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These lecture notes illustrate the application of Dyson — Schwinger equations in QCD. The
extensive body of work at zero temperature and chemical potential is represented by a selection of
contemporary studies that focus on solving the Bethe — Salpeter equation, deriving an exact mass for-
mula in QCD that describes light and heavy pseudoscalar mesons simultaneously, and the calculation
of the electromagnetic pion form factor and the vector meson electroproduction cross sections. These
applications emphasise the qualitative importance of the momentum-dependent dressing of elementary
Schwinger functions in QCD, which provides a unifying connection between disparate phenomena.
They provide a solid foundation for an extension of the approach to nonzero temperature and chemi-
cal potential. The essential, formal elements of this application are described and four contemporary
studies employed to exemplify the method and its efficacy. They study the demarcation of the phase
boundary for deconfinement and chiral symmetry restoration, the calculation of bulk thermodynamic
properties of the quark-gluon plasma and the response of 7- and p-meson observables to 7' and
p. Along the way a continuum order parameter for deconfinement is introduced, an anticorrelation
between the response of masses and decay constants to 7" and their response to p elucidated, and
a (T, p)-mirroring of the slow approach of bulk thermodynamic quantities to their ultrarelativistic
limit highlighted. These effects too are tied to the momentum-dependent dressing of the elementary
Schwinger functions.
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1. INTRODUCTION

In this article I describe the application of Dyson — Schwinger equations
(DSEs) to QCD at finite temperature, 7', and quark chemical potential, . It is
not a pedagogical introduction, as this can be found in recent reviews [1,2]. The
goal instead is to illustrate how contemporary studies at (7' = 0, = 0) can be
used as a foundation and springboard for the application of DSEs at finite 7" and
1, and to describe some of these applications and their results.

The DSEs provide a nonperturbative, Poincaré invariant, continuum approach
to solving quantum field theories. They are an infinite tower of coupled integral
equations, with the equation for a particular n-point function involving at least
one m > n-point function. A tractable problem is only obtained if one truncates
the system, and historically this has provided an impediment to the application of
DSEs: a priori it can be difficult to judge whether a particular truncation scheme
will yield qualitatively or quantitatively reliable results for the quantity sought.
As integral equations, the analysis of observables using DSEs rapidly becomes
a numerical problem and hence a critical evaluation of truncation schemes often
requires, or is at least simplified, by easy access to high-speed computers.* With
such tools now commonplace, this evaluation can be pursued fruitfully.

The development of efficacious truncation schemes is not a purely numerical
task, and neither is it always obviously systematic. For some, this last point
diminishes the appeal of the approach. However, with growing community in-
volvement and interest, the qualitatively robust results and intuitive understanding
that the DSEs can provide is becoming clear. Indeed, someone familiar with the
application of DSEs in the late-70s and early-80s might be surprised with the
progress that has been made. It is now clear [3,4] that truncations which preserve
the global symmetries of a theory; for example, chiral symmetry in QCD, are
relatively easy to define and implement and, while it is more difficult to preserve
local gauge symmetries, much progress has been made with Abelian theories [5]
and more is being learnt about non-Abelian ones.

The simplest truncation scheme for the DSEs is the weak-coupling expansion.
Using this systematic procedure it is readily established that the DSEs contain
perturbation theory, in the sense that for any given theory the weak-coupling
expansion of the equations generates all the diagrams of perturbation theory.
Hence, at the very least, the DSEs can be used as a generating tool for perturbation
theory, and in this application they are an essential element in the proof of the
renormalisability of a quantum field theory. This feature also places a constraint
on other truncation schemes; i.e., the scheme must ensure that perturbative results

*The human and computational resources required are still modest compared with those con-
sumed in contemporary numerical simulations of lattice-QCD.
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are recovered in that domain on which a weak-coupling expansion is known to
be valid.

The most important feature of the DSEs is the antithesis of this weak-coupling
expansion: the DSEs are intrinsically nonperturbative. They can be derived
directly from the generating functional of a quantum field theory and at no stage
in this derivation is a DSE represented as a sum of diagrams in perturbation theory.
Hence their solution contains information that is not present in perturbation theory.
They are ideal for the study of dynamical chiral symmetry breaking* (DCSB) and
confinement in QCD, and of hadronic bound state structure and properties. In
this application they provide a means of elucidating identifiable signatures of the
quark-gluon substructure of hadrons.

Their intrinsically nonperturbative nature also makes them well suited to
studying QCD at finite-7" and p, where the characteristics of the phase transition
to a quark-gluon plasma are a primary subject. The order of the transition, the
critical exponents, and the response of bound states to changes in these intensive
variables: all must be elucidated. The latter is of particular importance because
there lies the signals that will identify the formation of the plasma and hence
guide the current and future experimental searches.

There is a significant overlap between contemporary DSE studies and numer-
ical simulations of lattice-QCD. Of particular importance is that both admit the
simultaneous study of DCSB and confinement, the absence of which defines the
plasma. The DSEs provide an adjunct to lattice simulations. They are a means
of checking them, and the simulations can provide input into the development
and constraint of DSE truncations. A truncation that is accurate on the com-
mon domain can be used to extrapolate into that domain presently inaccessible to
lattice-simulations, such as finite chemical potential and the T- and p-dependence
of hadron properties.

2. ESSENTIAL ELEMENTS OF THE DSEs

In this section I summarise some of the results upon which much of the
successful DSE phenomenology is founded. Before doing so it is important to
specify that I employ an Euclidean metric throughout. For real 4-vectors, a, b:

4
a-b:=a,b,0, = Z a;b;, O

i=1

*Historically, the DSE for a fermion propagator has found widespread use in the study of
dynamical symmetry breaking; for example, it is the “gap equation” that describes Cooper-pairing in
an ordinary superconductor.
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and hence a spacelike vector, (), has Q? > 0. The Dirac matrices satisfy
= s W} =26 )

and 5 := —7Y1727374-

My point of view is that the Euclidean formulation is primary; i.e., a field
theory should be defined in Euclidean space, where the propagators and vertices
are properly called “n-point Schwinger functions”. This is the perspective adopted
in constructive field theory and, at least as a pragmatic artifice, by practitioners of
lattice-QCD. If the field theory is well-defined, it is completely specified once all
its Schwinger functions are known. Analytic continuation in the Euclidean-time
variable yields the Wightman functions and, following appropriate time-ordering,
the Minkowski space propagators. Additional details and discussion can be found
in Sec. 2.3 of Ref.1.

It is important because the analytic structure of nonperturbatively dressed
Schwinger functions need not be the same as that of their free-particle seeds.
Hence, a priori one cannot know the analytic properties of the integrand in a
DSE and any rotation of the integration contours, as in a “Wick rotation”, is
plagued by uncertainty: there may be poles or branch cuts, etc., that cannot be
anticipated from the free-particle form of the Schwinger functions involved. This
is manifest in the fact that the transcription rules:

Configuration Space Momentum Space
M E M E
. / d*a™ — —i/ d*z” L. / d*kM — z/ d* Kk
2. 9 — in®.0F 2. F — —in® kP
3.A — —ixF . AP 3. kugt — —kF . qF
4. A,B* — —AF.BF 4. kyat — —kP 2P,

are valid at every order in perturbation theory; i.e., the correct Minkowski space
integral for a given diagram in perturbation theory is obtained by applying these
transcription rules to the Euclidean integral. However, for skeleton diagrams; i.e.,
those in which each line and vertex represents a fully dressed n-point function,
this cannot be guaranteed.

2.1. Gluon Propagator. In Landau gauge the two-point, dressed-gluon
Schwinger function, or dressed-gluon propagator, has the form

) 7  kuky G(R?) o g°
9 Du(k) = <5W L2 ) k2 G(k%) == 1—|—H(k2)’ G)
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Fig. 1. DSE for the gluon vacuum polarisation and propagator: solid line — quark; spring
— gluon; dotted-line — ghost. The open circles are irreducible vertices. As indicated,
the quark loop acts to screen the charge, as in QED, while the gluon loop opposes this,
antiscreening the charge and enhancing the interaction
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Fig. 2. G(k?)/k? from a solution [6] of the gluon DSE (dash-dot line) compared with
the one-loop perturbative result (dashed line) and a fit (solid line) obtained following the
method of Ref.7; i.e., by requiring that the gluon propagator lead, via the quark DSE, to
a good description of a range of hadron observables



542 ROBERTS C.D.

where TI(k?) is the gluon vacuum polarisation, which contains all the dynamical
information about gluon propagation. This propagator satisfies the DSE illustrated
in Fig. 1 (a nonlinear integral equation). As already stated, a weak-coupling
expansion of this DSE reproduces perturbation theory. Using this one sees directly
that in the one-loop expression for the running coupling constant:

12
as(?) = a : )
(11N, — 2N;)In (q2 /A%QCD)

the “11N.” comes from the charge-antiscreening gluon loop and the “2N;” from
the charge-screening fermion loop, which illustrates how the non-Abelian structure
of QCD is responsible for asymptotic freedom and suggests that confinement is
related to the importance of gluon self-interactions.

Studies of the gluon DSE have been reported by many authors [1] with the
conclusion that, if the ghost-loop is unimportant, then the charge-antiscreening
3-gluon vertex dominates and, relative to the free gauge boson propagator, the
dressed gluon propagator is significantly enhanced in the vicinity of k2 = 0. The
enhancement persists to k2 ~ 1 —2 GeV?Z, where a perturbative analysis becomes
quantitatively reliable. In the neighbourhood of k% = 0 the enhancement can be
represented [6] as a regularisation of 1/ k* as a distribution, which is illustrated
in Fig. 2. As I will elucidate, a dressed-gluon propagator with the illustrated
enhancement at k2 ~ 0 generates confinement and DCSB without fine-tuning.

2.2. Quark Propagator. In a covariant gauge the two-point, dressed-quark
Schwinger function, or dressed-quark propagator, can be written in a number of
equivalent forms

1
BT ”

1
T AP + BOY) —iy-poy(p?) + os(p°) . (©6)

Y (p) is the dressed-quark self-energy, which satisfies a nonlinear integral equa-
tion: the quark DSE (depicted in Fig. 3)

X(p) = (Z2 — 1)iy-p+ Zsmpm+

a

A
A
42 [ Dl - D5 nS@rEa), ™
q

where I'%(g; p) is the renormalised dressed-quark-gluon vertex, my,y, is the A-
dependent current-quark bare mass that appears in the Lagrangian and



NONPERTURBATIVE EFFECTS IN QCD 543

qu .= [*d*q/(2)* represents mne-
monically a translationally-invariant
regularisation of the integral, with A
the regularisation mass-scale. The fi- >O>' =
nal stage of any calculation is to re- O
move the regularisation by taking the S

limit A — oo. The quark-gluon-ver-

tex and quark wave function renor- Fig. 3. DSE for the dressed-quark self-energy.
malisation constants, Zl(,u2, A2) and The kernel of this equation is constructed

Zo( M2> A2), depend on the renormali- frOI.n the dressed-gluon propagator (D —
sation point, i, and the regularisation spring) and the dressed-quark-gluon vertex (I"

mass-scale. as does the mass renor- — °Peh circle). One of the vertices is bare
malisation’ constant 7 (Nz A2) . (labelled by <) as required to avoid over-
m bl A

s D

r

i
Zo(i, A) 71 Za (122, A2). T
One can define a quark mass-
function: %)
B(p
M(p?) = ()
W= 1)

and, as depicted in Fig. 4, solving the quark DSE using a dressed-gluon prop-
agator that behaves as illustrated in Fig. 2 and a dressed-quark-gluon vertex,
', (p, q), that does not exhibit particle-like singularities at (p — ¢)* = 0,* yields a
quark mass-function that mirrors the infrared enhancement of the dressed-gluon
propagator. The results in Fig. 4 were obtained [7] with the current-quark masses:

my, ;= 3.7MeV, mi =82MeV, mi =0.59GeV, my =2.0GeV, (9)

at a renormalisation point of p ~ 20GeV. Applying the one-loop evolution
formula, Eq. (39), these masses correspond to:

m;f;" =55MeV, mlGV =130MeV,

(10)
mlGeV =1.0GeV, mi%V =34GeV

and although it is obvious from Fig. 4 that the one-loop formula does not describe
correctly the momentum evolution of the mass-function down to p? = 1GeV?,
the values in Eq. (10) provide a useful and meaningful comparison with the values
quoted conventionally.

*A particle-like singularity is one of the form (P2)~%, o € (0,1]. In this case one can write
a spectral decomposition for the vertex in which the spectral densities are non-negative. This is
impossible if &« > 1. a = 1 is the ideal case of an isolated, d-function singularity in the spectral
densities and hence an isolated, free-particle pole. « € (0, 1) corresponds to an accumulation, at the
particle pole, of branch points associated with multiparticle production.
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Fig. 4. Dressed-quark mass-function obtained in solving the quark DSE using the dressed-
gluon propagator of Ref.7

The quark DSE was also solved in the chiral limit, which in QCD is obtained
by setting the Lagrangian current-quark bare mass to zero [7]. From the figure
one observes immediately that the mass-function is nonzero even in this case.
That is DCSB: a momentum-dependent quark mass generated dynamically in the
absence of any term in the action that breaks chiral symmetry explicitly. This
entails a nonzero value for the quark condensate in the chiral limit. The fact that
M (p?) # 0 in the chiral limit is independent of the details of the dressed-gluon
propagator in Fig. 2; they only affect the magnitude of M (p?).

Figure 4 illustrates that for light quarks (u, d and s) there are two distinct
domains: perturbative and nonperturbative. In the perturbative domain the mag-
nitude of the quark mass-function is governed by the explicit chiral symmetry
breaking mass-scale; i.e., the current-quark mass. For p? < 1GeV? the mass-
function rises sharply. This is the nonperturbative domain where the magnitude
of M (p2) is determined by the DCSB mechanism; i.e., the enhancement in the
dressed-gluon propagator. This emphasises again that DCSB is more than just
a nonzero value of the quark condensate in the chiral limit! The boundary, at
p? ~ 1GeV?, is that point where the enhancement in the dressed-gluon propagator
becomes significant.
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The solution of p? = M?(p?) defines an Euclidean constituent-quark mass,
MZ¥* For a given quark flavour, the ratio M JZE /m’; is a single, quantitative
measure of the importance of the DCSB mechanism in modifying the quark’s
propagation characteristics. As illustrated in Eq. (11), obtained using the dressed-
gluon propagator in Ref.7,

flavour |w/d| s | ¢ | b | ¢t
M \150\10‘2.3‘1.4‘%1

M yn20 GeV

(1)

this ratio provides for a natural classification of quarks as either light or heavy.
For light quarks the ratio is characteristically 10-100 while for heavy quarks it
is only 1—2 [8]. The values of this ratio signal the existence of a characteristic
mass-scale associated with DCSB, which I will denote by M, . For p? > 0 the
propagation characteristics of a flavour with m’; < M, are altered significantly
by the DCSB mechanism, while for flavours with m’; > M, it is irrelevant, and
explicit chiral symmetry breaking dominates. It is apparent from the figure that
MX ~ 0.2GeV ~ AQCD-

The effect that the enhancement of the dressed-gluon propagator has on the
light-quark mass-function is fundamental in QCD and can be identified as the
source of many observable phenomena. Further, that this enhancement little
affects heavy-quark propagation characteristics at spacelike-p? provides for many
simplifications in the study of heavy-meson observables [9].

2.3. Confinement. One aspect of confinement is the absence of quark and
gluon production thresholds in colour-singlet-to-singlet S-matrix amplitudes. This
is manifest if, for example, the quark-loop illustrated in Fig. 5, which describes
[10] the diffractive, Pomeron-induced v — p transition, does not have pinch
singularities associated with poles at real-p® in the quark propagators. This is
ensured if the dressed-quark and -gluon propagators do not have a Lehmann
representation.

What is a Lehmann representation?

Consider the 2-point free-scalar Schwinger function:

1

AR = ——— . 12
() = 55— (12)
One can write
> plo)
A(z) = — 1
(2) /0 do ==, (13)

*In my Euclidean metric a true quark mass-pole exhibits itself as a real-p? solution of
p? + M?2(p?) = 0. This is absent in the solutions of the quark DSE illustrated in Fig. 4, which
is a manifestation of confinement, as discussed in Sec. 2.3.
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Fig. 5. Illustration of the diffractive electroproduction of a vector meson: e N — e~ 'Np
with the transition from photon to vector meson proceeding via a quark loop. The shaded
region represents [10] a Pomeron-exchange mechanism

where in this case the spectral density is

1 ) N 2
p(z) = 30 11_% [A(—z —ie) — A(—z + i€)] = 6(m” — ), (14)
which is non-negative. This is a Lehmann representation: each scalar function
necessary to completely specify the Schwinger function has a spectral decomposi-
tion in which the spectral densities are non-negative. Only those functions whose
poles or branch points lie at timelike, real-k? have a Lehmann representation.
The existence of a Lehmann representation for a dressed-particle propagator is
necessary if the construction of asymptotic “in” and “out” states for the associated
quanta is to proceed; i.e., it is necessary if these quanta are to propagate to a
“detector”. In its absence there are no asymptotic states with the quantum numbers
of the field whose propagation characteristics are described by the Schwinger
function. Structurally, the nonexistence of a Lehmann representation for the
dressed-propagators of elementary fields ensures the absence of pinch singularities
in loops, such as that illustrated in Fig. 5, and hence the absence of quark and
gluon production thresholds.
This mechanism can be generalised and applied to coloured bound states, such
as colour-antitriplet quark-quark composites (diquarks). In this case a study [3]
of the 4-point quark-quark scattering matrix shows that it does not have a spectral
decomposition with non-negative spectral densities and hence there are no diquark
bound states. The same argument that demonstrates this absence of diquarks in
the spectrum of SU(N, = 3) also proves [4] that in SU (N, = 2) the “baryons”,
which are necessarily diquarks in this theory, are degenerate with the mesons.
The infrared-enhanced dressed-gluon propagators illustrated in Fig. 2 do not
have a Lehmann representation. Using forms like this in the kernel of the quark
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is
7 =
ir ir
______ = - K
<
is

Fig. 6. Homogeneous Bethe — Salpeter equation for a quark-antiquark bound state: I' is
the solution, the Bethe — Salpeter amplitude, S is the dressed-quark propagator and K is
the dressed-quark-antiquark scattering kernel

DSE yields automatically a dressed-quark 2-point function that does not have a
Lehmann representation. In this sense confinement breeds confinement, without
fine-tuning.

2.4. Hadrons: Bound States. In QCD the observed hadrons are composites
of the elementary quanta: mesons of a quark and antiquark, and baryons of
three quarks. Their masses, electromagnetic charge radii and other properties can
be understood in terms of their substructure by studying covariant bound state
equations: the Bethe — Salpeter equation (BSE) for mesons and the covariant
Fadde’ev equation for baryons.

As a two-body problem, the mesons have been studied most extensively.
Their internal structure is described by the Bethe — Salpeter amplitude, which
is obtained as a solution of the homogeneous BSE, illustrated in Fig. 6. For a
pseudoscalar bound state the amplitude has the form

Ty (k; P) = THys |iEy (k; P) + - PFy(k; P) +

+~-kk-PGg(k;P)+ ou ku P, Hu(k; P)| (15)

where, if the constituents have equal current-quark masses, the scalar functions
E, F, G, and H are even under k- P — —k - P. In Eq. (15), T is a
flavour matrix that determines the mesonic channel under consideration; e.g.,
TE" = (1/2) (\* +iA3), with {V,j = 1...8} the Gell-Mann matrices. The
important new element in the BSE is K, the fully-amputated, quark-antiquark
scattering kernel: by definition it does not contain quark-antiquark to single
gauge-boson annihilation diagrams, such as would describe the leptonic decay of
the pion, nor diagrams that become disconnected by cutting one quark and one
antiquark line.

K has a skeleton expansion in terms of the elementary, dressed-particle
Schwinger functions; e.g., the dressed-quark and -gluon propagators. The first
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<«— (1) - Ladder
/ (2) — Beyond Ladder

I X I

Fig. 7. First two sets of contributions to a systematic expansion of the quark-antiquark
scattering kernel. In this expansion, the propagators are dressed but the vertices are bare

two orders in one systematic expansion are depicted in Fig. 7. This particular
expansion [3], in concert with its analogue for the kernel in the quark DSE,
provides a means of constructing a kernel that, order-by-order in the number of
vertices, ensures the preservation of vector and axial-vector Ward — Takahashi
identities. This is particularly important in QCD where the Goldstone boson
nature of the pion must be understood as a consequence of its internal structure.

To proceed with a study of meson properties, one chooses a truncation for
K. The homogeneous BSE is then fully specified as a linear integral equation,
which is straightforward to solve, yielding the bound state mass and amplitude.
The “ladder” truncation of K combined with the “rainbow” truncation of the
quark DSE (I', — <, in Fig. 3) is the simplest and most often used. The
expansion of Fig. 7 allows one to understand why this Ward — Takahashi identity
preserving truncation is accurate for flavour-nonsinglet pseudoscalar and vector
mesons: there are cancellations between the higher-order diagrams. And also
why it provides a poor approximation in the study of scalar mesons, where the
higher-order terms do not cancel, and for flavour-singlet mesons where it omits
timelike gluon exchange diagrams.

3. A QCD MASS FORMULA

The chiral-limit axial-vector Ward — Takahashi identity (AV-WTI)

—iP,I's, (k; P) :Sil(kJr)’Ys? +’Y57371(k7)? (16)

where S := diag(Sy, Sq,...), is the statement of chiral-current conservation in
massless QCD. It relates the divergence of the inhomogeneous axial-vector vertex,
Ffﬁ(k; P), to a sum of dressed-quark propagators. The vertex is the solution of
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i i
- + K
——
iS

Fig. 8. DSE for the axial-vector vertex. The driving term is the bare vertex: iysy,

the DSE depicted in Fig. 8, which involves the quark-antiquark scattering kernel,
K. 1t is therefore not surprising that in order to preserve this identity when
truncating the DSEs the choice of K and the vertex, I',, in the quark DSE, are
tied together. The divergence PMI‘%(k; P) is a pseudoscalar and hence contains
information about pseudoscalar mesons; i.e., Goldstone modes.

3.1. Dynamical Chiral Symmetry Breaking and Goldstone’s Theorem. In
the chiral-limit, the axial-vector vertex has the form [7]

TH
I‘gt(k; P) = - Vs | YuFr(k; P) + v - kk,Gr(k; P) — o ky Hr(k; P) | +

~ P
+TE (b P) + fu B3 Lu (ki P), (17)
where: Fr, Gr, Hg, and IN‘& are regular as P? — 0; Pufgi(k;P) ~ O(P?);
Ty (k; P) is the pseudoscalar Bethe — Salpeter amplitude in Eq. (15); and the
residue of the pseudoscalar pole in the axial-vector vertex is fz, the leptonic
decay constant:

A
fubu=2 [ o [(@") o S@ota@P)S@)] . as)
q

with the trace over colour, Dirac and flavour indices. This expression is exact:
the dependence of Z5 on the renormalisation point, regularisation mass-scale and
gauge parameter is just that necessary to ensure that the left-hand-side, fg, is
independent of all these things.

It now follows from the chiral-limit AV-WTI that

fuEn(k;0) = B(K), (19)
Fr(k;0) +2 fuFu(k;0) = A(k?), (20)
Gr(k;0) +2 fuGu(k;0) = 24'(K%), 1)
Hr(k;0)+2 fpHp(k;0) = 0, (22)
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where A(k?) and B(k?) are the solutions of the quark DSE in the chiral limit.
As emphasised in Sec. 2.2, the appearance of a B(k?) # 0 solution of the quark
DSE in the chiral limit signals DCSB. It is an intrinsically nonperturbative ef-
fect: in perturbation theory B(k?) o rh, the renormalisation-point independent
current-quark mass, and hence vanishes in the chiral limit. Equations (17) and
(19)-(22) show that when chiral symmetry is dynamically broken: 1) the homo-
geneous, flavour-nonsinglet, pseudoscalar BSE has a massless, P? = 0, solution;
2) the Bethe — Salpeter amplitude for the massless bound state has a term pro-
portional to 75 alone, with the momentum-dependence of Ex(k;0) completely
determined by that of the scalar part of the quark self energy, in addition to terms
proportional to other pseudoscalar Dirac structures, Fr, Gg, and Hpy, that are
nonzero in general; and 3) the axial-vector vertex, I‘gt(k;P), is dominated by
the pseudoscalar bound state pole for P? ~ 0. The converse is also true.

Hence, in the chiral limit, the pion is a massless composite of a quark and an
antiquark, each of which has an effective mass M E 450 MeV. With a dressed-
gluon propagator of the type depicted in Fig. 2, this occurs without fine-tuning.

3.2. Nonzero Quark Masses: A Mass Formula. When the current-quark
masses are nonzero, the AV-WTI is modified:

H 1 TH TH 1
—iP, L5, (k; P) =S~ (k+)757 + 7573_ (k-)—
— My T3 (k; P) = T8 (k; P) M, , (23)

where: M,y = diag(m/,ml;,m#,...) is the current-quark mass matrix. In this
case both the axial-vector and the pseudoscalar vertices have a pseudoscalar pole:
ie.,

TH
If(k;P) = 7 (v FH (k; P) +~ - kk,GE (k; P) — 0, ky HE (k; P)] +
. P
+T2 (k; P)+ fyg =L Tu(k; P), (24)
S5u P2 + m%{
and
H

T
L5k P) = =5 [i€R (ks P) + - PFg (k; P) + v kk - PG (k; P) +

+ 0 ky Py M (ks P)| + i Ty (k; P), (25)

P24+ m?,
with: EF, FE, FH GH, GH HE K #HE, and fé}ﬁ regular as P2 — —m? and

P, T (k; P) ~ O(P?). The AV-WTI entails [7] that

fami =rg My, My = tfaavour [M(#) {TH, (TH)tH , (26)
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where fg is given by Eq. (18), with massive quark propagators in this case, and
the residue of the pole in the pseudoscalar vertex is

A
irg = Z4/ %tr [(TH)t'yg,S(qu)I‘H(q;P)S(q,) . 27
q

The renormalisation constant Z; on the right-hand side depends on the gauge
parameter, the regularisation mass-scale and the renormalisation point. This de-
pendence is exactly that required to ensure that: 1) rpy is finite in the limit
A — o0; 2) ry is gauge-parameter independent; and 3) the right-hand side of
Eq. (26) is renormalisation point independent. This is obvious at one-loop order,
especially in Landau-gauge where Z5 = 1 and hence Z4 = Z,,.

Equation (26) is a mass formula for flavour-octet pseudoscalar mesons that
is valid independent of the magnitude of the current-quark masses of meson’s
constituents. For small current-quark masses, using Eqs. (15) and (19)—(22),
Eq. (27) yields

1 A
=g, )= 2t A N, / tbirac [Saco(@)] . (28)

where the superscript “0” denotes that the quantity is evaluated in the chiral limit
and (gq)?,, as defined here, is the chiral limit vacuum quark condensate, which is
renormalisation-point dependent but independent of the gauge parameter and the
regularisation mass-scale. Hence Eq. (25) is the statement that in the chiral limit
the residue of the bound state pole in the flavour-nonsinglet pseudoscalar vertex
is (— (30)%)/ 9,

Now one obtains immediately from Egs. (26) and (28)
famz = — [ml +mij] (@g), + O (1hg) , (29)

Feemicr = = [mi +m{] (qa)u + O (mg) , (30)
which exemplify what is commonly known as the Gell-Mann—-Oakes—Renner re-

lation. The primary result, Eq. (26), is valid independent of the magnitude of 7,
and can be rewritten in the form

fami = —(qa)}} M, (31)

where I have introduced the notation
A
_ 1 t
— (@)} = farg = fHZ4/ Str [(TH) 75S8(q+ )T (g; P)S(g-)| , (32)
q
which defines an in-meson condensate. This emphasises that, for nonzero current-

quark masses, Eq. (26) does not involve a difference of vacuum massive-quark
condensates; a phenomenological assumption often employed.
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As elucidated elsewhere [11], Eq. (26) has another important corollary: it
predicts that the mass of a heavy pseudoscalar meson rises linearly with the
current-quark mass of its heavy constituent(s). Model calculations [8] show that
this linear evolution is dominant at ~ 27, in agreement with experiment where
the mass of the K, D, and B mesons lie precisely on the same straight line.

In Eq. (26) one therefore has a single mass formula, exact in QCD, that
provides a unified understanding of light- and heavy-meson masses.

4. AN ILLUSTRATIVE MODEL

I have already made use of a model [7] in illustrating some of the robust
results of DSE studies. To further elucidate the method I will describe that model
in more detail. For the kernel of the quark DSE it employs the analogue of the
lowest-order BSE kernel in Fig. 7:

a

A
A
Z1/ gQDW(pffJ)gws(Q)Fﬁ(q,p)%

q
A 2\ pf A? A?
o [0 - 0" D - 05 S @ (33
q
This is the “rainbow” approximation, in which the specification of the model is
complete once a form is chosen for the “effective coupling” G (k?).
A choice for G(k?) can be motivated by observing that at large-Q? := (p—q)?
in an asymptotically free theory the quark-antiquark scattering kernel satisfies

9> (1) Dy (p — @) [To(p+,q1)S (q4)] x [S(q-)Ti(g—,p-)] =

a a

A A
=47 a(Q*) DI (p — q) [7% Sfree(q+)] X {Sf’ee(q—) 7%} , (39
where P is the total momentum of the quark-antiquark pair, p4 := p+ npP and
p— :=p— (1 —np)P with 0 < n < 1. Choosing a truncation of K in which
this right-hand side is identified with the lowest order contribution in Fig. 7 then
consistency with the AV-WTI requires

G(Q?) :=4ra(Q?). (35)

Thus the form of G(Q?) at large-Q? is fixed by that of the running coupling
constant. This Ansatz is often described as the “Abelian approximation” because
the left- and right-hand sides are equal in QED. In QCD, equality between the
two sides of Eq. (35) cannot be obtained easily by a selective resummation of
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diagrams. As reviewed in Ref.1, Egs. (5.1) to (5.8), it can only be achieved
by enforcing equality between the renormalisation constants for the ghost-gluon
vertex and ghost wave function: Zl = 23.

The explicit form of the Ansatz employed in Ref.7 is

k2 e
% = 8m' D3’ (k) + —- Dk?e /4"
4r iicil F(k?), (36)

tin |:7’ n (1 n k?/AgCD)Q}

with F(k?) = [1 — exp(—k?/[4m7])]/k* and 7 = € — 1Ny = 4 and Aglp =
0.234 GeV.

The qualitative features of Eq. (36) are clear. The first term is an integrable
infrared singularity [12] and the second is a finite-width approximation to 6*(k),
normalised such that it has the same [d*k as the first term. In this way the
infrared singularity is split into the sum of a zero-width and a finite-width piece.
The last term in Eq. (36) is proportional to «(k?)/k? at large spacelike-k? and has
no singularity on the real-k2 axis. Gluon confinement is manifest since G(k?)/k?
doesn’t have a Lehmann representation.

4.1. Solving the Quark DSE. There are ostensibly three parameters in Eq. (36):
D, w and my. However, in the numerical studies the values w =
= 0.3GeV(= 1/[.66fm]) and m; = 0.5GeV(= 1/[.39fm]) were fixed, and
only D and the renormalised u/d- and s-current-quark masses varied in order to
satisfy the goal of a good description of low-energy 7- and K-meson properties.
This was achieved with

D =0.781 GeV?, mh g =374MeV, ml =825MeV ,  (37)

at u ~ 20GeV, which is large enough to be in the perturbative domain. The
effective coupling obtained is depicted in Fig. 9.
Using Eqgs. (33), (36), (37), and the renormalisation boundary condition

Sp) 7 o, =iy pHmb, (38)

P
the quark DSE, Eq. (7), is completely specified and can be solved by iteration.
The chiral limit in QCD is unambiguously defined by 7 = 0. In this case
there is no perturbative contribution to the scalar piece of the quark self energy,
B(p?, 4?): in fact, there is no scalar, mass-like divergence in the perturbative
calculation of the self energy. It follows that Z2(u?, A?) mpm(A%) = 0,VA and,
from Eq. (38), that there is no subtraction in the equation for B(p?, u?). In terms
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Fig. 9. Ansatz for G(k*)/k? employed in Ref.7. “B&P” labels a solution [6] of the gluon
DSE, which is presented for comparison, as is the one-loop running coupling in QCD

of the renormalised current-quark mass the existence of DCSB means that, in the
chiral limit, M (u?) ~ O(1/p?), up to In p2-corrections.*

Figure 10 depicts the renormalised dressed-quark mass function, M (p?),
obtained by solving the quark DSE using the parameters in Eq. (37), and in the
chiral limit. It is a complement to Fig. 4 because it highlights the qualitative
difference between the behaviour of M (p?) in the chiral limit and in the presence
of explicit chiral symmetry breaking. In the latter case

arge— 2 7 12
M (p?) fargep m2 — {1+ two loop} , Ym = 57— (39)
(31 [+2=]) 33— 2N,
2 A2
QCD
However, in the chiral limit the ultraviolet behaviour is given by

arge—p? 2 2 —{(gq)°

M( 2)1 g: p T Tm ( <qq> ) — , (40)
PorGels])) T
p 2 A(2QcD

where (gq) is the renormalisation-point-independent vacuum quark condensate.

*This is a model-independent statement; i.e., it is true in any study that preserves the one-loop
renormalisation group behaviour of QCD.
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Fig. 10. The renormalised dressed-quark mass function, M (p?), obtained in solving the
quark DSE using the parameters in Eq. (37): u/d-quark (solid line); s-quark (long-dashed
line); and chiral limit (dashed line). The renormalisation point is p ~ 20GeV. The
intersection of the line M?(p®) = p® (dotted line) with each curve defines the Euclidean
constituent-quark mass, M7

Analysing the chiral limit solution yields
—(qq)° = (0.227 GeV)?, (41)

which is a reliable means of determining (gq)° because corrections to Eq. (40)
are suppressed by powers of Agqp/u’.

Equation (28) defines the renormalisation-point-dependent vacuum quark con-
densate

=10 —
- <qq>H|M:19GeV =

A
= (Ahm Z4(/1,, A) Nc/ tI'Dirac [Sm_o(l])]) = (0275 GGV)S s
—00 q

n=19 GeV

(42)
the calculated result. It is straightforward to establish explicitly that m* ((jg)ﬁ =
constant, independent of x4, and hence

m* (qq)% = m (qq)°, (43)

which unambiguously defines the renormalisation-point-independent current-quark
masses. From this and Eqgs. (37), (41) and (42) one obtains the values of these
masses appropriate to this model

Tyyq = 6.60 MeV, 1hy = 147 MeV . (44)
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Using the one-loop evolution in Eq. (39) these values yield mﬁ Ja = 3.2MeV
and mY = 72MeV, which are within ~ 10% of the actual values in Eq. (37).
This indicates that higher-loop corrections to the one-loop formulae, which are
present in the solution of the integral equation as made evident by A(p?, u?) # 1
in Landau gauge, provide contributions of < 10% at p? = u2. The higher-loop
contributions decrease with increasing p?.

From the renormalisation-point-invariant product in Eq. (43) one obtains

(@@l ,_y oy = (n[1/Aqep])™ (79)° = (0.241GeV)?.  (45)

This result can be compared directly with the value of the quark condensate
employed in contemporary phenomenological studies: [13] (0.236+0.008 GeV)3.
Increasing w — 1.5w in G(k?) raises the calculated value in Eq. (45) by ~ 10%,
a weak sensitivity.

After this discussion of the vacuum quark condensate it is straightforward to
determine the accuracy of Egs. (29) and (30). Using experimental values on the
left-hand side, one finds:

(0.0924 x 0.1385)% = (0.113 GeV)* cf. (0.111 GeV)* = 2x0.0055 x 0.24* (46)

(0.113 x 0.495)% = (0.237 GeV)* cf. (0.206 GeV)* = (0.0055 + 0.13) x 0.24%

(47)
which indicates that O(rh?)-corrections begin to become important at current-
quark masses near that of the s-quark, as demonstrated further in Ref.8.

4.2. Solving the Pseudoscalar Meson BSE. The model quark DSE de-
scribed above employs the rainbow truncation. Following Fig. 7 the consistent
Ward — Takahashi identity preserving truncation of the quark-antiquark scatter-
ing kernel is the ladder approximation:

Aa )\(l
KittekP) = -0 - 0 D —0) () (w) o @)
tr su

in which case the explicit form of Fig. 6 is

A a a
Lt P)+ [ 0((k = ) DR (k - )5 380 Lan(as P)S(a-) 5 =0,

' (49)
Having an Ansatz for G(k?), S(q) in Eq. (49) follows by solving the quark DSE.
The kernel of the BSE is then completely specified and solving the equation for
'y (k; P) and the bound state mass is a straightforward numerical problem. Then,
with D, (k), S(p) and I'g(k; P), the calculation of other observables such as:
the leptonic decay constant, fzr; meson charge radius, rz; and electromagnetic
form factor, Fiy(Q?); etc., is possible.
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The general form of the solution of Eq. (49) is given in Eq. (15), where
the scalar functions depend on the variables k? and k - P and are labelled by
the eigenvalue P2. From this it is clear that the integrand in Eq. (49) depends
on the scalars: k2, k-q, ¢ q- P, and P?, which takes a fixed-value at the
solution; i.e., at each value of P2 the kernel is a function of four, independent
variables. Solving Eq. (49) can therefore require large-scale computing resources,
especially since there are four, independent scalar functions in the general form
of the solution.

Two different solution techniques can be employed. In one procedure, which
I will label: (A), the scalar functions are treated directly as dependent on two,
independent variables: E(k2 k- P; P?), etc. This requires straightforward, mul-
tidimensional integration at every iteration. Storing the multidimensional kernel
requires a large amount of computer memory but the iteration proceeds quickly.

An adjunct, which I will label: (B), employs a Chebyshev decomposition
procedure. It is implemented by writing

Nmax
E(k* k- P; P?) ~ Z B(k?; P?) Us(cos B) (50)
=0

with similar expansions for F, G:=k-PG and H, where k- P := cos BV k2 P2
and {U;(z);i = 0,...,00} are Chebyshev polynomials of the second kind, or-
thonormalised according to:

1
1

™

This procedure requires a large amount of time to set up the kernel but does not
require large amounts of computer memory.
In Tables 1 and 2 I list values of the dimensionless ratio
(qg)f My

Ry i= — ————. 52
A value of Ry = 1 means that Eq. (26) is satisfied and hence so is the AV-WTL*
Looking at the tabulated values of R it is clear that the scalar function H is not
quantitatively important, with the AV-WTI being satisfied numerically with the
retention of F, F' and G in the pseudoscalar meson Bethe — Salpeter amplitude.
The values of Ry, and the other tabulated quantities, highlight the importance

*It illustrates that the pseudoscalar-meson pole in the axial-vector vertex is related to the
pseudoscalar-meson pole in the pseudoscalar vertex in the manner elucidated above. A finite value in
the chiral limit emphasises that m% x My as Mg — 0.
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Table 1. Calculated values of the properties of light, pseudoscalar mesons composed of
a quark and antiquark of equal-mass. The mass (my® = 0.1385) and decay constant
(f7® = 0.0924) are in GeV, R y is dimensionless. With the exception of the calculations
that retain only the zeroth Chebyshev moment, labelled by “U, only”, the results are
independent of the momentum partitioning parameter, 7p, in Eq. (34).

All amplitudes ™ chiral limit S5

My f7r RH mo fO RH Mss S5 RH
Method (A) 0.1385  0.0924 1.01 | 0.0 0.0898 1.00 | 0.685 0.129 1.00
Up only 0.136  0.0999 095 [ 0.0 0.0972 094 | 0.675 0.137 0.95
Up and U; 0.1385 0.0925 1.00 | 0.0 0.0898 1.00 | 0.685 0.129 1.00
E only
Method (A) 0.105  0.0667 1.82 | 0.0 0.0649 1.81 | 0.512 0.092 1.68
Up only 0.105  0.0667 1.82 | 0.0 0.0649 1.81 | 0513 0.092 1.69
E, F
Method (A) 0.136  0.0992 095 | 0.0 0.0965 095 | 0.677 0.137 095
Up only 0.136  0.0992 095 | 0.0 0.0965 0.95 | 0.678 0.138 0.95
E.F.G
Method (A) 0.140  0.0917 1.01 | 0.0 0.0891 1.00 | 0.688 0.128 1.01
Up only 0.136  0.0992 095 [ 0.0 0.0965 095 | 0.678 0.138 0.95
Up and U; 0.140  0.0917 1.01 | 0.0 0.0891 1.00 | 0.689 0.128 1.0l

of F and G: F is the most important of these functions but G nevertheless
provides a significant contribution, particularly for bound states of unequal-mass
constituents.

From Tables 1 and 2, and Egs. (31), (32), (37), and (45), one calculates

—(a9) =1 Gev *<‘?Q>§:1Gev =951 Gev
(0.245GeV)?  (0.284GeV)?  (0.317 GeV)?

showing that, for light pseudoscalars, the “in-meson condensate” I have defined
increases with increasing bound state mass; as does the leptonic decay constant,
fr.* Both of these trends are modified as one moves into the heavy-quark
domain: 7<(jq>f —const. and fyg — 0 as My — oo.

Figure 11 depicts the scalar functions in the Bethe — Salpeter amplitude
obtained as solutions of Eq. (49), focusing on the zeroth Chebyshev moment of
each function, which is obtained via

(33)

By (k?) := %/W dB sin® BUy(cos B) Eg (k* k - P; P?), (54)
0

*(7(tjq>ff )/ fm is the residue of the bound state pole in the pseudoscalar vertex, just as fgr
is the residue of the bound state pole in the axial-vector vertex. As expected, (Gq)

(@93

T ~
p=1GevV ™

u=1GeV’
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Table 2. Calculated properties of the K meson for various values of the momentum
partitioning parameter, np; “—” means that no bound state solution exists in this
case. The mass (m% " = 0.496) and decay constant (f;;” = 0.113) are in GeV, Rk is
dimensionless

All amplitudes np = 0.50 np = 0.25 np = 0.00

mg K Rk | mi K Rk | mi fxk Rk
Method (A) 0.497  0.109 1.01 0.497  0.109 1.01 0.497  0.109 1.01
Up only 0.469 0.117 096 | 0482 0.117 095 | 0475 0.113 1.02
Up and Uy 0.500 0.111 1.00 | 0.497 0.109 1.01 0.498 0.110 1.00
Uop, Uy and Uz | 0.497 0.109 1.01 | 0.497 0.109 1.01 0.496  0.109 1.01
E only
Method (A) 0.430  0.079 1.55 | 0.430 0.079 1.55 | 0.429 0.076 1.55
Up only 0.380 0.077 1.54 | 0.401 0.076 1.51 0.415 0.073 1.55
Up and Uy 0.439  0.089 1.52 | 0430 0.078 1.55 | 0431 0.076 1.57

Up, Uy and Uz | 0430 0.078 1.55 | 0430 0.078 1.55 | 0427 0.076 1.55
E, F

Method (A) 0587 0.7 0.79 | 0557 0.14 086 | 0533 0.11 094
Up only 0505 0.12 082 | 0518 011 0.86 | 0512 011 0.96
Up and Uy - - - 1055 014 086 | 0537 012 094
Uo, Uy and Us | 0583  0.16 0.79 | 0557 0.14 086 | 0532 0.12 093
E,F,G

Method (A) 0.500 0.108 1.0l | 0.500 0.108 1.01 | 0500 0.108 1.01
Uo only 0471 0.116 096 | 0484 0.116 095 | 0477 0.112 1.02
U and Uy 0504 0.110 1.00 | 0500 0.108 1.01 | 0,502 0.109 1.00

Up, Uy and U3 | 0500 0.108 1.01 | 0.500 0.108 1.01 | 0499 0.108 1.01

and similarly for F', G [G‘ for the K meson] and H. I note that: the momentum-
space width of °Ey (k?) increases as the current-quark mass of the bound state
constituents increases; °Fyr (k* = 0) decreases with increasing current-quark mass
but that °Fyy (k?) is still larger at k% > 0.5 GeV? for bound states of higher mass;
G (k2) [°Gk (k)] behaves similarly; and the same is true for Hy (k; P) but it
is uniformly small in magnitude thereby explaining its quantitative insignificance.

Figure 12 depicts the large-k? behaviour of the scalar functions in the
pseudoscalar Bethe — Salpeter amplitude. The momentum dependence of °E; (k?)
at large-k? is identical to that of the chiral-limit quark mass function, M (p?) in
Eq. (40), [14] and characterises the form of the quark-quark interaction in the
ultraviolet. Figure 12 elucidates that this is also true of °Fy(k?), k2 %Gy (k?)
[k2 %Gk (k?) for the K meson] and k2 °Hy (k2). Each of these functions reaches
its ultraviolet limit by k? ~ 10 GeV?, which is very-much-less-than the renormal-
isation point, u? = 361 GeV2. As I will illustrate below, this result has important
implications for the behaviour of pseudoscalar meson form factors.

A direct verification of Egs. (19)—(22) is possible in this concrete model.
Consider the inhomogeneous axial-vector vertex equation, Fig. 8, in the ladder
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Fig. 11. The zeroth Chebyshev moment of the scalar functions in the mesons’ Bethe —
Salpeter amplitude: chiral limit (dotted line); = meson (solid line); K meson (long-dashed
line); and fictitious, s bound state (dashed line). For ease of comparison the amplitudes
are all rescaled so that °Eg(k* = 0) = 1

truncation:
H

T
I (k;P) = Z2757u7—

a a

A A A
- [0k - o) Dl - ) ST G IS . (59)
q

From the homogeneous BSE one already has the equations satisfied by Ey (k;0),
Fr(k;0), Gu(k;0), and Hg(k;0). To proceed, one substitutes Eq. (17) for
I‘gfﬂ(k; P) in Eq. (55). Using the coupled equations for Eg(k;0), etc., one can
identify and eliminate each of the pole terms associated with the pseudoscalar
bound state. [That the homogeneous BSE is linear in the Bethe — Salpeter
amplitude allows this.] That yields a system of coupled equations for Fr(k;0),
Gr(k;0), and Hg(k;0), which can be solved without complication. [The factor
of Z, automatically ensures that Fr(k? = p?; P = 0) = 1.] The realisation of
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Fig. 12. Asymptotic behaviour of the Oth Chebyshev moments of the functions in the
m-meson Bethe — Salpeter amplitude: fr B, (k2) (GeV, solid line); fr op. (k2) (dimen-
sionless, long-dashed line); k? fr 0G’Tr(lc2) (dimensionless, dashed line); and k2 fr 0H,r(k2)
(GeV, dot-dashed line). The k> dependence is identical to that of the chiral-limit quark
mass function, M (p?), Eq. (40). For other pseudoscalar mesons the momentum depen-
dence of these functions is qualitatively the same, although the normalising magnitude
differs
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Fig. 13. An illustration of the realisation of the identities Eqgs. (19) and (20), which are a
necessary consequence of preserving the axial vector Ward — Takahashi identity
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the first two identities, Egs. (19) and (20), is illustrated in Fig. 13. The remaining
two identities, Egs. (21) and (22), are realised in a similar fashion.

5. ADDITIONAL PHENOMENOLOGICAL APPLICATIONS

In the model illustration of Sec. 4 an algebraic Ansatz was developed for
the dressed-gluon propagator based on the qualitative behaviour of solutions of
the gluon DSE. From this basic beginning, I illustrated how one can proceed
to calculate hadronic observables. A number of qualitatively significant features
emerged, among them DCSB and confinement, all of which are related to the
strong momentum dependence of the quark mass function, Eq. (8), in the infrared.

That last observation suggests an alternative phenomenological approach:
develop an algebraic Ansatz for the dressed-quark propagator. This is not as
fundamental as the approach in Sec. 4 because many, apparently distinct features
of the dressed-quark propagator are encoded in a few parameters of the Ansatz
for the dressed-gluon propagator; modelling the dressed-quark propagator directly
requires additional parameters to describe correlated effects. However, it has a
significant merit: with an algebraic as opposed to a numerical representation of
the dressed-quark propagator it is possible to study scattering observables more
quickly and easily. The approach can yield quantitatively reliable results provided
the Ansatz exhibits those essential qualitative features manifest in a direct solu-
tion of the quark DSE using a realistic Ansatz for the dressed-gluon propagator.
Further, in allowing a rapid analysis of a broad range of observable phenomena,
it provides a means of exploring the hypothesis that the bulk of hadronic phe-
nomena are simply a manifestation of the nonperturbative, momentum-dependent
dressing of the elementary Schwinger functions in QCD.

A simple and widely used model is [15]

7s(&) = 2mF (2(€ +m?)) + F(b1 E)F (b3 &) (bo + b2F(e€)) ,  (56)

2(€ +m?) — 1 4 e 267

ov(§) = 2E T M2 ;

(57)

with 55(&) := Aos(p?), av(€) = N2 oy (p?), where p? = A\2¢, X is a mass-
scale, and F(y) := [1 — exp(—y)]/y. This five-parameter form, where m is
the current-quark mass, combines the effects of confinement * and DCSB with

*The representation of S(p) as an entire function is motivated by the algebraic solutions of
Eq. (7) in Refs.16,17.



NONPERTURBATIVE EFFECTS IN QCD 563

free-particle behaviour at large, spacelike p?*. Applying Eq. (28) in this case:

i . 3 M
), = Jm Z4(”2’M2)4_772/0 ds 5 0% (s), (58)
2 b
o 3 b (59)

AZcp 472 bybg
and the pion mass is given by
my fz =2m(79)7 Gev - (60)

In Sec.4.1 we saw that when all the components of I'; are retained, Eq. (60)
yields an approximation to the pion mass found in a solution of the Bethe —
Salpeter equation that is accurate to 2%.

The model has been used for both u/d- and s-quark propagators with the
difference between flavours manifest in bf # bg/ ¢ b3 # bg/ 4 and m, # m, /d:
the first allows for a difference between the K and 7 in-meson condensates
and the second for MEF # M f/ 4» and all three are phenomenological constraints
observed in the previous section. As emphasised above, in a solution of the quark
DSE using an Ansatz for the dressed-gluon propagator, the parameters in Eq. (56)
are correlated and one can anticipate this crudely when fitting them.

5.1. Pion Electromagnetic Form Factor. The renormalised impulse approx-
imation to the electromagnetic pion form factor is [15]

(p1+p2)u Fr(q®) == Au(p1,p2) =

2NC d4k B
= N? W trp[Gr(k; —p2)S (ki) X
A7 (kg by =) S (ki) G (k — q/2;p1) S(k—_)], o

kap :=k+ ap1/2+ Bq/2 and py := py + g, illustrated in Fig. 14. Here G, (k; P)
is the pion Bethe — Salpeter amplitude normalised such that E(0;0) = B(0)
in the chiral limit, in which case the consistent canonical normalisation of the

*At large-p%: oy (p?) ~ 1/p? and og(p?) ~ m/p?. Therefore the parametrisation does
not incorporate the additional Inp2-suppression characteristic of QCD: it corresponds to vym — 1
in Eq. (40). It is a useful but not necessary simplification, which introduces model artefacts that
are easily identified and accounted for. & = 0.01 is introduced only to decouple the large- and
intermediate-p? domains.
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Impulse Approximation
T

T (k; P+

S(k,. = k+q/2 + Pl2)

Sk__)

\

r,u(k++a k_.)

T~

7 L (k—q/2;—-P)
P

Fig. 14. Impulse approximation to Fy(q?): S labels the dressed-quark propagator; I'x, the
pion Bethe — Salpeter amplitudes; and I';,, the dressed-quark-photon vertex

Bethe — Salpeter amplitude is

A
209 N2 Py = / {tr [%(qu)%gi(q;P)S(q)} 62
q Iz

e [0 - PIS(aos e P |
I
where G, (q; —P)* := C~1 G, (—q; —P) C with C = ~y274, the charge conjugation
matrix, and X¢ denotes the matrix transpose of X.

Given S and Egs. (19)-(22), what form does the Bethe — Salpeter amplitude
take?

In Sec. 4.2 we saw that the zeroth Chebyshev moments of the pion Bethe —
Salpeter amplitude provided results for m, and f. that were indistinguishable
from those obtained with the full solution. Also H, ~ 0 and hence it was
quantitatively unimportant in the calculation of m, and f,. These results are not
specific to that particular model; in the latter case because the right-hand side of
Eq. (22) is zero and hence in general there is no “seed” term for H,. We also
saw that at large-k2, independent of assumptions about the form of K, one has

0 a(k2)

EQ(k*; P?) o —@(1}1&77 (63)
and that the same is true of FQ(k?; P?), k* GY(k?; P?), and k? HO(k?; P?). This

makes manifest the “hard-gluon” contribution to Fw(qQ) in Eq. (61). In addition,
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in an asymptotically free theory, one has [7]
KGR (k? P?) = 27 (K% P?), K 2 My, (64)

with Myvy := 10 AQCD-
These observations, combined with Egs. (19)-(22), motivate a model for G:

Er(k; P) = Bo(k?) (65)

with Fy(k; P) = E(k; P)/(110 fr), G(k; P) = 2F(k;p)/[k* + M2, and
H,(k; P) = 0. The relative magnitude of these functions at large k2 is chosen to
reproduce the numerical results in Fig. 12.

The final element in Eq. (61) is I‘Z(pl, p2), the renormalised, dressed-quark-
photon vertex, and it is because this vertex must satisfy the vector Ward — Ta-
kahashi identity:

(pr — p2)u il (p1,p2) = S~ (p1) — S ' (p2), (66)

that (p1 — p2)u Apu(p1, p2) = 0 and no renormalisation constants appear explicitly
in Eq. (61). I‘Z(pl,pg) has been much studied [5] and, although its exact form
remains unknown, its robust qualitative features have been elucidated so that a
phenomenologically efficacious Ansatz has emerged [18]

T (p,q) =154, ¢°) Y +

+(+qu BW'(IH-Q) Aa(p*,q%) +AB(p2,q2)}, (67)
Si(0% %) = 5 LF0?) + F(@D)], Ar(p®,q?) = w, (68)

where f = A, B. A feature of Eq. (67) is that the vertex is completely determined
by the renormalised dressed-quark propagator. In Landau gauge the quantitative
effect of modifications, such as that canvassed in Ref.19, is small and can be
compensated for by small changes in the parameters that characterise a given
model study [20].

The model parameters were determined [15] by optimising a least-squares fit
to fr, 7r and (gq)$ q.v» and a selection of pion form factor data on the domain
q? € [0,4] GeV2. The procedure does not yield a unique parameter set with, for
example, the two sets:

A(GeV) m bo by b2 bs
A 0473 0.0127 0.329 1.51 0.429 0.430, (69)
B 0484 0.0125 0.314 1.63 0.445 0.405,
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Table 3. Comparison between the calculated values of low-energy pion observables
and experiment or, in the case of (—(7q)%cev)'/® and m, /d» the values estimated
using other theoretical tools. Each set in Eq. ( 69) yields the same calculated values.
Aqcp = 0.234 GeV

Calculated Experiment
fr 0.092 GeV 0.092
(—(@0)9 gov)'/®  0.236 0.236 & 0.008 [13]
My /d 0.006 0.008 £ 0.004 [21]
My 0.1387 0.1385
T 0.55 fm 0.663 + 0.006 [22]
Trfr 0.25 (dimensionless)  0.310 £ 0.003

providing equally good fits, as illustrated in Table 3. There is a domain of
parameter sets that satisfy the fitting criterion and they are distinguished only by
the calculated magnitude of the pion form factor at large-g>. The two sets in
Eq. (37) delimit reasonable boundaries and illustrate the model dependence in the
result. In the chiral limit: f2 = 0.090 GeV.

The quark propagator obtained with these parameter values is pointwise little
different to that obtained in Ref.23. One gauge of this is the value of the Euclidean
constituent quark mass. Here Mf/d = 0.32 GeV, whereas Mfd = 0.30GeV in
Ref.23. It is also qualitatively similar to the numerical solution described in
Sec. 4.1 [7], where Mf/d = 0.56 GeV. Indeed, the results are not sensitive to
details of the fitting function: fitting with different confining, algebraic forms
yields S(p) that is pointwise little changed, and the same results for observables.
The earlier parametrisation [23] has been applied more widely, as reviewed in
Ref.24, and Table 4 summarises the results.

In the calculations fr, is 20% too small. This discrepancy cannot be reduced
in impulse approximation because the nonanalytic contributions to the dressed-
quark-photon vertex associated with -7 rescattering and the tail of the p-meson
resonance are ignored [29]. It can only be eliminated if these contributions
are included. This identifies a constraint on realistic, impulse approximation
calculations: they should not reproduce the experimental value of f,r, to better
than ~ 20%, otherwise the model employed has unphysical degrees-of-freedom.

The pion form factor calculated [15] using Eqgs. (56) and (57) with (69)
is compared with available data in Figs. 15 and 16. It is also compared with
the result obtained in Ref.23, wherein the calculation is identical except that the
pseudovector components of the pion were neglected. Figure 15 shows a small,
systematic discrepancy between the calculations and the data at low ¢2, which is
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Table 4. Summary of results obtained using the parametrisation of S(p) introduced
in Ref.23, which differs little from that specified by Eqs. (56) and (57). aﬂ are mw-T
scattering lengths, whose experimental values are discussed in Ref.28, and F>" (4m2)
is the value of the yw — 77 transition form factor at the softest point kinematically
accessible. The citations for the calculated results specify the article in which the
annotated study is described. The “experimental” values of the current-quark masses
and the quark condensate are estimates made using other theoretical tools: see Table 3

Calculated “Experiment”
fr 0.0924 GeV 0.0924 + 0.001
fx 0.113 0.113 =+ 0.001
my 0.139 0.138
my 0.494 0.494
mAe o 0.0045 0.008
md e 0.113 0.1 ~03
—(Qq>1% Gevz 0247 0.236 + 0.008
ot 0.55 fm 0.663 % 0.006
Tt 0.49 [25] 0.583 + 0.041
20 -0.020 fm?2 -0.054 £ 0.026
IOy 0.50 [23] (dimensionless) 0.504 £ 0.019
F37(4m2) 1.04 [26] 1 (Anomaly)
ad 0.19 [27] 0.26 + 0.05
a2 -0.054 -0.028 £ 0.012
2a9 — 5a2 0.65 0.66 % 0.12
al 0.038 0.038 =+ 0.002
a9 0.0017 0.0017 =+ 0.0003
a? -0.00029
fr/fx 1.22 1.22 4 0.01
Pt /Tt 0.87 0.88 & 0.06

due to the underestimate of r, in impulse approximation*. The results obtained
with or without the pseudovector components of the pion Bethe — Salpeter ampli-
tude are quantitatively the same, which indicates that the pseudoscalar component,
FE, is dominant in this domain.

*Just as in the present calculation, frrr = 0.25 in Ref.23. However, the mass-scale is fixed
so that fr = 0.084, which is why this result appears to agree better with the data at small-g%: 7 is
larger.
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Fig. 15. Calculated pion form factor compared with data at small ¢>. The data are
from Refs.22 (crosses) and 30 (circles). The solid line is the result obtained when the
pseudovector components of the pion Bethe — Salpeter amplitude are included; the dashed-
line, when they are neglected [23]. On the scale of this figure, both parameter sets in
Eq. (69) yield the same calculated result

The increasing uncertainty in the experimental data at intermediate ¢ is
apparent in Fig. 16, as is the difference between the results calculated with or
without the pseudovector components of the pion Bethe — Salpeter amplitude.
These components provide the dominant contribution to Fj(q?) at large pion
energy because of the multiplicative factors: «- P and -k k- P, which contribute
an additional power of ¢? in the numerator of those terms involving F?2, FG,
and G? relative to those proportional to E. Using the method of Ref.23 and the
model-independent asymptotic behaviour indicated by Eq. (63) one finds

a(g?) (—{a0)p)”
q? =
i.e., ¢?Fr(q?) ~ const., up to calculable In g-corrections. If the pseudovector

components of I'; are neglected, the additional numerator factor of ¢ is missing
and one obtains [23] ¢*F,(q?) ~ const.

Fr(q®) (70)
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Fig. 16. Calculated pion form factor compared with the largest ¢> data available: dia-
monds — Ref.30; and circles — Ref.31. The solid lines are the results obtained when the
pseudovector components of the pion Bethe — Salpeter amplitude are included (lower line
— set A in Eq. (69); upper line — set B), the dashed-line when they are neglected [23]

With this model the behaviour identified in Eq. (70) becomes apparent at
q®> 2 2 M2, This is the domain on which the asymptotic behaviour indicated
by Eq. (63) is manifest. The calculated results, obtained with the two sets of
parameters in Eq. (37), illustrate the model dependent uncertainty:

Fr(@®)| 201015 gev> ~ 0-12 — 0.19 GeV?. (71)

It arises primarily because the model allows for a change in one parameter to be
compensated by a change in another. In this example: b > b5 but b8 + b5 =
by + by; and b) b5 = bBBE, which allows an equally good fit to low-energy
properties but alters the intermediate-g* behaviour of Fi(¢?). As emphasised, in
a solution of Eq. (7) these coefficients of the 1/p* and 1/p% terms are correlated
and such compensations cannot occur.
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As a comparison, evaluating the leading-order perturbative-QCD result with
the asymptotic quark distribution amplitude: ¢.s(z) := /3 fr 2(1 — ), yields

*Fr(¢®) = 16 7f2 a(q?) ~ 0.15GeV?, (72)

assuming a value of a(g? ~ 10 GeV?) ~ 0.3. However, the perturbative analy-
sis neglects the anomalous dimension accompanying condensate formation; e.g.,
Egs. (19)-(22) are not satisfied in Ref.32.

5.2. Electroproduction of Vector Mesons. There is an extensive body of
literature describing Pomeron phenomenology, all derived from the observation
that the total cross section in high-energy scattering: p-p, p-p, 7+-p, v-p, etc.,
is forward-peaked and rises slowly with +/s. This is illustrated [21] in Fig. 17
and can be described [10] by a Pomeron-exchange model of the quark-nucleon
interaction with the following features:

1. The quark-Pomeron coupling is ¢* (pg)F{qu(pl), where I',, := B¢y, with
By a flavour-dependent coupling constant. It is the only flavour-dependence in
the interaction.

2. The Pomeron “propagator” is characterised by a Regge trajectory:

G(s,t) := (aps)*0 Tt (73)

with g > 0, which ensures the increase with s, and the Pomeron-nucleon cou-
pling is 38, F1(t), where Fy(t) is the Dirac form factor of the proton.

3. The interaction is used in impulse approximation so that, for example, the
wN — mN interaction is completely described by

(P; pamy | Ten s nn |g; prms) :=
= A/J(q7 P) 35u/d Fl (t) G(Sv t) am’s (p2)7uums (pl) ) (74)
where u,, (p1) is a nucleon spinor and A, (q, P) := 2Aj(q, P) + 2Ag(q, P) with

A (g, P) =

= Nctrp /%Su(k—-l-)FW(kO—)Sd(k——)fW(k)Su(k++)ﬁfi7u (75)

describing the interaction of the Pomeron with the f-quark in the pion. The
parameters: 3¢, ao, o, in this model were fixed [10] by requiring a good
description of 7N and K N scattering, and this is achieved with

Buja =235GeV™>, B, =150GeV >, ag=0.10, a3 =0.33GeV 2.
(76)
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Fig. 17. Total and elastic cross sections for p-p and p-p scattering. The slow increase of
the total cross section with /s at high energy is obvious.

In the diffractive regime the process e~ p — e~ 'p' V, where V = p, ¢, 1,
is also expected to proceed via soft-Pomeron exchange and the model introduced
above can be applied directly. The matrix element is

(pama; k| Ju|lpima) =

= QBft/Al/k (Q7 k) Eip(k') GP (0)2, t) 3ﬁuF1 (t) a(p2)’7l/u(p1) ) (77)
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Fig. 18. p-meson electroproduction matrix element. @* := —(q — P/2 + p1)?, where p1

is the momentum of the struck nucleon

depicted in Fig. 18, where the vP — p transition form factor is

d*k
tMV/\(Q7P) = 3eg /W tr{S(k—i— %P) X

XT3 (k+ 5Pk —q+ P)S(k— q+ L P) % S(k— 3 P) Va(k; fp)} . (78)

The unknown quantity in Eq. (78) is the vector meson Bethe — Salpeter ampli-
tude, V, (k; —P). In the absence of a solution of the associated Bethe — Salpeter
equation, an oft used and phenomenologically efficacious procedure [24] is to
parametrise the amplitude in a manner similar to that employed for the pion in
Sec. 5.1:

PV’y-P 1 _k2/q2 Cy
V,(k; P) = (v — fov g 2 4 79
0P = (oot B ) A e O

where Ny is fixed via the canonical normalisation condition: clearly, P-V (k; P) =
0. The parameters are

a(GeV) b(GeV) ¢
p 040 0.008 125.0
¢ 0.45 0.6 0.3
G 1.10 0.0 0.0

(80)

which were fixed [10] by requiring the fit to the dimensionless coupling constants
in Eq. (81).

Jo—sete= YGpontn— Yopsetem YpsKKE YGyp—ete—
Theory 4.6 6.8 12.7 3.9 11.5 (81)
Experiment 5.0 6.1 129 4.6 11.5
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Fig. 19. p-meson electroproduction cross section at W = 15 GeV: solid line — calculated
result; long-dashed line — result if m, /4 — 10, /q; dash-dot line — result if M., /g —
— 25, q =~ ms. The data are: circles — Ref.33; squares — Ref.34; triangles — Ref.35

The experimental values of the decay constants were calculated from the widths
in Ref.21, and the fit is acceptable given the simplicity of the Ansatz for V,,
which includes only one of the eight scalar functions necessary to completely
specify a vector meson bound state. At this point there are no free parameters in
the calculation of the electroproduction cross sections.

Figure 19 depicts the QQ%-dependence of the p-meson electroproduction cross
section and the magnitude is a prediction. There is complete agreement on
the entire range of accessible @2, with the large Q? behaviour [10]: 1/Q%,
which becomes evident at Q% ~ 1-2GeV?2. Below that point the nonperturbative
character of the dressed-quark propagator dominates the evolution of the cross
section. It is important to observe the prediction that, the larger the current-quark
mass of the constituents, the larger the value of Q2 at which the asymptotic
behaviour is manifest.

The calculated ¢-meson electroproduction cross section is depicted in Fig. 20.
It is in excellent agreement with Refs.36 and 37, which used a nucleon target, as
opposed to Ref.35, which averaged over variety of nuclear targets. As could be
anticipated from Fig. 19, the onset of the asymptotic 1/Q* behaviour is pushed
to larger-Q? for the ¢-meson because the current-quark mass of the constituents,
the s-quark, is larger. In calculating the ¥-meson electroproduction cross section
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Fig. 20. ¢-meson electroproduction cross section at W = 70 GeV: solid line; the dashed
line is the p-meson result for comparison. The data are: triangles — Ref.35; circles —
Ref.36; squares — Ref.37
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Fig. 21. 1-meson electroproduction cross section at W = 100 GeV: solid line; the dashed
line is the p-meson result at W = 15 GeV for comparison. The data are from Refs.38,39

a very simple form was used for the c-quark propagator:

Se(k) = % (—iy - k+me) F(1 + k*/m2) (82)
with m. = 1.2GeV (~ m] GeV in Eq. (10)). This and the simple form of the
1p-meson Bethe — Salpeter amplitude anticipate the successful application of
DSEs to heavy-meson observables [9]. The calculated cross section is depicted in
Fig. 21. The striking prediction, confirmed by recent data, is that although two-
orders of magnitude smaller than the p-meson cross section at the photoproduction
point, the ¥-meson cross section is equal to that of the W = 100 GeV, p-meson
cross section at Q% = 15GeV?2. This is because the large c-quark mass shifts the
onset of the asymptotic 1/Q*-behaviour to larger-Q2.
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6. FINITE TEMPERATURE AND CHEMICAL POTENTIAL

As we have seen, at zero temperature and chemical potential the low-energy
and small-¢g? behaviour of QCD is characterised by confinement and DCSB. The
internal scale that marks the boundary between small and large energy in QCD
is My ~ Aqcp. As the energy and/or momentum transfer increases, QCD is
characterised by asymptotic freedom; i.e., the coupling evolves

as(Q*,T = 0 = ) C25°0 (83)
and quarks and gluons behave as weakly interacting, massless particles in high-
energy and/or large-Q? processes.

The study of QCD at finite temperature and baryon number density proceeds
via the introduction of the intensive variables: temperature, 7'; and quark chem-
ical potential, u. These are additional mass-scales, with which the coupling can
run and hence, for T > Aqcp and/or g > Agep, as(Q? = 0,T,u) ~ 0. It
follows that at finite temperature and/or baryon number density there is a phase of
QCD in which quarks and gluons are weakly interacting, irrespective of the mo-
mentum transfer [40]; i.e., a quark-gluon plasma. Such a phase of matter existed
approximately one microsecond after the big-bang. In this phase confinement and
DCSB are absent and the nature of the strong interaction spectrum is qualitatively
different. The contemporary expectation for the position of the phase boundary
in the (u, T')-plane is illustrated in Fig. 22.
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Fig. 22. The anticipated quark-gluon phase boundary in the (un,T)-plane. “HG” —
hadron gas, “QGP” — quark-gluon plasma. The nucleon chemical potential: pn = 3u;
i.e., three-times the quark chemical potential. “SPS” and “AGS” mark the points in the
plane that is the estimate of these facilities explore.
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The path followed in the transition to the plasma is important because it
determines some observational consequences of the plasma’s existence. For ex-
ample [41], the time-scale for the expansion of the early universe: ~ 107%s, is
large compared with the natural time-scale in QCD: 1/Aqcp ~ 1fm/c ~ 107235,
hence thermal equilibrium is maintained throughout the QCD transition. There-
fore, if the transition is second-order, the ratio B :=baryon-number/entropy,
remains unchanged from that value attained at an earlier stage in the universe’s
evolution. However, a first-order transition would be accompanied by a large
increase in entropy density and therefore a reduction in B after the transition.
Hence the order of the QCD transition constrains the mechanism for baryon num-
ber generation in models describing the formation of the universe, since with a
second-order transition this mechanism is only required to produce the presently
observed value of B and need not allow for dilution. In the absence of quarks,
QCD has a first-order deconfinement transition, and with three or four mass-
less quarks a first-order chiral symmetry restoration transition is expected [41].
A current, primary question is: what happens in the realistic case of two light
quark flavours?

Nonperturbative methods are necessary to study the phase transition, which
is characterised by qualitative changes in order parameters such as the quark
condensate. One widely used approach is the numerical simulation of finite tem-
perature lattice-QCD, with the first simulations in the early eighties and extensive
efforts since then [42]. Here I focus on the application of DSEs. This is a new
usage and much remains to be learnt: these are exploratory studies. One goal is to
develop DSE models of QCD at finite-7" and p (QCDg) that can be used to check
the results of numerical simulations, and be constrained by them. These models
can then be employed to extrapolate into that domain presently inaccessible to
lattice studies, such as finite chemical potential and the effects of 7" and u on
bound state properties, the latter of which are expected to provide the signatures
of quark-gluon plasma formation in relativistic heavy ion collisions.

Before discussing details it is interesting to provide a human scale for the
temperatures and densities involved. The natural scale in QCD is Aqcp ~
200 MeV and temperatures of this order of magnitude will be necessary to cre-
ate the plasma. Aqcp ~ 10'°x room-temperature! It represents a temperature
on the astrophysical and cosmological scale. Nuclear matter density
po ~ 3 x 10 g/cm3 = 0.16 N/fm3 and this is more than 10'3x the density
of solid lead! The density at the core of a neutron star is expected to be approxi-
mately 4 pg [43] and it is densities on this order that are anticipated to be required
for plasma formation.

The expectation of the existence of a new phase of matter, the quark-gluon
plasma, has led to the construction of a Relativistic Heavy lon Collider (RHIC)
at Brookhaven National Laboratory. Construction is to be completed in 1999. It
will use counter-circulating, colliding 100 A GeV '97Au beams to generate a total
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Fig. 23. Mass spectra for inclusive e™-e™ pairs in 450 GeV p-Be collisions showing

the data and various contributions from hadron decays. The shaded region indicates the
systematic error on the summed contributions [45]

centre-of-mass energy of ~ 40 TeV, in an effort to produce an equilibrated quark-
gluon plasma. It is anticipated to approach the quark-gluon plasma via a low
baryon density route. Contemporary, fixed target experiments at the Brookhaven-
AGS and CERN-SpS explore a high baryon density environment at much lower
centre-of-mass energies. These experiments are crucial in developing the ex-
pertise necessary for operating detectors under RHIC conditions but they are not
expected to “discover” the plasma. The CERN-SpS experiments have nevertheless
produced some interesting results.

One example is the “NA45-CERES” experiment [44], which studies e™-e™
pair production in heavy ion collisions. e® pairs leave the interaction region
without interacting strongly and hence they are a probe of the early stages of the
interaction. In Fig. 23 I illustrate the dilepton spectrum obtained in high-energy
p-Be collisions. It is well described by known hadron decays. The same is
true of p—Au collisions. However, this is not the case in S-Au collisions, as
illustrated in Fig. 24. There the known hadron decays describe the data only for
Mee < 300MeV, which is the region dominated by 7° Dalitz decays. At higher
energies the shape of the spectrum is different and shows a strong enhancement
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Fig. 24. Mass spectra for inclusive e™-e™ pairs in 200GeV S-Au collisions showing

the data and various contributions from hadron decays. The shaded region indicates the
systematic error on the summed contributions [45]

in the dilepton yield. Integrating over the region 0.2 < m.. < 1.5GeV the
enhancement factor is
5.0 £ 0.7stat. £ 2.0 syst. (84)

The enhancement persists in Pb—Au collisions [44]. What explanation can be
offered?

One model calculation [46] shows that this enhancement can be explained by
a medium-induced reduction of the p-meson’s mass; another [47], that it follows
from an increase in the p-meson’s width. A decrease in the p-meson’s mass
is consistent with the QCD sum rules analysis of Ref.48 but inconsistent with
that of Ref.49, which employs a more complex phenomenological model for the
in-medium spectral density used in matching the two sides of the sum rule. In
Ref.49 there is no shift in the p-meson mass but a significant increase in its width.
The consistency between Refs.47 and 49 is not surprising since, in contrast to
Ref.48, they both rely heavily on effective Lagrangians with elementary hadron
degrees-of-freedom. These are possibilities that can be explored using DSEs,
which focusing on dressed-quark and -gluon degrees of freedom is an approach
most akin to Ref.48. A first attempt [50], summarised in Sec. 7.6, predicts a
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15% suppression of m, at nuclear matter density but employs a model that is
inadequate to address IT'),.

6.1. Notes on Field Theory. Equilibrium statistical field theory can be under-
stood by analogy with equilibrium statistical mechanics. For a particle moving in
a potential V' the density matrix is given by the path integral

plw,a'; T = 1/8) =

/::)ﬁ_)j Dz(7) exp {_ /Oﬁ dr |:%mx'(7')2 — V(x(r))]} 7 (85)

where the underlined term is just the Lagrangian. All of the thermodynamic
information about this system can be obtained from the partition function

Z(T) = /V dx p(z,z,T); (86)

for example, the pressure P = T'ln Z(T)/V and the baryon density p? =
(1/3)0P/0u.

The equilibrium thermodynamics of a quantum field theory is also completely
specified by a partition function, or generating functional. In the particular case
of a self-interacting scalar field this is given by the functional integral:

B
Z[T] = / M.+ 0 DO(E,7) exp ( /0 dr / d3x£E(m;¢>> ,87)

where £ (z; ¢) is the Euclidean Lagrangian density describing the interaction of
¢(Z,7), whose boundary conditions are periodic:

P&, 7=0) = ¢(Z,7=0). (88)
The boundary conditions for fermions are antiperiodic:
P(@,7=0) ==&, 7=0). (89)

This difference in boundary conditions is the reason for the difference between the
Matsubara frequencies of fermions and bosons and hence why fermions acquire
a screening mass at finite temperature.

It is immediately obvious that the O(4) invariance of the Euclidean theory
is lost: at finite temperature (and/or chemical potential) the theory exhibits only
an O(3) symmetry corresponding to spatial rotations and translations. This is
why the formalism, necessarily used in lattice simulations, is only applicable to
equilibrium systems — there is no generator of translations in time. One also
notes from Eq. (87) that as 7" — oo one dimension disappears completely and
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hence the corresponding (d — 1)-dimensional theory is a candidate to describe the
infinite-temperature limit of a d-dimensional theory.
The finite temperature, free fermion Lagrangian density is

Lhee i) = 9@ 7) (704720, +m) (@) (90)

Introducing a Fourier decomposition:

(#7)=T Z / (P, wp )P TN 1)

antiperiodicity entails that the fermion Matsubara frequencies are
wn=02n+1)7T,neZ (92)

and the free fermion action is

Sg [, (B, wn) (17 - P+ ivawn +m) (B, wn) -
93)
From this one identifies the finite temperature, free fermion propagator
1
S(p) = . (94)

WP+ iyawn +m
Analogous arguments, using the periodic boundary conditions, lead to an
identification of the free boson propagator
1

= 95
FET g+ o

D(p, Qn) =

where €2, = 2nnT. Having obtained the free particle propagators one can
proceed to define a perturbation theory. As an example, in massless ¢* theory
the one-loop correction to the ¢ propagator is

xT Z /%392“1)'2 (96)

n=—oo

The sum can be evaluated:

> 1 1 1
T —5 = 7 = + T—independent piece, (97)
2 Q+1[p? P exp(|P]/T) — 1

to yield the Bose-Einstein factor. This is a source of problems: for large temper-

atures
1 T

exp(|p]/T) —1  |p]
and one can thereby encounter additional infrared divergences.

(98)
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These are particularly serious in QCD. To illustrate this [51] consider an
(£+1)-gluon-loop diagram and focus on the n = 0 mode, which obviously yields
the dominant infrared behaviour. The estimate is made easier if one neglects the
tensor structure and notes that: from the vertices there is a factor of g% p%; the
loop-sum-integral gives (T IPQE[O,T] d®p)**1; and the propagators, (p? +m?)~3¢,
where m is a possible, dynamically generated mass-scale. A little thought and
calculation shows that the net order of a given diagram in perturbation theory is

{=1,2 (=3 (>4 99
922 T4 g6 T4 ln(T/m) gﬁ T4 [gQT/m]€_3. ( )
Clearly, if m = 0 the diagrams are infrared divergent for £ > 2. The divergences
may cancel when all diagrams of a given order are summed but that is difficult
to verify. Suppose instead that the mass-scale m ~ g T', as does the Debye mass
in QED, then no problem arises: at each order above ¢ = 3 the diagrams are
suppressed by powers of the coupling and a self-consistent calculation of the
mass-scale is straightforward. This underlies the successful application of the
method of “hard thermal loops” [52]. However, suppose that m ~ ¢27', which
is the next possibility. In this case every diagram above ¢ = 2 contributes with
the same strength: g%, which presents a serious impediment to the application of
perturbation theory!
The introduction of a quark chemical potential modifies Eq. (93):

SﬁE[lﬁvw]Free =
=7y s () (7 5+ ;. 100

so that even the free Dirac operator is not hermitian and hence the QCD ac-
tion is necessarily complex. As such it does not specify a probability measure,
which precludes the straightforward application of Monte-Carlo methods in the
evaluation of the partition function. However, the application of DSEs remains
straightforward. The propagators and vertices are complex, so twice as many
functions are required to represent them but otherwise there are no complications.
Thus they provide a nonperturbative means of exploring this domain, which is
presently inaccessible in lattice simulations.

6.2. Some Lattice Results. Since the early eighties, as one branch of the
extensive application of lattice methods in many areas of QCD, Monte-Carlo
simulations have been used to estimate the finite temperature QCD partition func-
tion [53]. These studies have contributed considerably to the current understand-
ing of the nature of the quark-gluon plasma. Due to the persistent limitation
of computational power many analyses have focused on the pure gauge sector,
which exhibits a first-order deconfinement transition at a critical temperature of
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Fig. 25. Energy density and pressure for 2-light-flavour QCD on lattices with four temporal
lattice sites, from Ref.58

TCN =0 ~ 270 MeV [54]. In studying the chiral transition this commonly used
quenched approximation is inadequate because the details depend sensitively on
the number of active (light) flavours. It is therefore necessary to include the
fermion determinant.

That is even more important when p # 0 because the Dirac operator is not
hermitian and thus the fermion determinant acquires an explicit imaginary part, in
addition to those terms associated with axial anomalies. The QCD action being
complex entails that the study of finite density is significantly more difficult than
that of finite temperature. Simulations that ignore the fermion determinant at
u # 0 encounter a forbidden region, which begins at y = m, /2 [55], and since
m, — 0 in the chiral limit this is a serious limitation, preventing a reliable study
of chiral symmetry restoration. The phase of the fermion determinant is essential
in eliminating this artefact [56].

QCD with dynamical quarks is a contemporary focus and for two flavours
of light quarks the theory appears [57] to exhibit a second-order transition at
a critical temperature TCN /=% ~ 150 MeV. This is illustrated in Fig. 25, which
shows a rapid change in the energy density in a small region around 150 MeV.
For three or more light quark flavours the continuum theory is expected to have
a first order chiral symmetry restoration transition.

The quark condensate is an order parameter for chiral symmetry breaking,
with its nonzero value at T' = 0 responsible for the pion mass being proportional
to the square-root of the light current-quark masses. Its behaviour near the
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Fig. 26. Chiral condensate calculated [57] using staggered fermions and normalised to its
zero temperature value. Only the Ny = O results are extrapolated to zero quark mass

critical temperature is depicted in Fig. 26, and the rapid, qualitative change with
increasing T’ is easily apparent. Very important is that, independent of the number
of light-quark flavours, the condensate is unchanged for T < 0.9T,. It suggests
that hadron properties are insensitive to 7" until very near the phase boundary.
The simulations with dynamical fermions are still preliminary, and many
uncertainties remain. For example, a review [59] of recent results obtained with
larger lattices and lighter quarks reports a significant lattice-volume-dependence
for the critical exponents of the two light-flavour chiral symmetry restoration
transition: the transition may even be first order! This might be an artefact
of introducing lighter dynamical quarks, which drive the simulations to stronger
coupling. The order of the transition with three and four flavours also remains
unclear. With these uncertainties it is apparent that the lattice study of the phase
transition will require further, even more computer-intensive simulations.

7. DSEs AT FINITE 7' AND p

The contemporary application of DSEs at finite temperature and chemical
potential is a straightforward extension of the 7' = 0 = p studies. The direct
approach is to develop a finite-T" extension of the Ansatz for the dressed-gluon
propagator. The quark DSE can then be solved and, having the dressed-quark
and -gluon propagators, the response of bound states to increases in 1" and p
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can be studied. As a nonperturbative approach that allows the simultaneous
study of DCSB and confinement, the DSEs have a significant overlap with lattice
simulations: each quantity that can be estimated using lattice simulations can also
be calculated using the DSEs. This means they can be used to check the lattice
simulations, and importantly, that lattice simulations can be used to constrain their
model-dependent aspects. Once agreement is obtained on the common domain,
the DSEs can be used to explore phenomena presently inaccessible to lattice
simulations.

7.1. Quark DSE. The renormalised dressed-quark propagator at finite-(7", 1)
has the general form

1

S(p,& = === — — — 101
Po0) = =5 AG o) + i onCB.6r) + B, on) (101)

= —iy-poa(p, o) — ivawroc(p, &) + o (P, @), (102)

where @y, := wy + iu. The complex scalar functions: A(p, k), B(p,&r) and
C(p, &) satisfy:

f(ﬁ?‘;jk)* = ‘7:(13’7&71671)7 (103)
F = A, B,C, and although not explicitly indicated they are functions only of

|7|? and &3.
The DSE for the renormalised dressed-quark propagator is

STNp,on) = Z34 iV - P+ Zo (iya On + mbm) + X' (5, &%), (104)

where Zﬁ“ and Z> are renormalisation constants, myp,, is the bare mass, and the
regularised self energy is

X(p, or) = Y - PEY (P, Or) + 174 Ok B (P, Or) + X (P, Ox) 5 (105)

=2y

with

A
4 o oo~ ~ 1 -~ Y~ o~
= / 3 9° D (P — @, @ — &0) 3 tr [PryuS(, @)1 (q, 650, @k)] - (106)
L
where Py := —(Z{'/p*)iv - p, Pp := Z1, Pc := —(Z1/@x)iva, Z3i* and Zy are
vertex renormalisation constants, and flAq =TY72 f A %. This last is
a mnemonic to represent a translationally invariant regularisation of the integral
with A the regularisation mass scale.

In Eq. (106) the Landau-gauge, finite-(7', 1) dressed-gluon propagator has
the form

9*Dy (5,Q) = PL, (5, Q) Ap(p,Q) + PL,(9) Ac(p, ), (107)
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where
T 0; pand/or v =4,
Pu@) = 5, - PPi 1923 (108)
p2
= PuPv T
PL(BQ) = 0w — —=gt——PLO) pv=1,...,4. (109)
g g Zizl PaPa #

A “Debye-mass” for the gluon appears as a T-dependent contribution to Ap.
In renormalising we require that

1> ~ =0 PN .
STHE,G0) |y an 2 = 17 B+ iyawo + m, (110)

PPHot=

where ( is the renormalisation point and m% is the renormalised current-quark
mass. This entails that the renormalisation constants are:

23 A% = 1= XU(,00) (52 cp e (111)
Zo(¢ 8% = 1- Se@oo)lie e s (112)
my = Zompm + S50 @052 e (113)

and yields the renormalised self energies:
oo oo S\ u=0
f(pa Wk) = 5.7: + Ef}‘(p7 Wk) - Ef?—'(pa w0)|ﬁ§"2+@g:<2 ) (114)

where F = A, B, C; €4 = 1= £c and £ = m$,.

In studying confinement one cannot assume that the analytic structure of a
dressed propagator is the same as that of the free particle propagator: it must be
determined dynamically. Indeed, one knows that the Py := (P, & )-dependence
of A and C is qualitatively important since it can conspire with that of B to
eliminate free-particle poles in the dressed-quark propagator [17]. In this case
the propagator does not have a Lehmann representation so that, in general, the
Matsubara sum cannot be evaluated analytically. More importantly, it either
complicates or precludes a real-time formulation of the finite temperature theory,
which makes the study of nonequilibrium thermodynamics a very challenging
problem. In addition, as we will see, this pi-dependence of A and C can be
a crucial factor in determining the behaviour of bulk thermodynamic quantities
such as the pressure and entropy; being responsible for these quantities reaching
their respective Stefan — -Boltzmann limits only for very large values of 7' and
p. It is therefore important in any DSE study to retain A(py) and C(pg), and
their dependence on py.
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7.2. Phase Transitions and Order Parameters. Phase transitions are char-
acterised by the behaviour of an order parameter, (X), the expectation value
of an operator. In the ordered phase of a system: (X) # 0, whereas in the
disordered phase (X) = 0. A phase transition is first-order if (X) — 0 discontin-
uously, whereas it is second-order if (X) — 0 continuously. For a second-order
transition, the length-scale associated with correlations in the system diverges as
(X) — 0 and one can define a set of critical exponents that characterise the
behaviour of certain macroscopic properties at the transition point. For example,
in a system that is ferromagnetic for temperatures less than some critical value,
T., the magnetisation, M, is an order parameter and in the absence of an external
magnetic field M oc (T, — T)P for T ~ T, where (3 is the critical exponent. At
T = T, the behaviour of the magnetisation in the presence of an external field,
h — 0%, defines another critical exponent, §: M oc h(}/9). In a system that can
be described by mean field theory these critical exponents are

MF =05, SMF —30. (115)

The problem is that it can be difficult to identify the order parameter relevant to
the discussion of a phase transition.

One order parameter for the chiral symmetry restoration transition is well
known — it is the quark condensate, defined via the renormalised dressed-quark
propagator [7]:

(e = N tim 2i(G.1) [ e

- = _ 4\S, — ~ ~ ~ ~ )

H Lo [P Ao(P)? +FCo(Pr)? + Bo(pr)?
(116)

for each massless quark flavour, where the subscript “0” denotes that the scalar

functions: Ag, By, Cy, are obtained as solutions of Eq. (104) in the chiral limit.

The functions have an implicit (-dependence. An equivalent order parameter is
X :=ReBy(p'=0,&0), (117)

which was used in Refs.60-62. Thus the zeroth Matsubara mode determines the
character of the chiral phase transition, a conjecture explored in Ref.63.

What is an order parameter for deconfinement?

In Sec.2.3 I observed that the analytic properties of Schwinger functions
play an important role in confinement. For illustrative simplicity, set 4 = 0, the
generalisation to p # 0 is not difficult, and consider

<1 2 [*™ ,
ABo(va:O) = T Z ArT ;/0 dpp Sln(pm)aBo(pawn) (118)
T ~ ,n
= o > AL (x). (119)
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Fig. 27. —E(t) := In A(¢) in QED3. Here the analogue of the mass-function is E'(t)
and the difference between the unconfined theory: “+”, and the confining theories is
unmistakable

For a free fermion of mass M, o, (p,wn) = M/(w? + p? + M?) and
A (z) = M e o VertM? (120)

the n = 0 term dominates the sum. In this case the “mass-function”

d

M(x;T) = %(—ln|A%O(x)D:\/772T2+M2. (121)

The most important observation is that for a free particle M (z,T') has a
fixed, real value, which identifies the mass-pole in the propagator. It also exhibits
the fermion “screening mass” = w7, which becomes important for T ~ M /x. In
the context of dynamical mass generation: M ~ M¥. Since ME,, ~ 450 MeV
one anticipates that finite-71" effects will become important at 7' ~ 150 MeV (or
finite p effects at u ~ 450 MeV). For a boson of mass My, M (x;T) = Mj: there
is no screening mass.
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How does A°(x) behave if the dressed-propagator does not have a Lehmann
representation? An example [64] is

2 2 2
pr+Q+ M
D(p, Q) = n 122
(p, Q) (p2+Q%+M2)2+4b4’ (122)
which has complex conjugate poles. In this case
A (z) = e ™M cos[ba]; (123)

i.e., the Schwinger function oscillates and the mass-function has singularities,
which is an unambiguous signal for the absence of a Lehmann representation and
hence confinement!

An order parameter for confinement is now obvious [65]. Denote the posi-
tion of the first zero in A% (x) by rg', which is inversely proportional to the
distance of the poles from the real axis. Define ko := 1/r3", then ko x b and
deconfinement is observed if, for some T' = T, ko(T.) = 0: at this point thermal
fluctuations have overwhelmed the confinement scale-parameter and the poles
have migrated to the real-axis. This criterion generalises easily to the case of
w7 0 and to situations in which the dressed-propagator has an essential singular-
ity rather than complex conjugate poles. It is also valid for both light and heavy
quarks.

An analogue of this criterion, with

1 [ . R
Alt) : / dps e o5(p= 0,p4) , (124)

:% -

has been used to very good effect in an analysis [66] of QED3 at T' = 0. QED3 is
confining in quenched approximation but not when massless fermions are allowed
to influence the propagation of the photon. In that case complete charge screening
is possible. Confinement is recovered in the theory if the fermion in the photon
vacuum polarisation loop is massive. This application is summarised in Fig.27.
7.3. Ilustration at (7" # 0, = 0). As a first example I summarise a
study [60] that uses a one-parameter, model dressed-gluon propagator. This
parameter, m;, is a mass-scale that marks the boundary between the perturba-
tive and nonperturbative domains, and its value, m; = 0.69 GeV, was fixed in
T = 0 studies [67]. The extension of the model to finite-1" involves no additional
parameters and is defined with: Ap(p, Q) := D(p,Q;mp) and Ag(p,Q) =
= D(p,Q;0);
1 — o[-(P*+2%+m?)/(4m})]

D(p,m) = 37 |7 m280,6°(p) + , (125)

p2+92+m2
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where m3 = (8/3)n*T? is the perturbatively evaluated “Debye-mass”*. The

quark DSE was solved using the rainbow approximation

Ly(q,wi;p,wi) = Yp - (126)

I have discussed this truncation in Secs. 2.4 and 4, and here only note that in
T = 0 studies it has proven to be reliable in Landau gauge; i.e., at this level an
efficacious phenomenology with a more sophisticated vertex Ansatz only requires
a small quantitative modification of the parameters that characterise the small-k>
behaviour of the dressed-gluon propagator [65]. Using this truncation, mutually
consistent constraints are Z{* = Z4' and Z; = Z».

The quark DSE was solved numerically with m% =1.1MeV, ( =9.47GeV.
The T = 0 fitting of m; and mpg ensured a best y2-fit to a range of pion
observables, yielding

fr=1924 my = 139.5 re Ny =0.24 G0y = 0.45
(924+0.3)  (138.3+£0.5)  (0.31£0.004)  (0.50 = 0.02)
ad =0.16 a2 = —0.041 al =0.028 ad = 0.0022
(0.214+0.02) (—0.040 +0.003) (0.038 = 0.002) (0.0017 = 0.0003)
(127)

with the experimental values listed in parentheses**. The finite-7T" study repro-
duces these results to within 6% at T' = 5 MeV, using the finite-T" generalisations
of the formulae in Ref.67:

m3 N7 = (m (49)¢)x (128)
A
cd..(m, (G9))n = SNC/ By (0B, — By [wjog +p°04 +03]) ,
k,p
which vanishes linearly with m%; the canonical normalisation constant is
A
N2 = 2Nc/ B§ {03 — 2 [wiocol + pPoac!y + ool (129)
k,p

—29? ([} (0008 = (00)%) + p? (0404 — (01)%) + 080 — (05)*])}

*The influence of the Debye-mass on finite-7" observables is qualitatively unimportant, even in
the vicinity of the chiral symmetry restoration transition. The ratio of the coefficients in the two terms
in Eq. (125) is such that the long-range effects associated with dq 1,63 (p) are completely cancelled at
short-distances; i.e., for \5\2 mf < 1.

**In Sec. 5.1 I discussed why 7N = 0.25 in impulse approximation. The m-7 scattering
lengths fitted in Ref.67 were taken from Ref.68.



590 ROBERTS C.D.

0.8

0.4

0.0 1 1 1
0.0 50.0 100.0 150.0

7, MeV

Fig. 28. The order parameters for chiral symmetry restoration (X (7"), diamonds) and
deconfinement (ko(7"), circles) both vanish at 7. = 150 MeV. The parameters for the
fitted curves are presented in Table 5

with o3 = dop(p?,wi)/Op?, etc.; and the pion decay constant is obtained from
A 2
fule = AN [ Bo {oaon+ 5P (0hon —oaok)} . (130
P

Equations (128)—(130) were derived under the assumption that I'; = iy5By.
Some of the limitations of this assumption were discussed in Secs. 4.2 and 5.1,
and they are considered further in Ref.7. It is quantitatively unreliable near the
transition temperature, however, the qualitative behaviour of N, and f; is the
same, see Table 5. Only after these studies were completed was it understood
that N, provides the best approximation to the leptonic decay constant when
T'y = 1v5Bp is assumed.

The calculated T-dependence of the chiral symmetry and deconfinement order
parameters is depicted in Fig. 28. The curves in the figure, fitted on T €
[120, 150] MeV, are of the form « (1 — T/T.)? with T, ~ 150 MeV and a, 3
given in Table 5. The transitions are coincident and second-order with Sx = B,
within errors: ~ 10%. This estimate of Sy is not a mean field value and it agrees
with a lattice estimate [69]: 52 = 0.30+0.08. It has been argued [41] that two-
light-flavour QCD is in the universality class of the N = 4 Heisenberg magnet,
for which 8% = 0.38 4 0.01 and both the DSE and lattice results are broadly
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Table 5. Parameters characterising the behaviour of the listed quantities, fitted to
a (1 —T/T.)?, near T. = 150 MeV

a B

X 1.1 GeV 0.33

Ko 0.16 GeV 0.30

N2 (0.18 GeV)? 1.1

frNx (0.15 GeV)>? 0.93

(mr(dq)) (0.15 GeV)* 0.92

Mr 0.12 GeV -0.11

fr 0.12 GeV 0.36

[ ]
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[ ]
160.0 - m_, MeV o 1
: °
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Fig. 29. Temperature dependence of the pion mass (m,(T"), circles) and pion weak-decay
constant (f~(T), diamonds)

consistent with this value. However, neither of these estimates of ( survives
more exhaustive study [59,70], and the most recent analyses [70,71] suggest that
in DSE models whose long-range part is described by the regularised singularity
in Eq. (125) the chiral symmetry restoration transition at finite-7" is described by
a mean-field value of (.

The behaviour of pion observables calculated from Egs.(128)—(130) is de-
picted in Fig.29. f, and m, are weakly sensitive to T for 7' < 0.7T:, and
this is also seen in lattice simulations; e.g., the quark condensate in Fig. 26
and f. in Fig. 30. However, as T approaches T:¥, the mass eigenvalue in the
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Fig. 30. Temperature dependence of the pion weak-decay constant on a 32% x 8 lattice [57]

pion Bethe — Salpeter equation moves to increasingly larger values, as thermal
fluctuations overwhelm attraction in the channel, until at 7" = TCX there is no so-
lution and fr — 0. This means that the pion-pole contribution to the four-point,
quark-antiquark correlation function disappears; i.e., there is no quark-antiquark
pseudoscalar bound state for 7 > T*. That may have important consequences
for a wide range of physical observables [72], if borne out by improved studies;
e.g., such T-dependence for f. and m, would lead to a 20% reduction in the
7 — pv, decay widths at T~ 0.9 T,

7.4. Complementary study at (7' = 0, u # 0). The finite-u behaviour of the
same model [67] has also been explored [62]. The dressed-gluon propagator has
the simple form [67]

Kok \ G(k2)
¢*Du (k) = <5W— . ) 22 , (131)
12 1 _ o—lk?/(4m3)]
g(kz ) %T? [47r2m§54(k) n eT . (132)

and the rainbow approximation is used again. Neither the dressed propagator
nor vertex have explicit u-dependence, which can arise through quark vacuum
polarisation insertions. As such they may be inadequate at large values of u,
particularly near any critical chemical potential. However, in the absence of
finite-p studies of these quantities, the exploration of such models is useful, and
one can assess the results obtained in the light of existing experiments and related
theoretical studies.
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The renormalised dressed-quark propagator is

S(p) == —i7 - Poa(pl) — vawy) oc(p) + o) (133)

where py,) := (P, W), With wy,) := p4 + ip. The quark DSE and the renormal-
isation conditions are similar to those discussed in the previous section, and the
equation has two qualitatively distinct solutions: a chirally symmetric Wigner—
Weyl mode, characterised by By = 0; and a confining Nambu—Goldstone mode,
characterised by By # 0.

To explore the possibility of a phase transition one calculates the relative
stability of the different phases, which is measured by the difference in pressure
between them. The pressure is obtained directly from the partition function, 2Z: it
is the sum of all vacuum-to-vacuum transition amplitudes. In “stationary phase”
approximation, the partition function is given by the tree-level auxiliary-field
effective action [73] and the pressure is:

P[S] = %mz - % {Tan [%5*1] — ST [ES]} . (134)
It is a functional of S(p,;). In the absence of interactions ¥ = 0 and Eq. (134)
yields the free fermion partition function. [Additive gluon contributions cancel
in the pressure difference and are neglected.] The contribution of hadrons and
hadron-like correlations to the partition function are neglected in Eq. (134). At
the level of approximation consistent with Eq. (134) these terms are an additive
contribution that can be estimated using the hadronisation techniques of Ref.74.
After a proper normalisation of the partition function; i.e., subtraction of the
vacuum contribution, they are the only contributions to the partition function in
the confinement domain. They are easy to calculate and are considered no further
here as they are not a significant influence on the position of the phase boundary.

The pressure difference is

| P2 A5 +wi C8 + BY

A
1 [u]
B(u) :== / In = =
o D0 { PPA + w2, C3
51 (040 = 3a0) + Wy (00, = 5¢,) | + (135)

which defines a p-dependent “bag constant” [75]. In Eq. (135), Aand C represent
the solution of Eq.(104) obtained when By = 0; i.e., when DCSB is absent. This
solution exists for all p. B(u) is plotted in Fig. 31. It is positive when the Nambu~—
Goldstone phase is dynamically favoured; i.e., has the highest pressure, and
becomes negative when the Wigner pressure becomes larger. The critical chemical
potential is the zero of B(u); i.e., u. = 375MeV. This abrupt switch from the
Nambu-Goldstone to the Wigner—Weyl phase signals a first order transition.
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Fig. 31. B(p) from (135); B(p) > 0 marks the domain of confinement and dynamical
chiral symmetry breaking. The zero of B(u) is pe = 375 MeV. B(0) = (0.104 GeV)*,
which can be compared with the value ~ (0.145 GeV)* commonly used in bag-like models
of hadrons [74]

The order parameter for chiral symmetry restoration is that given in Eq. (117),
while the confinement order parameter at (7' = 0, u # 0) is derived from

1 [ . -
Ag(T): / dps e o, (p'=0,w) , (136)

:% N

an analogue of Eq. (118). For a free, massive fermion op(p' = 0,w)) =
M /(wf ;+M?). This function has poles at pj = —(M =£p)?, which are associated
with the p-induced offset of the particle and antiparticle zero-point energies, and

Ag(r) = 5™ M=WTHM - p), (137)

which is positive-definite and monotonically decreasing. In contrast, as observed
above, for a Schwinger function with complex-conjugate p?-poles, Ag(7) has
zeros at 7 > 0.

The p-dependence of the order parameters for chiral symmetry restoration and
deconfinement is depicted in Fig. 32. The chiral order parameter increases with
increasing chemical potential up to ., with X (p.)/X(0) &~ 1.2, whereas k() is
insensitive to increasing p. At p, they both drop immediately and discontinuously
to zero, as expected of a first-order phase transition. The increase of the chiral
order parameter with y is a necessary consequence of the momentum dependence
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Fig. 32. The order parameters for chiral symmetry restoration [X’, diamonds] and decon-
finement [k, circles]. p. = 375 MeV.

of the scalar piece of the quark self energy, B(py,)), as is easily seen in Ref. 61
and in Secs. 7.5 and 7.6. The vacuum quark condensate behaves in qualitatively
the same manner as X.

The behaviour of m, and f, is illustrated in Fig. 33. One observes that
although the chiral order parameter increases with p, m, decreases slowly as p
increases. This slow fall continues until p =~ 0.7 p., when my(p)/mx(0) = 0.94.
At this point m, begins to increase although, for p < pe, m,(u) does not ex-
ceed m,(0). This precludes pion condensation, in qualitative agreement with
Ref.76. The behaviour of m, results from mutually compensating increases in
<m§%((jq)4>7r and N2. This is a manifestation of the manner in which dynami-
cal chiral symmetry breaking protects pseudoscalar meson masses against rapid
changes with pu. The pion leptonic decay constant is insensitive to the chemical
potential until p & 0.7 p., when it increases sharply so that f(u.)/f=(r=0) =
~ 1.25. The relative insensitivity of m, and f, to changes in u, until very near
e, mirrors the behaviour of these observables at finite-7' [60]. For example, it
leads only to a 14% increase in the m — uvr decay width at p ~ 0.9 u.. The
universal scaling conjecture of Ref.77 is inconsistent with the anticorrelation we
observe between the u-dependence of f, and m..

Comparing the p-dependence of f, and m, with their T-dependence, one
observes an anticorrelation; e.g., at 4 = 0, f falls continuously to zero as T is
increased towards T, =~ 150 MeV [60]. This too is a necessary consequence of the
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momentum-dependence of the quark self-energy. In calculating these observables
the natural dimension is mass-squared, and their behaviour at finite 7" and p is
determined by Re(w?,) ~ [7*T? — p?], where the T-dependence arises from
the introduction of the fermion Matsubara frequency: py — (2n + 1)77T. Hence
when such a quantity decreases with 7" it will increase with p, and vice-versa.
This is elucidated in Secs. 7.5 and 7.6, and in Ref.50.

The confined-quark vacuum consists of quark-antiquark pairs correlated in a
scalar condensate. Increasing p increases the scalar density: (—(gq)). This result
is an expected consequence of confinement, which entails that each additional
quark must be locally paired with an antiquark thereby increasing the density of
condensate pairs as g is increased. For this reason, as long as p < p., there
is no excess of particles over antiparticles in the vacuum and hence the baryon
number density remains zero [61]; i.e., p}?d =0, Yu < pe. This is just the
statement that quark-antiquark pairs confined in the condensate do not contribute
to the baryon number density.

The quark pressure, P“*d[,u], can be calculated [61], see Sec. 7.5, and one
finds that after deconfinement it increases rapidly, as the condensate “breaks-up”,
and an excess of quarks over antiquarks develops. The baryon-number density,
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pgrd = (1/3)0P%+4 /9y, also increases rapidly, with

Pt (=~ 2u.) ~ 3 po, (138)
where po = 0.16 fm™* is the equilibrium density of nuclear matter. For compari-
son, the central core density expected in a 1.4 M neutron star is 3.6-4.1 pg [43].
Finally, at p ~ 5p., the quark pressure saturates the ultrarelativistic limit:
Putd = ;*/(27?), and there is a simple relation between baryon-density and
chemical-potential:

. 1243
P (W) = 5 T Vi 2 e, (139)

so that p}gF*dF(E)uc) ~ 350 po. Thus the quark pressure in the deconfined domain
overwhelms any finite, additive contribution of hadrons to the equation of state,
which anticipating this was neglected in Ref.62. This discussion suggests that a
quark-gluon plasma may be present in the core of dense neutron stars.

7.5. Simultaneous study of (7" # 0,u # 0). This is the most difficult
problem and the most complete study [61] to date employs a simple Ansatz for
the dressed-gluon propagator:

2
97 Dy (B, ) = <5W - ﬁ) 2n® Lo d*(p),  (140)
which exhibits the infrared enhancement suggested by Ref.6. As an infrared-
dominant model that does not represent well the behaviour of D, (p, ;) away
from |7|? + Q2 ~ 0, some model-dependent artefacts arise. However, there is
significant merit in its simplicity and, since the artefacts are easily identified, the
model remains useful as a means of elucidating many of the qualitative features
of more sophisticated Ansdtze.

With this model, using the rainbow approximation, the QCDZ gap equation,
or DSE for the dressed-quark propagator, is [3]

1,5 1,5 ~ 1 oo~
STHE,wk) = So (B, 0r) + 7% S (7, @) - (141)

A simplicity inherent in Eq. (140) is now apparent: it allows the reduction of
an integral equation to an algebraic equation, in whose solution many of the
qualitative features of more sophisticated models are manifest, as will become
clear. In terms of the scalar functions introduced in Eq. (101), Eq. (141) reads

n’m? = B +mB® + (4p; — n? —m?) B> —m (20 + m® + 45}) B, (142)

2B(pr)

= T B (143)
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Of particular interest is the chiral limit, m = 0. In this case Eq. (142) reduces
to a quadratic equation for B(py), which has two qualitatively distinct solutions.
The “Nambu—Goldstone” solution, for which

2 42 oy _ 1
B(p) = {OV” P, Reliy) <3 (144)

otherwise

,,]2
2, Re(p?) < T
1

o2 (145)
(1 +.4/1+ ~—2> , otherwise,
2 D,

describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(py), in the absence
of a current-quark mass; and 2) the dressed-quarks are confined, because the
propagator described by these functions does not have a Lehmann representation.
The alternative “Wigner” solution, for which

B(pr) =0, C’(ﬁk)Z%(l—h/l—FQﬁL;) ) (146)

describes a phase of the model in which chiral symmetry is not broken and the
dressed-quarks are not confined.

With these two “phases”, characterised by qualitatively different, momentum-
dependent modifications of the quark propagator, this model can be used to
explore chiral symmetry restoration and deconfinement, and elucidate aspects of
the method in such studies.

In this model the relative stability of the different phases is measured by a
(T, p)-dependent “bag constant” [75],

B(T,u) = P[Snc]— P[Sw], (147)

where Snyg means Eq. (101) obtained from Eq. (144) and Sy, Eq. (101) obtained
from Eq. (146). As above, B(T, ) > 0 indicates the stability of the confined
(Nambu-Goldstone) phase and hence the phase boundary is specified by that
curve in the (7', u)-plane for which

B(T,u) = 0. (148)

In the chiral limit
B(T,p) =

= lmax pA
T ! 1
=n*2N,N;— / d 2{Re 257 Re< >ln -20-2},
U 12 ; oy (2p7) o) |p7C(21)?]
(149)
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Fig. 34. B(T, p) from Eq. (149); B(T, 1) > 0 marks the confinement domain. The scale
is set by B(0,0) = (0.10271)* = (0.109 GeV)*; n = 1.06 GeV [12]

with: T =T/n, i = (1/1; lmas is the largest value of [ for which & < i—i—ﬂQ
and this also specifies w; A =af —of, pr = (0 +ig). B(T,p) is
depicted in Fig. 34 and the critical line in Fig. 35. The deconfinement and chiral
symmetry restoration transitions are coincident.

For ;4 = 0 the transition is second order and the critical temperature is
TO = 0.1597n, which using the value of 7 = 1.06 GeV obtained by fitting the 7
and p masses [12] corresponds to T = 0.170 GeV. This is only 12% larger than
the value obtained in Sec. 7.3, [60], and the order of the transition is the same.
However, in the present case the critical exponent is 8 = 0.5. For any p # 0
the transition is first-order, as revealed by close scrutiny of Fig. 34. For T' =0
the critical chemical potential is u2 = 0.3 GeV, which is ~ 30% smaller than the
result in Sec. 7.4 [62]. One notes from Fig. 35 that u.(7T) is insensitive to T
until 7'~ 0.3 7. The discontinuity in the order parameters vanishes as y — 0.

In the deconfinement domain, illustrated clearly in Fig. 35, the quarks con-
tribute an amount

T <~ [ R 1
P[Sw] = n*2N.N; = / dyy® {In )ﬂQﬁ%C(@)2) —1+Re|—
¢ 2 ; 0 C(ﬁl)
(150)
to the pressure, which must be renormalised to zero on the phase boundary. Just

as for free fermions, this expression is formally divergent and one must isolate and

max®
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Fig. 35. The phase boundary in the (T, i)-plane obtained from (148) and (149). The
“structure” in this curve, apparent for small-7’, is an artefact of the inadequate representa-
tion of the quark-quark interaction in the ultraviolet by Eq. (140)

define the active, temperature-dependent contribution. This is difficult because, in
general, C (p1) is only known numerically and hence it is not possible to evaluate
P[Sw] analytically. A method for the numerical evaluation of Eq. (150) was
developed in Ref.61.

Consider the derivative of the integrand in Eq. (150):

) LT w=w? (y+ i) 20(p) — 1 dC(pr)
_Z{ T[(yﬁ)2+@?+(y+ﬁ)2+@?]+Re< (p)?  dT )}

(151)
In the absence of interactions C(p;) = 1, the second term is zero and

2 ¢ i)’ +m? 1 d [ely)
?Z |: +wl + (y+M) s 2:| ﬁ{7+1(6(y))}7 (152)

l
ﬁ)} . (153)

where in this case e(y) = y and

7(¢) = In [1 + exp (CT?/_‘)] t o {1 e (C

’ﬂl‘ +
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Fig. 36. k(y, z), which describes the nonperturbative modification of the free particle
dispersion law, for it = 0,0.3,0.6. By assumption, it is independent of 1T’

Appropriately inserting Eq. (152) for the parenthesised term in Eq. (150), and
neglecting T-independent terms one obtains,

T oo
Plsi = ot NNy [ ayytz) (154)
= n*N.N 1 ﬂ4+27r2ﬂ2T2+17r4T4 (155)
' 1on2 15 ’

which is the massless free particle pressure.

To proceed in the general case, the assumption is made [61] that the nontrivial
momentum dependence of C'(f;), which is manifest in all DSE-models of QCDZ,
acts primarily to modify the usual massless, free particle dispersion law. One
evaluates the sum on the right-hand side of (151) numerically and uses the form
on the right-hand side of Eq. (152) to fit a modified, T-independent dispersion
law, e(y, i) = y + k(y, i), to the numerical results. The existence of a k(y, i)
that provides a good x2-fit on the deconfinement domain is understood as an
a posteriori justification of the assumption. In Ref.61 the relative error between
the fit and the numerical results is < 10% on the entire 7-domain.

The calculated form of x(y, 1) is depicted in Fig. 36; it only depends weakly
on zi. The form indicates a persistence of nonperturbative effects into the domain
of deconfinement, evident in the nontrivial momentum dependence of C' (1) and
its slow evolution to the asymptotic value C(p;) = 1. The effect of this is to
generate a mass-scale in the massless dispersion law: x(0,0) =~ 0.6 ~ 2/i%. This
mass-scale is unrelated to the chiral-symmetry order parameter, X in Eq. (117),
and is a qualitatively new feature of the study. For ji > 510 the explicit mass-
scale introduced by the chemical potential overwhelms the dynamically generated
scale.
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Fig. 37. The quark pressure, P,(T,[i), normalised to the free, massless (or Ultra-
Relativistic) result, Eq. (155)

Using this result, Eq. (150) becomes

T e o]
PlSw] = NNy [ duy? Tiety. ). (156)
0
and the quark pressure in this DSE-model of QCD;*’: is

Py(T, p) = 6(D){P[Sw] — P[Swllop} (157)

where D is the domain marked “Deconfined” in Fig. 35, (D) is a step function,
equal to one for (T,u) € D, and P[Sw]|,p indicates the evaluation of this
expression on the boundary of D, as defined by the intersection of a straight-line
from the origin in the (7, u)-plane to the argument-value. It is plotted in Fig. 37,
which illustrates clearly that in this model the free particle (Stefan—Boltzmann)
limit is reached at large values of T and fi. The approach to this limit is slow,
however. For example, at T ~ 0.3 ~ 279, or i ~ 1.0 ~ 312, Eq. (157) is
only 50% of the free particle pressure, Eq. (155). A qualitatively similar result is
observed in numerical simulations of lattice-QCD actions at finite-7" [42]. This
feature results from the slow approach to zero with y of x(y, i), illustrated in
Fig. 36, and emphasises the persistence of the momentum dependent modifications
of the quark propagator.

With the definition and calculation of the pressure, P, (T, 1), all the remaining
bulk thermodynamic quantities that characterise the model can be calculated. As
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Fig. 38. The “interaction measure”, A(T, i), normalised to the free, massless result for
the pressure, Eq. (155)

an example the “interaction measure”: A := e¢ — 3P, where ¢ is the energy
density, is plotted in Fig. 38. It is zero for an ideal gas, hence the name: A
measures the interaction-induced deviation from ideal gas behaviour. This figure
provides a very clear indication of the persistence of nonperturbative effects into
the deconfinement domain, with a g = 0 maximum of A ~ 0.2 P[Sy] at T ~ 27T,
and a T = 0 maximum of A ~ 0.3 P[Sy] at p =~ 3p.. Both Figs. 37 and 38
indicate that there is a “mirroring” of finite-7" behaviour in the p-dependence of
the bulk thermodynamic quantities.

7.6. m and p properties. The model discussed in the last section has been
used [50] to study the (7', u)-dependence of w and p properties, and to elucidate
other features of the models described above that employ a more sophisticated
Ansatz for the dressed-gluon propagator. In these applications its simplicity is
particularly helpful.

To begin, consider the vacuum quark condensate, which in this model is

Imax A
—(gg) = n® T > ! dyy*Re (/3 —y2—a7):  (158)
2 —~ Jo 4 Ll

for T =0=p, (—{qq)) =n3/(807%) = (0.11n)3. In Fig. 39 one observes that
(—(q@q)) decreases with T' but increases with increasing p, up to a critical value of
te(T) when it drops discontinuously to zero. These results are in qualitative and
semiquantitative agreement with the (7' = 0, # 0) and (T # 0, = 0) studies
described in Secs. 7.3 and 7.4. The increase with u is also qualitatively identical
to that observed in a random matrix theory with the global symmetries of the
QCD partition function [78]. (—(gq)) must increase with p in the confinement
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Fig. 39. The quark condensate, Eq. (158), as a function of y for a range of values of T". In
all existing studies, in which the quark mass function has a realistic momentum dependence,
it increases with p and decreases with T'. At the critical chemical potential, u.(T'), (—(gq))
drops discontinuously to zero, as expected of a first-order transition. For p = 0 it falls
continuously to zero, exhibiting a second-order transition at Tc(u = 0) = 0.16 7.

domain because confinement entails that each additional quark must be locally-
paired with an antiquark, thereby increasing the density of condensate pairs. This
vacuum rearrangement is manifest in the behaviour of the necessarily-momentum-
dependent scalar part of the quark self energy, B(py). In this model Eqs. (128)-
(130) yield very simple expressions in the chiral limit; for example*,

Lo, —
16N, - w= A} _ . 8-
2= nQTCTEj?l(Hw?—w?—EA%). (159)
=0

Characteristic in Eq. (159) is the combination p? — w?, which entails that, what-
ever change f. undergoes as 7 is increased, the opposite occurs as p is increased.
Without calculation, Eq. (159) indicates that f,; will decrease with T' and increase
with p. This provides a simple elucidation of the results described above. Fig-
ure 40 illustrates this behaviour for m # 0. The (T, 1)-dependence of m., from
Eq. (128), is also depicted in Fig. 40. It is insensitive to changes in p and
only increases slowly with 7', until 7" is very near the critical temperature. As in
Sec. 7.4, this insensitivity is the result of mutually cancelling increases in (m Gq)-

*This is the expression for N2 from Eq. (129), which provides a better approximation to the
pion leptonic decay constant than Eq. (130) when one assumes I'r (p; P) = ivy5 Bo(p?).
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Fig. 40. The pion mass, Eq. (128), and weak decay constant, Eq. (129), as a function
of p for a range of values of T. m, falls slowly and uniformly with p [m.(T =
0, pe) = 0.95m(T = 0, = 0)] but increases with 7. Such a decrease is imperceptible
if the ordinate has the range in Fig. 41. f. increases with p and decreases with T
[fr(T =0, pc) = 151 f(T = 0, p = 0)]

and fr, and is a feature of studies that preserve the momentum-dependence of
the confined, dressed-quark degrees of freedom in bound states.

With n = 1.37GeV and m = 30MeV, one obtains f, = 92MeV and
my = 140MeV at T' = 0 = u. That large values of n and m are required
is a quantitative consequence of the inadequacy of Eq. (140) in the ultraviolet:
the large-p? behaviour of the scalar part of the dressed-quark self energy is
incorrect. This defect is remedied easily [7] without qualitative changes to the
results presented here [71].

p-meson properties are more difficult to study: one must solve the vector-
meson Bethe — Salpeter equation directly. As described above, the ladder trunca-
tion of the kernel in the inhomogeneous axial-vector vertex equation and the rain-
bow truncation of the quark DSE form an AV-WTI identity preserving pair [3].
It follows that the ladder BSE is accurate for flavour-nonsinglet pseudoscalar and
vector bound states of equal-mass quarks because of a cancellation in these chan-
nels between diagrams of higher order in the systematic expansion illustrated in
Fig. 7.

A ladder BSE using the 7' = 0 limit of Eq. (140) was introduced in Ref.12.
It has one notable pathology: the bound state mass is determined only upon the
additional specification that the constituents have zero relative momentum. That
specification leads to a conflict with Egs. (19)-(22), which follow from the AV-
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Fig. 41. M,y and m, as a function of i for T = 0,0.1. On the scale of this figure, m
is insensitive to this variation of 7". The current-quark mass is m = 0.011 7, which for
n = 1.06 GeV yields M,. = 770MeV and m, = 140MeV at T =0 =p

WTI, and is an artefact of implementing the delta-function limit discontinuously;
i.e., these identities are manifest for any finite-width representation of the delta-
function, as this width is reduced continuously to zero. In other respects this
ladder BSE provides a useful qualitative and semi-quantitative tool for analysing
features of the pseudoscalar and vector meson masses. For example, Goldstone’s
theorem is manifest, in that the 7 is massless in the chiral limit, and also mfr rises
linearly with the current-quark mass. Further, there is a naturally large splitting
between m, and m,, which decreases slowly with the current-quark mass.

To illustrate this and determine the response of m, to increasing 7" and u,
the BSE of Ref.12 was generalised [50] to finite-(7, i) as

2
~ 5 ~ 15 ~ 5 ~ 15
Ca (Pi Pr) = = Re {3 S(i + 3P Dot (553 P2) S(Bi = 3 P) v} 5 (160)

where P, := (]3, Q). The bound state mass is obtained by considering P, and,
in ladder truncation, the p- and w-mesons are degenerate.
The 7 equation admits the solution

Tr(Po) =75 (i1 +7 - Pbs) (161)

and yields the mass plotted in Fig. 41. The mass behaves in qualitatively the
same manner as m, in Fig. 40, from Eq. (128), as required if Eq. (160) is to
provide a reliable guide. In particular, it vanishes in the chiral limit.
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For the p-meson there are two components: one longitudinal and one trans-
verse to P. The solution of the BSE has the form

Ya O+

Fp: ﬁ—%ﬁ’?ﬁ ep_ y (162)
7|

where 0, labels the longitudinal and 6,_ the transverse solution. The eigenvalue

equation obtained from Eq. (160) for the bound state mass, M, is

2

n 1 1 1

~ Re {as(w§+ — TM2) - {iw& - ZMgi} ov (Wi, — ZMgi)Q} ~1.
(163)

The equation for the transverse component is obtained with [—wg, — EMP{] in
(163). Using the chiral-limit solutions, Eq. (144), one obtains immediately that

M,i = %nQ, independent of T and p. (164)
This is the T" = 0 = p result of Ref.12. Even for nonzero current-quark mass,
M,_ changes by less than 1% as T" and p are increased from zero toward their
critical values. Its insensitivity is consistent with the absence of a constant mass-
shift in the transverse polarisation tensor for a gauge-boson.
For the longitudinal component one obtains in the chiral limit:

1
My, = o0’ —4(p® —=°T%). (165)

The characteristic combination [u? — 7272] again indicates the anticorrelation
between the response of M, to T" and its response to u, and, like a gauge-boson
Debye mass, that M7, rises linearly with T for 4 = 0. The m # 0 solution of
Eq. (163) for the longitudinal component is plotted in Fig. 41. As signalled by
Eq. (165), M, increases with increasing 1" and decreases as 1 increases™.

I stated that contributions from skeleton diagrams not included in the ladder
truncation of the vector meson BSE do not alter the calculated mass significantly
because of cancellations between these higher order terms [3]. This is illustrated
explicitly in two calculations: Ref.79, which shows that the p — 7 — p
contribution to the real part of the p self energy; i.e., the 7-7 induced mass-shift,
is only —3%; and Ref.80, which shows, for example, that the contribution to
the w-meson mass of the w — 3m-loop is negligible. Therefore, ignoring such

*There is a 25% difference between the value of 7 required to obtain the 7' = 0 = p values of
mq and fr, from Eq. (128) and Eq. (129), and that required to give M4+ = 0.77 GeV. This is a
measure of the quantitative accuracy of this algebraic model.
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contributions does not introduce uncertainty into estimates of the vector meson
mass based on Eq. (160).

Equation (163) can also be applied to the ¢-meson. The transverse component
is insensitive to 7" and p, and the behaviour of the longitudinal mass, Mgy, is
qualitatively the same as that of the p-meson: it increases with 7" and decreases
with p. Using n = 1.06 GeV, the model yields Myt = 1.02GeV for m; =
180MeV at T' =0 = p.

In a 2-flavour, free-quark gas at 7' = 0 the baryon number density is pp =
2113 /(372), by which gauge nuclear matter density, pg = 0.16 fm 3, corresponds
to 1 = po = 260 MeV = 0.245 7. At this chemical potential the algebraic model
yields

Mp_;,_ (/,Lo) ~ 075M/J+(M = O) y (166)
Mgy (po) =~ 0.85Mgy(n=0). (167)

The study summarised in Sec. 7.4 [62], indicates that a better representation of the
ultraviolet behaviour of the dressed-gluon propagator expands the horizontal scale
in Fig. 41, with the critical chemical potential increased by 25%. This suggests
that a more realistic estimate is obtained by evaluating the mass at u{ = 0.2017,
which yields

M,y (uy) =~ 0.85M,4(pn=0), (168)
My (o) =~ 0.90Myi(p=0); (169)

a small, quantitative modification. The difference between Egs. (166) and (168),
and that between Egs. (167) and (169), is a measure of the theoretical uncertainty
in the estimates in each case. This reduction in the vector meson masses is
quantitatively consistent with that calculated in Ref.48 and conjectured in Ref.81.
At the critical chemical potential for T = 0, M, ~ 0.65M,, (¢ = 0) and

This simple model of QCDE preserves the momentum-dependence of gluon
and quark dressing, which is an important qualitative feature of more sophisti-
cated studies. Its simplicity means that many of the consequences of that dressing
can be demonstrated algebraically. For example, it elucidates the origin of an
anticorrelation, found for a range of quantities, between their response to increas-
ing T and that to increasing pu.

Both (—(gq)) and fr decrease with T and increase with g, and this ensures
that m, is insensitive to increasing p and/or 7" until very near the edge of the
domain of confinement and DCSB. The mass of the transverse component of
the vector meson is insensitive to T' and p while the mass of the longitudinal
component increases with increasing 7' but decreases with increasing p. This
behaviour is opposite to that observed for (—(Gq)) and f, and hence the scaling
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law conjectured in Ref.81 is inconsistent with this calculation, as it is with others
of this type.

This study has two primary limitations. First, the width of the vector mesons
cannot be calculated because the solution of Eq. (160) does not provide a re-
alistic Bethe — Salpeter amplitude. Second, the calculation of meson-photon
observables at T' = 0 = p only became possible with the determination [5] of the
form of the dressed-quark-photon vertex. Its generalisation to nonzero-(7, ) is
a necessary precursor to the study of these processes.

8. CLOSING REMARKS

These lecture notes illustrate the contemporary application of
Dyson — Schwinger equations to the analysis of observable strong interaction
phenomena, highlighting the positive aspects and successes. Many recent, inter-
esting studies have been neglected; a calculation of the electric dipole moment
of the p-meson [82] and an exploration of 1-r’ mixing [83] among them. How-
ever, a simple enquiry of “http://xxx.lanl.gov/find/hep-ph” with the keywords:
“Dyson — Schwinger” or “Schwinger — Dyson”, will provide a guide to other
current research.

In all phenomenological applications, modelling is involved, in particular, of
the behaviour of the dressed Schwinger functions in the infrared. [The ultraviolet
behaviour is fixed because of the connection with perturbation theory.] This
is tied to the need to make truncations in order to define a tractable problem.
Questions will always be asked regarding the fidelity of the modelling. The
answers can only come slowly as, for example, more is learnt about the constraints
that Ward Identities and Slavnov — Taylor identities in the theory can provide.
That approach has been particularly fruitful in QED [5], and already in the
development of a systematic truncation procedure for the kernel of the quark DSE
and meson BSE [3,4]. In the meantime, and as is common, phenomenological
applications provide a key to understanding which elements of the approach need
improvement: one must push and prod to find the weak links.
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