
the experiment. Since we are now assured of the reliability of our calculations,
we plan to base this Monte Carlo on the maximum-precision results from our
semi-automatic approach.

Although making sure that the results obtained by two different approaches
using two renormalization conditions are identical assures us that our NLO EWC
calculations are error-free, it does not address the question of the size of NNLO
corrections. The two-loop corrections are beyond the scope of this work, but
we plan to address them in the future. One way to ˇnd some indication of the
size of higher-order contributions is to compare physical observables computed to
the same order in perturbation theory in different renormalization schemes. Our
calculations in the on-shell and CDR schemes show that while the NLO terms
differ by about 11%, the PV asymmetries differ by about 3%. At the level of
precision of the future experiments such as MOLLER, higher-order corrections
become important.

To see if the two complementary approaches we successfully used for the SM
calculations can be applied in the NP domain, we expanded FeynArts, FormCalc,
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LoopTools, and FORM to include an additional neutral boson (Z ′), calculated
the relevant correction, and then obtained the same result by hand. Possible
other contributions of new-physics particles to the Méoller asymmetry still need
to be investigated, and many of them can be included into the program packages
mentioned above.

We believe that the future experiments at JLab and the ILC will mandate
evaluation of the EWC beyond one loop. Once all the SM corrections are under
control, it is worth considering NLO corrections including new-physics particles,
starting with the Minimal Super Symmetric Model (MSSM). The most straightfor-
ward way to address these corrections is by employing the CDR scheme [33,34]
because the CDR approach can be easily expanded to MSSM. However, whether
the CDR scheme will be applicable in evaluating the EWC at the NNLO level
is still an open question. Our preliminary plan is to address the NNLO EWC
with the on-shell scheme ˇrst, and, if the effect is signiˇcant, stay with the same
scheme for calculating contributions coming from the new-physics particles. The
simple example of the ZZ ′ box we consider in Sec. 4 is gauge-invariant and is
thus not affected by the choice of renormalization, but we have to be careful when
choosing the scheme for our future work. Any suggestions from the community
regarding the best approach to this task would be greatly appreciated.
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