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The article summarizes the current status of lattice investigations of Quantum Chromo Dynamics
at ˇnite temperature. After a brief introduction into the formulation of QCD on the lattice and
into the treatment of lattice QCD in numerical simulations, the current knowledge about the critical
temperature of the transition from the hadron to the quark gluon plasma phase is presented. The status
of investigations of the nature of this transition is discussed. Moreover, analyses of the equation of
state in the high temperature phase as well as computations of the excitation spectrum at nonvanishing
temperature are presented.

‚ · ¡µÉ¥ · ¸¸³ É·¨¢ ¥É¸Ö ¸µ¢·¥³¥´´µ¥ ¸µ¸ÉµÖ´¨¥ ·¥Ï¥ÉµÎ´ÒÌ ¨¸¸²¥¤µ¢ ´¨° Š•„ ¶·¨ ±µ-
´¥Î´µ° É¥³¶¥· ÉÊ·¥. �µ¸²¥ µ¡µ§·¥´¨Ö Ëµ·³Ê²¨·µ¢±¨ ¨ Î¨¸²¥´´µ£µ ³µ¤¥²¨·µ¢ ´¨Ö Š•„ ´  ·¥-
Ï¥É±¥ · ¸¸³µÉ·¥´µ ¸µ¢·¥³¥´´µ¥ ¶·¥¤¸É ¢²¥´¨¥ µ ±·¨É¨Î¥¸±µ° É¥³¶¥· ÉÊ·¥ ¶¥·¥Ìµ¤  µÉ  ¤·µ´´µ°
Ë §Ò ± Ë §¥ ±¢ ·±-£²Õµ´´µ° ¶² §³Ò. �¡¸Ê¦¤ ¥É¸Ö ¸µ¸ÉµÖ´¨¥ ¨¸¸²¥¤µ¢ ´¨° ¶·¨·µ¤Ò ÔÉµ£µ ¶¥-
·¥Ìµ¤ . Š·µ³¥ Éµ£µ, ¶·¥¤¸É ¢²¥´Ò ± ±  ´ ²¨§ Ê· ¢´¥´¨Ö ¸µ¸ÉµÖ´¨Ö ¢ ¢Ò¸µ±µÉ¥³¶¥· ÉÊ·´µ° Ë §¥,
É ± ¨ ¢ÒÎ¨¸²¥´¨Ö ¸¶¥±É·  ¢µ§¡Ê¦¤¥´¨° ¶·¨ ±µ´¥Î´µ° É¥³¶¥· ÉÊ·¥.

1. INTRODUCTION

The transition from hadronic matter to a new state of matter, the quark gluon
plasma, at some ˇnite temperature Tc is a phenomenon which is governed by
long range interactions. As such, its understanding requires a nonperturbative
treatment of QCD. Due to the asymptotic freedom of QCD which predicts that
the temperature dependent coupling g(T ) vanishes in the limit T → ∞, at very
high temperatures one expects only weakly interacting gas of quarks and gluons.
However, it is not clear at which value of the temperature one may apply pertur-
bation theory reliably. This holds, in particular, in the temperature regime which
can be accessed by the forthcoming heavy ion collision experiments at RHIC and
LHC. Moreover, ˇnite temperature perturbative calculations are usually plagued
by infrared divergencies which seem to be curable only nonperturbatively. Thus,
nonperturbative analyses of QCD are also requested in order to obtain information
on the properties of the plasma phase.

∗Lectures presented at the ªResearch Workshop on Deconˇnement at Finite Temperature and
Densityª, Dubna, Russia, October 1Ä29, 1997
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The lattice approach to QCD distinguishes itself from other nonperturbative
treatments by the principal absence of any approximation to QCD. Of course, due
to the ever present limitations of computational power to evaluate the QCD path
integral numerically, systematic errors of lattice QCD arise from the necessary
constraints on the lattice volume, the ˇnite lattice spacing a and the quark mass.
In particular, since the computations which take into account virtual quark loops
are very time consuming, many lattice analyses have been carried out in the pure
gauge sector of QCD, the quenched approximation. This has delivered nontrivial
results as the pure glue system is conˇning and chiral symmetry breaking. In
particular, bulk properties of gluons at ˇnite temperature can be regarded as being
solved: the system has a well-established ˇrst-order transition [1], the equation
of state is known in the continuum limit [2], and the critical temperature in the
continuum limit has been determined with only a few percent uncertainty [3, 4].
Clearly, more detailed questions like, e.g., the nature of excitations in the plasma
deserve further work, also in the quenched approximation. Yet, the emphasis
of recent research has shifted towards studies of full QCD including staggered
as well as Wilson quarks. These studies have not yet reached the quality of
quenched simulations. In particular, the quark masses could not yet be tuned
to their physical values. Moreover, at the moment these studies are carried out
at considerably larger lattice spacings for technical reasons. Therefore, with the
standard discretizations, extrapolations to the continuum limit (vanishing lattice
spacing) will be more difˇcult than in the quenched case. Thus, the search for
improved actions has received much attention recently also in the context of ˇnite
temperature QCD.

These lectures attempt to summarize the current status of knowledge in ˇnite
temperature lattice QCD and the current developments to improve on these re-
sults. In section 2 a short introduction into lattice techniques is given. Section 3
summarizes estimates of the critical temperature. In section 4 the present status
of knowledge about the nature of the chiral transition is discussed. Section 5 de-
scribes studies of energy density and pressure at high temperature while section 6
reviews some results on screening lengths and masses. Conclusions are given in
section 7.

2. LATTICE SIMULATIONS

The partition function Z(V, T ) of a generic Quantum Field Theory with
elementary ˇelds Φ in a given spatial volume V at temperature T is given by the
path integral

Z(V, T ) =

∫
DΦ e−SE(V,T ). (1)
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Here SE is the Euclidean action, which deˇnes the ˇeld theory in terms of a
4-dimensional integral over the Lagrangian, L,

SE(V, T ) =

∫ 1/T

0

dt

∫
V

d3xL(Φ). (2)

The Lagrangian depends only on the fundamental ˇelds Φ(t, ~x) and a set of
coupling constants. The temperature and volume of a thermodynamic system
enter through the restriction of the fundamental ˇelds to a ˇnite (3+1)-dimensional
region of space-time. In particular, the temperature enters by restricting the
Euclidean time interval to the range t ∈ [0, 1/T ] and by demanding periodic
(antiperiodic) boundary conditions for bosonic (fermionic) ˇelds in this direction.
Thermodynamic quantities can then be obtained as derivatives of the partition
function. For instance, the energy density and the pressure are given by

ε =
T 2

V

∂

∂T
lnZ, p = T

∂

∂V
lnZ. (3)

The quantum ˇeld theory, deˇned formally by the above relations, can be
regularized by introducing a discrete space-time lattice with a ˇnite lattice spacing
a. This spacing acts as a coordinate cut-off which has to be removed at the end,
i.e., the continuum limit a → 0 has to be taken. On the lattice, the number of
degrees of freedom is reduced to a large but ˇnite set. This gives a well deˇned
statistical interpretation to the path integral and to most observables of interest,
which can be viewed as expectation values calculated in a statistical ensemble
with Boltzmann weights exp(−SE).

On a 4-dimensional space-time lattice with a lattice spacing a, the ˇelds Φ(x)
are restricted to the discrete set of points, (x0, ~x) → na ≡ (n0a, n1a, n2a, n3a).
Accordingly, Φ(x) gets replaced by φ(n) and the measure in the path integral
DΦ becomes

∏
n dφ(n). The partition function of this system reads

Z(V, T ) =

∫ ∏
n

dφ(n) e−SE(V,T ), (4)

where the temperature of a lattice of size Nτ ×N3
σ is determined by the temporal

extent, T = 1/Nτa, and the spatial volume is given by V = (Nσa)3.
The crucial step in formulating a lattice regularized quantum ˇeld theory

is the proper discretization of the Euclidean action, SE . This can be achieved
in a straightforward way for a scalar ˇeld theory by discretizing the integral in
Eq. (2) and replacing derivatives of ˇelds by ˇnite differences. The action of the
φ4-theory for instance, may be discretized as∫

d4x

{
1

2

∑
µ

(∂µΦ(x))2 +
1

2
m2Φ2(x) +

g

4!
Φ4(x)

}
→
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→
∑

n=(n0,..,n3)

a4

{
− 1

a2

3∑
µ=0

φ(n)φ(n+ µ̂) +
1

2
(m2 +

8

a2
)φ2(n) +

g

4!
φ4(n)

}
,

(5)
with µ̂ denoting the unit vector pointing to neighbouring sites in a 4-dimensional
lattice, m being the particle mass and g the coupling constant.

In the case of a gauge theory the discretization is not at all so obvious. In
fact, it is important to choose a discretization such that the basic symmetries of
the continuum action are preserved. This is not always possible as, e.g., for
fermionic theories. However, the most important step clearly is to construct a
discretized action which preserves local gauge invariance [5].

Gauge ˇelds mediate the interactions between matter. It is thus suggestive
to introduce them as variables on the links (n, µ) of the lattice rather than on the
sites. Gauge ˇelds, Aµ(x), can then be related to elements Uµ(n) of a gauge
group. In the case of an SU(N) gauge theory, the relation between Uµ(n) and
Aµ(x) is given by

Uµ(n) = exp

[
−iga

∫ na+µ̂a

na

dxµAµ(x)

]
, (6)

where g is the bare coupling constant. Expanding this relation in the lattice
spacing one can verify that the single plaquette action proposed by Wilson [5]

SG =
2N

g2

∑
n;0≤µ<ν≤3

=

=
2N

g2

∑
n;0≤µ<ν≤3

1

N
RetrUµ(n)Uν(n+ µ̂)U−1

µ (n+ ν̂)U−1
ν (n) , (7)

approximates the continuum action for the gauge ˇelds up to terms of O(a2),

SG =

∫
d4x

1

2
trF 2

µν +O(a2). (8)

In the continuum limit, a→ 0, these higher order corrections become irrelevant.
Wilson also suggested a discretization scheme for fermionic actions. While

it is easy to preserve local gauge invariance also in this case, it is not possible
to preserve all the chiral properties of fermionic actions. Fermion actions contain
only ˇrst derivatives of the ˇelds. As a consequence, a straightforward discretiza-
tion, similar to the scalar case described in Eq. (5), leads to additional poles in
the lattice fermion propagator. In the continuum limit these additional poles will
give rise to 15 additional, unwanted fermion species rather than only the one we
started with. It could be shown [6] that this is a general phenomenon when in
addition to such elementary assumptions as locality, hermiticity and translational
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invariance also a continuous chiral symmetry of the action is required. There are
however certain loopholes. Wilson proposed a discretization scheme for fermi-
ons, in which a second-order derivative term is added to the naively discretized
fermion action SF ,

S
(W )
F =

1

2

∑
n,µ

{ψ(n)γµUµ(n)ψ(n+ µ̂)− ψ(n+ µ̂)γµU
−1
µ (n)ψ(n)}+

+
1

2

∑
n,µ

{2ψ(n)ψ(n)− ψ(n+ µ̂)U−1
µ (n)ψ(n)− ψ(n)Uµ(n)ψ(n+ µ̂)}. (9)

While the ˇrst term approximates the continuum action ψ(x)[∂µ+igAµ(x)]ψ(x)+
O(a2), the second term is O(a) relative to the ˇrst one and becomes irrelevant in
the (naive) continuum limit. Its effect is that the 15 additional fermions acquire
a large mass of O(1/a), which diverges in the continuum limit, and thus would
decouple from the dynamics of the theory. However, chiral invariance of the
action is lost at ˇnite lattice spacing and is to be recovered in the continuum
limit. Usually, including a mass term, Wilson's fermion action is rewritten as

S
(W )
F = ψ(n)ψ(n)−

− κ
∑
n,µ

{ψ(n)(1 − γµ)Uµ(n)ψ(n+ µ̂) + ψ(n+ µ̂)(1 + γµ)U−1
µ (n)ψ(n)}. (10)

The hopping parameter κ contains the quark mass and, in the free case, is given
by κ−1 = 8 + 2mqa.

Another approach is due to Kogut and Susskind [7]. By distributing four
components of the continuum spinor over different sites of the lattice it is possible
to reduce the number of additional species. If one introduces one staggered
fermion species on the lattice, the Kogut Å Susskind or staggered lattice action
will lead to NF = 4 species of fermions in the continuum limit. Moreover it
preserves a global U(1) × U(1) chiral symmetry, i.e., an Abelian subgroup of
the continuum chiral symmetry. For studies of chiral symmetry breaking on the
lattice it is convenient to work with such a lattice action which preserves at least
part of the SU(NF ) × SU(NF ) chiral symmetry of the continuum action. The
staggered fermion action, obtained after a diagonalization in the Dirac indices,
becomes

S
(KS)
F =

∑
n,l

χ̄(n)M(n, l)χ(l). (11)

Here the fermion ˇelds, χ, χ̄, are single-component anticommuting Grassmann
variables deˇned on the sites of the lattice and the fermion matrix M(n, l) is
given by

M(n, l) =

3∑
µ=0

Dµ(n, l) +mδ(n, l). (12)
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The hopping matrices Dµ(n, l) mediate the nearest neighbour interactions and
have nonzero elements only for l = n± µ̂,

Dµ(n, l) =
1

2
ηµ(n)[Uµ(n)δ(n+ µ̂, l)− U−1

µ (l)δ(n− µ̂, l)]. (13)

The phase factors ηµ(n) = (−1)n0+...+nµ−1 for µ > 0 and η0(n) = 1 are rem-
nants of the γµ matrices. Note that the fermion action in the Wilson discretization,
Eq. (9) can be written in a similar form with a slightly more complicated hopping
term which also carries spinor indices.

Finally, the partition function of QCD takes on the form

Z =

∫ ∏
n,µ

dUµ(n)
∏
n

dχ(n)dχ̄(n) e−
[
SG+SF

]
, (14)

where for Wilson's formulation the χ ˇelds are to be replaced by the ψ spinors.
As the fermionic part of the action is bilinear in the ˇelds χ̄(n), χ(n), these can
be integrated out and the partition function can be represented in terms of bosonic
degrees of freedom only,

Z =

∫ ∏
n,µ

dUn,µ detM e−SG . (15)

In this form the partition function is well suited for numerical studies. A major
problem is, however, caused by the presence of the fermion determinant, which
in general cannot be calculated exactly. Algorithms for the numerical integration,
which circumvent the explicit calculation of this determinant, are thus required.

In the lattice regularization, the Feynman path integral, Eq. (4), becomes a
well-deˇned meaning as an ordinary integral. Because of the high dimensionality,
its numerical evaluation, however, is a formidable task. Imagine a lattice of just
104 lattice points, then Eq. (4) represents a 104 fold integral times the number
of internal degrees of freedom. Many ˇeld conˇgurations {φ} will contribute to
the integral with rather small Boltzmann weights, exp{−S(φ)}, though. Thus an
efˇcient way to compute the integral would consist in generating a sequence of
ˇeld conˇgurations {φ}(k) which are distributed according to this weight factor.
The expectation value of an observable O(φ) can then be approximated by the
ensemble average

〈O(φ)〉 =
1

M

M∑
k=1

O({φ}(k)). (16)

Such a series of ˇeld conˇgurations is obtained by means of the so-called Markov
chains. Starting from some arbitrary initial conˇguration {φ}(0) one generates,
one after the other, new sets of φ ˇelds. Under certain conditions, the sets {φ}(k)
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will be distributed according to the equilibrium probability exp{−S(φ)}, once a
number of not-yet equilibrated initial conˇgurations has been discarded.

It may sufˇce here to demonstrate the principles of this procedure by pre-
senting the prototype Metropolis algorithm [8]. It consists of two steps: site by
site (i) choose a trial update φ′ according to some normalized probability distri-
bution Ptrial(φ → φ′) = Ptrial(φ

′ → φ) and (ii) accept φ′ with the conditional
probability

Paccept = min

{
1,
e−S(φ′)

e−S(φ)

}
. (17)

The trial distribution Ptrial must be chosen in such a way that the whole conˇg-
uration space can be covered. The conditional accept probability Paccept favors
conˇgurations with lower action and thus higher Boltzmann weight but allows
also for conˇgurations with a smaller Boltzmann weight to be included in the set.
This is necessary in order to account for the quantum 
uctuations. Finally, the
algorithm satisˇes detailed balance, (P = Ptrial ∗ Paccept)

e−S(φ)P (φ→ φ′) = e−S(φ′)P (φ′ → φ), (18)

which is a sufˇcient condition for convergence to the equilibrium distribution.
As new conˇgurations are calculated from previous ones, it is clear that sub-

sequent ©snapshotsª of the system are not statistically independent of each other.
In order to carry out a correct statistical error analysis it is therefore desirable to
step through conˇguration space rather quickly, minimizing the number of inter-
mediate conˇgurations which have to be discarded because they do not provide
information independent of the previous state. The Metropolis algorithm is local
and can be implemented efˇciently. However, either the new value φ′ is close to
the old one, in which case the change in the action is small and its acceptance
is likely, or the new φ′ is far from the old one. In the latter case the change in
the action is large, however, and the acceptance rate drops exponentially. Both
choices result in a slow exploration of conˇguration space. These autocorrelation
times between subsequent conˇgurations can in general be decreased by using
algorithms which mix stochastic updatings with deterministic ones.

In the full theory, with dynamical fermions, one has to deal with the fermion
determinant, Eq. (15). Here, most simulations make use of the hybrid Monte
Carlo algorithm [9, 10]. As a prerequisit the determinant is re-expressed by a
path integral over pseudofermion ˇelds, i.e., bosonic (commuting) ˇelds which
interact via the inverse fermion matrix∗,

det{D +m} =

∫ ∏
n

dφ(n)dφ∗(n) exp
{
−φ∗(D +m)−1φ

}
. (19)

∗As the fermion matrix is not positive deˇnite, one ˇrst has to square the determinant in order to
obtain a regular Boltzmann weight factor. This minor complication will be neglected in the following.
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Because of the nonlocality of the inverse Dirac matrix, any local updating scheme
for the gauge ˇelds in Eq. (15) would though require to recalculate the inverse
after each local change in the U 's. Alternatively, one could change a whole
gauge ˇeld conˇguration at once and then recalculate the inverse. However, with
ordinary, local updating procedures, the acceptance probability of a global change
would drop to zero very quickly with the lattice size. The hybrid Monte Carlo
algorithm solves this problem by deliberately preparing a new conˇguration for
a global accept/reject decision, Eq. (17). For this purpose one adds a quadratic
term to the action,

H =
1

2

∑
n,µ

trπ2
µ(n) + SG(U) + φ∗(D +m)−1φ , (20)

which can be integrated out analytically and does not change expectation values.
This expression, Eq. (20), is now taken as a Hamiltonian, with πµ(n) being the
momenta conjugate to the gauge ˇelds, from which the Hamiltonian equations of
motion∗ in a ˇctitious time τ are derived [11],

d

dτ
Uµ(n) = iπµ(n)Uµ(n)

i
d

dτ
πµ(n) = Uµ(n)

∂

∂Uµ(n)
H. (21)

By numerically integrating the Hamilton equations over some time interval the
whole of the gauge ˇelds are evolved relatively fast through phase space. Since
Hamilton's equations are energy conserving, H = const, the new values for the
gauge ˇelds would be accepted with probability 1 if one could do the integra-
tion exactly. Discretization errors, however, cause slight violations of energy
conservation which are corrected for in a global Metropolis acceptance decision,
Eq. (17). By controlling the discretization step width dτ one can keep the en-
ergy conservation violations small and maintain a large acceptance probability.
Finally, the molecular dynamics evolution, Eq. (21), is supplemented by random
refreshments of the momenta π and the pseudofermions φ in order to guarantee
ergodicity.

In simulations with dynamical fermions, by far the largest fraction of com-
puting time goes into repeatedly calculating the inverse of the Dirac matrix. For
that purpose, solvers which iteratively explore the Krylov space like, e.g., the con-
jugate gradient algorithm are used [12]. The numerical effort for the inversion

∗Eq. (21) represents a slight modiˇcation of Hamilton's equations in order to preserve the gauge
ˇelds as elements of the gauge group.
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depends on the fermion mass via the condition number,

|λ|max
|λ|min

∼ 1

m
, (22)

where λ denotes an eigenvalue of the Dirac matrix. This explains the high cost
of simulations with small fermion masses.

As the numerical effort required for the simulation of fermions is quite large,
many lattice investigations have been using the so-called quenched approximation.
This approximation amounts to setting the determinant equal to 1,

det{D +m} = exp [tr log(D +m)]
!
= 1. (23)

Expanding the exponent leads to

tr log(D +m) ∼
∞∑
k=0

(
1

m
)2ktrD2k !

= 0. (24)

The Dirac matrix D connects neighbouring lattice sites via a gauge link and in
a way describes the hopping of a fermion from one site to the next. Because
of the trace, only closed loops contribute in Eq. (24). Thus, the seemingly
crude quenched approximation amounts to neglecting virtual quark loops and
treats fermions as static degrees of freedom. Properties of the theory which
depend crucially on the fermion dynamics are thus not accessible by studies in
the quenched approximation. On the other hand, basic properties of QCD which
are dominated by the non-abelian gluon dynamics should and do survive the
approximation. Quenched studies therefore serve as important guides for many
nonperturbative aspects of the theory. Of course, the results have to be checked
by calculations in the full theory.

The statistical accuracy of computations notably in the quenched approxima-
tion has nowadays become so good that the major uncertainty of the results is the
systematic error arising from ˇnite lattice spacings. There are attempts to reduce
this error by using the so-called improved actions. A detailed presentation of this
rather technical issue is beyond the scope of these lectures, yet it might be useful
to demonstrate some ideas.

Improved actions are targeted at reducing the deviations between the contin-
uum and the lattice action to higher orders in the lattice spacing. In principle, e.g.,
for a generic scalar action, this can be achieved by using better ˇnite difference
approximants to the derivative. With

S1 =
1

2a
[φ(x + µ̂)− φ(x− µ̂)] = ∂µφ+

a2

6
∂3
µφ+O(a4)

S2 =
1

6a
[φ(x + 3µ̂)− φ(x − 3µ̂)] = ∂µφ+

3a2

2
∂3
µφ+O(a4) (25)
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one obtains
9

8
S1 −

1

8
S2 = ∂µφ+O(a4) (26)

and thus reduces the deviations from O(a2) to O(a4). Clearly, this procedure is
not unique and can be iterated towards increasingly better approximants. The price
to be paid are successively more extended lattice operators and correspondingly
more computational effort per lattice site. The same principle applies to gauge
ˇelds although the generalization is perhaps not so immediate because gauge
invariance ought to be preserved. Here one adds larger loops to the simple
plaquette term, Eq. (7), in the simplest case

SG ∼
4

3
− 1

6
∼ Scont

G +O(a4). (27)

The coefˇcients of the two loops have been adjusted at tree level so as to improve
the classical action. In the path integral, however, quantum corrections introduce
deviations of order a2g2n. In principle [13] these can be eliminated order by
order in perturbation theory. For on-shell quantities this program was carried
out at one-loop level [14]. However, lattice perturbation theory in the bare gauge
coupling is badly converging in the parameter range usually explored in numerical
studies. The bad convergence can be traced back to the expansion of the link
variable Uµ, Eq. (6), in terms of the gauge potential Aµ,

Uµ ' 1 + iagAµ −
1

2
a2g2A2

µ + ... (28)

The higher orders lead to vertices not present in continuum perturbation theory.
Their contributions are not small at gauge couplings of O(1). Moreover, they lead
to ©tadpoleª diagrams [15] which enhance O(a2g2n) corrections to O(g2n). These
unwanted terms can partly be eliminated by the so-called tadpole improvement.
In this approach the link variables are renormalized by their mean ˇeld value
(which in the lowest nontrivial order is given by the tadpole contribution) and
the perturbative series is carried out in a renormalized coupling. It is however
a priori not known whether nonperturbative quantities are sufˇciently improved
by this recipe.

Similar improvement programs have been suggested for fermion actions [16,
17]. This seems important in particular for the Wilson discretization which
deviates from the continuum action in O(a), compared to staggered fermions at
O(a2). Here, also a nonperturbative determination of the coefˇcients in the action
by requiring certain Ward identities to hold have been advocated [18] and are
being explored.

Finally, renormalization group ideas have been used to construct improved
actions [19]. Integrating out high momentum 
uctuations leads to coarse grained
lattices and deˇnes a renormalization group 
ow in a multidimensional parameter
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space. In principle one could thus derive a perfect action which at a given value
for the lattice spacing ©sitsª on the renormalized trajectory. In practice one has to
truncate the set of different lattice operators to some manageable number. Again,
this approach is also being used and tested.

3. CRITICAL TEMPERATURE

One of the basic quantities to be derived from ˇnite temperature lattice QCD
is the value of the critical temperature. The critical temperature is obtained from
the location where a certain order parameter vanishes. In the case of the pure
SU(N) gauge theory this order parameter is the expectation value of the Polyakov
loop

〈L〉 = 〈 1

N
tr

Nτ∏
n0=1

U0(n0)〉. (29)

Below the phase transition its vanishing signals that the theory is invariant under
the center symmetry Z(N) of SU(N) : U0(Nτ ) → zU0(Nτ ) with zεZ(N).
Above Tc the ˇnite value of 〈L〉 shows breakdown of that symmetry. Moreover,
the Polyakov loop is related to the free energy Fq of a single quark

〈L〉 = exp(−Fq/T ) (30)

so that 〈L〉 = 0 below Tc is equivalent to an inˇnite Fq , i.e., one has conˇnement.
Above the transition, Fq can be ˇnite because of deconˇnement, hence 〈L〉 6= 0.

The fermionic part of the action breaks the center symmetry explicitly. Thus
the Polyakov loop is not an order parameter in the symmetry sense anymore. The
relation with the free energy still holds. However, in the chiral limit the QCD
Lagrangian is invariant under chiral 
avor transformations. These symmetries
are spontaneously broken at T = 0 leading to a nonvanishing chiral condensate,
〈ψψ〉 6= 0, and to massless Goldstone bosons, the pions. At high temperature one
expects that the chiral invariance is restored indicated by 〈ψψ〉 → 0 at the critical
temperature.

Because on a ˇnite lattice the Polyakov loop can tunnel through all different
Z(N) vacua one usually analyzes 〈|L|〉. In simulations with fermions one cannot
run at vanishing quark mass. Both leads to nonvanishing tails of the order
parameters in the ©otherª phase. Therefore, the corresponding susceptibilities
χL = 〈|L|2〉 − 〈|L|〉2 and χm = 〈(ψψ)2〉 − 〈ψψ〉2 are more sensitive to the
location of the critical temperature where they develop a peak.

In Fig.1 the Polyakov loop and the chiral condensate as well as the cor-
responding susceptibilities are plotted as a function of the coupling. The data
originates from a simulation with two 
avors of dynamical staggered quarks.
Note that in principle the deconˇnement and the chiral transition are two different
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Fig. 1. Polyakov loop and chiral condensate together with the corresponding susceptibilities
as a function of the coupling β = 6/g2 from a simulation with two 
avors of dynamical
staggered quarks

phenomena, yet, one observes the peaks in both susceptibilities (with fermions in
the fundamental color representation) at the same location.

Once the critical bare coupling is known, one needs to turn that value into
a physical number for the temperature. Recall that the temperature of a lattice is
given by the relation T = 1/(Nτa(β)) where the lattice spacing is dependent on
the bare coupling β = 6/g2 by dimensional transmutation. In order to vary T one
can change Nτ in discrete steps or tune a by varying β. For each Nτ one needs a
different value for a hence for β to tune to the same temperature. For a physical
value of T or Tc a physical number for the lattice spacing has to be known.
This is obtained by computing a quantity with nontrivial dimension like, e.g., a
hadron mass mH or the string tension σ on a lattice with the same bare coupling
but at T = 0. This yields these quantities in lattice units, e.g., σlat = σa2(β).
In ratios like Tc/

√
σ = 1/(Nτ

√
σlat) the lattice spacing drops out and the ratios

should become independent of a. Due to nonuniversal scaling, i.e., an observable-
dependent relation between a and β and due to lattice discretization effects these
ratios need not be constant however. To obtain continuum numbers one has to
extrapolate to a→ 0.

Figure 2 summarizes the current status of analysis in the quenched approx-
imation. It shows the ratio Tc/

√
σ for various actions where σ is the string

tension extracted from the static quark potential at T = 0. For all data points
the value of the critical coupling has been extrapolated to its inˇnite (spatial)
volume limit at which then the string tension was determined. The lowest set
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Fig. 2. The quenched critical temperature in units of the square root of the string tension
for various gauge actions versus the lattice spacing squared

Fig. 3. The critical temperature in units of the square root of the string tension for dynamical
fermions versus the square of the lattice spacing (for further explanations see text)

of data points originates from simulations with the standard Wilson gauge ac-
tion [2, 4]. An extrapolation in the lattice spacing to the continuum limit gives
Tc/
√
σ = 0.630(5). The data is compared with results from simulations with a

variety of Symanzik-improved actions [4, 21]. Note that in this particular ratio,
Tc/
√
σ, no strong cut-off dependence is seen in neither case. Also the continuum
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Fig. 4. The critical temperature in units of the square root of the string tension for dynamical
fermions plotted versus (MPS/MV )2. The point at (MPS/MV )2 = 1 is the Nτ = 4
quenched value

extrapolations are in agreement with each other. Likewise, the results [3] from
Iwasaki's RG-improved action are consistent with a constant behavior in a, but
they deliver a value of the critical temperature of Tc/

√
σ = 0.656(4) which is

about 3% higher than the number from the standard action. Since the procedure
to extract the string tension has not been the same for the two numbers, one
might suspect that the difference in the quoted values for Tc, Tc = 276(2)MeV
versus 266(2) MeV, is mainly due to differences in the analysis of the static quark
potential [22] rather than to differences in the improvement scheme.

The current situation with dynamical fermions is depicted in Fig.3. The plot
summarizes data from simulations with 2 
avors of quarks, staggered fermions
at Nτ = 4 and 6 [23, 24] as well as improved Wilson fermions at Nτ = 4 [23],
plus NF = 4 staggered results obtained from Nτ = 4 lattices with an improved
action [25] in addition to an old number [26] from Nτ = 8 and a standard
action. Compared to the equivalent quenched plot, Figure 3 shows that the lattice
spacings at which Tc has been determined so far are considerably larger than
in pure gauge theory simulations. Moreover, the investigations have not been
carried out at the physical quark masses. The arrow in Figure 3 indicates that at
ˇxed Nτ the transition takes place at larger lattice spacings when the quark mass
is decreased. Thus the critical temperature is decreasing when the quark mass is
lowered.

The same data is shown again in Fig.4 as a function of the pseudoscalar
Goldstone boson to vector meson mass ratio (MPS/MV )2 which is proportional
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Fig. 5. The critical temperature in units of the vector meson mass for staggered fermions
plotted versus (MPS/MV )2

to the physical quark mass. Here now, at ˇxed Nτ , smaller lattice spacings are
to the right of the ˇgure. The Nτ = 4 staggered data indicate that Tc over

√
σ

tends to lower values as the quark mass decreases. The same trend is observed
for the Wilson improved results, although at larger (MPS/MV )2 ratios. On the
other hand, the Nτ = 6 data point seems to indicate that, at a given quark mass,
decreasing of the lattice spacing increases Tc/

√
σ only slightly. At the moment,

one would therefore estimate a physical value for the critical temperature of
Tc/
√
σ<∼ 0.4 or Tc<∼ 170 MeV.

The critical temperature has also been estimated from the ratio to the vector
meson mass. In this case one ought to go (close) to the chiral limit in order
to extract a physical number because the vector meson mass depends on the
quark mass. In the case of using the string tension to set the scale one might
argue that the string tension is considerably less affected by the quark mass.
Figure 5 shows Tc/MV for NF = 2 staggered fermions [24, 27Ä31], plotted as
function of (MPS/MV )2. As the quark mass is decreased this ratio rises. Recall
that the inˇnite quark mass, quenched data point corresponds to MPS/MV = 1
and Tc/MV = 0. As the lattice spacing is decreased, Tc/MV stays remarkably
constant. Extrapolating the Nτ = 4 data to the chiral limit suggests a value of
Tc/MV ' 0.2 or Tc ' 150MeV. Note that this value disagrees somewhat with
the number extracted from the string tension.

The corresponding data for dynamical Wilson quarks [23,32Ä34] are given in
Fig.6. Although some unexpected crossover behavior at the critical temperature
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Fig. 6. The critical temperature in units of the vector meson mass for Wilson fermions
versus (MPS/MV )2

was observed with the standard Wilson fermion action, at least the results for
Nτ = 6 and 8 as well as the ˇrst data with improved Wilson fermions [23] are
not in disagreement with the staggered data.

In summary, studies with dynamical fermions consistently have lead to an
estimate of the critical temperature of order 150 MeV for 2 
avors so far. This
value is considerably lower than the quenched number of Tc = 270(5)MeV.
Because of the relation T = 1/(aNτ ) of the temperature T to lattice spacing a and
temporal extent Nτ of the lattice, dynamical fermion simulations in the vicinity
of the transition are correspondingly, at a given Nτ , carried out at considerably
larger lattice spacings.

4. PHASE TRANSITION

The studies presented in this section are aiming at establishing the order of
the transition to the plasma phase. A ˇrst order transition has discontinuities at the
ªcriticalª temperature, e.g., a latent heat, and the two phases are coexisting at Tc.
At a second order transition the correlation length and certain response functions
diverge while other quantities show a continuous behavior. These differences
lead to observable consequences in the cooling of the early universe as well as in
heavy ion collision experiments.

In the quenched approximation it has been clariˇed that the deconˇnement
transition is of ˇrst order [1]. In the full theory the nature of the transition is a
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subject of active research. The most advanced studies so far have concentrated
on two 
avors of light quarks as one is expecting that the restoration of chiral
symmetry is the important phenomenon also in the realistic case of two light, up
and down quarks plus the heavier strange quark.

4.1. Staggered NF = 2: Critical Behavior. The theoretical expectations on
the scaling behavior of QCD at the chiral transition are based on the σ model in
three dimensions. For the case of two light 
avors, if the transition is of second
order, it is expected to show scaling behavior with SU(2) × SU(2) ' O(4)
exponents. On the other hand, if the anomalous UA(1) symmetry were effectively
restored, the relevant symmetry group would be UA(1) × SU(2) × SU(2) '
O(2)×O(4) and the transition could be of ˇrst order [35].

It has been attempted to analyze the critical behavior of two 
avor staggered
QCD by studying the scaling behavior of various quantities and determining
critical exponents [36]. These scaling relations are derived from the scaling of
the singular part of the free energy density under an arbitrary change of scale b,

f(t, h) = −T
V

lnZ = b−1f(bytt, byhh). (31)

Here, t is the reduced temperature, t = (T − Tc)/Tc, with Tc as the critical
temperature in the chiral limit, and h is the symmetry breaking ˇeld, h = m/T .
In the vicinity of the critical point, thermodynamic quantities should be governed
by the thermal (yt) and the magnetic (yh) critical exponent. In the staggered
version of lattice regularized QCD, for the dimensionless couplings t and h one
uses

t =
6

g2
− 6

g2
c (0)

h = maNτ , (32)

where gc(0) denotes the critical coupling on a lattice with ˇxed temporal extent in
the limit of vanishing quark mass. At nonvanishing quark mass, a pseudo-critical
coupling gc(m) is deˇned as the location of a peak in, e.g., the Polyakov loop
susceptibility.

Quantities from which one can extract critical exponents are various suscep-
tibilities, in particular, the magnetic or chiral susceptibility

χm =
T

V

NF∑
i=1

∂2

∂m2
i

lnZ (33)

and the thermal susceptibility

χt = −T
V

NF∑
i=1

∂2

∂mi∂(1/T )
lnZ. (34)
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Table. Critical exponents for O(2), O(4) and mean ˇeld (MF). The numerical 2 
avor
QCD results are given separately for each spatial lattice size, with upper values
denoting the JLQCD and the lower ones Å the Bielefeld group numbers [40, 41]

O(2) O(4) MF L=8 L=12 L=16
zg 0.60 0.54 2/3 0.70(11) 0.74(6) 0.64(5)

0.63(6)
zm 0.79 0.79 2/3 0.70(4) 0.99(8) 1.03(9)

0.84(5) 1.06(7) 0.93(8)
zt 0.39 0.34 1/3 0.47(5) 0.81(9) 0.83(12)

0.63(7) 0.94(12) 0.85(12)

Assuming that the free energy is dominated by its singular part, Eq. (31) then
leads to the scaling predictions for the peak heights of the susceptibilities at the
line of pseudocritical couplings

χpeak
m ∼ m−zm

χpeak
t ∼ m−zt , (35)

where the exponents are given by zm = 2− 1/yh and zt = (yt − 1)/yh + 1. The
pseudocritical line itself is expected to follow

6

g2
c (m)

=
6

g2
c (0)

+ cmzg (36)

with zg = yt/yh. The values of these exponents for various symmetries [37]
are given in the Table. At ˇnite lattice spacing the exact chiral symmetry of
the staggered fermion action is U(1) ' O(2). However, sufˇciently close to the
continuum limit one expects O(4) exponents. The possibility of mean-ˇeld (MF)
exponents arbitrarily close to the transition has been raised by [38].

Earlier investigations of the exponents on small lattices (83×4) had observed
partial agreement with O(4) scaling [39]. These studies have been repeated on
larger spatial volumes, L = 12, 16 by the JLQCD collaboration [40] and by the
Bielefeld group [41]. In addition to the quark mass values 0.02, 0.0375 and 0.075
in lattice units JLQCD also ran at m = 0.01. The volume dependence of the
chiral susceptibility at peak is shown in Fig.7, similar results are available for
the other quantities. For m ≥ 0.02, the susceptibility rises when the volume is
increased from 83 to 123, but then stays approximately constant. Thus, a phase
transition does not occur in this mass range, in agreement with earlier claims [42].
At m = 0.01 the linear increase in the peak height as the volume is enlarged
continues up to L = 16. As such, this observation could suggest a ˇrst order
transition. JLQCD however have studied the volume dependence of a double-
peak structure in the distribution of the chiral order parameter and conclude that
a ˇrst order transition is likely to be absent [40].
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Fig. 7. Volume dependence of the chiral susceptibility χm at peak for two 
avors of
staggered quarks

The quark mass dependence of χpeak
m is shown in Fig.8, expected scaling

behavior, Eq. (35). The resulting values for the critical exponents are also sum-
marized in the Table. For zg , within two standard deviations, agreement with all
three predictions is obtained. For the other two exponents, both groups consis-
tently observe a drastic change when the spatial extent is increased from L = 8 to
L = 12, 16. While for the small volume the value for zm is in rough agreement
with O(2) and O(4), the results from L = 12 and 16 do not agree with any of
the predicted numbers. Indeed, the observed value zm ' 1 would be expected
for a ˇrst order transition. The thermal exponent zt is larger than any of the
predictions for all volumes.

Another way to study the scaling behavior is to compute the (magnetic)
equation of state [43]

〈ψψ〉h−1/δ = φ(th−1/βδ), (37)

where the critical exponents δ and βδ are related to yt and yh as 1/δ = 1/yh− 1
and 1/βδ = yt/yh. The scaling function φ was determined from a parametrization
of O(4) simulation results [44] and is universal, except that two nonuniversal
normalization constants have to be adjusted. This has been done by the MILC
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Fig. 8. Mass dependence of the chiral susceptibility χm at peak. The upper 4 lines are ˇt
results with Eq. (35) to the Nσ = L = 12 and 16 data while the lowest line shows the
slope of O(4) scaling

Collaboration [45] for Nτ = 4, 6, 8 and 12. The results are shown in Fig.9.
While at Nτ = 4 the data for the larger quark masses and smaller volumes are
compatible with O(4), the new data at smaller quark masses and larger lattice
extent again show drastic disagreement. When Nτ is increased, thus going to
smaller lattice spacings, the agreement becomes increasingly better [45], but it
should be remarked that the data at Nτ = 12 originates from physical quark mass
values m/T ' 0.1 which are of about the same size as the larger quark masses
used at Nτ = 4. Also, even at large spacing one would expect O(2) behavior
which is indistinguishable from O(4) with the current precision of the data.

At the moment there is no convincing explanation for these discrepancies at
hand. In view of the results presented in section 4.3 obtained with an improved
gauge action and Wilson fermions one might speculate that at strong coupling
and for the standard action the relation between the QCD parameters and the
thermodynamic variables, Eq. (32), as they enter the singular part of the free
energy is strongly distorted. More studies at weaker coupling or with improved
actions would be needed to solve this important question.
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Fig. 9. The magnetic equation of state, Eq. (37), for Nt = 4, 6, 8 and 12 [45]. The line in
each plot is the O(4) scaling prediction. It can be moved horizontally as well as vertically
by adjusting two free normalization constants

4.2. UA(1) Restoration. The nature of the chiral transition for two 
avors is
strongly affected by the realization of the UA(1) symmetry [35]. This symmetry
is present in the classical continuum action but is destroyed by the famous triangle
anomaly. At very high temperatures topologically nontrivial conˇgurations are
suppressed. This could lead to the effective restoration of the symmetry despite
the anomaly. For 2 light quark 
avors the effective restoration of UA(1) is
re
ected in the degeneracy of the pion and the isovector-scalar a0(δ) mass [46].
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Fig. 10. Masses of π, a0 and f0 taken from the generalized susceptibilities, Eq. (38), for
two 
avors of staggered quarks as a function of the coupling. The critical coupling is
indicated by the vertical line

This degeneracy can also be detected by comparing generalized susceptibilities
deˇned via integrated propagators of a hadron H

χH =

∫
d4x(〈H(x)H†(0)〉 ∼ 1

M2
H

. (38)

The susceptibilities have been computed by various groups [41, 47, 48] and a
set of results is shown in Fig.10. At the critical temperature, π and f0 become
(almost) degenerate re
ecting SUA(2) restoration while there remains a signiˇcant
difference between a0 and π in the investigated temperature range.

These results were obtained at ˇnite quark mass and need to be extrapolated
into the chiral limit. This was attempted in [47, 48]. Figure 11 shows the latest
results by the Columbia group for the difference between π and a0,

ω =

∫
d4x(〈π(x)π†(0)〉 − 〈a0(x)a†0(0)〉). (39)

If UA(1) is restored this quantity should vanish in the chiral limit. In the con-
tinuum, the susceptibility ω is expected to be an analytic and, for NF = 2, even
function in the quark mass. Indeed, ˇts with a quadratic m dependence work
and lead to a ˇnite intercept in the chiral limit. However, the data look strikingly
linear and ˇtting them with a linear ansatz results in a vanishing of the suscep-
tibility at m = 0. At ˇnite lattice spacing, due to zero-mode shifts and perhaps
also due to taking the square root of the determinant the approach towards the
chiral limit is not so clear however [48]. Therefore one should continue to study
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Fig. 11. The quantity ω, Eq. (39), which measures the breaking of the UA(1) symmetry
plotted versus the quark mass (lowest data) together with various ˇts [48]. Also shown
are the results for the integrated pion correlator, χP , and the chiral condensate. The data
were obtained on a 163 × 4 lattice at ˇxed β slightly above βc

the quark mass dependence at even smaller quark masses as well as at smaller
lattice spacings.

The approach chosen in [49,50] is to determine screening masses. Above the
critical temperature, the difference between π and a0 mass drops considerably,
but a nondegeneracy remains at ˇnite quark mass, thus conˇrming the ˇndings
originating from the analysis of the susceptibilities. In order to address the
problem of the chiral limit from a different angle, Ref. 50 also computed the
lowest eigenvalues λ and corresponding eigenvectors ψλ of the fermion matrix
D. In the continuum, in the phase symmetric with respect to the axial SU(2),
the chiral limit of ω is given by the zero-modes,

ω = 〈
∑
λ=0

ψλγ5ψλ

iλ+m
〉 . (40)

In [50] it is then veriˇed that ω obtained from Eq. (39) is saturated by the
contribution from low eigenmodes at ˇnite a and mq . Thus it seems that the
continuum relation between the UA(1) and the eigenmodes is satisˇed on the
lattice. This supports that the vanishing of ω when the chiral limit is carried out
at ˇnite lattice spacing is caused by the absence of exact zero modes at ˇnite a.
Taking the continuum limit prior to the chiral one would therefore presumably
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lead to nonvanishing ω. In this manner the results of [50] indicate that the UA(1)
symmetry is not restored at the chiral transition.

4.3. Wilson Fermions NF = 2. Wilson's discretization of the action for
fermions breaks chiral symmetry explicitly. Therefore, the value for the hopping
parameter κ which corresponds to the chiral limit is shifted away from its free
ˇeld value κc(β →∞) = 1/8 to a coupling constant dependent κc(β) which has
to be tuned at each β value. At zero temperature one usually deˇnes the chiral
limit by means of the pion mass which vanishes according to

m2
π ≈

1

κ
− 1

κc
. (41)

At sufˇciently large temperatures this deˇnition does not work anymore. For
instance, at ˇxed and large enough β, when one lowers the quark mass by
increasing κ, one reaches the transition to the plasma phase at which point the
pion mass starts to increase because in the plasma phase the pion ceases to be a
Goldstone particle and acquires a ˇnite mass even in the limit of vanishing quark
mass.

This results in the phase diagram as shown in Fig.12, which has been clariˇed
by [51]. At ˇnite Nτ , the line κc(β) deˇned through the vanishing of the pion
mass starts off at 1/4 at β = 0 and extends to κc ' 0.22 at about β ' 4.0 where
it bends backwards again to the region of stronger couplings (see also [52]).
On the other hand, coming from the conˇned phase, at the thermal line κt(β)

Fig. 12. The ˇnite temperature phase diagram in the (β, κ) plane for standard Wilson
fermions [51]
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Fig. 13. The magnetic equation of state, Eq. (37), with two 
avors of standard Wilson
fermions on improved glue [54]. The various symbols denote data obtained at different
values of the gauge coupling b = 6/g2

where the Polyakov loop develops a nonvanishing expectation value the pion
mass increases rapidly due to the approximate restoration of chiral symmetry.
Only in the region where the thermal line is close to κc does the theory have a
pion with a small mass. Thus, the chiral transition can only be explored in that
region. Unfortunately, this region is at strong coupling for Nτ = 4 and moves
towards smaller coupling only very slowly with increasing temporal extent of the
lattice [53], rendering a study of the transition in the vicinity of continuum physics
prohibitively expensive. For that reason and for the well-known pathologies [34]
several groups have started to work with improved actions.

In [54] the standard Wilson fermion action with RG-improved glue was
simulated. Qualitatively, the phase diagram is very similar to the standard one so
that small pion masses again are obtained in the vicinity of the ˇnite temperature
κc cusp. In addition to the phase diagram the group has also investigated the
magnetic equation of state, Eq. (37). For Wilson fermions quark mass and chiral
order parameter have to be obtained from chiral Ward identities [55]. This
involves renormalization constants for which the lowest order perturbative values
have been used in [54]. The results are shown in Fig.13. The agreement with
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the O(4) scaling curve is remarkable. The analysis was carried out on lattices
of size 83 × 4 and with mainly not very small quark masses. It would be very
interesting to continue the investigation on larger lattices and with more data at
smaller quark masses.

4.4. More than 2 Flavors. The phase transition has also been studied for the
number of 
avors differing from 2. Regarding the nature of the chiral transition,
for NF ≥ 3 and degenerate quark masses one expects ˇrst order in the continuum
limit [35].

Early results in the staggered discretization (for a summary see, e.g., [56])
indeed show a behavior which is consistent with this expectation. Recently, the
cases NF = 3 and 4 with degenerate Wilson quarks have been studied in [57]. In
both cases the phase diagram is very similar to the one with 2 
avors, in particular
the κc line forms a cusp. At large quark masses, away from the cusp, one indeed
observes ˇrst order behavior. When the quark mass is lowered however, the
NF = 4 data show a weakening of ˇrst-order signals. For NF = 3 it seems
that the ˇrst-order signal weakens when the discretization errors inherent to the
approximate algorithm one has to use in this case are decreased. Thus, for both
NF = 3 and 4 Wilson quarks the order of the transition is still unclear.

The physically realistic case is the one of NF = 2 + 1, meaning two 
avors
with almost vanishing mass and a strange quark about 25 times heavier. In the
limit of a heavy strange quark the strange quark ceases to play a signiˇcant
role in the chiral transition and one is approaching the two 
avor case, hence
expecting a second order transition. On the other hand, if up, down and strange
quarks become degenerate (and light) one would expect the NF = 3 transition
with supposedly ˇrst order. The transition's nature thus depends crucially on the
quark masses. The physical value of the quark mass is not easy to determine
precisely in a lattice simulation. Moreover, running at about the physical value
for the two light quarks is at best possible at strong coupling so far. Therefore,
it is perhaps not too surprising that the two dedicated efforts to study the 2 + 1
case, [58, 59], come to different conclusions. Ref. 58 is simulating staggered
quarks and suggest a crossover or second order behavior while in the simulation
with Wilson fermions [59] a ˇrst order behavior is favored. More work clearly
is needed here.

5. EQUATION OF STATE

A quantitative understanding of the equation of state of QCD is one of the
central goals in ˇnite temperature ˇeld theory. The intuitive picture of the high
temperature phase of QCD behaving like a gas of weakly interacting quarks
and gluons is based on leading order perturbation theory. However, the well-
known infrared problems of QCD result in a poor convergence of the perturbative
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Fig. 14. The gluonic part of the energy density in the inˇnite temperature limit, computed
on lattices with ˇnite temporal extent and normalized to the continuum Stefan Å Boltzmann
value, for various gauge actions [65]

expansion of the thermodynamic potential even at temperatures very much higher
than Tc [60].

Lattice calculations of energy density (ε), pressure (p) and other thermody-
namic variables at high temperature, on the other hand, are hampered by ultra-
violet cut-off effects. As these quantities receive substantial contributions from
high momentum modes ∼ T the effects of ˇnite lattice spacings can be large. For
instance, the energy density in the inˇnite temperature limit deviates considerably
from the continuum Stefan-Boltzmann value. For the pure gauge theory in the
standard Wilson discretization the corrections are

εG0 = εGSB

[
1 +

10

21

(
π

Nτ

)2

+
2

5

(
π

Nτ

)4

+O(

(
π

Nτ

)6

)

]
. (42)

Recall that π/Nτ = πTa. As can be seen from Fig.14 the corrections can be as
large as 50 % for Nτ = 4. On the other hand, the nonperturbative determination
of, e.g., the pressure makes use of the following formula [61]

p

T 4

∣∣∣g
g0

≡ − f

T 4

∣∣∣g
g0

= N4
τ

∫ 6/g2

6/g2
0

d(6/g′2)(S0 − ST ), (43)

where S0 is the expectation value of the action at zero and ST the same quantity
at ˇnite temperature. From Eq. (43) it is clear that the signal decreases ∼ 1/N4

τ

with increasing Nτ , i.e., decreasing a.
In order to determine quantitatively the size of the deviation of the energy

density or pressure from the ideal gas value an extrapolation to the continuum limit
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Fig. 15. The extrapolated continuum limit of energy density, entropy density and pressure
in the pure glue theory [2]. The dashed horizontal line shows the ideal gas limit. The
hatched vertical band indicates the size of the discontinuity in ε/T 4 (latent heat) at Tc [62]

is mandatory. The result of such an extrapolation for the pure gauge theory [2]
is shown in Fig.15. The energy density rapidly rises to about 85 % of the ideal
gas value at 2Tc and then shows a rather slow increase which is consistent with
a logarithmic behavior as one would expect from a leading order perturbative
correction. The pressure rises much more slowly near Tc and even at T ' 3Tc
shows sizeable deviations from the ideal gas relation ε = 3p.

As stated in section 2, improved actions aim at reducing the differences
between the continuum and lattice action due to ˇnite lattice spacings. Since the
pressure is related to the action, Eq. (43), any improvement in the action will
reduce the ˇnite lattice spacing effects on the high-momentum contribution to,
e.g., the pressure in the ideal gas limit. This is indicated in Fig.14, where the
analytical results in the inˇnite temperature limit for some improved actions are
compared with the standard action. As can be seen, by use of an improved action
the ˇnite a corrections can be brought down to the level of a few per cent already
at temporal extents of Nτ = 4.

The improvement seems to work not only in the high temperature limit
but also already close to Tc. Figure 16 summarizes the results of numerical
simulations of a variety of improved actions [67]. Although the lattice extent
in the temporal direction was only 4, the improved actions lead to values quite
close to the continuum extrapolation of the standard action results. This in
turn gives strong support to the continuum extrapolation presented above. Tree-
level improvement seems to be the leading effect, although one would have
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Fig. 16. The pressure in SU(3) pure gauge theory on lattices with Nτ = 4 for various
actions [67] indicated by the subscripts. The solid line shows the continuum extrapolation
obtained from the standard plaquette action. The dots result from a calculation with a
classical ˇxed point action on a lattice with Nτ = 3 [87]

Fig. 17. Energy density and pressure from a simulation with the 2 
avor staggered standard
action. The results are extrapolated to the chiral limit by means of an O(4) ansatz. Fit
and data at the lowest quark mass ma = 0.0125 are also shown. The triplets of curves
represent the central value and the one standard deviation error [64]
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Fig. 18. The fermionic part of the energy density in the inˇnite temperature limit, computed
on lattices with ˇnite temporal extent and normalized to the continuum Stefan Å Boltzmann
value, for various staggered fermion actions [66]

expected that close to the transition infrared modes and their improvement would
be more important. Tadpole improvement has an effect though for the interface
tension [68].

The equation of state has also been investigated with dynamical quarks in
the staggered discretization. For two 
avors the standard action was used on
lattices with temporal extent Nτ = 4 and 6 [63, 64]. The data for the energy
density on the Nτ = 4 lattices showed an overshooting above the ideal gas limit
at temperatures just above Tc. This bump is not present anymore in the newest
data for Nτ = 6 and at the smallest quark mass, Fig.17. The extrapolation to the
chiral limit shown in this ˇgure does have a peak again but this effect is attributed
to an artefact of the extrapolation.

The extrapolation to the continuum limit, however, is difˇcult with the (fermi-
onic) standard action. The ˇnite lattice spacing corrections in the high temperature
limit are large

εF0 = εFSB

[
1 +

465

441

(
π

Nτ

)2

+O(

(
π

Nτ

)4

)

]
(44)

and only very slowly decreasing with Nτ as can also be seen from Fig.18 [66].
This makes analyses based on improved actions even more desirable than in the
quenched case. Indeed, in the high temperature limit, the deviations from the
continuum Stefan Å Boltzmann prediction can be brought down to the level of
less than 10 % at Nτ = 4, Fig.18.
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Fig. 19. Energy density for 4 
avors of quarks, obtained from a calculation at Nτ = 4
with an improved action [25]. The upper two curves show the energy density at the given
quark masses, the lower set is obtained by neglecting the contribution to the energy density
which is proportional to the quark mass and vanishes in the chiral limit. The horizontal
lines give the ideal gas limit at Nτ = 4 and in the continuum limit

A ˇrst attempt to analyze bulk thermodynamic quantities in the vicinity of
Tc by means of simulations with an improved fermion discretization scheme, the
Naik action, has been carried out in [25]. The results are shown in Fig.19.

At the moment, there are investigations under way which try to estimate the
effect of various improvement strategies on the restoration of 
avor symmetry
[66, 69Ä71]. It remains to be seen how much this can help to extract energy
density or pressure closer to the continuum limit at ˇnite temperatures.

6. SCREENING LENGTHS AND MASSES

An important goal of analytical as well as lattice investigations has been to
understand the nature of excitations characterizing the structure of hot QCD in
the vicinity of the transition and in the plasma phase. At high temperature, due to
asymptotic freedom the effective coupling constant g(T ) should become small and
one is lead to expect that the plasma consists of a gas of only weakly interacting
quarks and gluons. On the other hand, there are indications that even at high
temperatures the excitation spectrum might be more complicated in particular
because of nonperturbative effects in the chromomagnetic sector of QCD.
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The deˇnition of a chromoelectric and a chromomagnetic mass beyond per-
turbation theory is somewhat ambiguous. A possible choice is to extract the
chromoelectric or Debye mass from the heavy quark potential. At the decon-
ˇnement temperature the potential between heavy, nonrelativistic quarks changes
from a linear rising, conˇning form to a screened Coulombic behavior,

V (R) ∼ T
(
g2

R

)2

exp{−2meR}, (45)

which is obtained from two-gluon exchange in resumed lowest order perturbation
theory. Here, me denotes the Debye-mass, for which (lowest order) perturbation
theory predicts

me0 =

√
Nc

3
+
NF

6
gT. (46)

The (color averaged) heavy quark potential is obtained from Polyakov loop
correlations,

Vav(~x) = −T ln
〈 L(~x) L(~0) 〉
〈L 〉2 , (47)

with L(~x) being the Polyakov loop at spatial coordinates ~x, see Eq. (29). Indeed,
the potential data [72] show the anticipated decrease in the linear rise, i.e. the
string tension decreases, when the critical temperature is approached from below,
see Fig. 20. Above Tc screening ∼ exp(−µR) clearly is observed. Moreover,
comparing the potentials at different temperatures, one can verify that the screen-
ing mass µ depends on the temperature as µ ∼ T . However, when analyzed
in detail, the data does not follow Eqs. (45),(46) in so far neither the power 2
of the Coulomb term nor the prediction for the coefˇcient in the exponential is
observed. One might conclude that at the temperatures investigated the behavior
of the Polyakov loop correlations is not described properly by simple perturbation
theory.

For an alternative deˇnition of the effective gluon masses at high temperature
one can refrain to the exponential decrease of a gluon-gluon correlation function.
That enables one to distinguish between the electric sector deˇned via

Ge(x) = 〈A0(x)A0(0)〉 (48)

and the magnetic one (k = 1, 2, 3)

Gm(x) = 〈Ak(x)Ak(0)〉, (49)

where Aµ, µ = 0, .., 3 denotes the gluon ˇeld. The gluon correlation function is
gauge variant so that one has to ˇx to a deˇnite gauge, usually the Landau gauge.
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Fig. 20. The heavy quark potential of the pure glue theory at various temperatures below
the phase transition and in the deconˇned phase

The correlation functions (48),(49) have been analyzed in the simpler color
group SU(2) [73]. In the magnetic sector, a nonvanishing chromomagnetic gluon
mass with a temperature variation of mm(T ) ' 0.5g2(T )T was found. Such a
mass is widely expected and cures the well-known infrared problems of high
temperature perturbation theory at this order. If mm is nonvanishing next-to-
leading order perturbation theory, then predicts [74] for the electric mass

m2
e = m2

e0

(
1 + g

N

2π

√
6

2N +NF
[ln

2me

mm
− 1

2
]

)
, (50)

where me0 denotes the leading term, Eq. (46). The results of [73] show that at
best at very high temperatures of O(104Tc) contact can be made with this predic-
tion, Fig. 21. In general, the data can be described by the formula

√
1.7g(T )T

indicating that the screening mechanism is a highly nonperturbative effect even
at large temperatures.
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Fig. 21. The electric gluon mass in units of the temperature versus T/Tc [73]. Squares
denote results from simulations with the standard Wilson action at two different lattice
volumes, the circles originate from a simulation with an improved action. The lines
represent analytic predictions at tree level, Eq. (46) (dashed) and at next-to-leading order,
Eq. (50) with a magnetic mass determined in the same simulation (dashed-dotted) or ˇt
results with an ansatz me = const × g(T )T (solid) and an ansatz summarizing ad hoc
higher contributions to Eq. (50) (dotted)

A third deˇnition for the (electric) screening mass is applied in [75]. Here
the Debye mass is extracted from the correlation of a gauge-invariant operator
[76] which is odd under the Euclidean equivalent of time reversal and charge
conjugation. Moreover, [75] apply dimensional reduction and simulate the 3rd
effective theory. Although the results quantitatively differ somewhat from those
of [73] the conclusion is the same in both cases.

Hadron correlation functions at high temperature but below the transition are
interesting for phenomenological reasons. For instance, a temperature dependent
ρ meson mass and width could perhaps explain the dilepton spectra found in
nucleus-nucleus collisions at high energy. Detailed lattice investigations (of spa-
tial correlators, see below) have been carried out in the quenched approximation
so far [77]. Based on the staggered fermion discretization, these studies show
that the investigated quantities remain unaffected by the temperature up to Tc.
Some recent work with Wilson fermions conˇrms this observation, although at
one temperature value only so far [78]. As these analyses work in the quenched
approximation where the transition has been determined to be of ˇrst order, dy-
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namical quarks could alter that picture somewhat because in this case a continuous
transition is expected.

Correlation functions of operators with the quantum numbers of hadrons have,
in the plasma phase, been investigated in a variety of papers. Due to the limited
extent of the lattice in the temporal direction 0 ≤ x0 ≤ 1/T one cannot study the
correlations at large time separations which is what one would like to do in order
to isolate the contribution of the state with the lowest energy or mass. Therefore,
one usually focussed on the long distance behavior of spatial correlators

〈H(z)H†(0)〉 ∼ exp(−Mscz) (51)

which decay with the screening mass Msc. (For exceptions see [79, 80].) These
screening masses would coincide with the masses if the zero temperature disper-
sion relation were applicable. In any case, the spatial correlators depend on the
same spectral density as the masses and thus deliver information about it. As
noted above, at sufˇciently high temperature one expects that the plasma consists
of a gas of weakly interacting quarks and gluons. In this case, the spatial corre-
lation function should be described by the exchange of two (almost) free quarks.
Since quarks propagating in the spatial direction carry nonvanishing ©momentaª
of (2n+1)πT because they obey antiperiodic boundary conditions in the temporal
direction, the minimum contribution to the correlator is given by

Msc = l
√
m2
q + (πT )2 (52)

in the continuum limit, where l = 2 for mesons and l = 3 for baryons. Indeed,
lattice results [81] in the vector and axial vector channel as well as for baryonic
excitations are compatible with this expectation, see Fig. 22. However, the scalar
and pseudoscalar channels show substantial deviations. This might indicate the
existence of bound states as bosonic bound states would have vanishing Matsubara
frequencies and hence could have a lower screening mass. Also, one could have
substantial spin dependent interactions.

On the other hand, the spatial wave functions of the states contributing to
the spatial correlator, Eq. (51), were analyzed [82]. Here one ˇnds the same
behavior as at zero temperature, an exponential decay which is not expected from
leading order perturbation theory and which suggests that the relevant hadronic
excitations are bound states also in the plasma phase, at least at temperatures just
above Tc. According to [83], this behavior could be explained by the fact that the
dimensionally reduced, 3-D effective theory and correspondingly spatial Wilson
loops in 3+1 dimensions [84] show conˇnement. Solving then a two-dimensional
Schréodinger equation with a potential which includes a temperature-dependent
(spatial) string tension leads to spatial wavefunctions

|ψ(R)| ∼ exp(−
√
σspat(T )πTR3/2) (53)
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Fig. 22. A representative set of hadronic screening masses [81] from a staggered 4 
avor
simulation. The masses are plotted versus the gauge coupling across the transition at
6/g2 ' 5.15. The lines to the left indicate the zero temperature values for the masses, the
lines to the right show the expectation for free quarks, µ/T = 2π and 3π for mesons and
baryons respectively, corrected for ˇnite lattice effects

and to screening masses, which differ from Eq. (52) by terms of O(
√
σspat(T )).

A quantitative test of this suggestion is not yet available though.

Finally, heavy quarks in the range mc < m < mb at temperatures around the
critical one have for the ˇrst time been investigated in [85]. The heavy quarks are
simulated by means of a nonrelativistic approximation to QCD [86], applied to
quenched conˇgurations. The propagation of quarkonia states is followed in the
time direction. For that purpose, the investigation is carried out on anisotropic
lattices with a large anisotropy ratio ξ = aσ/aτ = 4.65 in order to have enough
Matsubara frequencies. So far, the analysis was done for the 3S1 ground and ˇrst
excited state. Below Tc, at about 0.8Tc no temperature effect was seen. At 1.2Tc,
the propagator which is dominated by the ground state at large time separations
t from the source becomes 
atter than the zero temperature propagator at large
t. This effect can be interpreted as a decrease in the mass by a small amount of
about 12 MeV at the lightest quark mass simulated. The effect becomes weaker
with increasing quark mass. The ˇrst excited state, projected on by the same trial
wave function as at T = 0, undergoes a larger change of about - 240 MeV at the
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charm quark mass. Thus, at least qualitatively, the results are in accord with the
expectations from a Debye-screened potential model, namely that smaller states
feel the screening less.

7. CONCLUSIONS

In these lectures, the current status of lattice investigations of QCD at ˇnite
temperature has been reviewed. Bulk properties of the pure gluon system are
known to rather high precision. Thus, the emphasis of these studies recently has
shifted towards simulations of the full theory including dynamical fermions.

At currently accessible quark masses, these investigations have led to an
estimate for the critical temperature for 2 
avors of around 150 MeV. This number
is almost a factor of two smaller than the quenched value of 270(5) MeV. Thus,
at ˇxed temporal extent of the lattice, simulations of full QCD in the vicinity
of the critical temperature have to be carried out at considerably larger lattice
spacings than in the quenched case.

Analyses of the critical behavior at the chiral transition suggest a second
order transition. However, at present the estimates for the critical exponents are
in disagreement with theoretical expectations. This holds for simulations in the
staggered discretization of quarks while ˇrst results with Wilson fermions seem
to support the anticipated universality with O(4). Concerning the anomalous
axial U(1), at present it is not yet entirely clear whether or not this symmetry is
effectively restored at the chiral transition. Further studies at smaller quark mass
values are required to shed more light on these important issues.

In addition, lattice results of investigations of various screening lengths have
been presented. At temperatures which are accessible in present and future heavy
ion collision experiments the data consistently show sizable deviations from sim-
ple perturbative expectations. Nonperturbative effects therefore need to be taken
into account in the interesting temperature range.

This also holds for energy density and pressure. Moreover, analytic studies
of the inˇnite temperature limit of these quantities on ˇnite lattices reveal dis-
cretization effects which are particularily large in the fermionic part of the energy
density if standard discretizations of the fermion action are used. This, together
with the observation of a small value of the critical temperature in two-
avor
QCD has stimulated activities to explore improved actions also in the context of
ˇnite temperature studies.
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