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The aim of the article is to discuss the S-matrix interpretation of perturbation theory for the
Wigner functions generating functional at a ˇnite temperature. For the sake of deˇniteness, the
concrete problem from particle physics of high-temperature initial states dissipation into cold one
is considered from experimental and theoretical points of view. The temperature is introduced in
the theory by typical for the microcanonical description way. The perturbation theory contains
two-temperature (of initial and ˇnal states) Green functions. Two possible boundary conditions are
considered. One of them is usual in a ˇeld theory vacuum boundary condition. Corresponding
generating functional of Wigner functions can be used in the particle physics. Another type of the
boundary condition assumes that the system under consideration is in environment of the black-
body radiation. This leads to the usual in statistics KuboÄMartinÄSchwinger boundary condition at
the equilibrium (one-temperature) limit. The comparison of the S-matrix approach with SchwingerÄ
Keldysh real-time ˇnite-temperature ˇeld theory and with nonstationary statistical operator approach of
Zubarev are considered. The range of applicability of the ˇnite-temperature description of dissipation
processes is shown.

–¥²Ó ¤ ´´µ° · ¡µÉÒ Ä µ¶¨¸ ÉÓ S-³ É·¨Î´ÊÕ ¨´É¥·¶·¥É Í¨Õ É¥µ·¨¨ ¢µ§³ÊÐ¥´¨° ¤²Ö ¶·µ-
¨§¢µ¤ÖÐ¥£µ ËÊ´±Í¨µ´ ²  ËÊ´±Í¨° ‚¨£´¥·  ¶·¨ ±µ´¥Î´ÒÌ É¥³¶¥· ÉÊ· Ì. „²Ö µ¶·¥¤¥²¥´´µ¸É¨
¡Ê¤¥É · ¸¸³µÉ·¥´ ¸ Ô±¸¶¥·¨³¥´É ²Ó´µ° ¨ É¥µ·¥É¨Î¥¸±µ° ÉµÎ¥± §·¥´¨Ö ±µ´±·¥É´Ò° ¶·µÍ¥¸¸ ¤¨¸-
¸¨¶ Í¨¨ £µ·ÖÎ¥£µ ´ Î ²Ó´µ£µ ¸µ¸ÉµÖ´¨Ö ¢ Ìµ²µ¤´µ¥, É¨¶¨Î´Ò° ¤²Ö Ë¨§¨±¨ Î ¸É¨Í. ’¥³¶¥· ÉÊ· 
¸µ¸ÉµÖ´¨° ¡Ê¤¥É ¢¢¥¤¥´  ¢ Ëµ·³ ²¨§³ Ì · ±É¥·´Ò³ ¤²Ö ³¨±·µ± ´µ´¨Î¥¸±µ£µ µ¶¨¸ ´¨Ö µ¡· -
§µ³. ’¥µ·¨Ö ¢µ§³ÊÐ¥´¨° ¸µ¤¥·¦¨É ËÊ´±Í¨¨ ƒ·¨´ , § ¢¨¸ÖÐ¨¥ µÉ ¤¢ÊÌ É¥³¶¥· ÉÊ· (µÉ¤¥²Ó´µ ¤²Ö
´ Î ²Ó´µ£µ ¨ ±µ´¥Î´µ£µ ¸µ¸ÉµÖ´¨°). � ¸¸³µÉ·¥´Ò ¤¢  É¨¶  £· ´¨Î´ÒÌ Ê¸²µ¢¨°. �¥·¢µ¥ ¸µµÉ-
¢¥É¸É¢Ê¥É µ¡ÒÎ´µ³Ê ¤²Ö É¥µ·¨¨ ¶µ²Ö ¢ ±ÊÊ³´µ³Ê £· ´¨Î´µ³Ê Ê¸²µ¢¨Õ. ‘µµÉ¢¥É¸É¢ÊÕÐ¨¥ ¶·µ-
¨§¢µ¤ÖÐ¨¥ ËÊ´±Í¨µ´ ²Ò ËÊ´±Í¨° ‚¨£´¥·  ³µ£ÊÉ ¡ÒÉÓ ¨¸¶µ²Ó§µ¢ ´Ò ¢ Ë¨§¨±¥ Î ¸É¨Í. „·Ê£µ°
É¨¶ £· ´¨Î´ÒÌ Ê¸²µ¢¨° ¶·¥¤¶µ² £ ¥É, ÎÉµ ¸¨¸É¥³  µ±·Ê¦¥´  ¨§²ÊÎ¥´¨¥³ Î¥·´µ£µ É¥² . �Éµ ¶·¨-
¢µ¤¨É ± µ¡ÒÎ´Ò³ ¢ ¸É É¨¸É¨Î¥¸±µ° Ë¨§¨±¥ £· ´¨Î´Ò³ Ê¸²µ¢¨Ö³ ŠÊ¡µÄŒ ·É¨´ Ä˜¢¨´£¥·  ¢
µ¤´µÉ¥³¶¥· ÉÊ·´µ³ ¶·¥¤¥²¥. ŒÒ ¸· ¢´¨³ ´ Ï S-³ É·¨Î´Ò° ¶µ¤Ìµ¤ ¸ ·¥ ²Ó´µ-¢·¥³¥´´µ° É¥-
µ·¨¥° ˜¢¨´£¥· ÄŠ¥²¤ÒÏ  ¶·¨ ±µ´¥Î´ÒÌ É¥³¶¥· ÉÊ· Ì ¨ ¸ ´¥¸É Í¨µ´ ·´Ò³ ¸É É¨¸É¨Î¥¸±¨³
µ¶¥· Éµ·µ³ ‡Ê¡ ·¥¢ . �µ± § ´  µ¡² ¸ÉÓ ¶·¨³¥´¨³µ¸É¨ É¥³¶¥· ÉÊ·´µ£µ µ¶¨¸ ´¨Ö ¤¨¸¸¨¶ É¨¢´ÒÌ
¶·µÍ¥¸¸µ¢.

1. INTRODUCTION

At the very beginning of this century, couple P. and T.Ehrenfest had offered
a model to visualize Boltzman's interpretation of irreversibility phenomena in
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statistics. The model is extremely simple and fruitful [1]. It considers two
boxes with 2N numerated balls. Choosing number l = 1, 2, ..., 2N randomly
one must take the ball with label l from one box and put it into another one.
Starting from the highly ªnonequilibriumª state with all balls in one box it is
seen a tendency to equalization of balls number in the boxes. So, there is seen
irreversible∗ 
ow toward preferable (equilibrium) state. One can hope [1] that
this model re
ects a physical reality of nonequilibrium processes with initial state
very far from equilibrium. A theory of such processes with (nonequilibrium) 
ow
toward a state with maximal entropy should be sufˇciently simple to give deˇnite
theoretical predictions.

In order to do the consideration less formal we will be connected with
concrete physical problem. For instance, the particles creation processes are good
laboratory for investigation of general properties of relativistic nonequilibrium
processes. Indeed, considering the multiplicity n as the characteristics of ˇnal
state entropy we can choose the asymptotically large n >> n̄(s), where mean
multiplicity n̄(s) naturally deˇnes the scale of n. Then one can expect, noting
the above-mentioned general property of the nonequilibrium 
ow, that the theory
of processes with practically total dissipation of initial-state kinetic energy into
particles masses should be extremely simple. By this reason it is natural to
start consideration from region n >> n̄(s). We would construct the theory
permanently taking into account just this condition.

The theory of dissipative processes has general signiˇcance from thermody-
namical point of view and we would concentrate our attention on this important
problem. There is also practical side of the problem considered. At n >> n̄(s)
the cross sections σn(s) fall down rapidly and are too small (< nb). Noting also
a problem of triggering such rear ˇnal state, the experimenters must have enough
arguments to examine them. The main arguments are as follows: at n >> n̄(s)
we have unique chance (i) to examine
Ä pure (practically without admixture of hadrons),
Ä cold (it is a best condition for investigation of collective phenomena in a sys-
tem),
Ä dense (in this case the QCD interaction constant αs is small)
quarks plasma (CQGP) and (ii) to realize experimentally the decay of very hot
(at high energies) initial state in the ªin
ationalª regime, with ªfreezedª nonper-
turbative degrees of freedom of hadrons system.

It is known from hadrons high-energy experiments that the cross sections σn
have a maximum at n ∼ n̄(s), where 1 << n̄(s) << nmax and nmax =

√
s/mh

is the maximally available multiplicity at given energy
√
s (mh is the hadrons

characteristic mass). This testify to the statement that in hadron processes the

∗©What never (is the time-reversed 
ow)? No never! What never? Well, hardly ever.ª [2]
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nonequilibrium 
ow is not equal to zero (n̄(s) >> 1), but the mostly probable
processes did not lead to the state with maximal entropy (n̄(s) << nmax). (The
early model was based on the assumption that the ˇnal state of inelastic hadron
processes has maximal entropy n̄(s) ∼ nmax [3].)

The preferable at n ∼ n̄ processes are indebted for excitation of hadrons
nonperturbative degrees of freedom described by creation of hadrons constituents
from vacuum: the kinetic motion of partons leads to increasing, because of con-
ˇnement phenomenon, polarization of vacuum and to its instability concerning
quarks creation [4]. In other words, there is a long-range correlation among
hadrons constituents. Under this special correlations the conservation laws con-
straints were implied. They are important in dynamics since each conservation
law decreases the number of the dynamical degrees of freedom at least by one
unite, i.e., it has nonperturbative effect (this must explain why n̄(s) << nmax).
Moreover, in the so-called integrable systems each independent integral of motion
(in involution) reduces number of degrees of freedom by two units. In result there
is not stochastization in such systems [5], i.e., the nonequilibrium 
ow is equal
to zero. But it will be argued that at the very high multiplicities this effect is
negligible. So, if

n̄(s) << n < nmax

we will see that the particles creation processes are close to Markovian in ac-
cordance with Boltzman's idea. The reason of this phenomenon is the more fast
falling down of soft channel of hadrons creation compared with hard channels in
asymptotics over n.

Rejecting nonperturbative effects creation of the high-multiplicity ˇnal state
can be described using standard methods of QCD. We will show dominance of
processes with minimal number of QCD jets in the high-multiplicities region.
This means that the high-multiplicity processes are stationary Markovian∗. This
result is in agreement with Boltzman's general idea concerning nonequilibrium

ows.

So, the high-multiplicity processes are ©unshadowedª by nonperturbative and
complicated perturbation effects. This will allow one to investigate not only new
state of the pure colored plasma but also the structure of fundamental Lagrangian.
This conclusions are not evident and we start consideration from brief review of
arguments.

It must be noted that the experimental investigation of high-multiplicity
processes in deep asymptotics over n seems unreal. But considering moder-
ate n >> n̄ we cannot be sure that the ˇnal state is equilibrium. Investigation of
fractal dimensions in the multiparticle hadron processes at high energies shows

∗The vertices renormalization takes into account the time-reversed 
uctuations in the nonequi-
librium 
ow.
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presence of considerable 
uctuations [6]. This leads to necessity to have the
theory of dissipation processes with nonequilibrium ˇnal state.

There is also another side of the problem. Today understanding of hadron
processes is far from ability to give any quantitative prediction. The above-
announced prediction concerning absence of nonperturbative contributions into
hadron processes ªworksª in the deep asymptotics over n only. So, at moderate
n >> n̄ we cannot be sure that they do not have important in
uence. That is
why we will concentrate our attention in this paper on the searching for economic
(thermodynamical) description of the dissipative processes, trying to ˇnd the
connections of our S-matrix approach with other ones. It is important to note
that the offered formalism allows one to separate the dynamical side of question
from the pure descriptional one (see also concluding Section).

This central problem of formalism can be solved noting that our dissipative
problem contains element of dynamics since it crucially depends on boundary con-
dition. Therefore, we adopt S-matrix formalism which is natural for dissipative
systems time evolution description. For this purpose the amplitudes

< (p)m|(q)n >= an,m(p1, p2, ..., pm; q1, q2, ..., qn)

of the m- into n-particles transition will be introduced. (The in- and out-states
must be composed from mass-shell particles [7].) Moreover, to incorporate the
boundary condition n >> m we should calculate the probability integrating over
particles momenta:

r(P ;n.m) ∼
∫
|an,m|2 =

∫
< (p)m|(q)n >< (q)n|(p)m >

since the amplitude anm is the function of too many variables, (p1, p2, ..., pm;
q1, q2, ..., qn). This standard method of particle physics practically solves our
problem.

Nevertheless, it is desirable to use the thermodynamical language as the most
economic one, i.e., the formalism which uses minimal number of parameters
(temperature, chemical potential, etc.) for description of the system.

The ˇeld-theoretical description of statistical systems at a ˇnite temperature
is usually based on the formal analogy between imaginary time and inverse
temperature β (β = 1/T ) [8]. This approach is fruitful [9] for description
of the static properties of a system, but it demands a complicated mathematical
apparatus for the analytic continuation to the real time [10], if we want to clear up
dynamical aspects. The ˇrst important quantitative attempt to build the real-time
ˇnite-temperature ˇeld theory [11] discovers a problem of the pinch-singularities.
Further investigation of the theory has allowed one to demonstrate the cancellation
mechanism of these unphysical singularities [12]. This was attained by doubling
of the degrees of freedom [13, 14]: the Green functions of the theory represent
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2 × 2 matrix. It surely makes the theory more complicated, but the operator
formalism of the thermoˇeld dynamics [15] shows the unavoidable character of
this complication.

The SchwingerÄKeldysh real-time ˇnite-temperature ˇeld-theoretical descrip-
tion [13,14] of statistical systems is based on the KuboÄMartinÄSchwinger (KMS)
[16,17] boundary condition for a ˇeld:

Φ(t) = Φ(t− iβ).

This formal trick introduces into formalism the temperature T = 1/β but, without
fail, leads to the equilibrium 
uctuation-dissipation conditions [18] (see also
[19]). Beside this we should have the two-temperature theory describing kinetic
energy dissipation process (for initial and ˇnal states separately). It is evident that
in such theory with two temperatures it is impossible to use the KMS boundary
condition.

In the S-matrix approach ˇnite-temperature description can be introduced
(e.g., [20] and references cited therein) taking into account that, for instance,

dΓn = |an,m|
n∏
1

d3qi

(2π)32ε(qi)
, ε(q) = (q2 +m2

h)1/2,

is the differential measure of ˇnal state. Then we can deˇne the temperature as
the function of initial energy through the equation of state, i.e., proportional to
the mean energy of created particles. Such introduction of temperatures as the
Lagrange multiplier is obvious for microcanonical approach [16]. The initial-state
temperature will be introduced by the same way. Using standard terminology [21],
we will deal with the ªmechanicalª perturbations only [22] and it will not be
necessary to divide the perturbations on ªthermalª and ªmechanicalª ones [23].

Introducing temperature as the Lagrange multiplier we should assume that
the temperature 
uctuations are small (Gaussian). In opposite case the notion
of temperature looses its sense. The ªworkingª idea concerning nonequilibrium
processes is based on the assumption that evolution of a system goes through
few phases. In the ˇrst ªfastª phase the s-particle distribution functions Ds,
s > 1, strongly depend on initial conditions. But at the end of this phase the
system forgets the initial-state information. Second phase is the ªkineticª one.
One can expect that the space-time 
uctuations of thermodynamical parameters
in this phase are large scale, i.e., there are macroscopical domains in which
the subsystems are equilibrium, with Gaussian 
uctuations of thermodynamical
parameters. In the last ªhydrodynamicalª phase the whole system is described by
macroscopical parameters. We will see that the SchwingerÄKeldysh [10, 13, 14]
formalism is applicable for ªhydrodynamicalª phase only.

The above described S-matrix ˇnite-temperature description can be realized
not only for uniform temperature distribution (we have done ˇrst step in this direc-
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tion wishing to introduce initial and ˇnal temperatures separately). So, introduc-
ing cells of measuring device (calorimeter) and introducing the energy-momentum
shells of each cell separately we can introduce the individual temperatures in each
cell. This can be done since in the S-matrix theory the measurement performed
by free (mass-shell) particles, i.e., the measurement of energy (and momentum)
can be performed in each cell separately. This allows one to capture the ªkineticª
phase also (if the number of calorimeter cells is high enough). In this phase
multiparticle distribution functions Ds, s > 1, are functionals of one-particle
distribution function D1 only. This means the `shortenedª description of the non-
equilibrium medium [24]. We will return to this question in Sec.4 considering
the dissipative processes thermal descriptions applicability range.

The microcanonical description assumes that the energy of system is known
with arbitrary accuracy. Introducing the measurement cells and corresponding
energy shells we assume that the energy in each cell can be measured with
arbitrary accuracy. That is why we should work in the frame of Wigner functions
formalism [25].

E.Wigner had offered the function W (q,R) for the quantum states phase
space description [26]:

W (q,R) =

∫
dreiqrΨ(R+ r/2)Ψ∗(R − r/2),

where Ψ(x) is the wave function of state. The existence of other approaches must
be mentioned [27]. But as will be seen below the Wigner description is mostly
natural for us.

In the classical limit h̄ = 0 the function W (q, r) coincides with the phase
space probability distribution function. It obeys the equation [28]:

Ẇ = {W,H}+O(h̄),

which coincides with the Liouville equation only in the classical limit h̄ = 0.
The extension of Wigner's idea on the relativistic case uses the connec-

tion between Wigner's approach and inclusive description of inelastic scattering
processes [25, 29]. But the Wigner functions are not directly measurable quanti-
ties because of the quantum uncertainty principle ∆q∆r ∼ h̄. Just this restriction
leads to impossibility of taking the measurement (calorimeter) cells 4-dimension
∆r arbitrary small and deˇnes the natural boundary of Wigner-functions approach
applicability. Wishing to use the Wigner-functions description of experiments the
corresponding theory must take into account this restriction. The discussion of
this question is given in Sec.4.

So, in our terms one can use the thermodynamical formalism if the non-
stationary mediums ªshortenedª description may be applied: in this case mean
values of correlation functions over the space-time are negligible and the 
uc-
tuations of thermodynamical parameters are small (Gaussian). Other approach
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should be mentioned also. Proposing [32] that the equilibrium in the nonuniform
nonstationary medium may be attained in small regions more quickly than in the
whole system, the entropy maximalness in this restricted domains of a system can
be used for construction of the ªlocal equilibrium density matrixª (LDM) [32].
But LDM is applicable for description of processes in which dissipation may be
disregarded [30]. Nevertheless, if the energy-momentum density of nonstationary

ow is considerably smaller than the energy density of matter, then the ˇrst one
can be taken into account perturbatively considering LDM as an initial condition.
This modiˇes LDM to ªnonstationary density matrixª (NDM) of Zubarev [32]
introducing an inˇnitesimal interaction with a heat bath to get the increasing
entropy. We will return to this question in Sec.5.

The S matrix will be introduced phenomenologically, using ordinary in a
quantum ˇeld theory reduction formalism. This leads naturally to necessity to
introduce the boundary conditions for interacting ˇelds Φ(σ∞), where σ∞ is
the inˇnitely far hypersurface, e.g., [31]. The value of Φ(σ∞) speciˇes the
environment of a system.

We start with vacuum boundary condition Φ(σ∞) = 0 familiar for a ˇeld
theory. This theory can be applied in the particle physics. The simplest choice of
Φ(σ∞) 6= 0 assumes that the system under consideration is surrounded by black-
body radiation. Just this ªboundary conditionª restores the SchwingerÄKeldysh
[10] real-time ˇnite-temperature ˇeld theory [12] from S-matrix formalism in
the ªhydrodynamicalª phase and gives the dynamical interpretation of the KMS
periodic boundary condition.

One should admit also that last choice of boundary condition is not unique:
one can consider another organization of the environment of considered system.
The S-matrix interpretation is able to show the way of adoption of formalism to
the arbitrary environment∗. It should broaden the potentialities of the real-time
ˇnite-temperature ˇeld-theoretical methods, for instance, for heavy nucleus high
energy interactions. The special interest represent also the topological effects,
but, by above-mentioned reason, in this paper consideration will be performed in
the perturbation theory framework only (see also concluding Section).

The central purpose of this review paper is to describe connections between
ordinary S-matrix description and popular in the modern literature real-time ˇnite-
temperature ˇeld theories. We wish to discuss:
Ä The QCD jets dominance in deep asymptotics over n (Sec.2);
In this section we would like to show why the real-time formalism is needed
for our dissipative process description.
Ä The S-matrix interpretation of SchwingerÄKeldysh theory (Sec.3);
In this section the uniform temperature description of the state will be introduced

∗This question was considered also in [29].
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in the spirit of microcanonical description. There is presented the way of explicit
calculations to show coincidence of used microcanonical description and ordinary
(Gibbs) canonical formalism.
Ä The range of applicability of ˇnite-temperature description (Sec.4);
In this section the necessity and sufˇciency of Bogoliubov's ªshortenedª descrip-
tion is discussed.
Ä The S-matrix description of media with nonuniform temperature distribution
(Sec.5);
In this section the Wigner functions formalism is introduced. The range of its
applicability to describe an experiment is shown.
Ä The comparison of our S-matrix approach with ªnonstationary statistical oper-
atorª of Zubarev [32] (Sec.6).
In this section the main distinction between S-matrix (microcanonical) and Zuba-
rev's (canonical) perturbation theories is shown.
Ä Concluding remarks (Sec.7).
In this section the way the nonperturbative effects may be included in the formal-
ism is discussed.

2. PHENOMENOLOGY

To build the phenomenology [33] of high multiplicity processes let us in-
troduce the classiˇcation of asymptotics over n. For this purpose it is useful to
consider the ªbig partition functionª:

T (z, s) =
∑
n

znσn(s), T (1, s) = σtot(s).

Strictly speaking, summation over n is performed up to nmax. But we can
extend summation up to inˇnity∗ if the weight z is sufˇciently small, 0 < z <
zmax. So, T (z, s) can be considered as the nontrivial function of z with sufˇcient
accuracy. Note that zmax > 1 since σn(s) decreases with n. If we know T (z, s),
then σn(s) is deˇned by inverse Mellin transformation. This gives (usual in
thermodynamics) equation (of state):

n = z
∂

∂z
lnT (z, s). (2.1)

Solving this equation we can estimate the asymptotics of σn:

σn(s) ∼ e−n ln z̄(n,s), (2.2)

where 1 < z̄(n, s) << zmax is the smallest solution of Eq. (2.1).

∗That is, wishing to consider the ªthermodynamical limitª.
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It follows from (2.2) that at n → ∞ the solution of (2.1) must tend to
singularity zs of T (z, s) and the character of singularity is not important. So, we
must consider three possibilities:

a) zs = za = 1, b) zs = zb =∞, c) zs = zc, 1 < zc <∞.

Following Lee and Yang [34] there are no singularities at 0 < z < 1.
Let us consider now the physical content of this classiˇcation.

a) zs = 1.
It is known that the singularity zs = 1 re
ects the ˇrst order phase transition [34].
To ˇnd σn for this case we would adopt Langer's analyses [35]. Introducing the
temperature 1/β instead of total energy

√
s we can use the isomorphism with the

Ising model. For this purpose we divide the space volume on cells and if there
is particle in the cell, we will write (-1), in opposite case (+1). It is the model
of lattice gas well described by the Ising model. We can regulate the number of
down-looking spins, i.e., the number of created particles, by the external magnetic
ˇeld H. Therefore, z = exp{−βH} and H is the chemical potential.

The corresponding partition function in the continuous limit [35] (see also
[36]) has the form:

R(β, z) =

∫
Dµe−

∫
dx{ 1

2 (~∂µ)2−εµ2+αµ4−λµ}
, (2.3)

where ε ∼ (1− βc
β ) and λ ∼H, with critical temperature 1/βc.

If βc > β there is no phase transition and the potential has one minimum
at µ = 0. But if βc < β, there are two degenerate minima at µ± = ±

√
ε/2α

if λ = 0. Switching on H < 0 the left minimum at µ− ∼ −
√
ε/2α becomes

absolute and the system will tunnel into this minimum (see also [37]). This
process describes particles creations as a process of spins 
ippings.

Eq. (2.1) gives at n→∞

ln z̄ ∼ n−1/3 > 0.

In result,

σn ∼ e−an
2/3

> 0(e−n), a > 0,

i.e., decrease slower than e−n. The quasi-classical calculation shows that the
functional determinant is singular at H = 0. It must be underlined that in the
used Ising model description the chemical potential deforms the ground state. In
result, the quasi-classical approximation is applicable since ln z̄ << 1, i.e., since
the processes of spin 
ippings are rear at high multiplicity region. It is easy
to show in this approximation [35] that the functional determinant is singular at
H = 0, i.e., at z = 1.
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Note that z̄ decreases to one with n. This unusual phenomenon must be
explained. Considered above mechanism of particles creation describes ªfate of
false vacuumª [37]. In the process of decay of unstable state the clusters of
new phase of size X are created. If the cluster has dimension X > Xc its size
increases since the volume energy (∼ X3) of the cluster becomes better than the
surface tension energy (∼ X2). This condition deˇnes the value of Xc. The
ªcriticalª clusters wall accelerates, i.e., the work needed to add one particle into
cluster decreases with X > Xc. This explains the reason why z̄ decreases with
n noting that ln z̄ is proportional to Gibbs free energy per one particle.

The described mechanism of particles creation assumes that we had prepared
the equilibrium system in the unstable phase at µ+ ∼ +

√
ε/2α and going to

another state at µ− ∼ −
√
ε/2α the system creates particles. The initial state

may be the QGP and ˇnal state may be the hadrons system. Therefore, we must
describe the way as the quarks system was prepared.

Following to LeeÄYang's picture of ˇrst order phase transition [34] (see
also [36]) there is no phase transition in a ˇnite system (the partition function
cannot be singular for ˇnite nmax). This means that the multiplicity (and the
energy) must be high enough to see described phenomena.
b) zs =∞.
Let us return to the integral (2.3) to investigate the case βc > β. In this case the
potential has one minimum at µ = 0. The external ˇeld H creates the mean ˇeld
µ̄ = µ̄(H) and the integral (2.3) should be calculated expanding it near µ = µ̄.
In result, in the quasi-classical approximation (µ̄ increases with increasing n),

lnR(β, z) ∼ (ln z)4/3.

This gives ln z̄ ∼ n3 and lnσn ∼ −n4, i.e.,

σn < 0(e−n).

There is also other possibility to interpret considered case b). For this case
we can put

lnT (z, s) = n0(s) + n̄(s)(z − 1) + O((z − 1)2) (2.4)

at |z − 1| << 1. By deˇnition n0(s) = lnσtot. The experimental distribution of
lnT (z, s)−n0(s) for various energies shows that the contributions of O((z−1)2)
terms increase with energy [38]. The hadrons ªstandard modelª (SM) assumes
that

ln t(z, s) = n0(s) + n̄(s)(z − 1)

is the Born term in the perturbation series (2.4). There are various interpretations
of this series, e.g., the multiperipheral model, the Regge pole model, the heavy
color strings model, the QCD multiperipheral models, etc. In all these models
n0 = a1 + a2 ln s, 0 ≤ a2 << 1, and n̄(s) = b1 + b2 ln s, b2 > 0. The
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second ingredient of hadrons SM is the assumption that mean value of created
particles transfers momentum < k >=const, i.e., is the energy (and multiplicity)
independent. It can be shown that under these assumptions:

lnT (z, s) = n0(s) +
∑
n

cn(s)(z − 1)n, c1 ≡ n̄ (2.5)

is regular at ˇnite values of z [38] and is able to give well conˇrmed by
experiment predictions.

Inserting (2.5) into (2.1) we ˇnd that z̄(n, s) is the increasing function of n.
Therefore,

σn < O(e−n). (2.6)

But the SM have a ˇnite range of validity: beyond n ∼ n̄2 the model
must be changed since it is impossible to conserve < k >=const at higher
multiplicities [39].

We should underline once more that only two possibilities a) and b) can be
deduced from representation (2.3), see also [35]. But nevertheless there is other
possibility:
c) 1 < zs <∞.
Let us assume now that

T (z, s) ∼ (1 − z − 1

zc − 1
)−γ , γ > 0. (2.7)

Then, using normalization condition, (∂T (z, s)/∂z)|z=1 = n̄j(s) we can ˇnd that
zc(s) = 1 + γ/n̄j(s). The singular structure (2.7) is impossible in SM because
of condition < k >=const. But if |z − 1| << 1, we have estimation (2.4). The
difference between SM and c) is seen only at 1 − (z − 1)/(zc − 1) << 1, i.e.,
either in asymptotics over n or in asymptotics over energy. The singular structure
is familiar for ªlogisticª equations of QCD jets, e.g., [40].

In considered case z̄ = zc + 0(n̄j/n) and at high energies (n̄j(s) >> 1)

σn ∼ e−γn/n̄j = O(e−n). (2.8)

Therefore,
comparing (2.6) and (2.8) we can conclude that at sufˇciently high energies, i.e.,
if n̄j >> n̄, where n̄ is the SM mean multiplicity, the mechanism c) must dominate
in asymptotics over n.

It is the general, practically model independent, prediction. It has important,
from experimental point of view, consequence that at high energies there is
a wide range of multiplicities, where the SM mechanism of hadrons creation
is negligible. In other words, the CQGP of high multiplicity processes is the
dynamical consequence of jets and SM mechanisms. At transition region between
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ªsoftª of SM and ªhardª of jets one can expect the ªsemihardª processes of
minijets dominance.

The multiplicity distribution in jets has interesting property noted many
decades ago by Volterra in his mathematical theory of populations [41]. In our

terms, if one-jet partition function has the singularity at z(1)
c (s) = 1 + γ/n̄j(s),

then two-jet partition function must be singular at

z(2)
c (s) = 1 +

γ

n̄j(s/4)
> z(1)

c (s),

and so on. Therefore, at high energies and n > n̄j(s) the jets number must be
minimal (with exponential accuracy). This means that at n → ∞ the processes
of hadrons creation have a tendency to be Markovian (with sharp increase of
transverse momentum < k >) and only in the last stage the (ˇrst order) phase
transition (colored plasma) → (hadrons) may be seen.

One can say that in asymptotics over n we consider the ªin
ationalª channel
of thermalization which is so fast∗ that the usual conˇnement forces are ªfreezedª
and do not play important role in ˇnal colored plasma creation.

3. S-MATRIX INTERPRETATION OF REAL-TIME
FINITE-TEMPERATURE FIELD THEORIES

3.1. Vacuum Boundary Conditions. The starting point of our calculations
is n- into m-particles transition amplitude an,m, the derivation of which is a
well-known procedure in the perturbation theory framework. For this purpose
the (n + m)-point Green function Gn,m is introduced [42]. To calculate the
nontrivial elements of S matrix one must put the external particles on the mass
shell. Formally this procedure means amputation of the external legs of Gcn,m and
further multiplication on the free particles wave functions. In result the amplitude
of m- into n-particles transition an,m in the momentum representation has the
form:

an,m((q)n; (p)m) = (−i)n+m
m∏
k=1

φ̂(qk)

n∏
k=1

φ̂∗(pk)Z(φ). (3.1)

Here we introduce the ªannihilationª operator

φ̂(q) =

∫
dxe−iqxφ̂(x), φ̂(x) =

δ

δφ(x)
, (3.2)

∗The partons life time with virtuality |q| is ∼ 1/|q| and the time needed for hadrons of mass
mh formation is ∼ 1/mh . Therefore the partons have a time to decay before hadrons formation if
|q| >> mh. But this situation is rear since the thermal motion in the initial stage of process is high.
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φ̂∗(pk) is the ªcreationª operator and qk and pk are the momenta of in- and
out-going particles. In (3.1)

Z(φ) =

∫
DΦeiS(Φ)−iV (Φ+φ)

is the generating functional. The total action was divided into two parts, where
S(Φ) is the free part and V (Φ, φ) describes the interactions. At the very end one
should put the auxiliary ˇeld φ = 0.

To provide the convergence of the integral (3.1) over scalar ˇeld Φ the action
S(Φ) must contain positive imaginary part. Usually for this purpose Feynman's
iε-prescription is used. It is better for us to shift inˇnitesimally time contour to
the upper half plane [10,43], i.e., to the Mills contour

C+ : t→ t+ iε, ε > 0

and after all calculations to return the time contour on the real axis, ε→ +0.
In Eq. (3.1) the integration is performed over all ˇeld conˇgurations with

standard vacuum boundary condition:∫
d4x∂µ(Φ∂µΦ) =

∫
σ∞

dσµΦ∂µΦ = 0,

which assumes zero contribution from the surface term.
Supposing that the particles number and momenta are insufˇcient for us we

introduce the probability

r(P ) =
∑
n,m

1

n!m!

∫
dωn(q)dωm(p)δ(4)(P −

n∑
k=1

qk)δ(4)(P −
n∑
k=1

pk)|an,m|2,

(3.3)
where

dωn(q) =

n∏
k=1

dω(qk) =

n∏
k=1

d3qk

(2π)32ε(qk)
, ε = (q2 + m2

h)1/2,

is the Lorentz-invariant phase space element. We assume that the energy-
momentum conservation δ-function was extracted from the amplitude. It was
divided into two parts:

δ(4)(
∑

qk −
∑

pk) =

∫
d4Pδ(4)(P −

∑
qk)δ(4)(P −

∑
pk). (3.4)

It is not too hard to see that, up to phase space volume,

r =

∫
d4Pr(P )
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is the imaginary part of amplitude < vac|vac >. Therefore, computing r(P ) the
standard renormalization procedure can be applied and the new divergences will
not arise in our formalism.

The Fourier transformation of δ-functions in (3.3) allows one to write r(P )
in the form:

r(P ) =

∫
d4α1

(2π)4

d4α2

(2π)4
eiP (α1+α2)ρ(α1, α2),

where

ρ(α1, α2) =
∑
n,m

1

n!m!

∫ n∏
k=1

{dω(qk)e−iα1qk}
m∏
k=1

{dω(pk)e−iα2pk}|an,m|2.

(3.5)
Introduction of the ªFourier-transformedª probability ρ(α1, α2) means only that
the phase-space volume is not ˇxed exactly, i.e., it is proposed that 4-vector
P is ˇxed with some accuracy if αi are ˇxed. The energy and momentum in
our approach are still locally conserved quantities since the amplitude anm is
translational invariant. So, we can perform the transformation:

α1

∑
qk = (α1 − σ1)

∑
qk + σ1

∑
qk → (α1 − σ1)

∑
qk + σ1P

since 4-momenta are conserved. The choice of σ1 ˇxes the reference frame. This
degree of freedom of the theory was considered in [44,45].

Inserting (3.1) into (3.5) we ˇnd that

ρ(α1, α2) = exp{i
∫
dxdx′(φ̂+(x)D+−(x− x′, α2)φ̂−(x′)−

−φ̂−(x)D−+(x− x′, α1)φ̂+(x′))}Z(φ+)Z∗(φ−), (3.6)

where D+− and D−+ are the positive and negative frequency correlation func-
tions,

D+−(x− x′, α) = −i
∫
dω(q)eiq(x−x

′−α)

describes the process of particles creation at the time moment x0 and its absorption
at x′0, x0 > x′0, and α is the center of mass () 4-coordinate. Function

D−+(x− x′, α) = i

∫
dω(q)e−iq(x−x

′+α)

describes the opposite process, x0 < x′0. These functions obey the homogeneous
equations:

(∂2 +m2
h)xG+− = (∂2 +m2

h)xG−+ = 0

since the propagation of mass-shell particles is described.
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We suppose that Z(φ) may be computed perturbatively. For this purpose
following transformation will be used:

e−iV (φ) = e−i
∫
dxĵ(x)φ̂′(x)ei

∫
dxj(x)φ(x)e−iV (φ′) =

= e
∫
dxφ(x)φ̂′(x)e−iV (φ′) =

= e−iV (−iĵ)ei
∫
dxj(x)φ(x)

, (3.7)

where φ̂ was deˇned in (3.2). At the end of calculations the auxiliary variables
j, φ′ should be taken equal to zero. Using the ˇrst equality in (3.7) we ˇnd that

Z(φ) = e−i
∫
dxĵ(x)Φ̂(x)e−iV (Φ+φ)e−

i
2

∫
dxdx′j(x)D++(x−x′)j(x′), (3.8)

where D++ is the causal Green function:

(∂2 +m2
h)xG++(x− y) = δ(x− y).

Inserting (3.8) into (3.6) after simple manipulations with differential operators,
see (3.7), we ˇnd the expression:

ρ(α1, α2) = e−iV (−iĵ+)+iV (−iĵ−) ×

× exp{ i
2

∫
dxdx′(j+(x)D+−(x − x′, α1)j−(x′)−

j−(x)D−+(x− x′, α2)j+(x′)−
−j+(x)D++(x− x′)j+(x′) + j−(x)D−−(x− x′)j−(x′))}, (3.9)

where
D−− = (D++)∗

is the anticausal Green function.
Considering the system with large number of particles we can simplify cal-

culations choosing the CM frame P = (P0 = E,~0). It is useful also [16, 20] to
rotate the contours of integration over α0,k: α0,k = −iβk, Imβk = 0, k = 1, 2.
In result, omitting unnecessary constant, we will consider ρ = ρ(β1, β2).

External particles play the double role in the S-matrix approach: their inter-
actions create and annihilate the interacting ˇelds system and, on the other hand,
they are probes through which the measurement of the system is performed. Since
βk are the conjugate to the particles energies quantities we will interpret them
as the inverse temperatures in the initial (β1) and ˇnal (β2) states of interacting
ˇelds. But there is the question: are constants βk really the ªgoodª parameters
to describe the system.

The integrals over βk:

r(E) =

∫
dβ1

2πi

dβ2

2πi
e(β1+β2)Ee−F (β1,β2), (3.10)
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where
F (β1, β2) = − lnρ(β1, β2),

can be computed by the stationary phase method. This assumes that the total
energy E is a ˇxed quantity. The solutions of the equations (of state):

E =
∂F (β1, β2)

∂βk
, k = 1, 2, (3.11)

give the mostly probable values of βk at a given E. Eqs. (3.11) always have the
real solutions and, because of energy conservation law, both Eqs. (3.11) have the
same solution with the property [16]:

βk = β(E), β > 0.

Assuming that β is the ªgoodª parameter, i.e., the 
uctuations of βk are Gaussian
we can interpret F (β1, β2) as the free energy and 1/βk as the temperatures.
Such deˇnition of thermodynamical parameters is in a spirit of microcanonical
description. We will return to this question in Sec.4.

The structure of generating functional (3.9) is the same as the generating
functional of Niemi-Semenoff [12]. The difference is only in the deˇnition of
Green functions which follows from the choice of boundary condition (2.6). The
Green functions Dij , i, j = +,− were deˇned on the time contours C± in the
complex time plane (C− = C∗+). This deˇnition of the time contours coincides
with Keldysh' time contour [14]. The expression (3.9) can be written in the
compact form if the matrix notations are used. Note also a doubling of the
degrees of freedom. This doubling is unavoidable since Green functions Dij are
singular on the light cone.

3.2. Closed-Path Boundary Conditions. The generating functional ρ(α1, α2)
has important factorized structure, see (3.6):

ρ(α1, α2) = eN̂(α1,α2;φ)ρ0(φ±),

where the operator

N̂(α1, α2;φ) =

∫
dxdx′(φ̂+(x)D+−(x− x′, α2)φ̂−(x′)−

−φ̂−(x)D−+(x − x′, α1)φ̂+(x′))

acts on the generating functional

ρ0(φ±) = Z(φ+)Z∗(φ−) =

=

∫
DΦ+DΦ−eiS(Φ+)−iS(Φ−)−iV (Φ++φ+)+iV (Φ−+φ−), (3.12)



WIGNER FUNCTIONS OF ESSENTIALLY NONEQUILIBRIUM SYSTEMS 139

of measurables. All ªthermodynamicalª information was contained in the operator
N̂(α1, α2;φ) and interactions are hidden in ρ0(φ±). One can say that action of
the operator N̂ maps the system of interacting ˇelds on the measurable states.
Last ones are ªlabeledª by α1 and α2. Just this property allows one to say that we
are dealing with ªmechanicalª 
uctuations only. To regulate the particles number
we can introduce into N̂ the dependence from ªactivitiesª z1 and z2 for initial
and ˇnal states, separately.

The independent ˇelds φ+, φ− and Φ+,Φ− were deˇned on the time contours
C+, C−. By deˇnition, path integral (3.12) describes the closed path motion in
the space of ˇelds Φ. We want to use this fact and introduce a more general
boundary condition which also guarantees cancellation of surface terms in the
perturbation framework. We will introduce the equality:∫

σ∞

dσµΦ+∂
µΦ+ =

∫
σ∞

dσµΦ−∂
µΦ−. (3.13)

The solution of Eq. (3.13) requires that the ˇelds Φ+ and Φ− (and their ˇrst
derivatives ∂µΦ±) coincide on the boundary hypersurface σ∞:

Φ±(σ∞) = Φ(σ∞),

where, by deˇnition, Φ(σ∞) is the arbitrary, ªturning-pointª, ˇeld.
The existence of nontrivial ˇeld Φ(σ∞), in absence of surface terms, has

in
uence only on the structure of Green functions

G++ =< TΦ+Φ+ >, G+− =< Φ+Φ− >,

G−+ =< Φ−Φ+ >, G−− =< T̃Φ−Φ− >, (3.14)

where T̃ is the antitemporal time ordering operator. These Green functions must
obey the equations

(∂2 +m2)xG+−(x − y) = (∂2 +m2)xG−+(x− y) = 0,

(∂2 +m2)xG++(x− y) = (∂2 +m2)∗xG−−(x− y) = δ(x− y), (3.15)

and the general solution of these equations

Gii = Dii + gii,

Gij = gij , i 6= j (3.16)

contains the undeˇned terms gij which must obey the homogeneous equations:

(∂2 +m2)xgij(x− y) = 0, i, j = +,−. (3.17)
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The general solution of these equations (they are distinguished by the choice of
the time contours C±)

gij(x− x′) =

∫
dω(q)eiq(x−x

′)nij(q) (3.18)

are deˇned by the functions nij . Last ones are the functionals of `turning-pointª
ˇeld Φ(σ∞): if Φ(σ∞) = 0, we must have nij = 0 and we will come back to
the theory of previous section.

Our aim is to deˇne nij . We can suppose that

nij ∼< Φ(σ∞) · · ·Φ(σ∞) > .

The simplest supposition gives:

nij ∼< ΦiΦj >∼< Φ2(σ∞) > . (3.19)

We will ˇnd the exact deˇnition of nij starting from the S-matrix interpretation
of the theory.

We should suppose there are only free, mass-shell particles that are on the
inˇnitely far hypersurface σ∞. Formally this follows from (3.16)Å(3.18) and
is natural in the S-matrix framework [7]. In other respects the choice of the
boundary condition is arbitrary.

Therefore, our aim is the description of evolution of the system in a back-
ground ˇeld of mass-shell particles. We will assume that there are no any special
correlations among background particles and will take into account only the
energy-momentum conservation laws constraints. Quantitatively this means that
multiplicity distribution of background particles is Poison-like, i.e., is determined
by the mean multiplicity only. This is in spirit of deˇnition of nij in Eqs. (3.18),
(3.19).

Our derivation is the same as in [45]. Here we restrict ourselves mentioning
only the main quantitative points.

In the vacuum case of Sec.3.1 the process of particles creation and their
further absorption was described. In the presence of the background particles
this time-ordered picture is wiped out: there appears the possibility of particles
absorption before their creation.

The particles creation and absorption was described by the product of operator
exponent (3.6). One can derive (see also [45]) the generalizations of (3.6): the
presence of the background particles will lead to the same structure:

ρcp = eiN̂(φ∗iφj)ρ0(φ±),

where ρ0(φ±) is the same generating functional, see (3.12). But the operator
N̂(φ∗i φj), i, j = +,−, should be changed wanting to take into account the external
particles environment.
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The operator φ̂∗i (q) was interpreted as the creation and φ̂i(q) as the annihila-
tion operator, see deˇnition (3.1). Correspondingly the product φ̂∗i (q)φ̂j(q) acts

as the activity operator. So, in the expansion of N̂(φ∗i φj) we can leave only ˇrst
nontrivial term:

N̂(φ∗i φj) =

∫
dω(q)φ̂∗i (q)nij φ̂j(q), (3.20)

since no special correlation among background particles should be expected. If
the external (nondynamical) correlations are present, then the higher powers of
φ̂∗i φ̂j will appear in expansion (3.20) [29]. Following the interpretation of φ̂∗i φ̂j
we conclude that nij is the mean multiplicity of background particles. In (3.20)
the normalization condition N(0) = 0 was used and summation over all i, j was
assumed. (In the vacuum case only the combination i 6= j was present.)

Computing ρcp we must conserve the translational invariance of amplitudes
and extract the energy-momentum conservation δ-functions. We must adjust to
each vertex of in-going particle in an,m the factor e−iα1q/2 and for each out-going
particle e−iα2q/2 one, after Fourier transformation, of these δ-functions.

So, the product e−iαkq/2e−iαjq/2 can be interpreted as the probability fac-
tor of the one-particle (creation + annihilation) process. The n-particles
(creation + annihilation) process' probability is the simple product of these
factors if there are no special correlations among background particles. This
interpretation is evident in the CM frame αk = (−iβk,~0).

After these preliminaries it is not difˇcult to ˇnd that in the CM frame we
have:

n++(q0) = n−−(q0) ==
1

e
β1+β2

2 |q0| − 1
≡ ñ(|q0|

β1 + β2

2
). (3.21)

Computing nij for i 6= j we must take into account that we have one additional
particle:

n+−(q0) == Θ(q0)(1 + ñ(q0β1)) + Θ(−q0)ñ(−q0β1) (3.22)

and
n−+(q0) = Θ(q0)ñ(q0β2) + Θ(−q0)(1 + ñ(−q0β2)). (3.23)

Using (3.21), (3.22) and (3.23), and the deˇnition (3.16) we ˇnd the Green
functions (the matrix Green functions in the real-time ˇnite-temperature ˇeld
theories were introduced ˇrstly in [46]):

Gi,j(x − x′, (β)) =

∫
d4q

(2π)4
eiq(x−x

′)G̃ij(q, (β))

where

iG̃ij(q, (β)) =

( i
q2−m2+iε 0

0 − i
q2−m2−iε

)
+
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+2πδ(q2 −m2)

(
ñ(β1+β2

2 |q0|) ñ(β2|q0|)a+(β2)

ñ(β1|q0|)a−(β1) ñ(β1+β2

2 |q0|)

)
(3.24)

and
a±(β) = −e

β
2 (|q0|±q0).

The corresponding generating functional has the standard form:

ρcp(j±) = exp{−iV (−iĵ+) + iV (−iĵ−)} ×

× exp{ i
2

∫
dxdx′ji(x)Gij(x− x′, (β))jj(x

′)}, (3.25)

where the summation over repeated indices is assumed.
Inserting (3.25) into the equation of state (3.11) we can ˇnd that β1 = β2 =

β(E). If β(E) is a ªgoodª parameter, then Gij(x−x′;β) coincide with the Green
functions of the real-time ˇnite-temperature ˇeld theory and the KMS boundary
condition:

G+−(t− t′) = G−+(t− t′ − iβ), G−+(t− t′) = G+−(t− t′ + iβ), (3.26)

is restored. Eq. (3.26) can be deduced from (3.24) by the direct calculations.

4. APPLICABILITY OF FINITE-TEMPERATURE DESCRIPTION

4.1. The Schwinger-Keldysh Formalism. There are various approaches
to build the real-time ˇnite-temperature ˇeld theories of Schwinger-Keldysh
type (e.g., [10]). All of them use various tricks for analytical continuation of
imaginary-time Matsubara formalism to the real time [47]. The basis of the
approaches is introduction of Matsubara ˇeld operator

ΦM (x, β) = eβHΦS(x)e−βH , (4.1)

where ΦS(x) is the interaction-picture operator, instead of Heisenberg operator

Φ(x, t) = eitHΦS(x)e−itH .

This introduces the averaging over Gibbs ensemble instead of averaging over
zero-temperature vacuum states.

If the interaction is switched on adiabatically at the instant ti and is switched
off at tf , then there is the unitary transformation:

Φ(x) = U(ti, tf )U(ti, t)ΦS(x)U(t, ti).
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Introducing the complex Mills time contours [43] to connect ti to t, t to tf and
tf to ti we form ªclosed-timeª contour C (the end-points of the contours C+ and
C− are joint together). This allows one to write last equality in the compact
form:

Φ(x) = TC{Φ(x)e
i
∫
C
d4x′Lint(x

′)}S ,

where TC is the time-ordering on the contour C operator.
The corresponding expression for the generating functional Z(j) of correla-

tion (Green) functions has the form:

Z(j) = R(0) < TCe
i
∫
C
d4x{Lint(x)+j(x)Φ(x)}S >,

where <> means averaging over initial state.
If the initial correlations have little effect, we can perform averaging over

Gibbs ensemble. This is the main assumption of formalism: the generating
functional of the Green functions Z(j) has the form in this case:

Z(j) =

∫
DΦ′ < Φ′; ti|e−βHTCe

i
∫
C
d4xj(x)Φ(x)|Φ′; ti >

with Φ′ = Φ′(x). In accordance with (4.1) we have:

< Φ′; ti|e−βH =< Φ′; ti − iβ|

and, in result,

Z(j) =

∫
DΦ′e

i
∫
Cβ

d4x{L(x)+j(x)Φ(x)
, (4.2)

where path integration is performed with KMS periodic boundary condition:

Φ(ti) = Φ(ti − iβ).

In (4.2) the contour Cβ connects ti to tf , tf to ti and ti to ti − iβ. Therefore it
contains imaginary-time Matsubara part ti to ti − iβ. More symmetrical formu-
lation uses following realization: ti to tf , tf to tf − iβ/2, tf − iβ/2 to ti− iβ/2
and ti − iβ/2 to ti − iβ (e.g., [12]). This case also contains the imaginary-time
parts of time contour. Therefore, Eq. (4.2) presents the analytical continuation
of Matsubara generating functional to real times.

One can note that if this analytical continuation is possible in Z(j), then
representation (4.2) gives good recipe of regularization of frequency integrals in
the Matsubara perturbation theory, e.g., [10], but nothing new for our problem
since the Matsubara formalism is a formalism for equilibrium states only.

Taking ti = −∞ and tf = +∞ and calculating integral (4.2) perturbatively
we ˇnd coincidence of Z(j) and ρ(β) from (3.25) with Green functions deˇned
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in (3.24) if β1 = β2. This ªfactorizationª of contributions from contours C+ and
C− in the integral (4.2) follows from the RiemannÄLebesque lemma [48] which
is applicable in the perturbation framework [12, 43]. Note absence of Matsub-
ara parts of contour, which prevents the factorization, in the derived ªS-matrix
generating functionalª (3.25) by deˇnition (importance of this circumstances is
discussed in Sec.7).

4.2. Range of the ªHydrodynamicalª Approximation. Let us return now
to Eq. (3.5). To ˇnd the physical meaning β1(2) we must show the way as
they can be measured. If there is nonequilibrium 
ow it is hard to invent a
thermometer (or thermodynamical calorimeter) which measures locally in space-
time the temperatures of this dissipative processes. But there was described
another way Å to deˇne the temperatures through equations of state. This is
possible in the accelerator experiments where the total energy E is ˇxed. So, we
will deˇne β1(2) through equations of state (3.11), i.e., considering 1/β1(2) as the
mean energy of particles in the initial (ˇnal) state. But even knowing solutions
of these equations one cannot ˇnd ρ(E, z) correctly if the assumption that β1(2)

are ªgoodª quantities is not added, i.e., that the 
uctuations near solutions of
Eqs. (3.11) are small (Gaussian).

This assumption is the main problem toward nonequilibrium thermodynamics.
The problem in our terms looks as follows: the expansion near β1(2)(E) gives
asymptotic series over∫

Ds ∼
∫ ∏

{dω(ki)dri} < ε(k1)ε(k2) · · · > |(r1,r2,...),

where <>() means averaging over ˇelds drown on ˇxed points of phase space
(k, r)i. In other words, the 
uctuations near β1(2)(E) are deˇned by the value
of inclusive spectra familiar in particle physics. Therefore, β1(2)(E) are ªgoodª
quantities if this inclusive spectra are small. But this is too strong assumption.
More careful analysis shows that it is enough to have the factorization properties
[49]: ∫ ∏

{dω(ki)dri} < ε(k1)ε(k2) · · · > |(r1,r2,...) −∏∫
dΩ(ki)dri < ε(ki) > |(ri) ∼ 0. (4.3)

It must be noted that this is the unique solution of the problem since the ex-
pansion near β1(2)(E) unavoidably leads to asymptotic series with zero radii of
convergence.

One can hope to avoid this problem working permanently in the energy-
momentum representation, i.e., without introduction of temperatures. Of course
this is possible in particle physics, but if β1(2)(E) is not the ªgoodª parameter
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this means that all correlations between created particles are sufˇcient, i.e., only
the energy-momentum representation did not solve the problem.

At the end, discussed factorization property of Ds, s > 1, is the well-known
Bogoliubov condition of ªshortenedª description of nonequilibrium thermody-
namical systems with s-particle distribution functions Ds, s > 1, expressed in
terms of D1. It is the condition for the ªhydrodynamicalª descriptions applica-
bility since it assumes that the constant β1(E) = β2(E) is a ªgoodª parameter
for description of whole system.

Considering a problem with nonzero nonequilibrium 
aw it is hard to expect
that β1(2)(E) is a good parameter, i.e., that the factorization conditions are held.
Nevertheless, as was mentioned above, there is a possibility to have the mean
values of correlators sufˇciently small in restricted ranges of phase space. It is
the so-called ªkineticª phase of the process: when the memory of initial state
disappeares, the ªfastª 
uctuations are averaged over and we can consider the
long-range 
uctuations only.

5. LOCAL EQUILIBRIUM HYPOTHESIS

Let us return now to description of experimental situation in the high mul-
tiplicity experiments. Having at energies of modern accelerators thousands of
particles in a ˇnal state it is a difˇcult problem even to count such big numbers.
So, the number of particles n cannot be considered as a trigger. Moreover, it
seems natural that it is not important whether we have hundred thousand of par-
ticles or hundred thousand plus one. To do ˇrst step toward CQGP it is enough
to be sure that in experiment the transition of ªhotª initial state into ªcoldª ˇnal
one is examined. For this purpose the ordinary calorimeters can be used [50].

So, we must assume that the energies of created particles εi ≤ ε0, where
ε0 is ˇxed by experiment. Then using energy conservation law at given ε0 the
number of created particles is bounded from below: n >

√
s/ε0 ≡ nmin. With

this constraint the integral cross section

σε0(s) =
∑

n=nmin

σn(s)

is measured. Choosing nmin >> n̄, i.e., ε0 <<
√
s/n̄(s), we get into high

multiplicity region. There is also a theoretical possibility of restoring the quantity
∼ σn calculating the difference σε0(s)− σε0+δε0(s) [50].

It is not necessary to measure energy of each particle to have nmin >> n̄.
Indeed, let ε̃i is the energy of i-th group of particles, ε̃1 + ε̃2 + ...+ ε̃k =

√
s and

let ñi is the number of particles in the group, ñ1 + ñ2 + ... + ñk = n∗. Then,

∗It is assumed that the number of calorimeter cells K ≥ k.
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if ε̃i < ε0, i = 1, 2, ..., k, we have inequality: k > nmin. Therefore, we get
into high multiplicities domain since n ≥ k, if ε0 <<

√
s/n̄(s). We can use the

calorimeter demanding that the induced in each cell energy ε̃i < ε0.
The preparation of such experiment is not hopeless task and it may be suf-

ˇciently informative. This formulation of experiment we will put in the basis of
the theory. Theoretically, we should shrink the 4-dimension of calorimeter cells
up to zero since we do not know ad hoc the cells dimension. Then the cells index
i is transformed into the position of particle r. So we come to contradiction
with quantum uncertainty principle. This forces one to use the Wigner functions
formalism and the ˇrst question which must be solved is to ˇnd a way how
this formalism can be adopted for description of our experiment (there is also
interesting ideas concerning applicability of Wigner functions in [51]).

5.1. Vacuum Boundary Condition. We start consideration from the assump-
tion that the temperature 
uctuations are large scale. In a cell, the dimension of
which is much smaller than the 
uctuation scale of temperature, we can assume
that the temperature is a ªgoodª parameter. (The ªgoodª parameter means that
the corresponding 
uctuations are Gaussian.)

Let us surround the interaction region, i.e., the system under consideration, by
N cells with known space-time position and let us propose that we can measure
the energy and momentum of groups of in- and out-going particles in each cell.
The 4-dimension of cells cannot be arbitrary small in this case because of the
quantum uncertainty principle.

To describe this situation we decompose δ-functions in (3.4) on the product
of (N + 1) δ-functions:

δ(4)(P −
n∑
k=1

qk) =

∫ N∏
ν=1

{dQνδ(Qν −
nν∑
k=1

qk,ν)}δ(4)(P −
N∑
ν=1

Qν),

where qk,ν are the momentum of k-th in-going particle in the ν-th cell and Qν
is the total 4-momenta of nν in-going particles in this cell, ν = 1, 2, ..., N . The
same decomposition will be used for the second δ-function in (3.4). We must take
into account the multinomial character of particles decomposition on N groups.
This will give the coefˇcient:

n!

n1! · · ·nN !
δK(n−

N∑
ν=1

nν)
m!

m1! · · ·mN !
δK(m−

N∑
ν=1

mν),

where δK is Kronecker's δ-function.
In result, the quantity

r((Q)N , (P )N ) =
∑

(n.m)

∫
|a(n,m)|2 ×
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×
N∏
ν=1

{
nν∏
k=1

dω(qk,ν)

nν !
δ(4)(Qν −

nν∑
k=1

qk,ν)

mν∏
k=1

dω(pk,ν)

mν !
δ(4)(Pν −

mν∑
k=1

pk,ν)} (5.1)

describes a probability to measure in the ν-th cell the 
uxes of in-going particles
with total 4-momentum Qν and of out-going particles with the total 4-momentum
Pν . The sequence of this two measurements is not ˇxed.

The Fourier transformation of δ-functions in (5.1) gives:

r((Q)N , (P )N ) =

∫ N∏
k=1

d4α1,ν

(2π)4

d4α2,ν

(2π)4
ei
∑N

ν=1
(Qνα1,ν+Pνα2,ν)ρ((α1)N , (α2)N ),

where

ρ((α1)N , (α2)N ) = ρ(α1,1, α1,2..., α1,N ;α2,1, α2,2, ..., α2,N )

has the form:

ρ((α1)N , (α2)N ) =

∫ N∏
ν=1

{
nν∏
k=1

dω(qk,ν)

nν !
e−iα1,νqk,ν ×

×
mν∏
k=1

dω(pk,ν)

mν !
e−iα2,νpk.ν}|a(n,m)|2. (5.2)

Inserting (3.1) into (5.2) we ˇnd:

ρ((α−)N , (α+)N ) = exp{i
N∑
ν=1

∫
dxdx′[φ̂+(x)D+−(x − x′;α2,ν)φ̂−(x′)−

−φ̂−(x)D−+(x− x′;α1,ν)φ̂+(x′)]}Z(φ+)Z∗(φ−),(5.3)

where φ− is deˇned on the complex conjugate contour C− : t → t − iε and
D+−(x − x′;α), D−+(x − x′;α) are the positive and negative frequency corre-
lation functions correspondingly.

We must integrate over sets (Q)N and (P )N if the distribution of 
uxes
momenta over cells is not ˇxed. In result,

r(P ) =

∫
D4α1(P )d4α2(P )ρ((α1)N , (α2)N ), (5.4)

where the differential measure

D4α(P ) =
N∏
ν=1

d4αν

(2π)4
K(P, (α)N )
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takes into account the energy-momentum conservation laws:

K(P, (α)N ) =

∫ N∏
ν=1

d4Qνei
∑N

ν=1
ανQν δ(4)(P −

N∑
ν=1

Qν).

The explicit integration gives that

K(P, (α)N ) ∼
N∏
ν=1

δ(3)(α− αν),

where ~α is the center of mass (CM) 3-vector.
To simplify the consideration let us choose the CM frame and put α =

(−iβ,~0). In result,

K(E, (β)N ) =

∫ ∞
0

N∏
ν=1

dEνe
∑

N

ν=1
βνEν δ(E −

N∑
ν=1

Eν).

Correspondingly, in the CM frame,

r(E) =

∫
Dβ1(E)Dβ2(E)ρ((β1)N , (β2)N ),

where

Dβ(E) =

N∏
ν=1

dβν

2πi
K(E, (β)N )

and ρ((β)N ) was deˇned in (5.3) with αk,ν = (−iβk,ν ,~0), Reβk,ν > 0, k =
1, 2.

We will calculate integrals over βk using the stationary phase method. The
equations for mostly probable values of βk:

− 1

K(E, (βk)N )

∂

∂βk,ν
K(E, (βk)N ) =

1

ρ((β1)N )

∂

∂βk,ν
ρ((β)N ), k = 1, 2,

(5.5)
always have the unique positive solutions β̃k,ν(E). We propose that the 
uc-
tuations of βk near β̃k are small, i.e., are Gaussian. This is the basis of the
local-equilibrium hypothesis [32]. In this case 1/β̃1,ν is the temperature in the
initial state in the measurement cell ν and 1/β̃2,ν is the temperature of the ˇnal
state in the ν-th measurement cell.

The last formulation (5.4) implies that the 4-momenta (Q)N and (P )N cannot
be measured. It is possible to consider another formulation also. For instance,
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we can suppose that the initial set (Q)N is ˇxed (measured) but (P )N is not. In
this case we will have mixed experiment: β̃1,ν is deˇned by the equation:

Eν = −1

ρ

∂

∂β1,ν
ρ

and β̃2,ν is deˇned by second equation in (5.5).
Considering limit N →∞ the dimension of cells tends to zero. In this case

we are forced by quantum uncertainty principle to propose that the 4-momenta
sets (Q) and (P ) are not ˇxed. This formulation becomes pure thermodynamical:
we must assume that (β1) and (β2) are measurable quantities. For instance,
we can ˇx (β1) and try to ˇnd (β2) as the function of total energy E and the
functional of (β1). In this case Eqs. (5.5) become the functional equations.

In the considered microcanonical description the ˇniteness of temperature
does not touch the quantization mechanism. Really, one can see from (5.3) that
all thermodynamical information is conˇned in the operator exponent

eN̂(φ∗iφj) =
∏
ν

∏
i6=j

ei
∫
φ̂iDij φ̂j

the expansion of which describes the environment, and the ªmechanicalª pertur-
bations are described by the amplitude Z(φ). This factorization was achieved by
introduction of auxiliary ˇeld φ and is independent of the choice of boundary
conditions, i.e., of the choice of considered systems environment.

5.2. Wigner Functions Formalism. We will use the Wigner functions for-
malism in the Carrusers-Zachariasen formulation [25]. For the sake of generality
the m into n particles transition will be considered. This will allow one to include
into consideration the heavy ion-ion collisions.

In the previous section the generating functional ρ((β)N ) was calculated by
means of dividing the ªmeasuring deviceª (calorimeter) on the N cells. It was
assumed that the dimension of device cells tends to zero (N →∞). Now we will
specify the cells coordinates using Wigner's description.

Let us introduce the distribution function Fn which deˇnes the probability
to ˇnd n particles with deˇnite momentum and with arbitrary coordinates. This
probabilities (cross sections) are usually measured in particle physics. The corre-
sponding Fourier-transformed generating functional can be deduced from (5.3):

F (z, (β+)N , (β−)N ) =
N∏
ν=1

∏
i6=j

e
∫
dω(q)φ̂∗i (q)e−βj,νε(q)φ̂j(q)z

ν
ij(q) ×

×Z(φ+)Z∗(φ−). (5.6)

The variation of F over zνij(q) generates corresponding distribution functions.
One can interpret zνij(q) as the local activity: the logarithm of zνij(q) is conjugate
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to the particles number in the cell ν with momentum q for the initial (ij = 21)
or ˇnal (ij = 12) states. Note that zνij(q)φ̂

∗
i (q)φ̂j(q) can be considered as the

operator of activity.
The Boltzman factor e−βi,νε(q) can be interpreted as the probability to ˇnd

a particle with the energy ε(q) in the ˇnal state (i = 2) and in the initial state
(i = 1). The total probability, i.e., the process of creation and further absorption
of n particles, is deˇned by multiplication of this factors.

The generating functional (5.6) is normalized as follows:

F (z = 1, (β)) = R((β)), (5.7)

F (z = 0, (β)) = |Z(0)|2 = ρ0(φ±)|φ±=0,

where
ρ0(φ±) = Z(φ+)Z∗(φ−)

is the ªprobabilityª of the vacuum into vacuum transition in presence of auxiliary
ˇelds φ±. The one-particle distribution function

F1((β1)N , (β2)N ; q) =
δ

δzνij(q)
F |z=0 =

= {φ̂∗i (q)e−β
ν
i ε(q)/2}{φ̂j(q)e−β

ν
i ε(q)/2}ρ0(φ±) (5.8)

describes the probability to ˇnd one particle in the vacuum.
Using deˇnition

F1((β1)N , (β2)N ; q) =

∫
dxdx′eiq(x−x

′)e−βi,νε(q)}φ̂i(x)φ̂j(x
′)ρ0(φ±) =

=

∫
dr{dyeiqye−βi,νε(q)}φ̂i(r + y/2)φ̂j(r − y/2)ρ0(φ±)}, (5.9)

we introduce the one-particle Wigner function W1 [25]:

F1((β1)N , (β2)N ; q) =

∫
drW1((β1)N , (β2)N ; r, q).

So,

W1((β1)N , (β2)N ; r, q) =

∫
dyeiqye−βi,νε(q)φ̂i(r + y/2)φ̂j(r − y/2)ρ0(φ±).

This distribution function describes the probability to ˇnd in the vacuum the
particle with momentum q at the point r in the cell ν.

Since the choice of the device coordinates is in our hands it is natural to
adjust the cell coordinate to the coordinate of measurement r:

W1((β1)N , (β2)N ; r, q) =

∫
dyeiqye−βi(r)ε(q)}φ̂i(r + y/2)φ̂j(r − y/2)ρ0(φ±).
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This choice of the device coordinates leads to the following generating functional:

F (z, β) = exp{i
∫
dydr[φ̂+(r + y/2)D+−(y;β2(r), z)φ̂−(r − y/2)−

−φ̂−(r + y/2)D−+(y;β1(r), z)φ̂+(r − y/2)]}ρ0(φ±), (5.10)

where

D+−(y;β(r), z) = −i
∫
dω(q)z+−(r, q)eiqye−β(r)ε(q),

D−+(y;β(r), z) = i

∫
dω(q)z−+(r, q)e−iqye−β(r)ε(q)

are the modiˇed positive and negative correlation functions.
The inclusive, partial, distribution functions are familiar in the particle physics.

These functions describe the distributions in presence of arbitrary number of other
particles. For instance, one-particle partial distribution function

Pij(r, q; (β)) =
δ

δzij(r, q)
F (z, (β))|z=1 =

=
e−βi(r)ε(q)

(2π)3ε(q)

∫
dyeiqyφ̂i(r + y/2)φ̂j(r − y/2)ρ(φ±, (β)), (5.11)

where Eq. (5.7) was used.
The mean multiplicity nij(r, q) of particles in the inˇnitesimal cell Y with

momentum q is

nij(r, q) =

∫
dq

δ

δzij(r, q)
lnF (z, (β))|z=1.

If the interactions among ˇelds are switched out, we can ˇnd that (omitting
indexes):

n(r, q0) =
1

eβ(r)q0 − 1
, q0 = ε(q) > 0.

This is the mean multiplicity of black-body radiation.
5.3. Closed Path Boundary Conditions. The developed formalism allows one

to introduce more general ªclosed-pathª boundary conditions. Presence of external
black-body radiation 
ow will reorganize the differential operator exp{N̂(φ∗i φj)}
only and new generating functional ρcp has the form:

ρcp(α1, α2) = eN̂(φ∗iφj)ρ0(φ±).

The calculation of operator N̂(φ∗i φj) is strictly the same as in Sec.3. Introducing
the cells we will ˇnd that

N̂(φ∗i φj) =

∫
drdyφ̂i(r + y/2)ñij(r, y)φ̂j(r − y/2),
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where the occupation number ñij carries the cells index r:

ñij(r, y) =

∫
dω(q)eiqynij(r, q)

and (q0 = ε(q))

n++(r, q0) = n−−(r, q0) = ñ(r, (β1 + β2)|q0|/2) =
1

e(β1+β2)(r)|q0|/2 − 1
,

n+−(r, q0) = Θ(q0)(1 + ñ(r, β2q0)) + Θ(−q0)ñ(r,−β1q0),

n−+(r, q0) = n+−(r,−q0).

For simplicity the CM system was used.
Calculating ρ0 perturbatively we will ˇnd that

ρcp(β) = exp{−iV (−iĵ+) + iV (−iĵ−)} ×

exp{i
∫
drdy[ĵi(r + y/2)Gij(y, (β(r))ĵj(r − y/2)} (5.12)

where, using the matrix notations,

iG(q, (β(r))) =

( i
q2−m2+iε 0

0 − i
q2−m2−iε

)
+

+2πδ(q2 −m2)

(
n( (β1+β2)(r)

2 |q0|) n(β1(r)|q0|)a+(β1)

n(β2(r)|q0|)a−(β2) n( (β1+β2)(r)
2 |q0|)

)
, (5.13)

and
a±(β) = −eβ(|q0|±q0)/2. (5.14)

Formally these Green functions obey the standard equations in the y space:

(∂2 −m2)yGii = δ(y),

(∂2 −m2)yGij = 0, i 6= j

since Φ(σ∞) 6= 0 re
ects the mass-shell particles. But the boundary conditions
for these equations are not evident.

It should be underlined that in our consideration r is the coordinate of
measurement, i.e., r is as the calorimeter cells coordinate and there is no
necessity to divide the interaction region of QGP on domains (cells). This means
that L must be smaller than the typical range of 
uctuations of QGP. But, on the
other hand, L cannot be arbitrary small since this will lead to assumption of local
factorization property of correlators, i.e., to absence of interactions.



WIGNER FUNCTIONS OF ESSENTIALLY NONEQUILIBRIUM SYSTEMS 153

So, changing β → β(r) we should assume that β1(2)(r) and z+−(−+)(r, k)
are constants on interval L. This prescription adopts Wigner functions formalism
for the case of high multiplicities. It describes the temperature 
uctuations larger
than L and averages the 
uctuations smaller than L leading to absence, in average,
of ªnon-Gaussianª 
uctuations.

It is the typical ªcalorimetricª measurement since in a dominant number of
calorimeter cells the measured mean values of energy, with exponential accuracy,
are the ªgoodª parameters ∼ 1/β2(r, E). We will assume that the dimension
of calorimeter cells L << Lcr, where Lcr is the dimension of characteristic

uctuations at given n. In deep asymptotic over n we must have Lcr →∞. This
consideration shows that the offered experiment with calorimeter as the measuring
device of particles energies is sufˇciently informative in the high multiplicities
domain.

6. NONSTATIONARY STATISTICAL OPERATOR

One cannot expect the evident connection between the above considered
S-matrix (microcanonical) and Zubarev's [32] approaches. The reason is intro-
duction into Zubarev's formalism of an interaction with a heat bath, external
to system under consideration. This interaction is crucial for deˇnition of NSL
for explanation of the trend to maximal-entropy state, starting evolution from
local-equilibrium state∗.

Therefore, in Zubarev's theory the local-equilibrium state was chosen as the
boundary condition. It is assumed that in the suitably deˇned cells of the system
at a given temperature distribution T (~x, t) = 1/β(~x, t), where (~x, t) is the index
of the cell, the entropy is maximal. The corresponding nonequilibrium statistical
operator

ρz ∼ e−
∫
d3xβ(~x,t)T00 (6.1)

describes evolution of a system in the time scale t. Here Tµν is the energy-
momentum tensor. It is assumed that the system ªfollows' to β(~x, t) evolution
and the local temperature T (~x, t) is deˇned as the external parameter which is
the regulator of systems dynamics. For this purpose the special iε-prescription
was introduced (it was not shown in (6.1)) [32]. It brings the interaction with
heat bath.

The KMS periodic boundary condition cannot be applied for nonstationary
temperature distribution and by this reason the decomposition:

β(~x, t) = β0 + β1(~x, t) (6.2)

∗This condition is not necessary in the S-matrix formalism since it is ªdynamicalª by its nature,
i.e., includes the notion of initial- and ˇnal-states as the boundary conditions.



154 MANJAVIDZE J.

was offered in the paper [30]. Here β0 is the constant, and the inequality

β0 >> |β1(~x, t)|

is assumed. Then,
ρz ∼ e−β0(H0+V+B), (6.3)

where H0 is the free part of the Hamiltonian, V describes the interactions, and
the linear over β1/β0 term B is connected with the deviation of temperature from
the ªequilibriumª value 1/β0. Presence of B perturbations creates the ªthermalª

ows in the system to explain increasing entropy. Considering V and B as the
perturbations one can calculate the observables averaging over equilibrium states,
i.e., adopting the KMS boundary condition. Using standard terminology one can
consider V as the ªmechanicalª and B as the ªthermalª perturbations.

The quantization problem of operator (6.3) is connected with deˇnition of
the space-time sequence of mechanical (V ) and thermal (B) excitations. It is
necessary since the mechanical excitations give the in
uence on the thermal ones
and vice versa. It was assumed in [30] that V and B are commuting operators,
i.e., the sequence of V - and B perturbations is not sufˇcient. The corresponding
generating functional has the form [30]:

Z(j) = exp{−i
∫
Cβ

d4x(V (−iĵ(x)) +
β1(x, τ)

β0
T00[−iĵ(x)]−

∫ 0

−∞
dt1

β1(x, τ + t1)

β0
T00[−iĵ(x, x0t1)])}Tr(e−β0H0TCe

i
∫
C
d4yj(y)Φ(y)

),

where the time contour Cβ was described in Sec.4.1, and τ is the measurement
time.

It is evident that this solution leads to the renormalization by the interac-
tions with the external ˇeld β(~x, t) even without interactions among fundamental
ˇelds Φ. The source of this renormalizations is the kinetic term in the energy-
momentum tensor T00, i.e., follows from ªthermalª interactions with external heat
bath. Note absence of this renormalizations in the S-matrix formalism, see, for
instance (3.25), where the interactions are generated by V perturbations only.

In [53] the operators V and B are noncommuting ones and B perturbations
were switched on after V perturbations. In this formulation the nondynamical
renormalizations are also present but it is not unlikely that they are canceled at
the very end of calculations [54].

This formulation with β(~x, t) as the external ˇeld reminds the old, ˇrstly
quantized, ˇeld theory in which matter is quantized but ˇelds are not. It is well
known that consistent quantum ˇeld theory requires the second quantization. Fol-
lowing to this analogy, if we want to take into account consistently the reciprocal
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in
uence of V and B perturbations, the ˇeld β(~x, t) must be fundamental, i.e.,
must be quantized (and the assumption of paper [30] becomes true). But it is
evidently the wrong idea in the canonical Gibbs formalism. So, as in the ˇrstly
quantized theory, the theory with operator (6.1) must have the restricted range of
validity [32].

7. CONCLUSION

In our interpretation of the real-time ˇnite-temperature ˇeld theory the sta-
tistics and the ˇelds quantum dynamics were factorized: statistics is ˇxed by
the operator exp{N̂(φ∗i φj} and a pure ˇeld-theoretical dynamics is described by
ρ0(φ±) = Z(φ+)Z∗(φ−), where Z(φ±) is the vacuum into vacuum transition
amplitude in the presence of the external (auxiliary) ˇelds < vac|vac >φ. We

can say that the operator exp{N̂(φ∗i φj} maps the system of interacting ˇelds on
the state with deˇnite thermodynamical parameters. We had concentrated our
attention in this paper on the structure and origin of operator exp{N̂(φ∗i φj} only
and do not discuss ρ0(φ±). But the developed formalism allows one to use
following ªS-matrixª properties which are new for thermodynamics to deˇne ρ0.

First of them is the absence of Matsubara imaginary parts of time contour in
ρ0 by deˇnition: the approach is pure ªreal-timeª. This allows one to construct the
formalism without referring to time asymptotic properties of correlation (Green)
functions, and introduce the temperature description without using a notion of
grand canonical ensemble constructing the environment of the system, i.e., the
measuring device, ªby handª.

Moreover, discussed factorization property has important consequence which
would allow one to calculate expectation values with high accuracy. Let us con-
sider the theoretical problem of the ρ0(φ±) calculation. To deˇne the functional
measure the orthonormalizability (i.e., the unitarity) condition may be used. It
leads to the following representation [55]:

ρ0(φ) = e−iK̂(j,e)

∫
DM(Φ)e−U(Φ,e)e

∫
dx(v′(Φ)+j)φ

, (7.1)

where the expansion over operator

K̂(j, e) = 2Re

∫
dx

δ

δj(x)

δ

δe(x)

generates perturbation series and

U(Φ, e) = V (Φ + e)− V (Φ− e)− 2Re

∫
dxev′(Φ)
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weights quantum 
uctuations. The most important term in (7.1) is the measure

DM(Φ) =
∏
x

dΦ(x)δ(∂2
µΦ +m2Φ + v′(Φ)− j),

where v′(Φ) ≡ δV (Φ)/δΦ(x). So, solving the equation

∂2
µΦ +m2Φ + v′(Φ) = j (7.2)

we will ˇnd all contributions∗.
At the very end of calculations one must put e = j = 0. Therefore, Eq. (7.2)

can be solved expending it over j. This shows that (7.1) restores at j = 0 the
usual stationary phase method. Indeed, it can be veriˇed that (7.1) gives usual
perturbation theory [55].

But Eq. (7.2) gives much more possibilities. Note that l.h.s. of this equation is
the sum of known classical forces and the r.h.s. is the quantum force j. Eq. (7.2)
establishes the local equilibrium between this forces. This solves the old standing
problem of quantization with constraints: it can be done by ˇeld transformations
in path integrals since Eq. (7.2) shows the way as j must be transformed when
the l.h.s. is transformed. Presence of derivatives in (7.2) shows that the quantum
force must be transformed in the tangent space of ˇelds∗∗.

The r.h.s. of Eq. (7.2) may contain also an additional force to describe the
external in
uence on the system of interacting ˇelds. This force was omitted in
Eq. (7.2) assuming that a process of particles creation (and absorption) is switched
on adiabatically.

As was mentioned above the action of operator e−N̂(β,z;φ) on ρ0(φ) maps
interacting ˇelds system on measurable states. Let us consider what this gives.
Result of action has the form:

ρ(β, z) = e−iK̂(j,e)

∫
DM(Φ)e−U(Φ,e)e−N(β,z.;Φ),

where N = N1 +N2 and

N1(2)(β, z; Φ) =

∫
drdω(k)e−β1(2)(r)ε(k)z+−(−+)(k, r)|Γ(k,Φ)|2. (7.3)

Here r is considered as the index of calorimeter cell. This formulae needs more
careful explanation. Instead of (7.3) we must consider

N1(2)(β, z; Φ) =

∫
drdω(k)e−β1(2)(r)ε(k)z+−(−+)(k, r)

∗This means that the unitarity condition is necessary and sufˇcient for deˇnition of path integral
measure for R0(φ±) [56]

∗∗This explains why the ordinary transformation of path integral is impossible, gives wrong
result [57].
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dqδL(q)Γ(k + q,Φ)Γ∗(k − q,Φ). (7.4)

where L is the scale, where β1(2)(r) and z+−(−+)(k, r) can be considered as the
constants (L is the dimension of calorimeter cell). If L → ∞, then δL(q) can
be changed on usual δ-function δ(q) and, therefore, in this limit we will have
(7.3). We had considered this limit supposing that the measurement is not in
contradiction with quantum uncertainty principle.

So, deriving N1(2)(β, z; Φ) we used the condition that r is the coordinate of
size L cell. With this condition

Γ(k,Φ) =

∫
dxeikx(∂2

µ +m2)Φ (7.5)

can be considered as the order parameter. Indeed, Γ(k,Φ) is the element of actions
symmetry group since it is linear over ˇeld Φ and the generating functional ρ(β, z)
is trivial if < |Γ(k,Φ)|2 >= 0. In this case there is no creation of particles, i.e.,
there are no measurable asymptotic states (ˇelds).

Indeed, it can be shown [58] that all quantum corrections to solitons con-
tribution in the (1+1)-dimensional sine-Gordon model equal zero. This is in
accordance with the result of [59] and with factorizability of solitons S matrix.
Then it is easily seen computing integral in (7.5) by parts that Γ(k,Φs) = 0,
where Φs is the soliton solution. This result shows that hidden symmetry of
sine-Gordon model cannot be broken and corresponding (polynomial) integrals of
motion are conserved. The application of this idea for non-Abelian ˇeld theory
should be fruitful.
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