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THREE-LOOP CALCULATIONS
IN NON-ABELIAN GAUGE THEORIES

O.V. Tarasov∗, A. A. Vladimirov∗∗

Joint Institute for Nuclear Research, Dubna

A detailed description of the method for analytical evaluation of the three-loop contributions
to renormalization group functions is presented. This method is employed to calculate the charge
renormalization function and anomalous dimensions for non-Abelian gauge theories with fermions
in the three-loop approximation. A three-loop expression for the effective charge of QCD is given.
Charge renormalization effect in the SU(4)-supersymmetric gauge model is shown to vanish at this
level. A complete list of required formulas is given in Appendix. The above-mentioned results of
three-loop calculations were published by the present authors (with A.Yu. Zharkov and L.V.Avdeev)
in 1980 in ®Physics Letters B¯. The present text, which treats the subject in more detail and contains
a lot of calculational techniques, was also published in 1980 as the JINR Communication E2-80-483
(Dubna, 1980).

„¥É ²Ó´μ μ¶¨¸ ´ ³¥Éμ¤  ´ ²¨É¨Î¥¸±μ£μ ¢ÒÎ¨¸²¥´¨Ö ¢±² ¤μ¢ Ë¥°´³ ´μ¢¸±¨Ì ¤¨ £· ³³ ¢ ·¥-
´μ·³£·Ê¶¶μ¢Ò¥ ËÊ´±Í¨¨, μ¸´μ¢ ´´Ò° ´  · §³¥·´μ° ·¥£Ê²Ö·¨§ Í¨¨ ¨ ¶μ§¢μ²ÖÕÐ¨° ¢ÒÎ¨¸²¨ÉÓ ¢¸¥
É·¥Ì¶¥É²¥¢Ò¥ ¤¨ £· ³³Ò ²Õ¡μ° ·¥´μ·³¨·Ê¥³μ° É¥μ·¨¨. ‘ ¶μ³μÐÓÕ ÔÉμ£μ ³¥Éμ¤  ¢ É·¥Ì¶¥É²¥¢μ³
¶·¨¡²¨¦¥´¨¨ ´ °¤¥´Ò ËÊ´±Í¨Ö ·¥´μ·³¨·μ¢±¨ § ·Ö¤  ¨  ´μ³ ²Ó´Ò¥ · §³¥·´μ¸É¨ ¶μ²¥° ´¥ ¡¥-
²¥¢μ° ± ²¨¡·μ¢μÎ´μ° É¥μ·¨¨ ¸ Ë¥·³¨μ´ ³¨. �·¨¢¥¤¥´μ ¢Ò· ¦¥´¨¥ ¤²Ö ÔËË¥±É¨¢´μ£μ § ·Ö¤ 
±¢ ´Éμ¢μ° Ì·μ³μ¤¨´ ³¨±¨ ¸ ÊÎ¥Éμ³ É·¥Ì ¶¥É¥²Ó. �·μ¤¥³μ´¸É·¨·μ¢ ´μ μÉ¸ÊÉ¸É¢¨¥ ·¥´μ·³¨·μ¢±¨
§ ·Ö¤  ¢ SU(4)-¸Ê¶¥·¸¨³³¥É·¨Î´μ° ± ²¨¡·μ¢μÎ´μ° ³μ¤¥²¨ ´  É·¥Ì¶¥É²¥¢μ³ Ê·μ¢´¥. ‚ ¶·¨²μ-
¦¥´¨¨ ¤ ´  ¶μ²´ Ö ¸¢μ¤±  Ëμ·³Ê², ´¥μ¡Ìμ¤¨³ÒÌ ¤²Ö É·¥Ì¶¥É²¥¢ÒÌ ¢ÒÎ¨¸²¥´¨° ¢ ´¥ ¡¥²¥¢ÒÌ
± ²¨¡·μ¢μÎ´ÒÌ É¥μ·¨ÖÌ. ‚ÒÏ¥Ê¶μ³Ö´ÊÉÒ¥ ·¥§Ê²ÓÉ ÉÒ É·¥Ì¶¥É²¥¢ÒÌ · ¸Î¥Éμ¢ ¡Ò²¨ μ¶Ê¡²¨±μ-
¢ ´Ò  ¢Éμ· ³¨ (¸μ¢³¥¸É´μ ¸ �.	. † ·±μ¢Ò³ ¨ ‹.‚. �¢¤¥¥¢Ò³) ¢ 1980 £. ¢ ¦Ê·´ ²¥ ®Physics
Letters B¯,   É ±¦¥, ¸ ¡μ²¥¥ ¤¥É ²Ó´Ò³ ¨ ¶μ¤·μ¡´Ò³ ¨§²μ¦¥´¨¥³ É¥Ì´¨±¨ ¢ÒÎ¨¸²¥´¨°, ¢ ¢¨¤¥
¸μμ¡Ð¥´¨Ö �ˆŸˆ E2-80-483 („Ê¡´ , 1980).

PACS: 11.10.-Z; 11.10.Gh

INTRODUCTION

The renormalization group method when applied to asymptotically free mod-
els results in an ®improved¯ perturbation theory. Its expansion parameter, an
effective charge ḡ2(Q2/Λ2, g2), decreases logarithmically with the increase in the
momentum transfer Q2. The existent QCD calculations of various deep inelastic
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processes in the ˇrst two orders in ḡ2 appear to be consistent with the present
experimental data [1]. However, the next-to-leading corrections (i.e., those ∼ ḡ4)
are fairly large. It leaves open the possibility of the higher-order contributions to
be important.

The calculations in higher orders are also of interest from another standpoint.
They might serve as a starting point for summing the perturbation theory ex-
pansions of QCD, as it is done, for instance, in the φ4 model [2]. Moreover,
these calculations can shed light on some peculiar aspects of certain ˇeld theory
models. For example, in the SU(4)-supersymmetric non-Abelian gauge model
derived in [3, 4], the charge renormalization effects are shown to vanish to the
two-loop order [5]. The corresponding three-loop calculations presented below
give the same answer: The charge renormalization function β(g2) is equal to
zero. Apparently, the vanishing of β(g2) at the three-loop level is not a sheer
coincidence, but an indication that this effect holds to all orders.

The ˇrst three-loop QCD calculation in the framework of the renormalization
group has been performed in [6], where the total cross section of the e+e−-an-
nihilation into hadrons has been computed analytically. This result is conˇrmed
in [7] by a numerical calculation and in [8] also analytically. However, these
calculations involve the β(g2) function to order g6, whereas all other three-loop
QCD calculations require the next, ∼g8, contribution to β(g2). The charge renor-
malization function β(g2) for the non-Abelian gauge theory including fermions is
known to g6 only, i.e., in the two-loop approximation [9]. In the present paper,
we describe a method which enables one to evaluate β(g2) at the three-loop level.
We present the results of these calculations and the full list of needed formulas.

1. RENORMALIZATION GROUP IN THE MINIMAL SUBTRACTION
SCHEME

We consider a non-Abelian gauge theory with fermions belonging to the
representation R of the gauge group G:

L = −1
4
Ga

μνGa
μν − 1

2α

(
∂μAa

μ

)2 − ∂μη̄a∂μηa+

+ gfabcη̄aAb
μ∂μηc + i

f∑
m=1

ψ̄ m
i D̂ψm

i , (1)

Ga
μν = ∂μAa

ν − ∂νAa
μ + gfabcAb

μAc
ν , Dμψm

i = ∂μψm
i − igRa

ijψ
m
j Aa

μ.

Here ηa is the ghost ˇeld; α is the gauge parameter, and fabc are the totally
antisymmetric structure constants of the gauge group G. The indices of the
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fermion ˇeld ψm
i specify color (i) and 
avor (m), respectively. The matrices Ra

obey the following relations:

[Ra, Rb]− = ifabcRc, facdf bcd = CAδab,
(2)

RaRa = CF I, tr (RaRb) = Tδab.

In particular, the values of group invariants CA, CF , and T in the fundamental
(quark) representation of SU(N) are

CA = N, CF =
N2 − 1

2N
, T =

1
2
. (3)

The underlying gauge symmetry of the Lagrangian (1) gives rise to the well-
known SlavnovÄTaylor identities [10] extensively used throughout the paper. In
particular, a transversality of the radiative corrections to the gluon propagator
allows one to compute such a correction in the scalar form, i.e., with its Lorentz
indices contracted.

We now turn to a brief discussion of the renormalization procedure. In
this paper, we adopt the renormalization prescription by 't Hooft [11], the so-
called ®minimal subtraction scheme¯, which by deˇnition subtracts only pole
parts in ε from a given diagram. The renormalization constants ZΓ relating the
dimensionally regularized 1PI Green function with the renormalized one,

ΓR

(
Q2

μ2
, α, g2

)
= lim

ε→0
ZΓ

(
1
ε
, α, g2

)
Γ

(
Q2, αB, g2

B, ε
)
, (4)

look in this scheme like

ZΓ

(
1
ε
, α, g2

)
= 1 +

∞∑
n=1

c
(n)
Γ (α, g2)ε−n, (5)

with ε = (4 − d)/2, d being the space-time dimension. In (4), μ is the renor-
malization parameter with the dimension of mass. The bare charge g2

B is to be
constructed from appropriate Zs. The most convenient choice is as follows:

g2
B = μ2εg2Z̃2

1Z−1
3 Z̃−2

3 . (6)

Here Z̃1 is the renormalization constant of the ghostÄghostÄgluon vertex, Z3 and
Z̃3 being those of inverted gluon and ghost propagators, respectively. Note also
αB in (4) to be given by αB = αZ3. The Green function ΓR(Q2/μ2, α, g2)
satisˇes the renormalization group equation[

Q2 ∂

∂Q2
− β(g2)

∂

∂g2
− γ3(α, g2)α

∂

∂α
− γΓ(α, g2)

]
ΓR

(
Q2

μ2
, α, g2

)
= 0 (7)
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and the normalization condition ΓR(Q2/μ2, α, 0) = 1. The anomalous dimensions
γΓ are given by the relation

γΓ(α, g2) = g2 ∂

∂g2
c
(1)
Γ (α, g2). (8)

Similarly, from

g2
B = μ2ε

[
g2 +

∞∑
n=1

a(n)(g2) ε−n

]
(9)

one obtains the charge renormalization function β,

β(g2) ≡
(

g2 ∂

∂g2
− 1

)
a(1)(g2) =

= g2
[
2γ̃1(α, g2) − γ3(α, g2) − 2γ̃3(α, g2)

]
, (10)

which is known to be gauge independent [12]. Thus, the computation of γΓ(α, g2)
and β(g2) requires the functions c

(1)
Γ (α, g2) for the renormalization constants in

the right-hand side of (6).
The residues of higher-order poles in the expansion (5) and (9) are related

with c(1) and a(1) by the equalities[
β(g2)

∂

∂g2
+ γ3(α, g2)α

∂

∂α
+ γΓ(α, g2)

]
c
(n)
Γ (α, g2) =

= g2 ∂

∂g2
c
(n+1)
Γ (α, g2), (11)

β(g2)
∂

∂g2
a(n)(g2) =

(
g2 ∂

∂g2
− 1

)
a(n+1)(g2). (12)

We choose to work in the Feynman gauge α = 1 throughout this paper. For
checking the higher residues by means of (11), one may use the results of the
corresponding two-loop calculations [13] performed in a general gauge.

According to the minimal subtraction prescription [11], the renormalization
constants are uniquely determined by requiring that all the divergences in ε
disappear from the product ZΓ(1/ε, α, g2)Γ

(
Q2, αB , g2

B, ε
)
, so that the limit

ε → 0 in (4) does exist. However, we ˇnd a somewhat different (but equivalent)
deˇnition [14] to be more convenient:

ZΓ = 1 −KR′Γ. (13)

An operator K picks out all the pole terms in ε,

K
∑

n

bnεn =
∑
n<0

bnεn. (14)
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R′ is the BPHZ minimal subtraction procedure (R-operation) with its ˇnal sub-
traction missing: R = (1 − K)R′. In other words, the R′-operation subtracts all
the divergences of internal subgraphs but does not subtract an overall divergence
of a diagram. To construct R′ explicitly, one can employ the following recursion
relation [15]:

R′G = G +
∑

(−KR′G1) · · · (−KR′Gm)G/G1 + . . . + Gm, (15)

where the sum is over all sets of disjoint 1PI divergent subgraphs of the diagram
G, and G/(G1 + . . . + Gm) is the diagram obtained from G by contracting
G1, . . . , Gm to points (as an example, see Fig. 1).

Fig. 1

The KR′G is the negative of a contribution from G to an appropriate renor-
malization constant. The computation of KR′G is simpliˇed drastically owing to
the following fact [16].

Let a diagram G be infrared ˇnite in a range of external momenta ki and
internal masses mj . Then in this range KR′G is a polynomial in ki and mj .
Therefore, it is either independent of ki and mj (for a logarithmically divergent
diagram G) or loses such a dependence after differentiating once or twice with
respect to ki.

2. A METHOD FOR COMPUTING THREE-LOOP INTEGRALS

This feature of KR′G provides the basis for a simple and efˇcient computa-
tional technique developed in [15], which enables one to evaluate analytically all
three-loop contributions to the renormalization group functions γ and β in any
renormalizable theory. It is shown in [15] that one may calculate KR′G (properly
differentiated, if necessary) with all its external momenta equal to zero and with an
auxiliary mass m �= 0 introduced into one of its internal lines (which is sufˇcient
to remove all infrared divergences). The momentum integration corresponding to
this line is chosen to be the last one. It looks like∫

dp

(p2)α(p2 + m2)
(16)
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and is readily done using Eq. (66) in Appendix. We thus show the last momentum
integration to be trivial. Therefore, the problem of three-loop calculations reduces
to computing the two-loop massless integrals depending on a single momentum p2,∫

dt dq

t2αq2β(p − t)2γ(p − q)2σ(t − q)2ρ
, (17)

with α, β, γ, σ, and ρ being integers. If one of the denominators is missing
(e.g., ρ = 0,−1,−2, . . .), the integral (17) can be evaluated by sequential use
of Eq. (67). Otherwise, one needs the nontrivial two-loop integration formu-
las deduced in [17] through the x-space Gegenbauer polynomial technique. In
Appendix, we give a list of relevant integrals of the type (17).

As an illustrative example, we consider an integral

J =
∫

dp dq dt (qt)2

p2q2t2(p − q)2(p − t)2(k − q)2(k − t)2
≡ . (18)

Due to quadratic divergence, it should be differentiated twice with respect
to k. Using the relation

∂2

∂kμ ∂kμ

[
1

(k − q)2(k − t)2

]
=

=
8(k − q)(k − t) + 4ε[(k − q)2 + (k − t)2]

(k − q)4(k − t)4
, (19)

we obtain K∂2R′J as displayed in Fig. 2 in self-evident notation. Since KR′J =
k2A(1/ε), we ˇnally get

A

(
1
ε

)
= K 1

8 − 4ε
K∂2R′J = (iπ2)3

(
1

24ε2
+

1
32ε

)
. (20)

The last two diagrams in Fig. 2 diverge logarithmically so that one can compute
them with k = 0 provided that a nonzero mass is introduced into one of the
differentiated lines, i.e., into that with a blob.

The problem of evaluating KR′G at the three-loop level thus reduces to the
integrations (16) and (17). The described procedure has been employed in a
considerable part of the calculations presented in this paper.

One can also determine the pole part of (18), KJ , by means of a somewhat
different method, which involves transferring an external momentum to the other
vertex in order to simplify the denominator.
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Fig. 2

Fig. 3

Consider the difference (Fig. 3)∫
dp dq dt (qt)2

p2q2t2(p − q)2(p − t)2(k − q)2(k − t)2

[
1 − (k − q)2

q2

]
=

=
∫

dp dq dt (qt)2(2kμqμ − k2)
p2t2q4(p − q)2(p − t)2(k − q)2(k − t)2

≡ 2kμJμ − k2J1. (21)

Let us further subtract from Jμ the other integral having a more simple
structure of the denominator

Jμ −
∫

dp dq dt qμ(qt)2

p2t4q4(p − q)2(p − t)2(k − q)2
=

=
∫

dp dq dt qμ(qt)2[2kνtν − k2]
p2q4t4(p − q)2(p − t)2(k − q)2(k − t)2

. (22)

There is only one (logarithmically) divergent integral in the right-hand side
of (22), namely, ∫

dp dq dt 2qμtν(qt)2

p2q4t4(p − q)2(p − t)2(k − q)2(k − t)2
. (23)

Due to the absence of divergent subgraphs, its pole part does not depend on k
and coincides with

K
∫

dp dq dt 2qμtν(qt)2

p2q4t6(p − q)2(p − t)2(k − q)2
. (24)
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As to the integral J1, it diverges logarithmically and contains divergent subgraphs.
We note the difference

J1 −
∫

dp dq dt (qt)2

p2q4t4(p − q)2(p − t)2(k − q)2
(25)

to be convergent, and combining the last ˇve relations ˇnally obtain

KJ = K
∫

dp dq dt (qt)2[4(kt)(kq) + 2q2t2 − t2(k − q)2]
p2q4t6(k − q)2(p − q)2(p − t)2

=

= −(iπ2)3
(

1
12ε2

+
25
32ε

)
. (26)

This integral is easy to evaluate with the use of formulas listed in Appendix.
Adding to (26) the appropriate counterterms gives for KR′J the same answer as
in (20).

The essence of the procedure presented above is as follows. One subtracts
from the initial integral J an infrared ˇnite integral J ′ with a more simple
denominator reducing thus the degree of divergence. Such a subtraction is to be
repeated until the difference becomes convergent.

3. CALCULATION OF SPECIFIC DIAGRAMS

It is now seen that the three-loop momentum integrals contributing to Zs
are always calculable. However, one must introduce an auxiliary mass into the
diagram (which, as a rule, represents a sum of distinct integrals similar to (18))
and into all its counterterms in a consistent fashion. For the most complicated
diagrams of the gluon propagator, this task appears to be unmanageable. There-
fore, we deal with the diagrams of the topological type, depicted in Fig. 4, as
follows. We reduce the numerator of the integrand to the scalar form and then
decompose it into a sum of invariants like k2(q− t)4, p2q2(p− t)2, . . . Canceling
numerator against denominator and taking symmetry into account results in at
most 66 distinct three-loop massless integrals. Their pole parts are to be found
either by direct use of (67)Ä(72) or by differentiating, introducing a mass, and
then converting KR′ into K through the compensating subtraction. The latter
pole parts are given in Appendix.

Fig. 4
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Fig. 5

The propagator diagrams of more simple (®nested¯) topology (Fig. 5) can be
computed straightforwardly using (67)Ä(72). The remaining topological type is
represented by a single diagram (all others equal zero owing to the antisymmetry
of the group structure constants) which can be easily calculated by means of
differentiation:

=

=
g6T (CF − CA)

(
CF − CA

2

)
(4π)6(k2)3ε−1

(
16
3ε2

+
20
ε

− 32
ε

ζ(3) + O(1)
)

. (27)

All the diagrams of the ghostÄghostÄgluon vertex diverge logarithmically.
We evaluate them setting all external momenta to be zero and introducing an
auxiliary mass into one of the internal lines. For each particular diagram, this
®potentially infrared¯ line is easy to identify.

Thus, all the diagrams of a certain Green function are calculated in the same
fashion: with an auxiliary mass for the vertices and without it for propagators.
It enables one to perform the subtractions either following 't Hooft [11] or de-
termining KR′G for each individual diagram. In order to check the intermediate
results, we choose the latter way.

The problem of evaluating the group weights appears to be of no substantial
difˇculty. Mostly it reduces to making contractions in the products of several
structure constants fabc. The following graphical representation is here of great
use [18]:

= fabc, = δab,

= (−CA) =⇒ f cadfdbc = −CAδab,

(28)

= −CA

2
=⇒ fdaefebgfgcd = −1

2
CAfabc,

= 0 =⇒ fgaif ijdf jbhfhegfdce = 0.
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The last two relations are derived from the Jacobi identity

= + =⇒ fabcfade + fabefacd + fabdfaec = 0. (29)

The only products of structure constants which cannot be contracted by the se-
quential use of (28) are the following (Fig. 6):

Fig. 6

From (29) we obtain

= − − 1
8

C3
A . (30)

However, one fails to express the graphs of Fig. 6 separately in terms of CA. In
a speciˇc case of the SU(N) group, we have found

=
3
2

N . (31)

Fortunately, the relation (30) is quite sufˇcient for the three-loop calculations
of the renormalization group functions. Only the sum of the diagrams of Fig. 6
contributes to the ˇnal answer. This fact is easy to explain. The nontrivial
products (Fig. 6) might contribute to the vertex anomalous dimension, γ̃1(α, g2),
only. But it is known to vanish in the Landau gauge: γ̃1(0, g2) = 0. Hence
these products do not contribute to the gauge independent function β(g2) and,
consequently, to γ̃1(α, g2) in arbitrary gauge as well.

Concluding this section, we wish to discuss one more example where SlavnovÄ
Taylor identities [10] have been fruitfully used. To facilitate the computation of
the vertex diagram with the two-loop three-gluon insertion

KR′ = K 1
4 − 2ε

∫
dp pν

(2π)4p4(p2 + m2)
, (32)
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we employ an identity

pμΓabc
ρνμ(k, q, p) =

= G(p2)

⎡⎣Mabc
σρ (k, q, p)D−1(q2)(q2gσν − qσqν) +

⎛⎝b ↔ a
ρ ↔ ν
q ↔ k

⎞⎠⎤⎦ , (33)

where a notation is as follows:

= Γabc
ρνμ(k, q, p),

= qσMabc
σρ (k, q, p),

(34)

= −iδab 1
p2

G(p2),

= −i
δab

p2

[(
gμν − pμpν

p2

)
D(p2) + α

pμpν

p2

]
.

In our case k = 0 so that (33) transforms into

pμΓabc
ρνμ(0,−p, p) = G(p2)D−1(p2)(p2gνσ − pνpσ)Mabc

σρ (0,−p, p). (35)

Identity (35) allows us to calculate Mabc
σρ rather than fairly complicated three-

gluon vertex Γabc
ρνμ.

4. THREE-LOOP RESULTS FOR QCD

A total number of topologically distinct three-loop diagrams contributing to
β(g2) amounts to 440 (without counting opposite directions of the ghost and
fermion lines). For performing the Lorentz and Dirac algebra, reducing the
integrands, decomposing the scalar products, evaluating and summing standard
integrals, the computer program SCHOONSCHIP [19] has been substantially used.
The total execution time is rather difˇcult to estimate. Here we only indicate that
the diagrams of Fig. 7 require 110 and 90 seconds, respectively, at the CDC-6500
computer.
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Fig. 7

Our ˇnal results obtained in collaboration with A.Yu. Zharkov are as follows
(f is the number of 
avors, h = g2/(4π)2):

γ̃1(1, h) = −CA

2
h − 3

4
C2

Ah2 + h3

(
−125

32
C3

A +
15
8

C2
ATf

)
, (36)

γ3(1, h) = h

(
5
3
CA − 4

3
Tf

)
+ h2

(
23
4

C2
A − 5CATf − 4CF Tf

)
+

+ h3

[(
4051
144

− 3
2
ζ(3)

)
C3

A +
(
−875

18
+ 18ζ(3)

)
C2

ATf −

−
(

5
18

+ 24ζ(3)
)

CACF Tf + 2C2
F Tf +

76
9

CAT 2f2 +
44
9

CF T 2f2

]
, (37)

γ̃3(1, h) =
CA

2
h + h2

(
49
24

C2
A − 5

6
CATf

)
+ h3

[(
229
27

+
3
4
ζ(3)

)
C3

A −

−
(

5
216

+ 9ζ(3)
)

C2
ATf +

(
−45

4
+ 12ζ(3)

)
CACF Tf − 35

27
CAT 2f2

]
, (38)

β(h) = h2

(
−11

3
CA +

4
3
Tf

)
+ h3

(
−34

3
C2

A +
20
3

CATf + 4CF Tf

)
+

+ h4

(
−2857

54
C3

A +
1415
27

C2
ATf − 158

27
CAT 2f2 +

+
205
9

CACF Tf − 44
9

CF T 2f2 − 2C2
F Tf

)
. (39)

The cancellation of the transcendental ζ(3) in the expression for β(h) is in
complete analogy with QED treated in the minimal subtraction scheme, where [20]

βQED(α) =
4
3

α2

4π
+ 4

α3

(4π)2
− 62

9
α4

(4π)3
. (40)
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In a particular case of QCD, when fermions transform according to the funda-
mental representation of SU(3), β(h) reads

βQCD(h) = h2

(
−11 +

2
3
f

)
+ h3

(
−102 +

38
3

f

)
+

+ h4

(
−2857

2
+

5033
18

f − 325
54

f2

)
. (41)

Now we are in a position to ˇnd an effective charge h̄(Q2/μ2, h) from

ln
Q2

μ2
=

h̄∫
h

dx

β(x)
= ψ(h̄) − ψ(h), (42)

where ψ(h) represents an indeˇnite integral
h∫
dx/β(x). Let us express h̄ in terms

of renormalization group invariant quantity ln Q2/μ2 + ψ(h) ≡ ln Q2/Λ2 ≡ L,
where Λ is the momentum scale. Assuming

β(x) = −β0x
2 − β1x

3 − β2x
4 + O(x5), (43)

we arrive at

ψ(h) =
1

β0h
+

β1

β2
0

ln h + δ +
β2β0 − β2

1

β3
0

h + O(h2) (44)

and obtain from (42)

h̄(L) =
1

β0L
− β1

β3
0

ln L

L2
+

δβ2
0 − β1 ln β0

β3
0L2

+
β2

1 ln2 L

β5
0L3

−

− ln L

L3

[
β2

1

β5
0

+
2β1

β5
0

(
δβ2

0 − β1 ln β0

)]
+

1
L3β5

0

×

×
[
β2β0 − β2

1 + β1(δβ2
0 − β1 ln β0) + (δβ2

0 − β1 ln β0)2
]
+ O

(
ln3 L

L4

)
, (45)

with δ being an arbitrary constant. Fixing the momentum scale Λ by choosing,

as usual, δ =
β1 ln β0

β2
0

, we ˇnally get

h̄(L) =
1

β0L
− β1

β3
0

ln L

L2
+

β2
1(ln2 L − ln L)

β5
0L3

+
β2β0 − β2

1

β5
0L3

+ O

(
ln3 L

L4

)
. (46)

Using (41), (43), and (46), one readily ˇnds the QCD effective charge in the
three-loop approximation.
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5. VANISHING OF β(g2) IN A SUPERSYMMETRIC GAUGE MODEL

Some time ago a very interesting SU(4)-supersymmetric non-Abelian gauge
model has been derived [3, 4] which exhibits the vanishing charge renormalization
effects, since its charge renormalization function β(g2) proves to be zero through
the two-loop order [5]. The Lagrangian is [4]:

L = LYM +
i

2
λ̄a

mD̂λa
m +

1
2

(Dμφa
r )2 +

1
2

(Dμχa
r)2 −

− g

2
fabcλ̄a

m

[
αr

mnφb
r + γ5β

r
mnχb

r

]
λc

n−

− g2

4
[
(fabcφb

rφ
c
t)

2 + (fabcχb
rχ

c
t)

2 + 2(fabcφb
rχ

c
t)

2
]
, (47)

with a, b, c = 1, . . . , N2 − 1; m, n = 1, . . . , 4; r, t = 1, 2, 3. Here LYM is the
pure YangÄMills Lagrangian with SU(N) gauge symmetry. The matter ˇelds
(Majorana spinors λa

m, scalars φa
r , and pseudoscalars χa

r ) transform according to
the adjoint (regular) representation of SU(N). Hence

Dμλa
m = ∂μλa

m + gfabcAb
μλc

m,

with similar expressions for Dμφa
r and Dμχa

r . The six real antisymmetric 4 × 4
matrices αr, βr obey the relations

[αr, αt]+ = [βr, βt]+ = −2δrt, [αr, βt]− = 0. (48)

The other properties of these matrices and their explicit form are given in Ap-
pendix.

To determine the contributions to the renormalization group functions of the
model (47) from the diagrams without scalar and pseudoscalar particles, one may
use the results (36)Ä(39) with

CA = CF = N, Tf = 2N. (49)

This leads to

β(h)without scalars = −Nh2 + 10N2h3 +
101
2

N3h4. (50)

Now an appropriate scalar contribution must be added to (50). In the two-loop
approximation it has been done in [5] with the intriguing result β(h) = 0.

The method of our three-loop calculations is described above. Here we
shall only consider the issue of applicability of the standard dimensional reg-
ularization to supersymmetric theories. This subject has been discussed by
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various authors [21]. Proceeding in the spirit of [21] we write down the
following rules of the ®supersymmetric dimensional regularization¯ which is
to maintain both gauge invariance and global supersymmetry: The relations
deˇning the Dirac matrices look as in four dimensions (see Appendix),
while the numbers of scalar and pseudoscalar ˇelds equal 3 + ε rather than 3.
This modiˇcation of the regularization maintains equal (and integral) total num-
bers of Bose and Fermi degrees of freedom even in 4 − 2ε dimensions:
8 components of four Majorana spinors correspond to (2 − 2ε) massless
vectors +(3 + ε) scalars +(3 + ε) pseudoscalars = 8 bosons. It is this match-
ing of the Fermi and Bose ˇeld components that is crucial for preserving super-
symmetry [21].

For lack of a rigorous proof, we have veriˇed the invariance of the supersym-
metric dimensional regularization by direct calculation of β(h) at the two-loop
level in two different ways:

β(h) = h[2γ̃1(h) − γ3(h) − 2γ̃3(h)] (51)

and
β(h) = h[2γ4(h) − γφ(h) − 2γλ(h)]. (52)

Here γ̃1 and γ4 are the anomalous dimensions of the ghostÄghostÄgluon and
fermionÄfermionÄscalar vertices, and γ3, γ̃3, γφ, and γλ are those of gluon, ghost,
scalar, and fermion propagators, respectively. In the standard (with δrr = 3)
dimensional regularization, these anomalous dimensions are (in the Feynman
gauge):

γ̃1 = −Nh

2
− 3

4
N2h2, γ4 = −5Nh + 5N2h2,

γ3 = −2Nh +
N2h2

2
, γφ = −2Nh, (53)

γ̃3 =
Nh

2
− N2h2, γλ = −4Nh + 6N2h2.

With the use of supersymmetric dimensional regularization (with δrr = 3 + ε),
we obtain

γ̃1 = −Nh

2
− 3

4
N2h2, γ4 = −5Nh +

11
2

N2h2,

γ3 = −2Nh + N2h2, γφ = −2Nh− N2h2, (54)

γ̃3 =
Nh

2
− 5

4
N2h2, γλ = −4Nh + 6N2h2.

Using (51) gives β(h) = 0 for both regularizations, while (52) leads to β(h) =
−2N2h3 for the standard regularization and to β(h) = 0 for the supersymmetric
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one. This discrepancy shows the former regularization to be noninvariant under
supersymmetric transformations.

For our three-loop calculations we employ formula (51). Below we write
down the scalar contributions to anomalous dimensions through the three-loop
order calculated in the supersymmetric dimensional regularization scheme (in
collaboration with L.V.Avdeev):

γscal
3 = −Nh +

53
4

N2h2 +
(

69
8

− 9
4

ζ(3)
)

N3h3,

γ̃scal
3 = −13

8
N2h2 +

(
771
32

+
9
8

ζ(3)
)

N3h3, (55)

γ̃scal
1 =

101
32

N3h3.

From (55) and (51) we obtain

βscal(h) = Nh2 − 10N2h3 − 101
2

N3h4, (56)

and using (50), arrive at the ˇnal result

β(h)three loops = 0. (57)

It is worth mentioning that the use of the standard dimensional regularization
yields

γscal
3 = −Nh +

51
4

N2h2 +
(

193
48

− 9
4

ζ(3)
)

N3h3,

γ̃scal
3 = −11

8
N2h2 +

(
527
24

+
9
8

ζ(3)
)

N3h3, γ̃scal
1 =

87
32

N3h3, (58)

β(h)three loops = 8N3h4.

The result (57) implies the absence of the charge renormalization effects in
the model (47) to the three-loop order. It conˇrms a conjecture that β(h) in this
model vanishes to all orders. If it were the case, the model (47) would be unique
in the four-dimensional quantum ˇeld theory. The vanishing β(h) might imply,
for instance, that this model would be free of supersymmetric anomalies [22].
In any case, a rigorous argument proving this conjecture on symmetry ground is
now of great urgency.

We would like to thank L.V.Avdeev, G.A. Chochia, and A.Yu. Zharkov for
the help in some calculations.



THREE-LOOP CALCULATIONS IN NON-ABELIAN GAUGE THEORIES 1527

APPENDIX

A.1. Feynman Rules for the Model (1)

− i

p2
δab

(
gμν + (α − 1)

pμpν

p2

)
,

− i

p2
δab,

ip̂

p2
δmnδij ,

gpμ fabc,

igγμδmnRa
ij ,

gfabc[(p − q)α gβγ + (q − k)β gαγ + (k − p)γ gαβ],

− ig2[fabef cde(2gαμgβν − gανgβμ − gαβgμν)+

+ facef bde (2gαβgμν − gανgβμ − gαμgβν)].

A.2. Additional Feynman Rules for the Model (47)

ip̂

p2
δabδmn,

i

p2
δabδrt,

− gγμfabcδmn,

= − g(k + p)μfabcδrt,
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− igfabcαr
nm,

− igfabcγ5β
r
nm,

= ig2 gμνδrt(facef bde + fadef bce),

− ig2 δrtδsu(facef bde + fadef bce),

= − ig2 [fabef cde(2δrtδsu − δrsδtu − δruδts)+

+ facef bde(2δrsδtu − δrtδsu − δruδts)].

In addition to this:
a) each closed loop brings a factor (2π)−4,
b) each fermion or ghost loop gives an extra minus sign,
c) arrows on the Majorana spinor lines should be ignored in calculating the

symmetry factors.
A.3. Dirac Matrices in 4 − 2ε Dimensions. We use the metric gμν =

(1,−1,−1, . . .), gμμ = 4 − 2ε.

[γμ, γν ]+ = 2gμν , γμγμ = 4 − 2ε, γμγνγμ = (2ε − 2)γν ,

γμγνγργμ = 4gνρ − 2εγνγρ, γμγνγργσγμ = 2ε γνγργσ − 2γσγργν , (59)

[γ5, γμ]+ = 0, γ2
5 = −1, tr γ5 = 0, tr I = 4, tr(γμγν) = 4gμν ,

tr(γμγνγαγβ) = 4(gμνgαβ − gμαgνβ + gμβgνα), tr(γμ1 . . . γμ2N+1) = 0.

A.4. The α- and β-Matrices of the Model (47). These real antisymmetric
4 × 4 matrices have an explicit representation in terms of the Pauli matrices:

α1 =
(

0 σ1

−σ1 0

)
, α2 =

(
0 −σ3

σ3 0

)
, α3 =

(
iσ2 0
0 iσ2

)
,

(60)

β1 =
(

0 iσ2

iσ2 0

)
, β2 =

(
0 1
−1 0

)
, β3 =

(
−iσ2 0

0 iσ2

)
.
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Their relevant properties are

[αr, αt]+ = [βr , βt]+ = −2δrt, [αr , βt]− = 0,
(61)

tr αr = trβr = tr (αrβt) = 0, tr (αrαt) = tr (βrβt) = −4δrt.

The supersymmetric regularization used in Sec. 5 implies δrr = 3 + ε giving rise
to the following relations:

αrαr = βrβr = −3 − ε, αrαtαr = (1 + ε)αt, βrβtβr = (1 + ε)βt, (62)

whereas the standard dimensional regularization prescribes

δrr = 3, αrαr = βrβr = −3, αrαtαr = αt, βrβtβr = βt. (63)

A.5. Properties of the Euler Γ-function

Γ(z + 1) = zΓ(z), Γ(1) = Γ(2) = 1, Γ(N + 1) = N !,
(64)

Γ(1 + x) = exp

[
−γx +

∞∑
n=2

(−1)n ζ(n)
n

xn

]
,

where γ is the Euler constant and ζ is the Riemann function. We note that γ
and ζ(2) do not occur in KR′G, and consequently in the renormalization group
functions.

A.6. One-Loop Integration Formulas. We choose a volume of the unit

sphere in 4 − 2ε dimensions to be
2π2

1 − ε
.∫

dp (p2)λ = 0 for any λ, (65)

∫
dp

p2α(p2 + m2)β
=

iπ2 Γ(α + β − 2 + ε)Γ(2 − α − ε)
(m2)α+β−2+ε(1 − ε)Γ(β)

, (66)

∫
dq

q2α(p − q)2β
=

=
iπ2Γ(1 − ε)Γ(α + β − 2 + ε)Γ(2 − α − ε)Γ(2 − β − ε)

(p2)α+β−2+εΓ(α)Γ(β)Γ(4 − α − β − 2ε)
, (67)

∫
dq qμ

q2α(p − q)2β
=

=
iπ2 pμ Γ(1 − ε)Γ(α + β − 2 + ε)Γ(3 − α − ε)Γ(2 − β − ε)

(p2)α+β−2+εΓ(α)Γ(β)Γ(5 − α − β − 2ε)
, (68)
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dq qμqν

q2α(p − q)2β
=

=
iπ2 Γ(1 − ε)Γ(α + β − 3 + ε)Γ(3 − α − ε)Γ(2 − β − ε)

(p2)α+β−2+εΓ(α)Γ(β)Γ(6 − α − β − 2ε)
×

×
[
(α + β − 3 + ε)(3 − α − ε)pμpν +

1
2

(2 − β − ε)gμνp2

]
, (69)

∫
dq qμqνqλ

q2α(p − q)2β
=

=
iπ2 Γ(1 − ε)Γ(α + β − 3 + ε)Γ(4 − α − ε)Γ(2 − β − ε)

(p2)α+β−2+εΓ(α)Γ(β)Γ(7 − α − β − 2ε)
×

×
[
(α + β − 3 + ε)(4 − α − ε)pμpνpλ+

+
1
2
(2 − β − ε)p2(pμgνλ + pνgμλ + pλgμν)

]
. (70)

A.7. Two-Loop Integration Formulas [17]

(p2)α+β+γ+σ+ρ−4+2ε

(iπ2)2

∫
dt dq

t2αq2β(p − t)2γ(p − q)2σ(t − q)2ρ
≡ V (α, β, γ, σ, ρ),

V (α, 1, γ, 1, 1) =

=
Γ3(1 − ε)Γ(−1 + 2ε)Γ(1 − α − ε)Γ(1 − γ − ε)Γ(α + γ − 2 + 2ε)

Γ(α)Γ(γ)Γ(3 − α − γ − 3ε)
×

×
[
Γ(3 − α − γ − 3ε)
Γ(2 − α − γ − ε)

− Γ(α + γ − 1 + ε)
Γ(α + γ − 2 + 3ε)

+
Γ(α)

Γ(α − 1 + 2ε)
+

+
Γ(γ)

Γ(γ − 1 + 2ε)
− Γ(2 − α − 2ε)

Γ(1 − α)
− Γ(2 − γ − 2ε)

Γ(1 − γ)

]
, (71)

V (α, β, 1, 1, ρ) =
Γ3(1 − ε)Γ(2 − α − ε)Γ(2 − β − ε)Γ(2 − ρ − ε)

Γ(2 − 2ε)Γ(α)Γ(β)Γ(ρ)
×

×
∞∑

m,n=0

(−)mΓ(n + 2 − 2ε)Γ(m + n + α + β + ρ − 2 + 2ε)
m!n!(n + 1 − ε)Γ(4 − m − α − β − ρ − 3ε)Γ(m + n + 2 − ε)

×
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×
[

1
(n + ρ)(m + n + α + ρ − 1 + ε)

+
1

(n + ρ)(m + n + β + ρ − 1 + ε)
+

+
1

(m + n + α)(m + n + α + ρ − 1 + ε)
+

+
1

(m + n + β)(m + n + β + ρ − 1 + ε)
+

+
1

(m + n + α)(n + 2 − ρ − 2ε)
+

1
(m + n + β)(n + 2 − ρ − 2ε)

]
. (72)

A.8. Individual Two-Loop Integrals. Here we write down the relevant
integrals V (α, β, γ, σ, ρ) with all the arguments being positive integers, retaining
the 1/ε2, 1/ε and O(1) terms.

V (1, 1, 1, 1, 1) = 6ζ(3),

V (2, 1, 1, 1, 1) =
1

2ε2
− 1

2ε
+

1
2
,

V (1, 1, 1, 1, 2) =
1
ε2

+
1
ε
− 3,

V (2, 2, 1, 1, 1) =
1
ε
− 5

2
,

V (2, 1, 2, 1, 1) =
1
ε2

− 1
ε
− 1,

V (2, 1, 1, 2, 1) =
2
ε2

+
3
ε
− 1,

V (3, 1, 1, 1, 1) =
1

4ε2
+

5
8ε

+
11
16

.

A.9. Pole Parts of the Essentially Three-Loop Integrals of the Form

(k2)3ε−1

(iπ2)3

∫
dp dq dt Y (p, q, t, k)

p2q2t2(k − p)2(k − q)2(k − t)2(p − q)2(p − t)2(q − t)2
.

Y = (p − t)8 =⇒ − 2
3ε3

− 61
18ε2

− 877
108ε

+
4
ε

ζ(3),

(p − t)6k2 =⇒ 1
ε3

+
41
6ε2

+
31
ε

− 6
ε

ζ(3),

(p − t)4k4 =⇒ 12
ε

ζ(3),
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(k − q)8 =⇒ 2
3ε2

+
49
6ε

+
4
ε

ζ(3),

(k − q)6k2 =⇒ 1
3ε2

+
4
ε

+
4
ε

ζ(3),

(k − q)4k4 =⇒ 4
ε

ζ(3),

(k − q)2k6 =⇒ −2
ε

ζ(3),

(k − q)4(p − t)4 =⇒ 1
2ε2

+
17
3ε

,

(k − q)6(p − t)2 =⇒ 5
12ε3

+
73

24ε2
+

661
48ε

,

(k − q)2(p − t)6 =⇒ − 1
4ε3

− 65
24ε2

− 865
48ε

,

(k − q)4(p − t)2k2 =⇒ 1
3ε3

+
7

3ε2
+

31
3ε

,

(k − q)2(p − t)4k2 =⇒ 1
3ε3

+
3
ε2

+
53
3ε

,

(k − q)4p4 =⇒ 1
6ε3

+
17

12ε2
+

199
24ε

,

(k − q)6p2 =⇒ 1
8ε3

+
49

48ε2
+

531
96ε

,

(k − q)4p2k2 =⇒ 1
6ε3

+
3

2ε2
+

55
6ε

.
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