
®”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��¯
1999, ’�Œ 30, ‚›�. 3

“„Š 539.12.01

NONPERTURBATIVE EFFECTS IN QCD
AT FINITE TEMPERATURE AND DENSITY

C.D.Roberts

Physics Division 203, Argonne National Laboratory,

Argonne IL 60439-4843, USA

INTRODUCTION 538
ESSENTIAL ELEMENTS OF THE DSEs 539

Gluon Propagator 540
Quark Propagator 542
Conˇnement 545
Hadrons: Bound States 547

A QCD MASS FORMULA 548
Dynamical Chiral Symmetry Breaking and Goldstone's
Theorem 549
Nonzero Quark Masses: A Mass Formula 550

AN ILLUSTRATIVE MODEL 552

Solving the Quark DSE 553
Solving the Pseudoscalar Meson BSE 556

ADDITIONAL PHENOMENOLOGICAL APPLICATIONS 562
Pion Electromagnetic Form Factor 563
Electroproduction of Vector Mesons 570

FINITE TEMPERATURE AND CHEMICAL POTENTIAL 575
Notes on Field Theory 579
Some Lattice Results 582

DSEs AT FINITE T AND µ 584
Quark DSE 584
Phase Transitions and Order Parameters 586
Illustration at (T 6= 0, µ = 0) 588
Complementary study at (T = 0, µ 6= 0) 592
Simultaneous study of (T 6= 0, µ 6= 0) 597
π and ρ properties 603

CLOSING REMARKS 609

REFERENCES 611



®”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��¯
1999, ’�Œ 30, ‚›�. 3

“„Š 539.12.01

NONPERTURBATIVE EFFECTS IN QCD
AT FINITE TEMPERATURE AND DENSITY

C.D.Roberts

Physics Division 203, Argonne National Laboratory,

Argonne IL 60439-4843, USA

These lecture notes illustrate the application of Dyson Å Schwinger equations in QCD. The
extensive body of work at zero temperature and chemical potential is represented by a selection of
contemporary studies that focus on solving the Bethe Å Salpeter equation, deriving an exact mass for-
mula in QCD that describes light and heavy pseudoscalar mesons simultaneously, and the calculation
of the electromagnetic pion form factor and the vector meson electroproduction cross sections. These
applications emphasise the qualitative importance of the momentum-dependent dressing of elementary
Schwinger functions in QCD, which provides a unifying connection between disparate phenomena.
They provide a solid foundation for an extension of the approach to nonzero temperature and chemi-
cal potential. The essential, formal elements of this application are described and four contemporary
studies employed to exemplify the method and its efˇcacy. They study the demarcation of the phase
boundary for deconˇnement and chiral symmetry restoration, the calculation of bulk thermodynamic
properties of the quark-gluon plasma and the response of π- and ρ-meson observables to T and
µ. Along the way a continuum order parameter for deconˇnement is introduced, an anticorrelation
between the response of masses and decay constants to T and their response to µ elucidated, and
a (T, µ)-mirroring of the slow approach of bulk thermodynamic quantities to their ultrarelativistic
limit highlighted. These effects too are tied to the momentum-dependent dressing of the elementary
Schwinger functions.
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1. INTRODUCTION

In this article I describe the application of Dyson Å Schwinger equations
(DSEs) to QCD at ˇnite temperature, T , and quark chemical potential, µ. It is
not a pedagogical introduction, as this can be found in recent reviews [1,2]. The
goal instead is to illustrate how contemporary studies at (T = 0, µ = 0) can be
used as a foundation and springboard for the application of DSEs at ˇnite T and
µ, and to describe some of these applications and their results.

The DSEs provide a nonperturbative, Poincar�e invariant, continuum approach
to solving quantum ˇeld theories. They are an inˇnite tower of coupled integral
equations, with the equation for a particular n-point function involving at least
one m > n-point function. A tractable problem is only obtained if one truncates
the system, and historically this has provided an impediment to the application of
DSEs: a priori it can be difˇcult to judge whether a particular truncation scheme
will yield qualitatively or quantitatively reliable results for the quantity sought.
As integral equations, the analysis of observables using DSEs rapidly becomes
a numerical problem and hence a critical evaluation of truncation schemes often
requires, or is at least simpliˇed, by easy access to high-speed computers.∗ With
such tools now commonplace, this evaluation can be pursued fruitfully.

The development of efˇcacious truncation schemes is not a purely numerical
task, and neither is it always obviously systematic. For some, this last point
diminishes the appeal of the approach. However, with growing community in-
volvement and interest, the qualitatively robust results and intuitive understanding
that the DSEs can provide is becoming clear. Indeed, someone familiar with the
application of DSEs in the late-70s and early-80s might be surprised with the
progress that has been made. It is now clear [3,4] that truncations which preserve
the global symmetries of a theory; for example, chiral symmetry in QCD, are
relatively easy to deˇne and implement and, while it is more difˇcult to preserve
local gauge symmetries, much progress has been made with Abelian theories [5]
and more is being learnt about non-Abelian ones.

The simplest truncation scheme for the DSEs is the weak-coupling expansion.
Using this systematic procedure it is readily established that the DSEs contain
perturbation theory, in the sense that for any given theory the weak-coupling
expansion of the equations generates all the diagrams of perturbation theory.
Hence, at the very least, the DSEs can be used as a generating tool for perturbation
theory, and in this application they are an essential element in the proof of the
renormalisability of a quantum ˇeld theory. This feature also places a constraint
on other truncation schemes; i.e., the scheme must ensure that perturbative results

∗The human and computational resources required are still modest compared with those con-
sumed in contemporary numerical simulations of lattice-QCD.
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are recovered in that domain on which a weak-coupling expansion is known to
be valid.

The most important feature of the DSEs is the antithesis of this weak-coupling
expansion: the DSEs are intrinsically nonperturbative. They can be derived
directly from the generating functional of a quantum ˇeld theory and at no stage
in this derivation is a DSE represented as a sum of diagrams in perturbation theory.
Hence their solution contains information that is not present in perturbation theory.
They are ideal for the study of dynamical chiral symmetry breaking∗ (DCSB) and
conˇnement in QCD, and of hadronic bound state structure and properties. In
this application they provide a means of elucidating identiˇable signatures of the
quark-gluon substructure of hadrons.

Their intrinsically nonperturbative nature also makes them well suited to
studying QCD at ˇnite-T and µ, where the characteristics of the phase transition
to a quark-gluon plasma are a primary subject. The order of the transition, the
critical exponents, and the response of bound states to changes in these intensive
variables: all must be elucidated. The latter is of particular importance because
there lies the signals that will identify the formation of the plasma and hence
guide the current and future experimental searches.

There is a signiˇcant overlap between contemporary DSE studies and numer-
ical simulations of lattice-QCD. Of particular importance is that both admit the
simultaneous study of DCSB and conˇnement, the absence of which deˇnes the
plasma. The DSEs provide an adjunct to lattice simulations. They are a means
of checking them, and the simulations can provide input into the development
and constraint of DSE truncations. A truncation that is accurate on the com-
mon domain can be used to extrapolate into that domain presently inaccessible to
lattice-simulations, such as ˇnite chemical potential and the T - and µ-dependence
of hadron properties.

2. ESSENTIAL ELEMENTS OF THE DSEs

In this section I summarise some of the results upon which much of the
successful DSE phenomenology is founded. Before doing so it is important to
specify that I employ an Euclidean metric throughout. For real 4-vectors, a, b:

a · b := aµ bνδµν :=
4∑
i=1

ai bi , (1)

∗Historically, the DSE for a fermion propagator has found widespread use in the study of
dynamical symmetry breaking; for example, it is the ©gap equationª that describes Cooper-pairing in
an ordinary superconductor.
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and hence a spacelike vector, Qµ, has Q2 > 0. The Dirac matrices satisfy

γ†µ = γµ , {γµ, γν} = 2 δµν (2)

and γ5 := −γ1γ2γ3γ4.
My point of view is that the Euclidean formulation is primary ; i.e., a ˇeld

theory should be deˇned in Euclidean space, where the propagators and vertices
are properly called ©n-point Schwinger functionsª. This is the perspective adopted
in constructive ˇeld theory and, at least as a pragmatic artiˇce, by practitioners of
lattice-QCD. If the ˇeld theory is well-deˇned, it is completely speciˇed once all
its Schwinger functions are known. Analytic continuation in the Euclidean-time
variable yields the Wightman functions and, following appropriate time-ordering,
the Minkowski space propagators. Additional details and discussion can be found
in Sec. 2.3 of Ref.1.

It is important because the analytic structure of nonperturbatively dressed
Schwinger functions need not be the same as that of their free-particle seeds.
Hence, a priori one cannot know the analytic properties of the integrand in a
DSE and any rotation of the integration contours, as in a ©Wick rotationª, is
plagued by uncertainty: there may be poles or branch cuts, etc., that cannot be
anticipated from the free-particle form of the Schwinger functions involved. This
is manifest in the fact that the transcription rules:

Conˇguration Space

1.

∫ M

d4xM → −i
∫ E

d4xE

2. /∂ → iγE · ∂E

3. /A → −iγE · AE

4. AµBµ → −AE · BE

Momentum Space

1.

∫ M

d4kM → i

∫ E

d4kE

2. /k → −iγE · kE

3. kµqµ → −kE · qE

4. kµxµ → −kE · xE ,

are valid at every order in perturbation theory; i.e., the correct Minkowski space
integral for a given diagram in perturbation theory is obtained by applying these
transcription rules to the Euclidean integral. However, for skeleton diagrams; i.e.,
those in which each line and vertex represents a fully dressed n-point function,
this cannot be guaranteed.

2.1. Gluon Propagator. In Landau gauge the two-point, dressed-gluon
Schwinger function, or dressed-gluon propagator, has the form

g2Dµν(k) =

(
δµν −

kµkν

k2

)
G(k2)

k2
, G(k2) :=

g2

1 + Π(k2)
, (3)
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Fig. 1. DSE for the gluon vacuum polarisation and propagator: solid line Å quark; spring
Å gluon; dotted-line Å ghost. The open circles are irreducible vertices. As indicated,
the quark loop acts to screen the charge, as in QED, while the gluon loop opposes this,
antiscreening the charge and enhancing the interaction

Fig. 2. G(k2)/k2 from a solution [6] of the gluon DSE (dash-dot line) compared with
the one-loop perturbative result (dashed line) and a ˇt (solid line) obtained following the
method of Ref.7; i.e., by requiring that the gluon propagator lead, via the quark DSE, to
a good description of a range of hadron observables
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where Π(k2) is the gluon vacuum polarisation, which contains all the dynamical
information about gluon propagation. This propagator satisˇes the DSE illustrated
in Fig. 1 (a nonlinear integral equation). As already stated, a weak-coupling
expansion of this DSE reproduces perturbation theory. Using this one sees directly
that in the one-loop expression for the running coupling constant:

αS(q2) =
12π

(11Nc − 2Nf ) ln
(
q2/Λ2

QCD

) , (4)

the ©11Ncª comes from the charge-antiscreening gluon loop and the ©2Nfª from
the charge-screening fermion loop, which illustrates how the non-Abelian structure
of QCD is responsible for asymptotic freedom and suggests that conˇnement is
related to the importance of gluon self-interactions.

Studies of the gluon DSE have been reported by many authors [1] with the
conclusion that, if the ghost-loop is unimportant, then the charge-antiscreening
3-gluon vertex dominates and, relative to the free gauge boson propagator, the
dressed gluon propagator is signiˇcantly enhanced in the vicinity of k2 = 0. The
enhancement persists to k2 ∼ 1− 2 GeV2, where a perturbative analysis becomes
quantitatively reliable. In the neighbourhood of k2 = 0 the enhancement can be
represented [6] as a regularisation of 1/k4 as a distribution, which is illustrated
in Fig. 2. As I will elucidate, a dressed-gluon propagator with the illustrated
enhancement at k2 ' 0 generates conˇnement and DCSB without ˇne-tuning.

2.2. Quark Propagator. In a covariant gauge the two-point, dressed-quark
Schwinger function, or dressed-quark propagator, can be written in a number of
equivalent forms

S(p) :=
1

iγ · p+ Σ(p)
(5)

:=
1

iγ · pA(p2) +B(p2)
≡ −iγ · p σV (p2) + σS(p2) . (6)

Σ(p) is the dressed-quark self-energy, which satisˇes a nonlinear integral equa-
tion: the quark DSE (depicted in Fig. 3)

Σ(p) = (Z2 − 1) iγ · p+ Z4mbm+

+Z1

∫ Λ

q

g2Dµν(p− q)λ
a

2
γµS(q)Γaν(q, p) , (7)

where Γaν(q; p) is the renormalised dressed-quark-gluon vertex, mbm is the Λ-
dependent current-quark bare mass that appears in the Lagrangian and
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Fig. 3. DSE for the dressed-quark self-energy.
The kernel of this equation is constructed
from the dressed-gluon propagator (D Å
spring) and the dressed-quark-gluon vertex (Γ
Å open circle). One of the vertices is bare
(labelled by γ) as required to avoid over-
counting

∫ Λ

q
:=
∫ Λ

d4q/(2π)4 represents mne-
monically a translationally-invariant
regularisation of the integral, with Λ
the regularisation mass-scale. The ˇ-
nal stage of any calculation is to re-
move the regularisation by taking the
limit Λ → ∞. The quark-gluon-ver-
tex and quark wave function renor-
malisation constants, Z1(µ2,Λ2) and
Z2(µ2,Λ2), depend on the renormali-
sation point, µ, and the regularisation
mass-scale, as does the mass renor-
malisation constant Zm(µ2,Λ2) :=
Z2(µ2,Λ2)−1Z4(µ2,Λ2).

One can deˇne a quark mass-
function:

M(p2) :=
B(p2)

A(p2)
(8)

and, as depicted in Fig. 4, solving the quark DSE using a dressed-gluon prop-
agator that behaves as illustrated in Fig. 2 and a dressed-quark-gluon vertex,
Γµ(p, q), that does not exhibit particle-like singularities at (p− q)2 = 0,∗ yields a
quark mass-function that mirrors the infrared enhancement of the dressed-gluon
propagator. The results in Fig. 4 were obtained [7] with the current-quark masses:

m
µ
u/d = 3.7 MeV, mµ

s = 82 MeV, mµ
c = 0.59 GeV, m

µ
b = 2.0 GeV, (9)

at a renormalisation point of µ ' 20 GeV. Applying the one-loop evolution
formula, Eq. (39), these masses correspond to:

m1 GeV
u/d = 5.5 MeV, m1 GeV

s = 130 MeV,

m1 GeV
c = 1.0 GeV, m1 GeV

b = 3.4 GeV
(10)

and although it is obvious from Fig. 4 that the one-loop formula does not describe
correctly the momentum evolution of the mass-function down to p2 = 1 GeV2,
the values in Eq. (10) provide a useful and meaningful comparison with the values
quoted conventionally.

∗A particle-like singularity is one of the form (P 2)−α, α ∈ (0, 1]. In this case one can write
a spectral decomposition for the vertex in which the spectral densities are non-negative. This is
impossible if α > 1. α = 1 is the ideal case of an isolated, δ-function singularity in the spectral
densities and hence an isolated, free-particle pole. α ∈ (0, 1) corresponds to an accumulation, at the
particle pole, of branch points associated with multiparticle production.



544 ROBERTS C.D.

Fig. 4. Dressed-quark mass-function obtained in solving the quark DSE using the dressed-
gluon propagator of Ref.7

The quark DSE was also solved in the chiral limit, which in QCD is obtained
by setting the Lagrangian current-quark bare mass to zero [7]. From the ˇgure
one observes immediately that the mass-function is nonzero even in this case.
That is DCSB: a momentum-dependent quark mass generated dynamically in the
absence of any term in the action that breaks chiral symmetry explicitly. This
entails a nonzero value for the quark condensate in the chiral limit. The fact that
M(p2) 6= 0 in the chiral limit is independent of the details of the dressed-gluon
propagator in Fig. 2; they only affect the magnitude of M(p2).

Figure 4 illustrates that for light quarks (u, d and s) there are two distinct
domains: perturbative and nonperturbative. In the perturbative domain the mag-
nitude of the quark mass-function is governed by the explicit chiral symmetry
breaking mass-scale; i.e., the current-quark mass. For p2 < 1 GeV2 the mass-
function rises sharply. This is the nonperturbative domain where the magnitude
of M(p2) is determined by the DCSB mechanism; i.e., the enhancement in the
dressed-gluon propagator. This emphasises again that DCSB is more than just
a nonzero value of the quark condensate in the chiral limit! The boundary, at
p2 ∼ 1 GeV2, is that point where the enhancement in the dressed-gluon propagator
becomes signiˇcant.
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The solution of p2 = M2(p2) deˇnes an Euclidean constituent-quark mass,
ME .∗ For a given quark 
avour, the ratio ME

f /m
µ
f is a single, quantitative

measure of the importance of the DCSB mechanism in modifying the quark's
propagation characteristics. As illustrated in Eq. (11), obtained using the dressed-
gluon propagator in Ref.7,


avour u/d s c b t
ME

mµ∼20 GeV
150 10 2.3 1.4 → 1

(11)

this ratio provides for a natural classiˇcation of quarks as either light or heavy.
For light quarks the ratio is characteristically 10-100 while for heavy quarks it
is only 1Å2 [8]. The values of this ratio signal the existence of a characteristic
mass-scale associated with DCSB, which I will denote by Mχ. For p2 > 0 the
propagation characteristics of a 
avour with mµ

f < Mχ are altered signiˇcantly
by the DCSB mechanism, while for 
avours with mµ

f �Mχ it is irrelevant, and
explicit chiral symmetry breaking dominates. It is apparent from the ˇgure that
Mχ ∼ 0.2 GeV∼ ΛQCD.

The effect that the enhancement of the dressed-gluon propagator has on the
light-quark mass-function is fundamental in QCD and can be identiˇed as the
source of many observable phenomena. Further, that this enhancement little
affects heavy-quark propagation characteristics at spacelike-p2 provides for many
simpliˇcations in the study of heavy-meson observables [9].

2.3. Conˇnement. One aspect of conˇnement is the absence of quark and
gluon production thresholds in colour-singlet-to-singlet S-matrix amplitudes. This
is manifest if, for example, the quark-loop illustrated in Fig. 5, which describes
[10] the diffractive, Pomeron-induced γ → ρ transition, does not have pinch
singularities associated with poles at real-p2 in the quark propagators. This is
ensured if the dressed-quark and -gluon propagators do not have a Lehmann
representation.

What is a Lehmann representation?
Consider the 2-point free-scalar Schwinger function:

∆(k2) =
1

k2 +m2
. (12)

One can write

∆(z) =

∫ ∞
0

dσ
ρ(σ)

z + σ
, (13)

∗In my Euclidean metric a true quark mass-pole exhibits itself as a real-p2 solution of
p2 +M2(p2) = 0. This is absent in the solutions of the quark DSE illustrated in Fig. 4, which
is a manifestation of conˇnement, as discussed in Sec. 2.3.
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Fig. 5. Illustration of the diffractive electroproduction of a vector meson: e−N → e−′Nρ

with the transition from photon to vector meson proceeding via a quark loop. The shaded
region represents [10] a Pomeron-exchange mechanism

where in this case the spectral density is

ρ(x) :=
1

2πi
lim
ε→0

[∆(−x− iε)−∆(−x+ iε)] = δ(m2 − x) , (14)

which is non-negative. This is a Lehmann representation: each scalar function
necessary to completely specify the Schwinger function has a spectral decomposi-
tion in which the spectral densities are non-negative. Only those functions whose
poles or branch points lie at timelike, real-k2 have a Lehmann representation.

The existence of a Lehmann representation for a dressed-particle propagator is
necessary if the construction of asymptotic ©inª and ©outª states for the associated
quanta is to proceed; i.e., it is necessary if these quanta are to propagate to a
©detectorª. In its absence there are no asymptotic states with the quantum numbers
of the ˇeld whose propagation characteristics are described by the Schwinger
function. Structurally, the nonexistence of a Lehmann representation for the
dressed-propagators of elementary ˇelds ensures the absence of pinch singularities
in loops, such as that illustrated in Fig. 5, and hence the absence of quark and
gluon production thresholds.

This mechanism can be generalised and applied to coloured bound states, such
as colour-antitriplet quark-quark composites (diquarks). In this case a study [3]
of the 4-point quark-quark scattering matrix shows that it does not have a spectral
decomposition with non-negative spectral densities and hence there are no diquark
bound states. The same argument that demonstrates this absence of diquarks in
the spectrum of SU(Nc = 3) also proves [4] that in SU(Nc = 2) the ©baryonsª,
which are necessarily diquarks in this theory, are degenerate with the mesons.

The infrared-enhanced dressed-gluon propagators illustrated in Fig. 2 do not
have a Lehmann representation. Using forms like this in the kernel of the quark
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Fig. 6. Homogeneous Bethe Å Salpeter equation for a quark-antiquark bound state: Γ is
the solution, the Bethe Å Salpeter amplitude, S is the dressed-quark propagator and K is
the dressed-quark-antiquark scattering kernel

DSE yields automatically a dressed-quark 2-point function that does not have a
Lehmann representation. In this sense conˇnement breeds conˇnement, without
ˇne-tuning.

2.4. Hadrons: Bound States. In QCD the observed hadrons are composites
of the elementary quanta: mesons of a quark and antiquark, and baryons of
three quarks. Their masses, electromagnetic charge radii and other properties can
be understood in terms of their substructure by studying covariant bound state
equations: the Bethe Å Salpeter equation (BSE) for mesons and the covariant
Fadde'ev equation for baryons.

As a two-body problem, the mesons have been studied most extensively.
Their internal structure is described by the Bethe Å Salpeter amplitude, which
is obtained as a solution of the homogeneous BSE, illustrated in Fig. 6. For a
pseudoscalar bound state the amplitude has the form

ΓH(k;P ) = THγ5

[
iEH(k;P ) + γ · PFH(k;P ) +

+ γ · k k · P GH(k;P ) + σµν kµPν HH(k;P )

]
, (15)

where, if the constituents have equal current-quark masses, the scalar functions
E, F , G, and H are even under k · P → −k · P . In Eq. (15), TH is a

avour matrix that determines the mesonic channel under consideration; e.g.,
TK

+

:= (1/2)
(
λ4 + iλ5

)
, with {λj , j = 1 . . . 8} the Gell-Mann matrices. The

important new element in the BSE is K , the fully-amputated, quark-antiquark
scattering kernel: by deˇnition it does not contain quark-antiquark to single
gauge-boson annihilation diagrams, such as would describe the leptonic decay of
the pion, nor diagrams that become disconnected by cutting one quark and one
antiquark line.

K has a skeleton expansion in terms of the elementary, dressed-particle
Schwinger functions; e.g., the dressed-quark and -gluon propagators. The ˇrst
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Fig. 7. First two sets of contributions to a systematic expansion of the quark-antiquark
scattering kernel. In this expansion, the propagators are dressed but the vertices are bare

two orders in one systematic expansion are depicted in Fig. 7. This particular
expansion [3], in concert with its analogue for the kernel in the quark DSE,
provides a means of constructing a kernel that, order-by-order in the number of
vertices, ensures the preservation of vector and axial-vector Ward Å Takahashi
identities. This is particularly important in QCD where the Goldstone boson
nature of the pion must be understood as a consequence of its internal structure.

To proceed with a study of meson properties, one chooses a truncation for
K . The homogeneous BSE is then fully speciˇed as a linear integral equation,
which is straightforward to solve, yielding the bound state mass and amplitude.
The ©ladderª truncation of K combined with the ©rainbowª truncation of the
quark DSE (Γµ → γµ in Fig. 3) is the simplest and most often used. The
expansion of Fig. 7 allows one to understand why this Ward Å Takahashi identity
preserving truncation is accurate for 
avour-nonsinglet pseudoscalar and vector
mesons: there are cancellations between the higher-order diagrams. And also
why it provides a poor approximation in the study of scalar mesons, where the
higher-order terms do not cancel, and for 
avour-singlet mesons where it omits
timelike gluon exchange diagrams.

3. A QCD MASS FORMULA

The chiral-limit axial-vector Ward Å Takahashi identity (AV-WTI)

−iPµΓH5µ(k;P ) = S−1(k+)γ5
TH

2
+ γ5

TH

2
S−1(k−) , (16)

where S := diag(Su, Sd, . . .), is the statement of chiral-current conservation in
massless QCD. It relates the divergence of the inhomogeneous axial-vector vertex,
ΓH5µ(k;P ), to a sum of dressed-quark propagators. The vertex is the solution of



NONPERTURBATIVE EFFECTS IN QCD 549

Fig. 8. DSE for the axial-vector vertex. The driving term is the bare vertex: iγ5γµ

the DSE depicted in Fig. 8, which involves the quark-antiquark scattering kernel,
K . It is therefore not surprising that in order to preserve this identity when
truncating the DSEs the choice of K and the vertex, Γµ, in the quark DSE, are
tied together. The divergence PµΓH5µ(k;P ) is a pseudoscalar and hence contains
information about pseudoscalar mesons; i.e., Goldstone modes.

3.1. Dynamical Chiral Symmetry Breaking and Goldstone's Theorem. In
the chiral-limit, the axial-vector vertex has the form [7]

ΓH5µ(k;P ) =
TH

2
γ5

[
γµFR(k;P ) + γ · kkµGR(k;P )− σµν kν HR(k;P )

]
+

+Γ̃H5µ(k;P ) + fH
Pµ

P 2
ΓH(k;P ) , (17)

where: FR, GR, HR, and Γ̃H5µ are regular as P 2 → 0; PµΓ̃H5µ(k;P ) ∼ O(P 2);
ΓH(k;P ) is the pseudoscalar Bethe Å Salpeter amplitude in Eq. (15); and the
residue of the pseudoscalar pole in the axial-vector vertex is fH , the leptonic
decay constant:

fHPµ = Z2

∫ Λ

q

1

2
tr
[(
TH
)t
γ5γµS(q+)ΓH(q;P )S(q−)

]
, (18)

with the trace over colour, Dirac and 
avour indices. This expression is exact:
the dependence of Z2 on the renormalisation point, regularisation mass-scale and
gauge parameter is just that necessary to ensure that the left-hand-side, fH , is
independent of all these things.

It now follows from the chiral-limit AV-WTI that

fHEH(k; 0) = B(k2) , (19)

FR(k; 0) + 2 fHFH(k; 0) = A(k2) , (20)

GR(k; 0) + 2 fHGH(k; 0) = 2A′(k2) , (21)

HR(k; 0) + 2 fHHH(k; 0) = 0 , (22)
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where A(k2) and B(k2) are the solutions of the quark DSE in the chiral limit.
As emphasised in Sec. 2.2, the appearance of a B(k2) 6= 0 solution of the quark
DSE in the chiral limit signals DCSB. It is an intrinsically nonperturbative ef-
fect: in perturbation theory B(k2) ∝ m̂, the renormalisation-point independent
current-quark mass, and hence vanishes in the chiral limit. Equations (17) and
(19)-(22) show that when chiral symmetry is dynamically broken: 1) the homo-
geneous, 
avour-nonsinglet, pseudoscalar BSE has a massless, P 2 = 0, solution;
2) the Bethe Å Salpeter amplitude for the massless bound state has a term pro-
portional to γ5 alone, with the momentum-dependence of EH(k; 0) completely
determined by that of the scalar part of the quark self energy, in addition to terms
proportional to other pseudoscalar Dirac structures, FH , GH , and HH , that are
nonzero in general; and 3) the axial-vector vertex, ΓH5µ(k;P ), is dominated by
the pseudoscalar bound state pole for P 2 ' 0. The converse is also true.

Hence, in the chiral limit, the pion is a massless composite of a quark and an
antiquark, each of which has an effective mass ME ∼ 450 MeV. With a dressed-
gluon propagator of the type depicted in Fig. 2, this occurs without ˇne-tuning.

3.2. Nonzero Quark Masses: A Mass Formula. When the current-quark
masses are nonzero, the AV-WTI is modiˇed:

−iPµΓH5µ(k;P ) = S−1(k+)γ5
TH

2
+ γ5

TH

2
S−1(k−)−

−M(µ) ΓH5 (k;P )− ΓH5 (k;P )M(µ) , (23)

where: M(µ) = diag(mµ
u,m

µ
d ,m

µ
s , . . .) is the current-quark mass matrix. In this

case both the axial-vector and the pseudoscalar vertices have a pseudoscalar pole:
i.e.,

ΓH5µ(k;P ) =
TH

2
γ5

[
γµF

H
R (k;P ) + γ · kkµGHR (k;P )− σµν kν HH

R (k;P )
]

+

+ Γ̃H5µ(k;P ) + fH
Pµ

P 2 +m2
H

ΓH(k;P ) , (24)

and

ΓH5 (k;P ) =
TH

2
γ5

[
iEHR (k;P ) + γ · P FHR (k;P ) + γ · k k · P GHR (k;P ) +

+ σµν kµPν HHR (k;P )
]

+ rH
1

P 2 +m2
H

ΓH(k;P ) , (25)

with: EHR , FHR , FHR , GHR , GHR , HH
R , HHR , and Γ̃H5µ regular as P 2 → −m2

H and

PµΓ̃H5µ(k;P ) ∼ O(P 2). The AV-WTI entails [7] that

fH m
2
H = rHMH , MH := trflavour

[
M(µ)

{
TH ,

(
TH
)t}]

, (26)
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where fH is given by Eq. (18), with massive quark propagators in this case, and
the residue of the pole in the pseudoscalar vertex is

irH = Z4

∫ Λ

q

1

2
tr
[(
TH
)t
γ5S(q+)ΓH(q;P )S(q−)

]
. (27)

The renormalisation constant Z4 on the right-hand side depends on the gauge
parameter, the regularisation mass-scale and the renormalisation point. This de-
pendence is exactly that required to ensure that: 1) rH is ˇnite in the limit
Λ → ∞; 2) rH is gauge-parameter independent; and 3) the right-hand side of
Eq. (26) is renormalisation point independent. This is obvious at one-loop order,
especially in Landau-gauge where Z2 ≡ 1 and hence Z4 = Zm.

Equation (26) is a mass formula for 
avour-octet pseudoscalar mesons that
is valid independent of the magnitude of the current-quark masses of meson's
constituents. For small current-quark masses, using Eqs. (15) and (19)Å(22),
Eq. (27) yields

r0
H = − 1

f0
H

〈q̄q〉0µ , −〈q̄q〉0µ := Z4(µ2,Λ2)Nc

∫ Λ

q

trDirac [Sm̂=0(q)] , (28)

where the superscript ©0ª denotes that the quantity is evaluated in the chiral limit
and 〈q̄q〉0µ, as deˇned here, is the chiral limit vacuum quark condensate, which is
renormalisation-point dependent but independent of the gauge parameter and the
regularisation mass-scale. Hence Eq. (25) is the statement that in the chiral limit
the residue of the bound state pole in the 
avour-nonsinglet pseudoscalar vertex
is (−〈q̄q〉0µ)/f0

H .
Now one obtains immediately from Eqs. (26) and (28)

f2
πm

2
π = − [mµ

u +mµ
d ] 〈q̄q〉0µ + O

(
m̂2
q

)
, (29)

f2
K+m

2
K+ = − [mµ

u +mµ
s ] 〈q̄q〉0µ + O

(
m̂2
q

)
, (30)

which exemplify what is commonly known as the Gell-MannÄOakesÄRenner re-
lation. The primary result, Eq. (26), is valid independent of the magnitude of m̂q ,
and can be rewritten in the form

f2
Hm

2
H = −〈q̄q〉Hµ MH , (31)

where I have introduced the notation

−〈q̄q〉Hµ := fH rH = fHZ4

∫ Λ

q

1

2
tr
[(
TH
)t
γ5S(q+)ΓH(q;P )S(q−)

]
, (32)

which deˇnes an in-meson condensate. This emphasises that, for nonzero current-
quark masses, Eq. (26) does not involve a difference of vacuum massive-quark
condensates; a phenomenological assumption often employed.
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As elucidated elsewhere [11], Eq. (26) has another important corollary: it
predicts that the mass of a heavy pseudoscalar meson rises linearly with the
current-quark mass of its heavy constituent(s). Model calculations [8] show that
this linear evolution is dominant at ≈ 2m̂s, in agreement with experiment where
the mass of the K , D, and B mesons lie precisely on the same straight line.

In Eq. (26) one therefore has a single mass formula, exact in QCD, that
provides a uniˇed understanding of light- and heavy-meson masses.

4. AN ILLUSTRATIVE MODEL

I have already made use of a model [7] in illustrating some of the robust
results of DSE studies. To further elucidate the method I will describe that model
in more detail. For the kernel of the quark DSE it employs the analogue of the
lowest-order BSE kernel in Fig. 7:

Z1

∫ Λ

q

g2Dµν(p− q)λ
a

2
γµS(q)Γaν(q, p)→

→
∫ Λ

q

G((p− q)2)Dfree
µν (p− q)λ

a

2
γµS(q)

λa

2
γν . (33)

This is the ©rainbowª approximation, in which the speciˇcation of the model is
complete once a form is chosen for the ©effective couplingª G(k2).

A choice for G(k2) can be motivated by observing that at large-Q2 := (p−q)2

in an asymptotically free theory the quark-antiquark scattering kernel satisˇes

g2(µ2)Dµν(p− q)
[
Γaµ(p+, q+)S (q+)

]
×
[
S(q−) Γaν(q−, p−)

]
=

= 4π α(Q2)Dfree
µν (p− q)

[
λa

2
γµ S

free(q+)

]
×
[
Sfree(q−)

λa

2
γν

]
, (34)

where P is the total momentum of the quark-antiquark pair, p+ := p+ ηPP and
p− := p − (1 − ηP )P with 0 ≤ η ≤ 1. Choosing a truncation of K in which
this right-hand side is identiˇed with the lowest order contribution in Fig. 7 then
consistency with the AV-WTI requires

G(Q2) := 4π α(Q2) . (35)

Thus the form of G(Q2) at large-Q2 is ˇxed by that of the running coupling
constant. This Ansatz is often described as the ©Abelian approximationª because
the left- and right-hand sides are equal in QED. In QCD, equality between the
two sides of Eq. (35) cannot be obtained easily by a selective resummation of
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diagrams. As reviewed in Ref.1, Eqs. (5.1) to (5.8), it can only be achieved
by enforcing equality between the renormalisation constants for the ghost-gluon
vertex and ghost wave function: Z̃1 = Z̃3.

The explicit form of the Ansatz employed in Ref.7 is

G(k2)

k2
= 8π4Dδ4(k) +

4π2

ω6
Dk2e−k

2/ω2

+

+4π
γmπ

1

2
ln

[
τ +

(
1 + k2/Λ2

QCD

)2
] F(k2) , (36)

with F(k2) = [1 − exp(−k2/[4m2
t ])]/k

2 and τ = e2 − 1,Nf = 4 and Λ
Nf=4
QCD =

0.234 GeV.
The qualitative features of Eq. (36) are clear. The ˇrst term is an integrable

infrared singularity [12] and the second is a ˇnite-width approximation to δ4(k),
normalised such that it has the same

∫
d4k as the ˇrst term. In this way the

infrared singularity is split into the sum of a zero-width and a ˇnite-width piece.
The last term in Eq. (36) is proportional to α(k2)/k2 at large spacelike-k2 and has
no singularity on the real-k2 axis. Gluon conˇnement is manifest since G(k2)/k2

doesn't have a Lehmann representation.

4.1. Solving the Quark DSE. There are ostensibly three parameters in Eq. (36):
D, ω and mt. However, in the numerical studies the values ω =
= 0.3 GeV(= 1/[.66 fm]) and mt = 0.5 GeV(= 1/[.39 fm]) were ˇxed, and
only D and the renormalised u/d- and s-current-quark masses varied in order to
satisfy the goal of a good description of low-energy π- and K-meson properties.
This was achieved with

D = 0.781 GeV2 , m
µ
u/d = 3.74 MeV , mµ

s = 82.5 MeV , (37)

at µ ≈ 20 GeV, which is large enough to be in the perturbative domain. The
effective coupling obtained is depicted in Fig. 9.

Using Eqs. (33), (36), (37), and the renormalisation boundary condition

S(p)−1
∣∣
p2=µ2 = iγ · p+mµ , (38)

the quark DSE, Eq. (7), is completely speciˇed and can be solved by iteration.
The chiral limit in QCD is unambiguously deˇned by m̂ = 0. In this case

there is no perturbative contribution to the scalar piece of the quark self energy,
B(p2, µ2): in fact, there is no scalar, mass-like divergence in the perturbative
calculation of the self energy. It follows that Z2(µ2,Λ2)mbm(Λ2) = 0 , ∀Λ and,
from Eq. (38), that there is no subtraction in the equation for B(p2, µ2). In terms
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Fig. 9. Ansatz for G(k2)/k2 employed in Ref.7. ©B&Pª labels a solution [6] of the gluon
DSE, which is presented for comparison, as is the one-loop running coupling in QCD

of the renormalised current-quark mass the existence of DCSB means that, in the
chiral limit, M(µ2) ∼ O(1/µ2), up to lnµ2-corrections.∗

Figure 10 depicts the renormalised dressed-quark mass function, M(p2),
obtained by solving the quark DSE using the parameters in Eq. (37), and in the
chiral limit. It is a complement to Fig. 4 because it highlights the qualitative
difference between the behaviour of M(p2) in the chiral limit and in the presence
of explicit chiral symmetry breaking. In the latter case

M(p2)
large−p2

=
m̂(

1
2

ln
[

p2

Λ2
QCD

])γm {1 + two loop} , γm =
12

33− 2Nf
. (39)

However, in the chiral limit the ultraviolet behaviour is given by

M(p2)
large−p2

=
2π2γm

3

(
−〈q̄q〉0

)
p2
(

1

2
ln
[

p2

Λ2
QCD

])1−γm , (40)

where 〈q̄q〉0 is the renormalisation-point-independent vacuum quark condensate.

∗This is a model-independent statement; i.e., it is true in any study that preserves the one-loop
renormalisation group behaviour of QCD.
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Fig. 10. The renormalised dressed-quark mass function, M(p2), obtained in solving the
quark DSE using the parameters in Eq. (37): u/d-quark (solid line); s-quark (long-dashed
line); and chiral limit (dashed line). The renormalisation point is µ ≈ 20 GeV. The
intersection of the line M2(p2) = p2 (dotted line) with each curve deˇnes the Euclidean
constituent-quark mass, ME

Analysing the chiral limit solution yields

−〈q̄q〉0 = (0.227 GeV)3 , (41)

which is a reliable means of determining 〈q̄q〉0 because corrections to Eq. (40)
are suppressed by powers of Λ2

QCD/µ
2.

Equation (28) deˇnes the renormalisation-point-dependent vacuum quark con-
densate

−〈q̄q〉0µ
∣∣
µ=19 GeV

:=

=

(
lim

Λ→∞
Z4(µ,Λ)Nc

∫ Λ

q

trDirac [Sm̂=0(q)]

)∣∣∣∣∣
µ=19 GeV

= (0.275 GeV)3 ,

(42)
the calculated result. It is straightforward to establish explicitly that mµ 〈q̄q〉0µ =
constant, independent of µ, and hence

mµ 〈q̄q〉0µ := m̂ 〈q̄q〉0 , (43)

which unambiguously deˇnes the renormalisation-point-independent current-quark
masses. From this and Eqs. (37), (41) and (42) one obtains the values of these
masses appropriate to this model

m̂u/d = 6.60 MeV , m̂s = 147 MeV . (44)



556 ROBERTS C.D.

Using the one-loop evolution in Eq. (39) these values yield mµ
u/d = 3.2 MeV

and mµ
s = 72 MeV, which are within ∼ 10% of the actual values in Eq. (37).

This indicates that higher-loop corrections to the one-loop formulae, which are
present in the solution of the integral equation as made evident by A(p2, µ2) 6≡ 1
in Landau gauge, provide contributions of < 10% at p2 = µ2. The higher-loop
contributions decrease with increasing p2.

From the renormalisation-point-invariant product in Eq. (43) one obtains

−〈q̄q〉0µ
∣∣
µ=1 GeV

:= (ln [1/ΛQCD])
γm 〈q̄q〉0 = (0.241 GeV)3 . (45)

This result can be compared directly with the value of the quark condensate
employed in contemporary phenomenological studies: [13] (0.236±0.008 GeV)3.
Increasing ω → 1.5ω in G(k2) raises the calculated value in Eq. (45) by ∼ 10%,
a weak sensitivity.

After this discussion of the vacuum quark condensate it is straightforward to
determine the accuracy of Eqs. (29) and (30). Using experimental values on the
left-hand side, one ˇnds:

(0.0924×0.1385)2 = (0.113 GeV)4 cf. (0.111 GeV)4 = 2×0.0055×0.243 (46)

(0.113× 0.495)2 = (0.237 GeV)4 cf. (0.206 GeV)4 = (0.0055 + 0.13)× 0.243 ,
(47)

which indicates that O(m̂2)-corrections begin to become important at current-
quark masses near that of the s-quark, as demonstrated further in Ref.8.

4.2. Solving the Pseudoscalar Meson BSE. The model quark DSE de-
scribed above employs the rainbow truncation. Following Fig. 7 the consistent
Ward Å Takahashi identity preserving truncation of the quark-antiquark scatter-
ing kernel is the ladder approximation:

Krs
tu(q, k;P ) = −G((k − q)2)Dfree

µν (k − q)
(
γµ
λa

2

)
tr

(
γν
λa

2

)
su

, (48)

in which case the explicit form of Fig. 6 is

ΓH(k;P ) +

∫ Λ

q

G((k − q)2)Dfree
µν (k − q)λ

a

2
γµS(q+)ΓH(q;P )S(q−)

λa

2
γν = 0 .

(49)
Having an Ansatz for G(k2), S(q) in Eq. (49) follows by solving the quark DSE.
The kernel of the BSE is then completely speciˇed and solving the equation for
ΓH(k;P ) and the bound state mass is a straightforward numerical problem. Then,
with Dµν(k), S(p) and ΓH(k;P ), the calculation of other observables such as:
the leptonic decay constant, fH ; meson charge radius, rH ; and electromagnetic
form factor, FH(Q2); etc., is possible.
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The general form of the solution of Eq. (49) is given in Eq. (15), where
the scalar functions depend on the variables k2 and k · P and are labelled by
the eigenvalue P 2. From this it is clear that the integrand in Eq. (49) depends
on the scalars: k2, k · q, q2, q · P , and P 2, which takes a ˇxed-value at the
solution; i.e., at each value of P 2 the kernel is a function of four, independent
variables. Solving Eq. (49) can therefore require large-scale computing resources,
especially since there are four, independent scalar functions in the general form
of the solution.

Two different solution techniques can be employed. In one procedure, which
I will label: (A), the scalar functions are treated directly as dependent on two,
independent variables: E(k2, k · P ;P 2), etc. This requires straightforward, mul-
tidimensional integration at every iteration. Storing the multidimensional kernel
requires a large amount of computer memory but the iteration proceeds quickly.

An adjunct, which I will label: (B), employs a Chebyshev decomposition
procedure. It is implemented by writing

E(k2, k · P ;P 2) ≈
Nmax∑
i=0

iE(k2;P 2)Ui(cos β) , (50)

with similar expansions for F , Ĝ := k · P G and H , where k ·P := cosβ
√
k2P 2

and {Ui(x); i = 0, . . . ,∞} are Chebyshev polynomials of the second kind, or-
thonormalised according to:

2

π

∫ 1

−1

dx
√

1− x2 Ui(x)Uj(x) = δij . (51)

This procedure requires a large amount of time to set up the kernel but does not
require large amounts of computer memory.

In Tables 1 and 2 I list values of the dimensionless ratio

RH := −
〈q̄q〉HµMH

f2
Hm

2
H

. (52)

A value of RH = 1 means that Eq. (26) is satisˇed and hence so is the AV-WTI.∗

Looking at the tabulated values of RH it is clear that the scalar function H is not
quantitatively important, with the AV-WTI being satisˇed numerically with the
retention of E, F and G in the pseudoscalar meson Bethe Å Salpeter amplitude.
The values of RH , and the other tabulated quantities, highlight the importance

∗It illustrates that the pseudoscalar-meson pole in the axial-vector vertex is related to the
pseudoscalar-meson pole in the pseudoscalar vertex in the manner elucidated above. A ˇnite value in
the chiral limit emphasises that m2

H ∝MH asMH → 0.
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Table 1. Calculated values of the properties of light, pseudoscalar mesons composed of
a quark and antiquark of equal-mass. The mass (mexp

π = 0.1385) and decay constant
(fexp
π = 0.0924) are in GeV,RH is dimensionless. With the exception of the calculations

that retain only the zeroth Chebyshev moment, labelled by ©U0 onlyª, the results are
independent of the momentum partitioning parameter, ηP , in Eq. (34).

All amplitudes π chiral limit ss̄
mπ fπ RH m0 f0 RH mss̄ fss̄ RH

Method (A) 0.1385 0.0924 1.01 0.0 0.0898 1.00 0.685 0.129 1.00
U0 only 0.136 0.0999 0.95 0.0 0.0972 0.94 0.675 0.137 0.95
U0 and U1 0.1385 0.0925 1.00 0.0 0.0898 1.00 0.685 0.129 1.00
E only
Method (A) 0.105 0.0667 1.82 0.0 0.0649 1.81 0.512 0.092 1.68
U0 only 0.105 0.0667 1.82 0.0 0.0649 1.81 0.513 0.092 1.69
E, F
Method (A) 0.136 0.0992 0.95 0.0 0.0965 0.95 0.677 0.137 0.95
U0 only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.95

E, F , Ĝ
Method (A) 0.140 0.0917 1.01 0.0 0.0891 1.00 0.688 0.128 1.01
U0 only 0.136 0.0992 0.95 0.0 0.0965 0.95 0.678 0.138 0.95
U0 and U1 0.140 0.0917 1.01 0.0 0.0891 1.00 0.689 0.128 1.01

of F and Ĝ: F is the most important of these functions but Ĝ nevertheless
provides a signiˇcant contribution, particularly for bound states of unequal-mass
constituents.

From Tables 1 and 2, and Eqs. (31), (32), (37), and (45), one calculates

−〈q̄q〉πµ=1 GeV −〈q̄q〉Kµ=1 GeV −〈q̄q〉ss̄µ=1 GeV

(0.245 GeV)3 (0.284 GeV)3 (0.317 GeV)3
(53)

showing that, for light pseudoscalars, the ©in-meson condensateª I have deˇned
increases with increasing bound state mass; as does the leptonic decay constant,
fH .∗ Both of these trends are modiˇed as one moves into the heavy-quark
domain: −〈q̄q〉Hµ → const. and fH → 0 as MH →∞.

Figure 11 depicts the scalar functions in the Bethe Å Salpeter amplitude
obtained as solutions of Eq. (49), focusing on the zeroth Chebyshev moment of
each function, which is obtained via

0EH(k2) :=
2

π

∫ π

0

dβ sin2 β U0(cosβ)EH(k2, k · P ;P 2) , (54)

∗(−〈q̄q〉Hµ )/fH is the residue of the bound state pole in the pseudoscalar vertex, just as fH
is the residue of the bound state pole in the axial-vector vertex. As expected, 〈q̄q〉πµ=1 GeV ≈
〈q̄q〉0µ

∣∣
µ=1 GeV

.
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Table 2. Calculated properties of the K meson for various values of the momentum
partitioning parameter, ηP ; ©−ª means that no bound state solution exists in this
case. The mass (mexp

K = 0.496) and decay constant (fexp
K = 0.113) are in GeV, RK is

dimensionless

All amplitudes ηP = 0.50 ηP = 0.25 ηP = 0.00
mK fK RK mK fK RK mK fK RK

Method (A) 0.497 0.109 1.01 0.497 0.109 1.01 0.497 0.109 1.01
U0 only 0.469 0.117 0.96 0.482 0.117 0.95 0.475 0.113 1.02
U0 and U1 0.500 0.111 1.00 0.497 0.109 1.01 0.498 0.110 1.00
U0, U1 and U2 0.497 0.109 1.01 0.497 0.109 1.01 0.496 0.109 1.01
E only
Method (A) 0.430 0.079 1.55 0.430 0.079 1.55 0.429 0.076 1.55
U0 only 0.380 0.077 1.54 0.401 0.076 1.51 0.415 0.073 1.55
U0 and U1 0.439 0.089 1.52 0.430 0.078 1.55 0.431 0.076 1.57
U0, U1 and U2 0.430 0.078 1.55 0.430 0.078 1.55 0.427 0.076 1.55
E, F
Method (A) 0.587 0.17 0.79 0.557 0.14 0.86 0.533 0.11 0.94
U0 only 0.505 0.12 0.82 0.518 0.11 0.86 0.512 0.11 0.96
U0 and U1 - - - 0.556 0.14 0.86 0.537 0.12 0.94
U0, U1 and U2 0.583 0.16 0.79 0.557 0.14 0.86 0.532 0.12 0.93

E, F , Ĝ
Method (A) 0.500 0.108 1.01 0.500 0.108 1.01 0.500 0.108 1.01
U0 only 0.471 0.116 0.96 0.484 0.116 0.95 0.477 0.112 1.02
U0 and U1 0.504 0.110 1.00 0.500 0.108 1.01 0.502 0.109 1.00
U0, U1 and U2 0.500 0.108 1.01 0.500 0.108 1.01 0.499 0.108 1.01

and similarly for F , G [Ĝ for the K meson] and H . I note that: the momentum-
space width of 0EH(k2) increases as the current-quark mass of the bound state
constituents increases; 0FH(k2 = 0) decreases with increasing current-quark mass
but that 0FH(k2) is still larger at k2 > 0.5 GeV2 for bound states of higher mass;
0GH(k2) [0ĜK(k2)] behaves similarly; and the same is true for HH(k;P ) but it
is uniformly small in magnitude thereby explaining its quantitative insigniˇcance.

Figure 12 depicts the large-k2 behaviour of the scalar functions in the
pseudoscalar Bethe Å Salpeter amplitude. The momentum dependence of 0EH(k2)
at large-k2 is identical to that of the chiral-limit quark mass function, M(p2) in
Eq. (40), [14] and characterises the form of the quark-quark interaction in the
ultraviolet. Figure 12 elucidates that this is also true of 0FH(k2), k2 0GH(k2)
[k2 0ĜK(k2) for the K meson] and k2 0HH(k2). Each of these functions reaches
its ultraviolet limit by k2 ' 10 GeV2, which is very-much-less-than the renormal-
isation point, µ2 = 361 GeV2. As I will illustrate below, this result has important
implications for the behaviour of pseudoscalar meson form factors.

A direct veriˇcation of Eqs. (19)Å(22) is possible in this concrete model.
Consider the inhomogeneous axial-vector vertex equation, Fig. 8, in the ladder
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Fig. 11. The zeroth Chebyshev moment of the scalar functions in the mesons' Bethe Å
Salpeter amplitude: chiral limit (dotted line); π meson (solid line); K meson (long-dashed
line); and ˇctitious, ss̄ bound state (dashed line). For ease of comparison the amplitudes
are all rescaled so that 0EH(k2 = 0) = 1

truncation:

ΓH5µ(k;P ) = Z2γ5γµ
TH

2
−

−
∫ Λ

q

G((k − q)2)Dfree
µν (k − q)λ

a

2
γµS(q+)ΓH5µ(q;P )S(q−)

λa

2
γν . (55)

From the homogeneous BSE one already has the equations satisˇed by EH(k; 0),
FH(k; 0), GH(k; 0), and HH(k; 0). To proceed, one substitutes Eq. (17) for
ΓH5µ(k;P ) in Eq. (55). Using the coupled equations for EH(k; 0), etc., one can
identify and eliminate each of the pole terms associated with the pseudoscalar
bound state. [That the homogeneous BSE is linear in the Bethe Å Salpeter
amplitude allows this.] That yields a system of coupled equations for FR(k; 0),
GR(k; 0), and HR(k; 0), which can be solved without complication. [The factor
of Z2 automatically ensures that FR(k2 = µ2;P = 0) = 1.] The realisation of
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Fig. 12. Asymptotic behaviour of the 0th Chebyshev moments of the functions in the
π-meson Bethe Å Salpeter amplitude: fπ

0Eπ(k2) (GeV, solid line); fπ
0Fπ(k2) (dimen-

sionless, long-dashed line); k2 fπ
0Gπ(k2) (dimensionless, dashed line); and k2 fπ

0Hπ(k2)
(GeV, dot-dashed line). The k2 dependence is identical to that of the chiral-limit quark
mass function, M(p2), Eq. (40). For other pseudoscalar mesons the momentum depen-
dence of these functions is qualitatively the same, although the normalising magnitude
differs

Fig. 13. An illustration of the realisation of the identities Eqs. (19) and (20), which are a
necessary consequence of preserving the axial vector Ward Å Takahashi identity
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the ˇrst two identities, Eqs. (19) and (20), is illustrated in Fig. 13. The remaining
two identities, Eqs. (21) and (22), are realised in a similar fashion.

5. ADDITIONAL PHENOMENOLOGICAL APPLICATIONS

In the model illustration of Sec. 4 an algebraic Ansatz was developed for
the dressed-gluon propagator based on the qualitative behaviour of solutions of
the gluon DSE. From this basic beginning, I illustrated how one can proceed
to calculate hadronic observables. A number of qualitatively signiˇcant features
emerged, among them DCSB and conˇnement, all of which are related to the
strong momentum dependence of the quark mass function, Eq. (8), in the infrared.

That last observation suggests an alternative phenomenological approach:
develop an algebraic Ansatz for the dressed-quark propagator. This is not as
fundamental as the approach in Sec. 4 because many, apparently distinct features
of the dressed-quark propagator are encoded in a few parameters of the Ansatz
for the dressed-gluon propagator; modelling the dressed-quark propagator directly
requires additional parameters to describe correlated effects. However, it has a
signiˇcant merit: with an algebraic as opposed to a numerical representation of
the dressed-quark propagator it is possible to study scattering observables more
quickly and easily. The approach can yield quantitatively reliable results provided
the Ansatz exhibits those essential qualitative features manifest in a direct solu-
tion of the quark DSE using a realistic Ansatz for the dressed-gluon propagator.
Further, in allowing a rapid analysis of a broad range of observable phenomena,
it provides a means of exploring the hypothesis that the bulk of hadronic phe-
nomena are simply a manifestation of the nonperturbative, momentum-dependent
dressing of the elementary Schwinger functions in QCD.

A simple and widely used model is [15]

σ̄S(ξ) = 2m̄F(2(ξ + m̄2)) + F(b1 ξ)F(b3 ξ) (b0 + b2F(ε ξ)) , (56)

σ̄V (ξ) =
2(ξ + m̄2)− 1 + e−2(ξ+m̄2)

2(ξ + m̄2)2
, (57)

with σ̄S(ξ) := λσS(p2), σ̄V (ξ) := λ2 σV (p2), where p2 = λ2 ξ, λ is a mass-
scale, and F(y) := [1 − exp(−y)]/y. This ˇve-parameter form, where m̄ is
the current-quark mass, combines the effects of conˇnement ∗ and DCSB with

∗The representation of S(p) as an entire function is motivated by the algebraic solutions of
Eq. (7) in Refs.16,17.
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free-particle behaviour at large, spacelike p2∗. Applying Eq. (28) in this case:

−〈q̄q〉0µ := lim
M2→∞

Z4(µ2,M2)
3

4π2

∫ M2

0

ds s σ0
S(s) , (58)

= λ3 ln
µ2

Λ2
QCD

3

4π2

b0

b1 b3
, (59)

and the pion mass is given by

m2
π f

2
π = 2m 〈q̄q〉01 GeV . (60)

In Sec.4.1 we saw that when all the components of Γπ are retained, Eq. (60)
yields an approximation to the pion mass found in a solution of the Bethe Å
Salpeter equation that is accurate to 2%.

The model has been used for both u/d- and s-quark propagators with the

difference between 
avours manifest in bs0 6= b
u/d
0 , bs2 6= b

u/d
2 and ms 6= mu/d:

the ˇrst allows for a difference between the K and π in-meson condensates
and the second for ME

s 6= ME
u/d, and all three are phenomenological constraints

observed in the previous section. As emphasised above, in a solution of the quark
DSE using an Ansatz for the dressed-gluon propagator, the parameters in Eq. (56)
are correlated and one can anticipate this crudely when ˇtting them.

5.1. Pion Electromagnetic Form Factor. The renormalised impulse approx-
imation to the electromagnetic pion form factor is [15]

(p1 + p2)µ Fπ(q2) := Λµ(p1, p2) =

=
2Nc
N2
π

∫
d4k

(2π)4
trD[Ḡπ(k;−p2)S(k++)×

× iΓγµ(k++, k+−)S(k+−)Gπ(k − q/2; p1)S(k−−)], (61)

kαβ := k+αp1/2 + βq/2 and p2 := p1 + q, illustrated in Fig. 14. Here Gπ(k;P )
is the pion Bethe Å Salpeter amplitude normalised such that E(0; 0) = B(0)
in the chiral limit, in which case the consistent canonical normalisation of the

∗At large-p2: σV (p2) ∼ 1/p2 and σS(p2) ∼ m/p2. Therefore the parametrisation does
not incorporate the additional ln p2-suppression characteristic of QCD: it corresponds to γm → 1
in Eq. (40). It is a useful but not necessary simpliˇcation, which introduces model artefacts that
are easily identiˇed and accounted for. ε = 0.01 is introduced only to decouple the large- and
intermediate-p2 domains.
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Fig. 14. Impulse approximation to Fπ(q2): S labels the dressed-quark propagator; Γπ , the
pion Bethe Å Salpeter amplitudes; and Γµ, the dressed-quark-photon vertex

Bethe Å Salpeter amplitude is

2δijN2
π Pµ =

∫ Λ

q

{
tr

[
Ḡiπ(q;−P )

∂S(q+)

∂Pµ
Gjπ(q;P )S(q−)

]
+ (62)

+ tr

[
Ḡiπ(q;−P )S(q+)Gjπ(q;P )

∂S(q−)

∂Pµ

]}
,

where Ḡπ(q;−P )t := C−1 Gπ(−q;−P )C with C = γ2γ4, the charge conjugation
matrix, and Xt denotes the matrix transpose of X .

Given S and Eqs. (19)-(22), what form does the Bethe Å Salpeter amplitude
take?

In Sec. 4.2 we saw that the zeroth Chebyshev moments of the pion Bethe Å
Salpeter amplitude provided results for mπ and fπ that were indistinguishable
from those obtained with the full solution. Also Hπ ' 0 and hence it was
quantitatively unimportant in the calculation of mπ and fπ. These results are not
speciˇc to that particular model; in the latter case because the right-hand side of
Eq. (22) is zero and hence in general there is no ©seedª term for Hπ. We also
saw that at large-k2, independent of assumptions about the form of K , one has

E0
π(k2;P 2) ∝ −〈q̄q〉0k2

α(k2)

k2
, (63)

and that the same is true of F 0
π (k2;P 2), k2G0

π(k2;P 2), and k2H0
π(k2;P 2). This

makes manifest the ©hard-gluonª contribution to Fπ(q2) in Eq. (61). In addition,
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in an asymptotically free theory, one has [7]

k2G0
π(k2;P 2) = 2F 0

π(k2;P 2) , k2
∼> M2

UV , (64)

with MUV := 10 ΛQCD.
These observations, combined with Eqs. (19)Ä(22), motivate a model for Gπ :

Eπ(k;P ) = B0(k2) (65)

with Fπ(k;P ) = Eπ(k;P )/(110 fπ), Gπ(k;P ) = 2Fπ(k; p)/[k2 + M2
UV], and

Hπ(k;P ) ≡ 0. The relative magnitude of these functions at large k2 is chosen to
reproduce the numerical results in Fig. 12.

The ˇnal element in Eq. (61) is Γγµ(p1, p2), the renormalised, dressed-quark-
photon vertex, and it is because this vertex must satisfy the vector Ward Å Ta-
kahashi identity:

(p1 − p2)µ iΓ
γ
µ(p1, p2) = S−1(p1)− S−1(p2) , (66)

that (p1− p2)µ Λµ(p1, p2) = 0 and no renormalisation constants appear explicitly
in Eq. (61). Γγµ(p1, p2) has been much studied [5] and, although its exact form
remains unknown, its robust qualitative features have been elucidated so that a
phenomenologically efˇcacious Ansatz has emerged [18]

iΓγµ(p, q) := iΣA(p2, q2) γµ +

+ (p+ q)µ

[
1

2
iγ · (p+ q) ∆A(p2, q2) + ∆B(p2, q2)

]
, (67)

Σf (p2, q2) :=
1

2
[f(p2) + f(q2)] , ∆f (p2, q2) :=

f(p2)− f(q2)

p2 − q2
, (68)

where f = A,B. A feature of Eq. (67) is that the vertex is completely determined
by the renormalised dressed-quark propagator. In Landau gauge the quantitative
effect of modiˇcations, such as that canvassed in Ref.19, is small and can be
compensated for by small changes in the parameters that characterise a given
model study [20].

The model parameters were determined [15] by optimising a least-squares ˇt
to fπ, rπ and 〈q̄q〉01 GeV, and a selection of pion form factor data on the domain
q2 ∈ [0, 4] GeV2. The procedure does not yield a unique parameter set with, for
example, the two sets:

λ(GeV) m̄ b0 b1 b2 b3
A 0.473 0.0127 0.329 1.51 0.429 0.430 ,
B 0.484 0.0125 0.314 1.63 0.445 0.405 ,

(69)
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Table 3. Comparison between the calculated values of low-energy pion observables
and experiment or, in the case of (−〈q̄q〉01 GeV)1/3 and mu/d, the values estimated
using other theoretical tools. Each set in Eq. ( 69) yields the same calculated values.
ΛQCD = 0.234 GeV

Calculated Experiment

fπ 0.092 GeV 0.092

(−〈q̄q〉01 GeV)1/3 0.236 0.236 ± 0.008 [13]

mu/d 0.006 0.008 ± 0.004 [21]

mπ 0.1387 0.1385

rπ 0.55 fm 0.663 ± 0.006 [22]

rπfπ 0.25 (dimensionless) 0.310 ± 0.003

providing equally good ˇts, as illustrated in Table 3. There is a domain of
parameter sets that satisfy the ˇtting criterion and they are distinguished only by
the calculated magnitude of the pion form factor at large-q2. The two sets in
Eq. (37) delimit reasonable boundaries and illustrate the model dependence in the
result. In the chiral limit: f0

π = 0.090 GeV.

The quark propagator obtained with these parameter values is pointwise little
different to that obtained in Ref.23. One gauge of this is the value of the Euclidean
constituent quark mass. Here ME

u/d = 0.32 GeV, whereas ME
u/d = 0.30 GeV in

Ref.23. It is also qualitatively similar to the numerical solution described in
Sec. 4.1 [7], where ME

u/d = 0.56 GeV. Indeed, the results are not sensitive to
details of the ˇtting function: ˇtting with different conˇning, algebraic forms
yields S(p) that is pointwise little changed, and the same results for observables.
The earlier parametrisation [23] has been applied more widely, as reviewed in
Ref.24, and Table 4 summarises the results.

In the calculations fπrπ is 20% too small. This discrepancy cannot be reduced
in impulse approximation because the nonanalytic contributions to the dressed-
quark-photon vertex associated with π-π rescattering and the tail of the ρ-meson
resonance are ignored [29]. It can only be eliminated if these contributions
are included. This identiˇes a constraint on realistic, impulse approximation
calculations: they should not reproduce the experimental value of fπrπ to better
than ∼ 20%, otherwise the model employed has unphysical degrees-of-freedom.

The pion form factor calculated [15] using Eqs. (56) and (57) with (69)
is compared with available data in Figs. 15 and 16. It is also compared with
the result obtained in Ref.23, wherein the calculation is identical except that the
pseudovector components of the pion were neglected. Figure 15 shows a small,
systematic discrepancy between the calculations and the data at low q2, which is
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Table 4. Summary of results obtained using the parametrisation of S(p) introduced
in Ref.23, which differs little from that speciˇed by Eqs. (56) and (57). aIJ are π-π
scattering lengths, whose experimental values are discussed in Ref.28, and F 3π(4m2

π)
is the value of the γπ → ππ transition form factor at the softest point kinematically
accessible. The citations for the calculated results specify the article in which the
annotated study is described. The ©experimentalª values of the current-quark masses
and the quark condensate are estimates made using other theoretical tools: see Table 3

Calculated ©Experimentª

fπ 0.0924 GeV 0.0924 ± 0.001

fK 0.113 0.113 ± 0.001

mπ 0.139 0.138

mK 0.494 0.494

mave
1 GeV2 0.0045 0.008

ms
1 GeV2 0.113 0.1 ∼ 0.3

−〈q̄q〉
1
3

1 GeV2 0.247 0.236± 0.008

rπ± 0.55 fm 0.663 ± 0.006

rK± 0.49 [25] 0.583 ± 0.041

r2
K0 -0.020 fm2 -0.054 ± 0.026

gπ0γγ 0.50 [23] (dimensionless) 0.504 ± 0.019

F 3π(4m2
π) 1.04 [26] 1 (Anomaly)

a0
0 0.19 [27] 0.26 ± 0.05

a2
0 -0.054 -0.028 ± 0.012

2a0
0 − 5a2

0 0.65 0.66 ± 0.12

a1
1 0.038 0.038 ± 0.002

a0
2 0.0017 0.0017 ± 0.0003

a2
2 -0.00029

fK/fπ 1.22 1.22 ± 0.01

rK±/rπ± 0.87 0.88 ± 0.06

due to the underestimate of rπ in impulse approximation∗. The results obtained
with or without the pseudovector components of the pion Bethe Å Salpeter ampli-
tude are quantitatively the same, which indicates that the pseudoscalar component,
Eπ, is dominant in this domain.

∗Just as in the present calculation, fπrπ = 0.25 in Ref.23. However, the mass-scale is ˇxed
so that fπ = 0.084, which is why this result appears to agree better with the data at small-q2: rπ is
larger.
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Fig. 15. Calculated pion form factor compared with data at small q2. The data are
from Refs.22 (crosses) and 30 (circles). The solid line is the result obtained when the
pseudovector components of the pion Bethe Å Salpeter amplitude are included; the dashed-
line, when they are neglected [23]. On the scale of this ˇgure, both parameter sets in
Eq. (69) yield the same calculated result

The increasing uncertainty in the experimental data at intermediate q2 is
apparent in Fig. 16, as is the difference between the results calculated with or
without the pseudovector components of the pion Bethe Å Salpeter amplitude.
These components provide the dominant contribution to Fπ(q2) at large pion
energy because of the multiplicative factors: γ ·P and γ ·k k ·P , which contribute
an additional power of q2 in the numerator of those terms involving F 2, FG,
and G2 relative to those proportional to E. Using the method of Ref.23 and the
model-independent asymptotic behaviour indicated by Eq. (63) one ˇnds

Fπ(q2) ∝ α(q2)

q2

(−〈q̄q〉0q2 )2

f4
π

; (70)

i.e., q2Fπ(q2) ≈ const., up to calculable ln q2-corrections. If the pseudovector
components of Γπ are neglected, the additional numerator factor of q2 is missing
and one obtains [23] q4Fπ(q2) ≈ const.
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Fig. 16. Calculated pion form factor compared with the largest q2 data available: dia-
monds Å Ref.30; and circles Å Ref.31. The solid lines are the results obtained when the
pseudovector components of the pion Bethe Å Salpeter amplitude are included (lower line
Å set A in Eq. (69); upper line Å set B), the dashed-line when they are neglected [23]

With this model the behaviour identiˇed in Eq. (70) becomes apparent at
q2
∼> 2M2

UV . This is the domain on which the asymptotic behaviour indicated
by Eq. (63) is manifest. The calculated results, obtained with the two sets of
parameters in Eq. (37), illustrate the model dependent uncertainty:

q2Fπ(q2)
∣∣
q2∼10−15 GeV2 ∼ 0.12− 0.19 GeV2 . (71)

It arises primarily because the model allows for a change in one parameter to be
compensated by a change in another. In this example: bB

2 > bA
2 but bB

0 + bB
2 =

bA
0 + bA

2 ; and bA
1 b

A
3 = bB

1 b
B
3 , which allows an equally good ˇt to low-energy

properties but alters the intermediate-q2 behaviour of Fπ(q2). As emphasised, in
a solution of Eq. (7) these coefˇcients of the 1/p4 and 1/p6 terms are correlated
and such compensations cannot occur.
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As a comparison, evaluating the leading-order perturbative-QCD result with
the asymptotic quark distribution amplitude: φas(x) :=

√
3 fπ x(1 − x), yields

q2Fπ(q2) = 16 πf2
π α(q2) ≈ 0.15 GeV2 , (72)

assuming a value of α(q2 ∼ 10 GeV2) ≈ 0.3. However, the perturbative analy-
sis neglects the anomalous dimension accompanying condensate formation; e.g.,
Eqs. (19)-(22) are not satisˇed in Ref.32.

5.2. Electroproduction of Vector Mesons. There is an extensive body of
literature describing Pomeron phenomenology, all derived from the observation
that the total cross section in high-energy scattering: p-p, p̄-p, π±-p, γ-p, etc.,
is forward-peaked and rises slowly with

√
s. This is illustrated [21] in Fig. 17

and can be described [10] by a Pomeron-exchange model of the quark-nucleon
interaction with the following features:

1. The quark-Pomeron coupling is q̄f (p2)Γfµq
f (p1), where Γµ := βf γµ with

βf a 
avour-dependent coupling constant. It is the only 
avour-dependence in
the interaction.

2. The Pomeron ©propagatorª is characterised by a Regge trajectory:

G(s, t) := (α1s)
α0+α1t (73)

with α0 > 0, which ensures the increase with s, and the Pomeron-nucleon cou-
pling is 3βuF1(t), where F1(t) is the Dirac form factor of the proton.

3. The interaction is used in impulse approximation so that, for example, the
πN → πN interaction is completely described by

〈P ; p2m
′
s|TπN→πN |q; p1ms〉 :=

:= Λµ(q, P ) 3βu/d F1(t)G(s, t) ūm′s(p2)γµums(p1) , (74)

where ums(p1) is a nucleon spinor and Λµ(q, P ) := 2Λuµ(q, P ) + 2Λd̄µ(q, P ) with

Λfµ(q, P ) :=

:= Nc trD

∫
d4k

(2π)4
Su(k−+)Γπ(k0−)Sd(k−−)Γ̄π(k)Su(k++)βf iγµ (75)

describing the interaction of the Pomeron with the f -quark in the pion. The
parameters: βf , α0, α1, in this model were ˇxed [10] by requiring a good
description of πN and KN scattering, and this is achieved with

βu/d = 2.35 GeV−2, βs = 1.50 GeV−2, α0 = 0.10, α1 = 0.33 GeV−2 .
(76)
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Fig. 17. Total and elastic cross sections for p-p and p̄-p scattering. The slow increase of
the total cross section with

√
s at high energy is obvious.

In the diffractive regime the process e− p → e−′ p′ V , where V = ρ, φ, ψ,
is also expected to proceed via soft-Pomeron exchange and the model introduced
above can be applied directly. The matrix element is

〈p2m2; kλρ|Jµ|p1m1〉 =

= 2βf tµνλ(q, k) ε
λρ
λ (k)GP(w̄2, t) 3βuF1(t) ū(p2)γνu(p1) , (77)
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Fig. 18. ρ-meson electroproduction matrix element. ω̄2 := −(q − P/2 + p1)2, where p1

is the momentum of the struck nucleon

depicted in Fig. 18, where the γP → ρ transition form factor is

tµνλ(q, P ) = 3e0

∫
d4k

(2π)4
tr
{
S(k +

1

2
P ) ×

×Γγµ(k +
1

2
P, k − q +

1

2
P )S(k − q +

1

2
P ) γν S(k − 1

2
P ) Vλ(k;−P )

}
. (78)

The unknown quantity in Eq. (78) is the vector meson Bethe Å Salpeter ampli-
tude, Vν(k;−P ). In the absence of a solution of the associated Bethe Å Salpeter
equation, an oft used and phenomenologically efˇcacious procedure [24] is to
parametrise the amplitude in a manner similar to that employed for the pion in
Sec. 5.1:

Vν(k;P ) =

(
γν +

Pνγ · P
m2
V

)
1

NV

{
e−k

2/a2
V +

cV

1 + k2/b2V

}
, (79)

whereNV is ˇxed via the canonical normalisation condition: clearly, P ·V (k;P ) =
0. The parameters are

a (GeV) b (GeV) c
ρ 0.40 0.008 125.0
φ 0.45 0.6 0.3
ψ 1.10 0.0 0.0

(80)

which were ˇxed [10] by requiring the ˇt to the dimensionless coupling constants
in Eq. (81).

gρ→e+e− gρ→π+π− gφ→e+e− gφ→KK̄ gψ→e+e−
Theory 4.6 6.8 12.7 3.9 11.5
Experiment 5.0 6.1 12.9 4.6 11.5

(81)
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Fig. 19. ρ-meson electroproduction cross section at W = 15 GeV: solid line Å calculated
result; long-dashed line Å result if m̄u/d → 10 m̄u/d; dash-dot line Å result if m̄u/d →
→ 25 m̄u/d ' m̄s. The data are: circles Å Ref.33; squares Å Ref.34; triangles Å Ref.35

The experimental values of the decay constants were calculated from the widths
in Ref.21, and the ˇt is acceptable given the simplicity of the Ansatz for Vν ,
which includes only one of the eight scalar functions necessary to completely
specify a vector meson bound state. At this point there are no free parameters in
the calculation of the electroproduction cross sections.

Figure 19 depicts the Q2-dependence of the ρ-meson electroproduction cross
section and the magnitude is a prediction. There is complete agreement on
the entire range of accessible Q2, with the large Q2 behaviour [10]: 1/Q4,
which becomes evident at Q2 ' 1-2 GeV2. Below that point the nonperturbative
character of the dressed-quark propagator dominates the evolution of the cross
section. It is important to observe the prediction that, the larger the current-quark
mass of the constituents, the larger the value of Q2 at which the asymptotic
behaviour is manifest.

The calculated φ-meson electroproduction cross section is depicted in Fig. 20.
It is in excellent agreement with Refs.36 and 37, which used a nucleon target, as
opposed to Ref.35, which averaged over variety of nuclear targets. As could be
anticipated from Fig. 19, the onset of the asymptotic 1/Q4 behaviour is pushed
to larger-Q2 for the φ-meson because the current-quark mass of the constituents,
the s-quark, is larger. In calculating the ψ-meson electroproduction cross section
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Fig. 20. φ-meson electroproduction cross section at W = 70 GeV: solid line; the dashed
line is the ρ-meson result for comparison. The data are: triangles Å Ref.35; circles Å
Ref.36; squares Å Ref.37

Fig. 21. ψ-meson electroproduction cross section at W = 100 GeV: solid line; the dashed
line is the ρ-meson result at W = 15 GeV for comparison. The data are from Refs.38,39

a very simple form was used for the c-quark propagator:

Sc(k) :=
1

m2
c

(−iγ · k +mc)F(1 + k2/m2
c) (82)

with mc = 1.2 GeV (∼ m1 GeV
c in Eq. (10)). This and the simple form of the

ψ-meson Bethe Å Salpeter amplitude anticipate the successful application of
DSEs to heavy-meson observables [9]. The calculated cross section is depicted in
Fig. 21. The striking prediction, conˇrmed by recent data, is that although two-
orders of magnitude smaller than the ρ-meson cross section at the photoproduction
point, the ψ-meson cross section is equal to that of the W = 100 GeV, ρ-meson
cross section at Q2 = 15 GeV2. This is because the large c-quark mass shifts the
onset of the asymptotic 1/Q4-behaviour to larger-Q2.
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6. FINITE TEMPERATURE AND CHEMICAL POTENTIAL

As we have seen, at zero temperature and chemical potential the low-energy
and small-q2 behaviour of QCD is characterised by conˇnement and DCSB. The
internal scale that marks the boundary between small and large energy in QCD
is Mχ ∼ ΛQCD. As the energy and/or momentum transfer increases, QCD is
characterised by asymptotic freedom; i.e., the coupling evolves

αS(Q2, T = 0 = µ)
Q2→∞−→ 0 (83)

and quarks and gluons behave as weakly interacting, massless particles in high-
energy and/or large-Q2 processes.

The study of QCD at ˇnite temperature and baryon number density proceeds
via the introduction of the intensive variables: temperature, T ; and quark chem-
ical potential, µ. These are additional mass-scales, with which the coupling can
run and hence, for T � ΛQCD and/or µ � ΛQCD, αS(Q2 = 0, T, µ) ∼ 0. It
follows that at ˇnite temperature and/or baryon number density there is a phase of
QCD in which quarks and gluons are weakly interacting, irrespective of the mo-
mentum transfer [40]; i.e., a quark-gluon plasma. Such a phase of matter existed
approximately one microsecond after the big-bang. In this phase conˇnement and
DCSB are absent and the nature of the strong interaction spectrum is qualitatively
different. The contemporary expectation for the position of the phase boundary
in the (µ, T )-plane is illustrated in Fig. 22.

Fig. 22. The anticipated quark-gluon phase boundary in the (µN , T )-plane. ©HGª Å
hadron gas, ©QGPª Å quark-gluon plasma. The nucleon chemical potential: µN := 3µ;
i.e., three-times the quark chemical potential. ©SPSª and ©AGSª mark the points in the
plane that is the estimate of these facilities explore.



576 ROBERTS C.D.

The path followed in the transition to the plasma is important because it
determines some observational consequences of the plasma's existence. For ex-
ample [41], the time-scale for the expansion of the early universe: ∼ 10−5 s, is
large compared with the natural time-scale in QCD: 1/ΛQCD ∼ 1 fm/c ∼ 10−23 s,
hence thermal equilibrium is maintained throughout the QCD transition. There-
fore, if the transition is second-order, the ratio B := baryon-number/entropy,
remains unchanged from that value attained at an earlier stage in the universe's
evolution. However, a ˇrst-order transition would be accompanied by a large
increase in entropy density and therefore a reduction in B after the transition.
Hence the order of the QCD transition constrains the mechanism for baryon num-
ber generation in models describing the formation of the universe, since with a
second-order transition this mechanism is only required to produce the presently
observed value of B and need not allow for dilution. In the absence of quarks,
QCD has a ˇrst-order deconˇnement transition, and with three or four mass-
less quarks a ˇrst-order chiral symmetry restoration transition is expected [41].
A current, primary question is: what happens in the realistic case of two light
quark 
avours?

Nonperturbative methods are necessary to study the phase transition, which
is characterised by qualitative changes in order parameters such as the quark
condensate. One widely used approach is the numerical simulation of ˇnite tem-
perature lattice-QCD, with the ˇrst simulations in the early eighties and extensive
efforts since then [42]. Here I focus on the application of DSEs. This is a new
usage and much remains to be learnt: these are exploratory studies. One goal is to
develop DSE models of QCD at ˇnite-T and µ (QCDTµ ) that can be used to check
the results of numerical simulations, and be constrained by them. These models
can then be employed to extrapolate into that domain presently inaccessible to
lattice studies, such as ˇnite chemical potential and the effects of T and µ on
bound state properties, the latter of which are expected to provide the signatures
of quark-gluon plasma formation in relativistic heavy ion collisions.

Before discussing details it is interesting to provide a human scale for the
temperatures and densities involved. The natural scale in QCD is ΛQCD ∼
200 MeV and temperatures of this order of magnitude will be necessary to cre-
ate the plasma. ΛQCD ∼ 1010× room-temperature! It represents a temperature
on the astrophysical and cosmological scale. Nuclear matter density
ρ0 ≈ 3 × 1014 g/cm3 = 0.16 N/fm3 and this is more than 1013× the density
of solid lead! The density at the core of a neutron star is expected to be approxi-
mately 4 ρ0 [43] and it is densities on this order that are anticipated to be required
for plasma formation.

The expectation of the existence of a new phase of matter, the quark-gluon
plasma, has led to the construction of a Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory. Construction is to be completed in 1999. It
will use counter-circulating, colliding 100 A GeV 197Au beams to generate a total
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Fig. 23. Mass spectra for inclusive e+- e− pairs in 450GeV p-Be collisions showing
the data and various contributions from hadron decays. The shaded region indicates the
systematic error on the summed contributions [45]

centre-of-mass energy of ∼ 40 TeV, in an effort to produce an equilibrated quark-
gluon plasma. It is anticipated to approach the quark-gluon plasma via a low
baryon density route. Contemporary, ˇxed target experiments at the Brookhaven-
AGS and CERN-SpS explore a high baryon density environment at much lower
centre-of-mass energies. These experiments are crucial in developing the ex-
pertise necessary for operating detectors under RHIC conditions but they are not
expected to ©discoverª the plasma. The CERN-SpS experiments have nevertheless
produced some interesting results.

One example is the ©NA45-CERESª experiment [44], which studies e+- e−

pair production in heavy ion collisions. e± pairs leave the interaction region
without interacting strongly and hence they are a probe of the early stages of the
interaction. In Fig. 23 I illustrate the dilepton spectrum obtained in high-energy
p-Be collisions. It is well described by known hadron decays. The same is
true of pÅAu collisions. However, this is not the case in S-Au collisions, as
illustrated in Fig. 24. There the known hadron decays describe the data only for
mee < 300 MeV, which is the region dominated by π0 Dalitz decays. At higher
energies the shape of the spectrum is different and shows a strong enhancement
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Fig. 24. Mass spectra for inclusive e+- e− pairs in 200GeV S-Au collisions showing
the data and various contributions from hadron decays. The shaded region indicates the
systematic error on the summed contributions [45]

in the dilepton yield. Integrating over the region 0.2 < mee < 1.5 GeV the
enhancement factor is

5.0± 0.7 stat.± 2.0 syst. (84)

The enhancement persists in PbÅAu collisions [44]. What explanation can be
offered?

One model calculation [46] shows that this enhancement can be explained by
a medium-induced reduction of the ρ-meson's mass; another [47], that it follows
from an increase in the ρ-meson's width. A decrease in the ρ-meson's mass
is consistent with the QCD sum rules analysis of Ref.48 but inconsistent with
that of Ref.49, which employs a more complex phenomenological model for the
in-medium spectral density used in matching the two sides of the sum rule. In
Ref.49 there is no shift in the ρ-meson mass but a signiˇcant increase in its width.
The consistency between Refs.47 and 49 is not surprising since, in contrast to
Ref.48, they both rely heavily on effective Lagrangians with elementary hadron
degrees-of-freedom. These are possibilities that can be explored using DSEs,
which focusing on dressed-quark and -gluon degrees of freedom is an approach
most akin to Ref.48. A ˇrst attempt [50], summarised in Sec. 7.6, predicts a
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15% suppression of mρ at nuclear matter density but employs a model that is
inadequate to address Γρ.

6.1. Notes on Field Theory. Equilibrium statistical ˇeld theory can be under-
stood by analogy with equilibrium statistical mechanics. For a particle moving in
a potential V the density matrix is given by the path integral

ρ(x, x′;T := 1/β) :=∫ x(β)=x′

x(0)=x

Dx(τ) exp

{
−
∫ β

0

dτ

[
1

2
mẋ(τ)2 − V (x(τ))

]}
, (85)

where the underlined term is just the Lagrangian. All of the thermodynamic
information about this system can be obtained from the partition function

Z(T ) :=

∫
V

dx ρ(x, x, T ) ; (86)

for example, the pressure P = T ln Z(T )/V and the baryon density ρB =
(1/3)∂P/∂µ.

The equilibrium thermodynamics of a quantum ˇeld theory is also completely
speciˇed by a partition function, or generating functional. In the particular case
of a self-interacting scalar ˇeld this is given by the functional integral:

Z[T ] :=

∫
Πx̃,τ∈[0,β]Dφ(x̃, τ) exp

(
−
∫ β

0

dτ

∫
d3xLE(x;φ)

)
, (87)

where LE(x;φ) is the Euclidean Lagrangian density describing the interaction of
φ(x̃, τ), whose boundary conditions are periodic:

φ(x̃, τ = 0) = φ(x̃, τ = β) . (88)

The boundary conditions for fermions are antiperiodic:

ψ(x̃, τ = 0) = −ψ(x̃, τ = β) . (89)

This difference in boundary conditions is the reason for the difference between the
Matsubara frequencies of fermions and bosons and hence why fermions acquire
a screening mass at ˇnite temperature.

It is immediately obvious that the O(4) invariance of the Euclidean theory
is lost: at ˇnite temperature (and/or chemical potential) the theory exhibits only
an O(3) symmetry corresponding to spatial rotations and translations. This is
why the formalism, necessarily used in lattice simulations, is only applicable to
equilibrium systems Å there is no generator of translations in time. One also
notes from Eq. (87) that as T → ∞ one dimension disappears completely and
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hence the corresponding (d−1)-dimensional theory is a candidate to describe the
inˇnite-temperature limit of a d-dimensional theory.

The ˇnite temperature, free fermion Lagrangian density is

LEFree(ψ̄, ψ) = ψ̄(~x, τ)
(
~γ · ~∂ + γ4 ∂τ +m

)
ψ(~x, τ) . (90)

Introducing a Fourier decomposition:

ψ(~x, τ) = T

∞∑
n=−∞

∫
d3p

(2π)3
ψ(~p, ωn)ei~p·~x+iωnτ , (91)

antiperiodicity entails that the fermion Matsubara frequencies are

ωn = (2n+ 1)π T , n ∈ ZZ (92)

and the free fermion action is

SEβ [ψ̄, ψ]Free = T

∞∑
n=−∞

∫
d3p

(2π)3
ψ̄(~p, ωn) (i~γ · ~p+ iγ4ωn +m) ψ(~p, ωn) .

(93)
From this one identiˇes the ˇnite temperature, free fermion propagator

S(p) =
1

i~γ · ~p+ iγ4 ωn +m
. (94)

Analogous arguments, using the periodic boundary conditions, lead to an
identiˇcation of the free boson propagator

D(p,Ωn) =
1

|~p |2 + Ω2
n +m2

, (95)

where Ωn = 2 π nT . Having obtained the free particle propagators one can
proceed to deˇne a perturbation theory. As an example, in massless φ4 theory
the one-loop correction to the φ propagator is

∝ T
∞∑

n=−∞

∫
d3p

(2π)3

1

Ω2
n + |~p |2 . (96)

The sum can be evaluated:

T

∞∑
n=−∞

1

Ω2
n + |~p |2 =

1

|~p |
1

exp(|~p |/T )− 1
+ T−independent piece , (97)

to yield the Bose-Einstein factor. This is a source of problems: for large temper-
atures

1

exp(|~p |/T )− 1
=

T

|~p | (98)

and one can thereby encounter additional infrared divergences.
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These are particularly serious in QCD. To illustrate this [51] consider an
(`+1)-gluon-loop diagram and focus on the n = 0 mode, which obviously yields
the dominant infrared behaviour. The estimate is made easier if one neglects the
tensor structure and notes that: from the vertices there is a factor of g2` p2`; the
loop-sum-integral gives (T

∫
p2∈[0,T ]

d3p)`+1; and the propagators, (p2 +m2)−3`,
where m is a possible, dynamically generated mass-scale. A little thought and
calculation shows that the net order of a given diagram in perturbation theory is

` = 1, 2 ` = 3 ` ≥ 4

g2` T 4 g6 T 4 ln(T/m) g6 T 4 [g2T/m]`−3.
(99)

Clearly, if m = 0 the diagrams are infrared divergent for ` > 2. The divergences
may cancel when all diagrams of a given order are summed but that is difˇcult
to verify. Suppose instead that the mass-scale m ∼ g T , as does the Debye mass
in QED, then no problem arises: at each order above ` = 3 the diagrams are
suppressed by powers of the coupling and a self-consistent calculation of the
mass-scale is straightforward. This underlies the successful application of the
method of ©hard thermal loopsª [52]. However, suppose that m ∼ g2T , which
is the next possibility. In this case every diagram above ` = 2 contributes with
the same strength: g6, which presents a serious impediment to the application of
perturbation theory!

The introduction of a quark chemical potential modiˇes Eq. (93):

SEβ [ψ̄, ψ]Free :=

:= T

∞∑
n=−∞

∫
d3p

(2π)3
ψ̄(~p, ωn) (i~γ · ~p+ iγ4 ωn − γ4µ+m) ψ(~p, ωn) (100)

so that even the free Dirac operator is not hermitian and hence the QCD ac-
tion is necessarily complex. As such it does not specify a probability measure,
which precludes the straightforward application of Monte-Carlo methods in the
evaluation of the partition function. However, the application of DSEs remains
straightforward. The propagators and vertices are complex, so twice as many
functions are required to represent them but otherwise there are no complications.
Thus they provide a nonperturbative means of exploring this domain, which is
presently inaccessible in lattice simulations.

6.2. Some Lattice Results. Since the early eighties, as one branch of the
extensive application of lattice methods in many areas of QCD, Monte-Carlo
simulations have been used to estimate the ˇnite temperature QCD partition func-
tion [53]. These studies have contributed considerably to the current understand-
ing of the nature of the quark-gluon plasma. Due to the persistent limitation
of computational power many analyses have focused on the pure gauge sector,
which exhibits a ˇrst-order deconˇnement transition at a critical temperature of



582 ROBERTS C.D.

Fig. 25. Energy density and pressure for 2-light-
avour QCD on lattices with four temporal
lattice sites, from Ref.58

T
Nf=0
c ≈ 270 MeV [54]. In studying the chiral transition this commonly used

quenched approximation is inadequate because the details depend sensitively on
the number of active (light) 
avours. It is therefore necessary to include the
fermion determinant.

That is even more important when µ 6= 0 because the Dirac operator is not
hermitian and thus the fermion determinant acquires an explicit imaginary part, in
addition to those terms associated with axial anomalies. The QCD action being
complex entails that the study of ˇnite density is signiˇcantly more difˇcult than
that of ˇnite temperature. Simulations that ignore the fermion determinant at
µ 6= 0 encounter a forbidden region, which begins at µ = mπ/2 [55], and since
mπ → 0 in the chiral limit this is a serious limitation, preventing a reliable study
of chiral symmetry restoration. The phase of the fermion determinant is essential
in eliminating this artefact [56].

QCD with dynamical quarks is a contemporary focus and for two 
avours
of light quarks the theory appears [57] to exhibit a second-order transition at

a critical temperature T
Nf=2
c ≈ 150 MeV. This is illustrated in Fig. 25, which

shows a rapid change in the energy density in a small region around 150 MeV.
For three or more light quark 
avours the continuum theory is expected to have
a ˇrst order chiral symmetry restoration transition.

The quark condensate is an order parameter for chiral symmetry breaking,
with its nonzero value at T = 0 responsible for the pion mass being proportional
to the square-root of the light current-quark masses. Its behaviour near the
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Fig. 26. Chiral condensate calculated [57] using staggered fermions and normalised to its
zero temperature value. Only the Nf = 0 results are extrapolated to zero quark mass

critical temperature is depicted in Fig. 26, and the rapid, qualitative change with
increasing T is easily apparent. Very important is that, independent of the number
of light-quark 
avours, the condensate is unchanged for T < 0.9Tc. It suggests
that hadron properties are insensitive to T until very near the phase boundary.

The simulations with dynamical fermions are still preliminary, and many
uncertainties remain. For example, a review [59] of recent results obtained with
larger lattices and lighter quarks reports a signiˇcant lattice-volume-dependence
for the critical exponents of the two light-
avour chiral symmetry restoration
transition: the transition may even be ˇrst order! This might be an artefact
of introducing lighter dynamical quarks, which drive the simulations to stronger
coupling. The order of the transition with three and four 
avours also remains
unclear. With these uncertainties it is apparent that the lattice study of the phase
transition will require further, even more computer-intensive simulations.

7. DSEs AT FINITE T AND µ

The contemporary application of DSEs at ˇnite temperature and chemical
potential is a straightforward extension of the T = 0 = µ studies. The direct
approach is to develop a ˇnite-T extension of the Ansatz for the dressed-gluon
propagator. The quark DSE can then be solved and, having the dressed-quark
and -gluon propagators, the response of bound states to increases in T and µ
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can be studied. As a nonperturbative approach that allows the simultaneous
study of DCSB and conˇnement, the DSEs have a signiˇcant overlap with lattice
simulations: each quantity that can be estimated using lattice simulations can also
be calculated using the DSEs. This means they can be used to check the lattice
simulations, and importantly, that lattice simulations can be used to constrain their
model-dependent aspects. Once agreement is obtained on the common domain,
the DSEs can be used to explore phenomena presently inaccessible to lattice
simulations.

7.1. Quark DSE. The renormalised dressed-quark propagator at ˇnite-(T, µ)
has the general form

S(~p, ω̃k) =
1

i~γ · ~pA(~p, ω̃k) + iγ4 ω̃kC(~p, ω̃k) +B(~p, ω̃k)
(101)

≡ −i~γ · ~p σA(~p, ω̃k)− iγ4 ω̃kσC(~p, ω̃k) + σB(~p, ω̃k) , (102)

where ω̃k := ωk + iµ. The complex scalar functions: A(~p, ω̃k), B(~p, ω̃k) and
C(~p, ω̃k) satisfy:

F(~p, ω̃k)∗ = F(~p, ω̃−k−1) , (103)

F = A,B,C, and although not explicitly indicated they are functions only of
|~p |2 and ω̃2

k.
The DSE for the renormalised dressed-quark propagator is

S−1(~p, ω̃k) = ZA2 i~γ · ~p+ Z2 (iγ4 ω̃k +mbm) + Σ′(~p, ω̃k) , (104)

where ZA2 and Z2 are renormalisation constants, mbm is the bare mass, and the
regularised self energy is

Σ′(~p, ω̃k) = i~γ · ~pΣ′A(~p, ω̃k) + iγ4 ω̃k Σ′C(~p, ω̃k) + Σ′B(~p, ω̃k) , (105)

with
Σ′F (~p, ω̃k) =

=

∫ Λ̄

l,q

4

3
g2Dµν(~p− ~q, ω̃k − ω̃l)1

4
tr [PFγµS(~q, ω̃l)Γν(~q, ω̃l; ~p, ω̃k)] , (106)

where PA := −(ZA1 /p
2)iγ · p, PB := Z1, PC := −(Z1/ω̃k)iγ4, ZA1 and Z1 are

vertex renormalisation constants, and
∫ Λ̄

l,q
:= T

∑∞
l=−∞

∫ Λ̄ d3q
(2π)3 . This last is

a mnemonic to represent a translationally invariant regularisation of the integral
with Λ̄ the regularisation mass scale.

In Eq. (106) the Landau-gauge, ˇnite-(T, µ) dressed-gluon propagator has
the form

g2Dµν(~p,Ω) = PLµν(~p,Ω) ∆F (~p,Ω) + PTµν(~p) ∆G(p,Ω), (107)
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where

PTµν(~p) :=

{
0; µ and/or ν = 4,

δij −
pipj

p2
; µ, ν = 1, 2, 3 , (108)

PLµν(~p,Ω) := δµν −
pµpν∑4
α=1 pαpα

− PTµν(p); µ, ν = 1, . . . , 4 . (109)

A ©Debye-massª for the gluon appears as a T -dependent contribution to ∆F .
In renormalising we require that

S−1(~p, ω̃0)
∣∣µ=0

~p2+ω̃2
0=ζ2 = i~γ · ~p+ iγ4 ω0 +mζ

R , (110)

where ζ is the renormalisation point and mζ
R is the renormalised current-quark

mass. This entails that the renormalisation constants are:

ZA2 (ζ2, Λ̄2) = 1− Σ′A(~p, ω̃0)|µ=0
|~p |2+ω̃2

0=ζ2 , (111)

Z2(ζ2, Λ̄2) = 1− Σ′C(~p, ω̃0)|µ=0
|~p |2+ω̃2

0=ζ2 , (112)

mζ
R = Z2mbm + Σ′B(~p, ω̃0)|µ=0

|~p |2+ω̃2
0=ζ2 , (113)

and yields the renormalised self energies:

F(~p, ω̃k) = ξF + Σ′F (~p, ω̃k)− Σ′F (~p, ω̃0)|µ=0
|~p |2+ω̃2

0=ζ2 , (114)

where F = A, B, C; ξA = 1 = ξC and ξB = mζ
R.

In studying conˇnement one cannot assume that the analytic structure of a
dressed propagator is the same as that of the free particle propagator: it must be
determined dynamically. Indeed, one knows that the p̃k := (~p, ω̃k)-dependence
of A and C is qualitatively important since it can conspire with that of B to
eliminate free-particle poles in the dressed-quark propagator [17]. In this case
the propagator does not have a Lehmann representation so that, in general, the
Matsubara sum cannot be evaluated analytically. More importantly, it either
complicates or precludes a real-time formulation of the ˇnite temperature theory,
which makes the study of nonequilibrium thermodynamics a very challenging
problem. In addition, as we will see, this p̃k-dependence of A and C can be
a crucial factor in determining the behaviour of bulk thermodynamic quantities
such as the pressure and entropy; being responsible for these quantities reaching
their respective Stefan Ä -Boltzmann limits only for very large values of T and
µ. It is therefore important in any DSE study to retain A(p̃k) and C(p̃k), and
their dependence on p̃k.
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7.2. Phase Transitions and Order Parameters. Phase transitions are char-
acterised by the behaviour of an order parameter, 〈X〉, the expectation value
of an operator. In the ordered phase of a system: 〈X〉 6= 0, whereas in the
disordered phase 〈X〉 = 0. A phase transition is ˇrst-order if 〈X〉 → 0 discontin-
uously, whereas it is second-order if 〈X〉 → 0 continuously. For a second-order
transition, the length-scale associated with correlations in the system diverges as
〈X〉 → 0 and one can deˇne a set of critical exponents that characterise the
behaviour of certain macroscopic properties at the transition point. For example,
in a system that is ferromagnetic for temperatures less than some critical value,
Tc, the magnetisation, M , is an order parameter and in the absence of an external
magnetic ˇeld M ∝ (Tc − T )β for T ∼ T−c , where β is the critical exponent. At
T = Tc the behaviour of the magnetisation in the presence of an external ˇeld,
h → 0+, deˇnes another critical exponent, δ: M ∝ h(1/δ). In a system that can
be described by mean ˇeld theory these critical exponents are

βMF = 0.5 , δMF = 3.0 . (115)

The problem is that it can be difˇcult to identify the order parameter relevant to
the discussion of a phase transition.

One order parameter for the chiral symmetry restoration transition is well
known Å it is the quark condensate, deˇned via the renormalised dressed-quark
propagator [7]:

−〈q̄q〉ζ := Nc lim
Λ̄→∞

Z4(ζ, Λ̄)

∫ Λ̄

l,q

B0(p̃k)

|~p |2A0(p̃k)2 + ω̃2
l C0(p̃k)2 +B0(p̃k)2

,

(116)
for each massless quark 
avour, where the subscript ©0ª denotes that the scalar
functions: A0, B0, C0, are obtained as solutions of Eq. (104) in the chiral limit.
The functions have an implicit ζ-dependence. An equivalent order parameter is

X := ReB0(~p = 0, ω̃0) , (117)

which was used in Refs.60Ä62. Thus the zeroth Matsubara mode determines the
character of the chiral phase transition, a conjecture explored in Ref.63.

What is an order parameter for deconˇnement?
In Sec.2.3 I observed that the analytic properties of Schwinger functions

play an important role in conˇnement. For illustrative simplicity, set µ = 0, the
generalisation to µ 6= 0 is not difˇcult, and consider

∆B0(x, τ = 0) := T

∞∑
n=−∞

1

4πx

2

π

∫ ∞
0

dp p sin(px)σB0 (p, ωn) (118)

:=
T

2πx

∞∑
n=0

∆n
B0

(x) . (119)
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Fig. 27. −E(t) := ln ∆(t) in QED3. Here the analogue of the mass-function is E′(t)
and the difference between the unconˇned theory: ©+ª, and the conˇning theories is
unmistakable

For a free fermion of mass M , σB0(p, ωn) = M/(ω2
n + p2 +M2) and

∆n
B(x) = M e−x

√
ω2
n+M2

: (120)

the n = 0 term dominates the sum. In this case the ©mass-functionª

M(x;T ) :=
d

dx

(
− ln

∣∣∆0
B0

(x)
∣∣) =

√
π2T 2 +M2 . (121)

The most important observation is that for a free particle M(x, T ) has a
ˇxed, real value, which identiˇes the mass-pole in the propagator. It also exhibits
the fermion ©screening massª = πT , which becomes important for T ∼M/π. In
the context of dynamical mass generation: M ∼ ME. Since ME

u/d ≈ 450 MeV
one anticipates that ˇnite-T effects will become important at T ∼ 150 MeV (or
ˇnite µ effects at µ ∼ 450 MeV). For a boson of mass Mb, M(x;T ) = Mb: there
is no screening mass.
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How does ∆0(x) behave if the dressed-propagator does not have a Lehmann
representation? An example [64] is

D(p,Ω) =
p2 + Ω2

n +M2

(p2 + Ω2
n +M2)2 + 4 b4

, (122)

which has complex conjugate poles. In this case

∆0
D(x) = e−Mx cos[bx] ; (123)

i.e., the Schwinger function oscillates and the mass-function has singularities,
which is an unambiguous signal for the absence of a Lehmann representation and
hence conˇnement!

An order parameter for conˇnement is now obvious [65]. Denote the posi-
tion of the ˇrst zero in ∆0

B0
(x) by rz1

0 , which is inversely proportional to the
distance of the poles from the real axis. Deˇne κ0 := 1/rz1

0 , then κ0 ∝ b and
deconˇnement is observed if, for some T = Tc, κ0(Tc) = 0: at this point thermal

uctuations have overwhelmed the conˇnement scale-parameter and the poles
have migrated to the real-axis. This criterion generalises easily to the case of
µ 6= 0 and to situations in which the dressed-propagator has an essential singular-
ity rather than complex conjugate poles. It is also valid for both light and heavy
quarks.

An analogue of this criterion, with

∆(t) :=
1

2π

∫ ∞
−∞

dp4 eip4t σS(~p = 0, p4) , (124)

has been used to very good effect in an analysis [66] of QED3 at T = 0. QED3 is
conˇning in quenched approximation but not when massless fermions are allowed
to in
uence the propagation of the photon. In that case complete charge screening
is possible. Conˇnement is recovered in the theory if the fermion in the photon
vacuum polarisation loop is massive. This application is summarised in Fig.27.

7.3. Illustration at (T 6= 0, µ = 0). As a ˇrst example I summarise a
study [60] that uses a one-parameter, model dressed-gluon propagator. This
parameter, mt, is a mass-scale that marks the boundary between the perturba-
tive and nonperturbative domains, and its value, mt = 0.69 GeV, was ˇxed in
T = 0 studies [67]. The extension of the model to ˇnite-T involves no additional
parameters and is deˇned with: ∆F (p,Ω) := D(p,Ω;mD) and ∆G(p,Ω) :=
:= D(p,Ω; 0);

D(p,Ω;m) :=
16

9
π2

[
2π

T
m2
t δ0nδ

3(p) +
1− e[−(p2+Ω2+m2)/(4m2

t )]

p2 + Ω2 +m2

]
, (125)
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where m2
D = (8/3)π2T 2 is the perturbatively evaluated ©Debye-massª∗. The

quark DSE was solved using the rainbow approximation

Γµ(q, ωl; p, ωk) = γµ . (126)

I have discussed this truncation in Secs. 2.4 and 4, and here only note that in
T = 0 studies it has proven to be reliable in Landau gauge; i.e., at this level an
efˇcacious phenomenology with a more sophisticated vertex Ansatz only requires
a small quantitative modiˇcation of the parameters that characterise the small-k2

behaviour of the dressed-gluon propagator [65]. Using this truncation, mutually
consistent constraints are ZA1 = ZA2 and Z1 = Z2.

The quark DSE was solved numerically with mζ
R = 1.1 MeV, ζ = 9.47 GeV.

The T = 0 ˇtting of mt and mR ensured a best χ2-ˇt to a range of pion
observables, yielding

fπ = 92.4 mπ = 139.5 rπNπ = 0.24 gπ0γγ = 0.45

(92.4± 0.3) (138.3± 0.5) (0.31± 0.004) (0.50± 0.02)

a0
0 = 0.16 a2

0 = −0.041 a1
1 = 0.028 a0

2 = 0.0022

(0.21± 0.02) (−0.040± 0.003) (0.038± 0.002) (0.0017± 0.0003)
(127)

with the experimental values listed in parentheses∗∗. The ˇnite-T study repro-
duces these results to within 6% at T = 5 MeV, using the ˇnite-T generalisations
of the formulae in Ref.67:

m2
πN

2
π = 〈mζ

R (q̄q)ζ〉π ; (128)

cd..〈mζ
R (q̄q)ζ〉π := 8Nc

∫ Λ̄

k,p

B0

(
σB0 −B0

[
ω2
kσ

2
C + p2σ2

A + σ2
B

])
,

which vanishes linearly with mζ
R; the canonical normalisation constant is

N2
π = 2Nc

∫ Λ̄

k,p

B2
0

{
σ2
A − 2

[
ω2
kσCσ

′
C + p2σAσ

′
A + σBσ

′
B ] (129)

−4

3
p2
([
ω2
k

(
σCσ

′′
C − (σ′C)2

)
+ p2

(
σAσ

′′
A − (σ′A)2

)
+ σBσ

′′
B − (σ′B)2

])}
,

∗The in
uence of the Debye-mass on ˇnite-T observables is qualitatively unimportant, even in
the vicinity of the chiral symmetry restoration transition. The ratio of the coefˇcients in the two terms
in Eq. (125) is such that the long-range effects associated with δ0 kδ

3(p) are completely cancelled at
short-distances; i.e., for |~x|2m2

t � 1.
∗∗In Sec. 5.1 I discussed why rπNπ ≈ 0.25 in impulse approximation. The π-π scattering

lengths ˇtted in Ref.67 were taken from Ref.68.
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Fig. 28. The order parameters for chiral symmetry restoration (X (T ), diamonds) and
deconˇnement (κ0(T ), circles) both vanish at Tc = 150 MeV. The parameters for the
ˇtted curves are presented in Table 5

with σ′B ≡ ∂σB(p2, ωk)/∂p2, etc.; and the pion decay constant is obtained from

fπ Nπ = 4Nc

∫ Λ

p

B0

{
σAσB +

2

3
|~p |2 (σ′AσB − σAσ′B)

}
. (130)

Equations (128)Å(130) were derived under the assumption that Γπ = iγ5B0.
Some of the limitations of this assumption were discussed in Secs. 4.2 and 5.1,
and they are considered further in Ref.7. It is quantitatively unreliable near the
transition temperature, however, the qualitative behaviour of Nπ and fπ is the
same, see Table 5. Only after these studies were completed was it understood
that Nπ provides the best approximation to the leptonic decay constant when
Γπ = iγ5B0 is assumed.

The calculated T -dependence of the chiral symmetry and deconˇnement order
parameters is depicted in Fig. 28. The curves in the ˇgure, ˇtted on T ∈
[120, 150] MeV, are of the form α (1 − T/Tc)β with Tc ≈ 150 MeV and α, β
given in Table 5. The transitions are coincident and second-order with βX = βκ0 ,
within errors: ∼ 10%. This estimate of βX is not a mean ˇeld value and it agrees
with a lattice estimate [69]: βlat = 0.30± 0.08. It has been argued [41] that two-
light-
avour QCD is in the universality class of the N = 4 Heisenberg magnet,
for which βH = 0.38 ± 0.01 and both the DSE and lattice results are broadly
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Table 5. Parameters characterising the behaviour of the listed quantities, ˇtted to
α (1− T/Tc)β , near Tc = 150 MeV

α β

X 1.1 GeV 0.33
κ0 0.16 GeV 0.30
N2
π (0.18 GeV)2 1.1

fπNπ (0.15 GeV)2 0.93
〈mR(q̄q)〉 (0.15 GeV)4 0.92
mπ 0.12 GeV -0.11
fπ 0.12 GeV 0.36

Fig. 29. Temperature dependence of the pion mass (mπ(T ), circles) and pion weak-decay
constant (fπ(T ), diamonds)

consistent with this value. However, neither of these estimates of β survives
more exhaustive study [59,70], and the most recent analyses [70,71] suggest that
in DSE models whose long-range part is described by the regularised singularity
in Eq. (125) the chiral symmetry restoration transition at ˇnite-T is described by
a mean-ˇeld value of β.

The behaviour of pion observables calculated from Eqs.(128)Å(130) is de-
picted in Fig.29. fπ and mπ are weakly sensitive to T for T < 0.7TXc , and
this is also seen in lattice simulations; e.g., the quark condensate in Fig. 26
and fπ in Fig. 30. However, as T approaches TXc , the mass eigenvalue in the
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Fig. 30. Temperature dependence of the pion weak-decay constant on a 323×8 lattice [57]

pion Bethe Å Salpeter equation moves to increasingly larger values, as thermal

uctuations overwhelm attraction in the channel, until at T = TXc there is no so-
lution and fπ → 0. This means that the pion-pole contribution to the four-point,
quark-antiquark correlation function disappears; i.e., there is no quark-antiquark
pseudoscalar bound state for T > TXc . That may have important consequences
for a wide range of physical observables [72], if borne out by improved studies;
e.g., such T -dependence for fπ and mπ would lead to a 20% reduction in the
π → µνµ decay widths at T ≈ 0.9TXc .

7.4. Complementary study at (T = 0, µ 6= 0). The ˇnite-µ behaviour of the
same model [67] has also been explored [62]. The dressed-gluon propagator has
the simple form [67]

g2Dµν(k) =

(
δµν −

kµkν

k2

)
G(k2)

k2
, (131)

G(k2)

k2
=

16

9
π2

[
4π2m2

t δ
4(k) +

1− e−[k2/(4m2
t )]

k2

]
, (132)

and the rainbow approximation is used again. Neither the dressed propagator
nor vertex have explicit µ-dependence, which can arise through quark vacuum
polarisation insertions. As such they may be inadequate at large values of µ,
particularly near any critical chemical potential. However, in the absence of
ˇnite-µ studies of these quantities, the exploration of such models is useful, and
one can assess the results obtained in the light of existing experiments and related
theoretical studies.
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The renormalised dressed-quark propagator is

S(p[µ]) := −i~γ · ~pσA(p[µ])− iγ4 ω[µ] σC(p[µ]) + σB(p[µ]) , (133)

where p[µ] := (~p, ω[µ]), with ω[µ] := p4 + iµ. The quark DSE and the renormal-
isation conditions are similar to those discussed in the previous section, and the
equation has two qualitatively distinct solutions: a chirally symmetric WignerÄ
Weyl mode, characterised by B0 ≡ 0; and a conˇning NambuÄGoldstone mode,
characterised by B0 6≡ 0.

To explore the possibility of a phase transition one calculates the relative
stability of the different phases, which is measured by the difference in pressure
between them. The pressure is obtained directly from the partition function, Z: it
is the sum of all vacuum-to-vacuum transition amplitudes. In ©stationary phaseª
approximation, the partition function is given by the tree-level auxiliary-ˇeld
effective action [73] and the pressure is:

P [S] :=
T

V
lnZ =

T

V

{
TrLn

[
1

T
S−1

]
− 1

2
Tr [ΣS]

}
. (134)

It is a functional of S(p[µ]). In the absence of interactions Σ ≡ 0 and Eq. (134)
yields the free fermion partition function. [Additive gluon contributions cancel
in the pressure difference and are neglected.] The contribution of hadrons and
hadron-like correlations to the partition function are neglected in Eq. (134). At
the level of approximation consistent with Eq. (134) these terms are an additive
contribution that can be estimated using the hadronisation techniques of Ref.74.
After a proper normalisation of the partition function; i.e., subtraction of the
vacuum contribution, they are the only contributions to the partition function in
the conˇnement domain. They are easy to calculate and are considered no further
here as they are not a signiˇcant in
uence on the position of the phase boundary.

The pressure difference is

1

2NfNc
B(µ) :=

∫ Λ

p

{
ln

[
| ~p |2A2

0 + ω2
[µ]C

2
0 +B2

0

| ~p |2Â2
0 + ω2

[µ]Ĉ
2
0

]
+

+ | ~p |2 (σA0 − σ̂A0) + ω2
[µ] (σC0 − σ̂C0)

}
, (135)

which deˇnes a µ-dependent ©bag constantª [75]. In Eq. (135), Â and Ĉ represent
the solution of Eq.(104) obtained when B0 ≡ 0; i.e., when DCSB is absent. This
solution exists for all µ. B(µ) is plotted in Fig. 31. It is positive when the NambuÄ
Goldstone phase is dynamically favoured; i.e., has the highest pressure, and
becomes negative when the Wigner pressure becomes larger. The critical chemical
potential is the zero of B(µ); i.e., µc = 375 MeV. This abrupt switch from the
NambuÄGoldstone to the WignerÄWeyl phase signals a ˇrst order transition.
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Fig. 31. B(µ) from (135); B(µ) > 0 marks the domain of conˇnement and dynamical
chiral symmetry breaking. The zero of B(µ) is µc = 375 MeV. B(0) = (0.104 GeV)4,
which can be compared with the value ∼ (0.145 GeV)4 commonly used in bag-like models
of hadrons [74]

The order parameter for chiral symmetry restoration is that given in Eq. (117),
while the conˇnement order parameter at (T = 0, µ 6= 0) is derived from

∆S(τ) :=
1

2π

∫ ∞
−∞

dp4 eip4τ σB0(~p = 0, ω[µ]) , (136)

an analogue of Eq. (118). For a free, massive fermion σB(~p = 0, ω[µ]) =
M/(ω2

[µ]+M
2). This function has poles at p2

4 = −(M±µ)2, which are associated
with the µ-induced offset of the particle and antiparticle zero-point energies, and

∆S(τ) =
1

2
e−(M−µ) τ θ(M − µ) , (137)

which is positive-deˇnite and monotonically decreasing. In contrast, as observed
above, for a Schwinger function with complex-conjugate p2-poles, ∆S(τ) has
zeros at τ > 0.

The µ-dependence of the order parameters for chiral symmetry restoration and
deconˇnement is depicted in Fig. 32. The chiral order parameter increases with
increasing chemical potential up to µc, with X (µc)/X (0) ≈ 1.2, whereas κ(µ) is
insensitive to increasing µ. At µc they both drop immediately and discontinuously
to zero, as expected of a ˇrst-order phase transition. The increase of the chiral
order parameter with µ is a necessary consequence of the momentum dependence
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Fig. 32. The order parameters for chiral symmetry restoration [X , diamonds] and decon-
ˇnement [κ, circles]. µc = 375 MeV.

of the scalar piece of the quark self energy, B(p[µ]), as is easily seen in Ref. 61
and in Secs. 7.5 and 7.6. The vacuum quark condensate behaves in qualitatively
the same manner as X .

The behaviour of mπ and fπ is illustrated in Fig. 33. One observes that
although the chiral order parameter increases with µ, mπ decreases slowly as µ
increases. This slow fall continues until µ ≈ 0.7µc, when mπ(µ)/mπ(0) ≈ 0.94.
At this point mπ begins to increase although, for µ < µc, mπ(µ) does not ex-
ceed mπ(0). This precludes pion condensation, in qualitative agreement with
Ref.76. The behaviour of mπ results from mutually compensating increases in
〈mζ

R(q̄q)ζ〉π and N2
π . This is a manifestation of the manner in which dynami-

cal chiral symmetry breaking protects pseudoscalar meson masses against rapid
changes with µ. The pion leptonic decay constant is insensitive to the chemical
potential until µ ≈ 0.7µc, when it increases sharply so that fπ(µ−c )/fπ(µ = 0) ≈
≈ 1.25. The relative insensitivity of mπ and fπ to changes in µ, until very near
µc, mirrors the behaviour of these observables at ˇnite-T [60]. For example, it
leads only to a 14% increase in the π → µν decay width at µ ≈ 0.9µc. The
universal scaling conjecture of Ref.77 is inconsistent with the anticorrelation we
observe between the µ-dependence of fπ and mπ.

Comparing the µ-dependence of fπ and mπ with their T -dependence, one
observes an anticorrelation; e.g., at µ = 0, fπ falls continuously to zero as T is
increased towards Tc ≈ 150 MeV [60]. This too is a necessary consequence of the
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Fig. 33. Chemical potential dependence of the pion mass [mπ , circles] and pion leptonic
decay constant [fπ , diamonds]

momentum-dependence of the quark self-energy. In calculating these observables
the natural dimension is mass-squared, and their behaviour at ˇnite T and µ is
determined by Re(ω2

[µ]) ∼ [π2T 2 − µ2], where the T -dependence arises from

the introduction of the fermion Matsubara frequency: p4 → (2n+ 1)πT . Hence
when such a quantity decreases with T it will increase with µ, and vice-versa.
This is elucidated in Secs. 7.5 and 7.6, and in Ref.50.

The conˇned-quark vacuum consists of quark-antiquark pairs correlated in a
scalar condensate. Increasing µ increases the scalar density: (−〈q̄q〉). This result
is an expected consequence of conˇnement, which entails that each additional
quark must be locally paired with an antiquark thereby increasing the density of
condensate pairs as µ is increased. For this reason, as long as µ < µc, there
is no excess of particles over antiparticles in the vacuum and hence the baryon
number density remains zero [61]; i.e., ρu+d

B = 0 , ∀µ < µc. This is just the
statement that quark-antiquark pairs conˇned in the condensate do not contribute
to the baryon number density.

The quark pressure, Pu+d[µ], can be calculated [61], see Sec. 7.5, and one
ˇnds that after deconˇnement it increases rapidly, as the condensate ©breaks-upª,
and an excess of quarks over antiquarks develops. The baryon-number density,
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ρu+d
B = (1/3)∂Pu+d/∂µ, also increases rapidly, with

ρu+d
B (µ ≈ 2µc) ' 3 ρ0 , (138)

where ρ0 = 0.16 fm−3 is the equilibrium density of nuclear matter. For compari-
son, the central core density expected in a 1.4M� neutron star is 3.6-4.1 ρ0 [43].
Finally, at µ ∼ 5µc, the quark pressure saturates the ultrarelativistic limit:
Pu+d = µ4/(2π2), and there is a simple relation between baryon-density and
chemical-potential:

ρuF+dF
B (µ) =

1

3

2µ3

π2
, ∀µ ∼> 5µc , (139)

so that ρuF+dF
B (5µc) ∼ 350 ρ0. Thus the quark pressure in the deconˇned domain

overwhelms any ˇnite, additive contribution of hadrons to the equation of state,
which anticipating this was neglected in Ref.62. This discussion suggests that a
quark-gluon plasma may be present in the core of dense neutron stars.

7.5. Simultaneous study of (T 6= 0, µ 6= 0). This is the most difˇcult
problem and the most complete study [61] to date employs a simple Ansatz for
the dressed-gluon propagator:

g2Dµν(~p,Ωk) =

(
δµν −

pµpν

|~p |2 + Ω2
k

)
2π3 η

2

T
δk0 δ

3(~p) , (140)

which exhibits the infrared enhancement suggested by Ref.6. As an infrared-
dominant model that does not represent well the behaviour of Dµν(~p,Ωk) away
from |~p |2 + Ω2

k ≈ 0, some model-dependent artefacts arise. However, there is
signiˇcant merit in its simplicity and, since the artefacts are easily identiˇed, the
model remains useful as a means of elucidating many of the qualitative features
of more sophisticated Anséatze.

With this model, using the rainbow approximation, the QCDTµ gap equation,
or DSE for the dressed-quark propagator, is [3]

S−1(~p, ωk) = S−1
0 (~p, ω̃k) +

1

4
η2γνS(~p, ω̃k)γν . (141)

A simplicity inherent in Eq. (140) is now apparent: it allows the reduction of
an integral equation to an algebraic equation, in whose solution many of the
qualitative features of more sophisticated models are manifest, as will become
clear. In terms of the scalar functions introduced in Eq. (101), Eq. (141) reads

η2m2 = B4 +mB3 +
(
4p̃2
k − η2 −m2

)
B2 −m

(
2 η2 +m2 + 4 p̃2

k

)
B , (142)

A(p̃k) = C(p̃k) =
2B(p̃k)

m+B(p̃k)
. (143)
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Of particular interest is the chiral limit, m = 0. In this case Eq. (142) reduces
to a quadratic equation for B(p̃k), which has two qualitatively distinct solutions.
The ©NambuÄGoldstoneª solution, for which

B(p̃k) =

{ √
η2 − 4p̃2

k , Re(p̃2
k) <

η2

4
0 , otherwise

(144)

C(p̃k) =


2 , Re(p̃2

k) <
η2

4
1

2

(
1 +

√
1 +

2η2

p̃2
k

)
, otherwise ,

(145)

describes a phase of this model in which: 1) chiral symmetry is dynamically
broken, because one has a nonzero quark mass-function, B(p̃k), in the absence
of a current-quark mass; and 2) the dressed-quarks are conˇned, because the
propagator described by these functions does not have a Lehmann representation.
The alternative ©Wignerª solution, for which

B̂(p̃k) ≡ 0, Ĉ(p̃k) =
1

2

(
1 +

√
1 +

2η2

p̃2
k

)
, (146)

describes a phase of the model in which chiral symmetry is not broken and the
dressed-quarks are not conˇned.

With these two ©phasesª, characterised by qualitatively different, momentum-
dependent modiˇcations of the quark propagator, this model can be used to
explore chiral symmetry restoration and deconˇnement, and elucidate aspects of
the method in such studies.

In this model the relative stability of the different phases is measured by a
(T, µ)-dependent ©bag constantª [75],

B(T, µ) := P [SNG]− P [SW] , (147)

where SNG means Eq. (101) obtained from Eq. (144) and SW, Eq. (101) obtained
from Eq. (146). As above, B(T, µ) > 0 indicates the stability of the conˇned
(NambuÄGoldstone) phase and hence the phase boundary is speciˇed by that
curve in the (T, µ)-plane for which

B(T, µ) ≡ 0 . (148)

In the chiral limit
B(T, µ) =

= η4 2NcNf
T̄

π2

lmax∑
l=0

∫ Λ̄l

0

dy y2

{
Re
(
2p̄2
l

)
− Re

(
1

C(p̄l)

)
− ln

∣∣p̄2
lC(p̄l)

2
∣∣} ,
(149)
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Fig. 34. B(T, µ) from Eq. (149); B(T, µ) > 0 marks the conˇnement domain. The scale
is set by B(0, 0) = (0.102 η)4 = (0.109 GeV)4; η = 1.06 GeV [12]

with: T̄ = T/η, µ̄ = µ/η; lmax is the largest value of l for which ω̄2
lmax
≤ 1

4
+ µ̄2

and this also speciˇes ωlmax , Λ̄2 = ω̄2
lmax
− ω̄2

l , p̄l = (~y, ω̄l + iµ̄). B(T, µ) is
depicted in Fig. 34 and the critical line in Fig. 35. The deconˇnement and chiral
symmetry restoration transitions are coincident.

For µ = 0 the transition is second order and the critical temperature is
T 0
c = 0.159 η, which using the value of η = 1.06 GeV obtained by ˇtting the π

and ρ masses [12] corresponds to T 0
c = 0.170 GeV. This is only 12% larger than

the value obtained in Sec. 7.3, [60], and the order of the transition is the same.
However, in the present case the critical exponent is β = 0.5. For any µ 6= 0
the transition is ˇrst-order, as revealed by close scrutiny of Fig. 34. For T = 0
the critical chemical potential is µ0

c = 0.3 GeV, which is ≈ 30% smaller than the
result in Sec. 7.4 [62]. One notes from Fig. 35 that µc(T ) is insensitive to T
until T ≈ 0.3T 0

c . The discontinuity in the order parameters vanishes as µ→ 0.
In the deconˇnement domain, illustrated clearly in Fig. 35, the quarks con-

tribute an amount

P [SW] = η4 2NcNf
T̄

π2

∞∑
l=0

∫ ∞
0

dy y2

{
ln
∣∣∣β2p̃2

l Ĉ(p̄l)
2
∣∣∣− 1 + Re

(
1

Ĉ(p̄l)

)}
(150)

to the pressure, which must be renormalised to zero on the phase boundary. Just
as for free fermions, this expression is formally divergent and one must isolate and
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Fig. 35. The phase boundary in the (T̄ , µ̄)-plane obtained from (148) and (149). The
©structureª in this curve, apparent for small-T , is an artefact of the inadequate representa-
tion of the quark-quark interaction in the ultraviolet by Eq. (140)

deˇne the active, temperature-dependent contribution. This is difˇcult because, in
general, Ĉ(p̄l) is only known numerically and hence it is not possible to evaluate
P [SW] analytically. A method for the numerical evaluation of Eq. (150) was
developed in Ref.61.

Consider the derivative of the integrand in Eq. (150):

∞∑
l=0

d

dT̄

{
ln
∣∣∣β2p̃2

l Ĉ(p̄l)
2
∣∣∣− 1 + Re

(
1

Ĉ(p̄l)

)}
=

=

∞∑
l=0

{
− 1

T̄

[
(y − µ̄)2

(y − µ̄)2 + ω̄2
l

+
(y + µ̄)2

(y + µ̄)2 + ω̄2
l

]
+ Re

(
2Ĉ(p̄l)− 1

Ĉ(p̄l)2

dĈ(p̄l)

dT̄

)}
.

(151)
In the absence of interactions C(p̄l) ≡ 1, the second term is zero and

− 2

T̄

∞∑
l=0

[
(y − µ̄)2

(y − µ̄)2 + ω̄2
l

+
(y + µ̄)2

(y + µ̄)2 + ω̄2
l

]
=

d

dT̄

{
e(y)

T̄
+ I(e(y))

}
, (152)

where in this case e(y) = y and

I(ζ) = ln

[
1 + exp

(
−ζ − µ̄

T̄

)]
+ ln

[
1 + exp

(
−ζ + µ̄

T̄

)]
. (153)
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Fig. 36. κ(y, µ̄), which describes the nonperturbative modiˇcation of the free particle
dispersion law, for µ̄ = 0, 0.3, 0.6. By assumption, it is independent of T

Appropriately inserting Eq. (152) for the parenthesised term in Eq. (150), and
neglecting T -independent terms one obtains,

P [S0] = η4 NcNf
T̄

π2

∫ ∞
0

dy y2 I(y) (154)

= η4 NcNf
1

12π2

(
µ̄4 + 2π2µ̄2T̄ 2 +

7

15
π4T̄ 4

)
, (155)

which is the massless free particle pressure.
To proceed in the general case, the assumption is made [61] that the nontrivial

momentum dependence of Ĉ(p̄l), which is manifest in all DSE-models of QCDTµ ,
acts primarily to modify the usual massless, free particle dispersion law. One
evaluates the sum on the right-hand side of (151) numerically and uses the form
on the right-hand side of Eq. (152) to ˇt a modiˇed, T -independent dispersion
law, e(y, µ̄) = y + κ(y, µ̄), to the numerical results. The existence of a κ(y, µ̄)
that provides a good χ2-ˇt on the deconˇnement domain is understood as an
a posteriori justiˇcation of the assumption. In Ref.61 the relative error between
the ˇt and the numerical results is < 10% on the entire T -domain.

The calculated form of κ(y, µ̄) is depicted in Fig. 36; it only depends weakly
on µ̄. The form indicates a persistence of nonperturbative effects into the domain
of deconˇnement, evident in the nontrivial momentum dependence of Ĉ(p̄l) and
its slow evolution to the asymptotic value Ĉ(p̄l) = 1. The effect of this is to
generate a mass-scale in the massless dispersion law: κ(0, 0) ' 0.6 ∼ 2µ̄0

c . This
mass-scale is unrelated to the chiral-symmetry order parameter, X in Eq. (117),
and is a qualitatively new feature of the study. For µ̄ > 5µ̄0

c the explicit mass-
scale introduced by the chemical potential overwhelms the dynamically generated
scale.
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Fig. 37. The quark pressure, Pq(T̄ , µ̄), normalised to the free, massless (or Ultra-
Relativistic) result, Eq. (155)

Using this result, Eq. (150) becomes

P [SW] = η4NcNf
T̄

π2

∫ ∞
0

dy y2 I(e(y, µ̄)) , (156)

and the quark pressure in this DSE-model of QCDTµ is

Pq(T, µ) = θ(D) {P [SW]− P [SW]|∂D} , (157)

where D is the domain marked ©Deconˇnedª in Fig. 35, θ(D) is a step function,
equal to one for (T, µ) ∈ D, and P [SW]|∂D indicates the evaluation of this
expression on the boundary of D, as deˇned by the intersection of a straight-line
from the origin in the (T, µ)-plane to the argument-value. It is plotted in Fig. 37,
which illustrates clearly that in this model the free particle (StefanÄBoltzmann)
limit is reached at large values of T̄ and µ̄. The approach to this limit is slow,
however. For example, at T̄ ∼ 0.3 ∼ 2T̄ 0

c , or µ̄ ∼ 1.0 ∼ 3µ̄0
c , Eq. (157) is

only 50% of the free particle pressure, Eq. (155). A qualitatively similar result is
observed in numerical simulations of lattice-QCD actions at ˇnite-T [42]. This
feature results from the slow approach to zero with y of κ(y, µ̄), illustrated in
Fig. 36, and emphasises the persistence of the momentum dependent modiˇcations
of the quark propagator.

With the deˇnition and calculation of the pressure, Pq(T, µ), all the remaining
bulk thermodynamic quantities that characterise the model can be calculated. As
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Fig. 38. The ©interaction measureª, ∆(T, µ), normalised to the free, massless result for
the pressure, Eq. (155)

an example the ©interaction measureª: ∆ := ε − 3P , where ε is the energy
density, is plotted in Fig. 38. It is zero for an ideal gas, hence the name: ∆
measures the interaction-induced deviation from ideal gas behaviour. This ˇgure
provides a very clear indication of the persistence of nonperturbative effects into
the deconˇnement domain, with a µ = 0 maximum of ∆ ≈ 0.2P [S0] at T ≈ 2Tc
and a T = 0 maximum of ∆ ≈ 0.3P [S0] at µ ≈ 3µc. Both Figs. 37 and 38
indicate that there is a ©mirroringª of ˇnite-T behaviour in the µ-dependence of
the bulk thermodynamic quantities.

7.6. π and ρ properties. The model discussed in the last section has been
used [50] to study the (T, µ)-dependence of π and ρ properties, and to elucidate
other features of the models described above that employ a more sophisticated
Ansatz for the dressed-gluon propagator. In these applications its simplicity is
particularly helpful.

To begin, consider the vacuum quark condensate, which in this model is

−〈q̄q〉 = η3 8Nc
π2

T̄

lmax∑
l=0

∫ Λ̄l

0

dy y2 Re

(√
1

4
− y2 − ω̃2

l

)
: (158)

for T = 0 = µ, (−〈q̄q〉) = η3/(80 π2) = (0.11 η)3. In Fig. 39 one observes that
(−〈q̄q〉) decreases with T but increases with increasing µ, up to a critical value of
µc(T ) when it drops discontinuously to zero. These results are in qualitative and
semiquantitative agreement with the (T = 0, µ 6= 0) and (T 6= 0, µ = 0) studies
described in Secs. 7.3 and 7.4. The increase with µ is also qualitatively identical
to that observed in a random matrix theory with the global symmetries of the
QCD partition function [78]. (−〈q̄q〉) must increase with µ in the conˇnement
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Fig. 39. The quark condensate, Eq. (158), as a function of µ for a range of values of T . In
all existing studies, in which the quark mass function has a realistic momentum dependence,
it increases with µ and decreases with T . At the critical chemical potential, µc(T ), (−〈q̄q〉)
drops discontinuously to zero, as expected of a ˇrst-order transition. For µ = 0 it falls
continuously to zero, exhibiting a second-order transition at Tc(µ = 0) = 0.16 η.

domain because conˇnement entails that each additional quark must be locally-
paired with an antiquark, thereby increasing the density of condensate pairs. This
vacuum rearrangement is manifest in the behaviour of the necessarily-momentum-
dependent scalar part of the quark self energy, B(p̃k). In this model Eqs. (128)-
(130) yield very simple expressions in the chiral limit; for example∗,

f2
π = η2 16Nc

π2
T̄

lmax∑
l=0

Λ̄3
l

3

(
1 + 4 µ̄2 − 4 ω̄2

l −
8

5
Λ̄2
l

)
. (159)

Characteristic in Eq. (159) is the combination µ2 − ω2
l , which entails that, what-

ever change fπ undergoes as T is increased, the opposite occurs as µ is increased.
Without calculation, Eq. (159) indicates that fπ will decrease with T and increase
with µ. This provides a simple elucidation of the results described above. Fig-
ure 40 illustrates this behaviour for m 6= 0. The (T, µ)-dependence of mπ, from
Eq. (128), is also depicted in Fig. 40. It is insensitive to changes in µ and
only increases slowly with T , until T is very near the critical temperature. As in
Sec. 7.4, this insensitivity is the result of mutually cancelling increases in 〈m q̄q〉π

∗This is the expression for N2
π from Eq. (129), which provides a better approximation to the

pion leptonic decay constant than Eq. (130) when one assumes Γπ(p;P ) = iγ5 B0(p2).
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Fig. 40. The pion mass, Eq. (128), and weak decay constant, Eq. (129), as a function
of µ for a range of values of T . mπ falls slowly and uniformly with µ [mπ(T =
0, µc) = 0.95mπ(T = 0, µ = 0)] but increases with T . Such a decrease is imperceptible
if the ordinate has the range in Fig. 41. fπ increases with µ and decreases with T

[fπ(T = 0, µc) = 1.51 fπ(T = 0, µ = 0)]

and fπ, and is a feature of studies that preserve the momentum-dependence of
the conˇned, dressed-quark degrees of freedom in bound states.

With η = 1.37 GeV and m = 30 MeV, one obtains fπ = 92 MeV and
mπ = 140 MeV at T = 0 = µ. That large values of η and m are required
is a quantitative consequence of the inadequacy of Eq. (140) in the ultraviolet:
the large-p2 behaviour of the scalar part of the dressed-quark self energy is
incorrect. This defect is remedied easily [7] without qualitative changes to the
results presented here [71].

ρ-meson properties are more difˇcult to study: one must solve the vector-
meson Bethe Å Salpeter equation directly. As described above, the ladder trunca-
tion of the kernel in the inhomogeneous axial-vector vertex equation and the rain-
bow truncation of the quark DSE form an AV-WTI identity preserving pair [3].
It follows that the ladder BSE is accurate for 
avour-nonsinglet pseudoscalar and
vector bound states of equal-mass quarks because of a cancellation in these chan-
nels between diagrams of higher order in the systematic expansion illustrated in
Fig. 7.

A ladder BSE using the T = 0 limit of Eq. (140) was introduced in Ref.12.
It has one notable pathology: the bound state mass is determined only upon the
additional speciˇcation that the constituents have zero relative momentum. That
speciˇcation leads to a con
ict with Eqs. (19)-(22), which follow from the AV-
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Fig. 41. Mρ+ and mπ as a function of µ̄ for T̄ = 0, 0.1. On the scale of this ˇgure, mπ

is insensitive to this variation of T . The current-quark mass is m = 0.011 η, which for
η = 1.06 GeV yields Mρ+ = 770 MeV and mπ = 140 MeV at T = 0 = µ

WTI, and is an artefact of implementing the delta-function limit discontinuously;
i.e., these identities are manifest for any ˇnite-width representation of the delta-
function, as this width is reduced continuously to zero. In other respects this
ladder BSE provides a useful qualitative and semi-quantitative tool for analysing
features of the pseudoscalar and vector meson masses. For example, Goldstone's
theorem is manifest, in that the π is massless in the chiral limit, and also m2

π rises
linearly with the current-quark mass. Further, there is a naturally large splitting
between mπ and mρ, which decreases slowly with the current-quark mass.

To illustrate this and determine the response of mρ to increasing T and µ,
the BSE of Ref.12 was generalised [50] to ˇnite-(T, µ) as

ΓM (p̃k; P̌`) = −η
2

4
Re
{
γµ S(p̃i +

1

2
P̌`) ΓM (p̃i; P̌`)S(p̃i − 1

2
P̌`) γµ

}
, (160)

where P̌` := (~P ,Ω`). The bound state mass is obtained by considering P̌`=0 and,
in ladder truncation, the ρ- and ω-mesons are degenerate.

The π equation admits the solution

Γπ(P0) = γ5

(
iθ1 + ~γ · ~P θ2

)
(161)

and yields the mass plotted in Fig. 41. The mass behaves in qualitatively the
same manner as mπ in Fig. 40, from Eq. (128), as required if Eq. (160) is to
provide a reliable guide. In particular, it vanishes in the chiral limit.
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For the ρ-meson there are two components: one longitudinal and one trans-
verse to ~P . The solution of the BSE has the form

Γρ =

 γ4 θρ+(
~γ − 1

|~p |2
~P~γ · ~P

)
θρ−

, (162)

where θρ+ labels the longitudinal and θρ− the transverse solution. The eigenvalue
equation obtained from Eq. (160) for the bound state mass, Mρ±, is

η2

2
Re
{
σS(ω2

0+ −
1

4
M2
ρ±)2 −

[
±ω2

0+ −
1

4
M2
ρ±

]
σV (ω2

0+ −
1

4
M2
ρ±)2

}
= 1 .

(163)

The equation for the transverse component is obtained with [−ω2
0+ −

1

4
M2
ρ−] in

(163). Using the chiral-limit solutions, Eq. (144), one obtains immediately that

M2
ρ− =

1

2
η2, independent of T and µ. (164)

This is the T = 0 = µ result of Ref.12. Even for nonzero current-quark mass,
Mρ− changes by less than 1% as T and µ are increased from zero toward their
critical values. Its insensitivity is consistent with the absence of a constant mass-
shift in the transverse polarisation tensor for a gauge-boson.

For the longitudinal component one obtains in the chiral limit:

M2
ρ+ =

1

2
η2 − 4(µ2 − π2T 2) . (165)

The characteristic combination [µ2 − π2T 2] again indicates the anticorrelation
between the response of Mρ+ to T and its response to µ, and, like a gauge-boson
Debye mass, that M2

ρ+ rises linearly with T 2 for µ = 0. The m 6= 0 solution of
Eq. (163) for the longitudinal component is plotted in Fig. 41. As signalled by
Eq. (165), Mρ+ increases with increasing T and decreases as µ increases∗.

I stated that contributions from skeleton diagrams not included in the ladder
truncation of the vector meson BSE do not alter the calculated mass signiˇcantly
because of cancellations between these higher order terms [3]. This is illustrated
explicitly in two calculations: Ref.79, which shows that the ρ → ππ → ρ
contribution to the real part of the ρ self energy; i.e., the π-π induced mass-shift,
is only −3%; and Ref.80, which shows, for example, that the contribution to
the ω-meson mass of the ω → 3π-loop is negligible. Therefore, ignoring such

∗There is a 25% difference between the value of η required to obtain the T = 0 = µ values of
mπ and fπ , from Eq. (128) and Eq. (129), and that required to give Mρ± = 0.77 GeV. This is a
measure of the quantitative accuracy of this algebraic model.
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contributions does not introduce uncertainty into estimates of the vector meson
mass based on Eq. (160).

Equation (163) can also be applied to the φ-meson. The transverse component
is insensitive to T and µ, and the behaviour of the longitudinal mass, Mφ+, is
qualitatively the same as that of the ρ-meson: it increases with T and decreases
with µ. Using η = 1.06 GeV, the model yields Mφ± = 1.02 GeV for ms =
180 MeV at T = 0 = µ.

In a 2-
avour, free-quark gas at T = 0 the baryon number density is ρB =
2µ3/(3π2) , by which gauge nuclear matter density, ρ0 = 0.16 fm−3, corresponds
to µ = µ0 := 260 MeV = 0.245 η. At this chemical potential the algebraic model
yields

Mρ+(µ0) ≈ 0.75Mρ+(µ = 0) , (166)

Mφ+(µ0) ≈ 0.85Mφ+(µ = 0) . (167)

The study summarised in Sec. 7.4 [62], indicates that a better representation of the
ultraviolet behaviour of the dressed-gluon propagator expands the horizontal scale
in Fig. 41, with the critical chemical potential increased by 25%. This suggests
that a more realistic estimate is obtained by evaluating the mass at µ′0 = 0.20 η,
which yields

Mρ+(µ′0) ≈ 0.85Mρ+(µ = 0) , (168)

Mφ+(µ′0) ≈ 0.90Mφ+(µ = 0) ; (169)

a small, quantitative modiˇcation. The difference between Eqs. (166) and (168),
and that between Eqs. (167) and (169), is a measure of the theoretical uncertainty
in the estimates in each case. This reduction in the vector meson masses is
quantitatively consistent with that calculated in Ref.48 and conjectured in Ref.81.
At the critical chemical potential for T = 0, Mρ+ ≈ 0.65Mρ+(µ = 0) and
Mφ+ ≈ 0.80Mφ+(µ = 0).

This simple model of QCDTµ preserves the momentum-dependence of gluon
and quark dressing, which is an important qualitative feature of more sophisti-
cated studies. Its simplicity means that many of the consequences of that dressing
can be demonstrated algebraically. For example, it elucidates the origin of an
anticorrelation, found for a range of quantities, between their response to increas-
ing T and that to increasing µ.

Both (−〈q̄q〉) and fπ decrease with T and increase with µ, and this ensures
that mπ is insensitive to increasing µ and/or T until very near the edge of the
domain of conˇnement and DCSB. The mass of the transverse component of
the vector meson is insensitive to T and µ while the mass of the longitudinal
component increases with increasing T but decreases with increasing µ. This
behaviour is opposite to that observed for (−〈q̄q)〉 and fπ, and hence the scaling
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law conjectured in Ref.81 is inconsistent with this calculation, as it is with others
of this type.

This study has two primary limitations. First, the width of the vector mesons
cannot be calculated because the solution of Eq. (160) does not provide a re-
alistic Bethe Å Salpeter amplitude. Second, the calculation of meson-photon
observables at T = 0 = µ only became possible with the determination [5] of the
form of the dressed-quark-photon vertex. Its generalisation to nonzero-(T, µ) is
a necessary precursor to the study of these processes.

8. CLOSING REMARKS

These lecture notes illustrate the contemporary application of
Dyson Å Schwinger equations to the analysis of observable strong interaction
phenomena, highlighting the positive aspects and successes. Many recent, inter-
esting studies have been neglected; a calculation of the electric dipole moment
of the ρ-meson [82] and an exploration of η-η′ mixing [83] among them. How-
ever, a simple enquiry of ©http://xxx.lanl.gov/ˇnd/hep-phª with the keywords:
©Dyson Å Schwingerª or ©Schwinger Å Dysonª, will provide a guide to other
current research.

In all phenomenological applications, modelling is involved, in particular, of
the behaviour of the dressed Schwinger functions in the infrared. [The ultraviolet
behaviour is ˇxed because of the connection with perturbation theory.] This
is tied to the need to make truncations in order to deˇne a tractable problem.
Questions will always be asked regarding the ˇdelity of the modelling. The
answers can only come slowly as, for example, more is learnt about the constraints
that Ward Identities and Slavnov Å Taylor identities in the theory can provide.
That approach has been particularly fruitful in QED [5], and already in the
development of a systematic truncation procedure for the kernel of the quark DSE
and meson BSE [3, 4]. In the meantime, and as is common, phenomenological
applications provide a key to understanding which elements of the approach need
improvement: one must push and prod to ˇnd the weak links.
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