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In a series of interesting papers G. C. Hegerfeldt has shown that quantum systems with positive
energy initially localized in a ˇnite region, immediately develop inˇnite tails. In our paper Hegerfeldt's
theorem is analyzed using quantum and classical wave packets. We show that Hegerfeldt's conclusion
remains valid in classical physics. No violation of Einstein's causality is ever involved. Using only
positive frequencies, complex relativistic wave packets are constructed which at t = 0 are real and
localized. We show that they are superpositions of two nonlocal wave packets. The nonlocality
is initially cancelled by destructive interference. However this cancellation becomes incomplete at
arbitrary times immediately afterwards. In agreement with relativity the two nonlocal wave packets
move with the velocity of light, in opposite directions.

We also consider the dressing process of an atom interacting with a scalar ˇeld (®photon¯). The
bare particle is localized while the dressed particle is delocalized. Again the Hegerfeldt's theorem
applies.

1. INTRODUCTION

I am greatly honoured to receive the Bogolyubov Prize. I have always
admired the scope and the depth of Professor Bogolyubov's work. He has in-
Kuenced greatly the work which we did on nonequilibrium statistical mechanics
in Brussels. I will tell an anecdote. Professor Bogolyubov was visiting Brussels
many years ago, perhaps 20 or 30 years ago. I was astonished that he spoke
very Kuently French. He said to me that he worked with Krylov, and Krylov
would speak about science only in French. He said that French is the language
of science. This belongs probably to the past. So I shall use as the other people
at this conference my broken English.

I want to give a summary of some recent work done in collaboration with
Karpov, Ordonez, Petrosky, and Pronko. Of course, Karpov and Pronko are
Russian. The work about which I shall speak is still in progress. We have
just received the news that the ˇrst publication in this direction will appear in
Physical Review. But I want also to include some more recent results which are
still unpublished.
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Are there deviations from Einstein's causality? G. C. Hegerfeldt has written
[1]: ®Positivity of the Hamiltonian alone is used to show that particles, if initially
localized in a ˇnite region, immediately develop inˇnite tails¯. This seems to
imply superluminality. One of his examples is the Fermi problem [2] of two
atoms coupled by a radiation ˇeld. Consider the initial condition when one of
the atoms is in an excited state, the other in the ground state, and no photons
are present. The probability to ˇnd the second atom in an excited state is non-
vanishing immediately after the initial moment, independently of the distance
between the atoms [3]. Hegerfeldt's arguments are based on the analyticity of the
expectation values of the operator N(V ), which gives the probability to ˇnd a
particle inside a ˇnite volume V . He showed that a state in a quantum system with
positive energy localized in a ˇnite volume V at the instant t = 0, will develop
inˇnite tails immediately afterwards. Positivity of energy plays an essential role in
his proof. In this paper we present illustrations of Hegerfeldt's theorem, without
any appeal to superluminality. We ˇrst apply Hegerfeldt's consideration to wave
packets. Moreover, we show that Hegerfeldt's effect appears even for classical
ˇelds if wave packets are constructed from positive frequencies (corresponding
positive energy quantum ˇelds). We ˇrst study the positive-frequency solutions
of the classical wave equation. We consider wave packets Φ(x, t) localized at
t = 0. We shall show that the localization is due to the interference of two
complex solutions, each propagating causally

Φ(x, t) = Ψ(x − t) + Ψ∗(x + t). (1)

Here ®∗¯ denotes complex conjugation and we take c = 1. We show that both
these wave packets are delocalized. They present long tails extending to arbitrary
distances and decay according to a power law.

We start from the wave equation on the real line (c = 1).

(
∂2

∂t2
− ∂2

∂x2

)
Φ(x, t) = 0. (2)

The general complex solution of Eq. (2) is, by the Fourier transform, of the form

Φ(x, t) =
1
2π

∫ ∞

−∞
dk

{
Φ+(k)e−iωkt + Φ−(k)eiωkt

}
eikx, (3)

where ωk = |k| and Φ±(k) are arbitrary functions. We consider the special class
of positive-frequency solutions to Eq. (2), i.e., Φ−(k) ≡ 0 and

Φ+(x, t) =
1
2π

∫ ∞

−∞
dk Φ+(k)e−iωkteikx. (4)
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The positive-frequency solutions are determined by the initial condition Φ(x, 0).
Note that relation (4) leads to a complex ˇeld for t �= 0, even if Φ+(x, 0) or
Φ+(k) are real.

Consider as an example a localized (rectangular) wave packet with centre x0

and width 2b at time t = 0:

Φx0,b = (1/2b)Θ(b − |x − x0|). (5)

The normalization has been chosen so that the integral of this function over x is
equal to one. Then the function Φ(k) is:

Φ+(k) =
1
2π

∫ ∞

−∞
dk e−iωktΘ(b − |x − x0|), (6)

where Θ(b − |x − x0|) is the step function, which is 0 for x negative, and 1 for
x positive. Then the function Φ(x, t) in (4) is given by

Φ(x, t) =
1

4πb

∫ ∞

−∞
dk

∫ x0+b

x0−b

dx′e−i|k|t+ik(x−x′). (7)

In agreement with (1) this is a sum of two functions corresponding to two wave
packets moving in opposite directions,

Φ(x, t) = Ψ(x − t) + Ψ∗(x + t), (8)

where

Ψ(x) =
1

4πb

∫ x0+b

x0−b

dx′
∫ ∞

0

dk eik(x−x′). (9)

To evaluate the integral over k we introduce the usual regularisation by adding a
positive inˇnitesimal to x, which leads to

Ψ(x) =
1

4πbi

∫ x0+b

x0−b

dx′

x − x′ + i0
. (10)

After integration over x′ we obtain:

Ψ(x) = (i/4πb)
[
ln(x − x0 + b + i0)− ln(x − x0 − b + i0)

]
. (11)

The logarithm of a complex number is given by

ln(z) = ln |z| + i(arg(z) + 2πn), (12)

where n is an integer. In order to have both terms in (11) on the same branch
of the logarithm we take n = 0 for both of them (due to the difference of the
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two terms in (11) the result does not depend on the particular value of n). The
argument of x + i0 can be expressed as

arg (x + i0) = (π/2)(1 − sign (x)), (13)

where sign (x) = x/|x| is the sign of x. Then, inserting (12) and (13) into (11)
we obtain

Ψ(x)=
1
8b

(
sign (x−x0+b)−sign (x−x0−b)

)
+

i

4πb
ln

∣∣∣∣x−x0+b

x−x0−b

∣∣∣∣ . (14)

We see that the function Ψ(x) in (14) consists of a local real part (sign ) and a
nonlocal imaginary part (log). For t �= 0 it is sufˇcient to replace x by x − t in
(8). A similar result is obtained for Ψ∗(x + t). As a result, the function Φ(x + t)
is also nonlocal because it is the superposition of the two complex functions
Ψ(x − t) and Ψ∗(x + t) in (8), which describe nonlocal objects moving with the
speed of the light in opposite directions. However, at t = 0 the imaginary parts
cancel each other (see Fig.1), and we recover our localized initial condition (5),
because only the real parts of these functions, which are local, remain. In all our
ˇgures time t is measured in seconds (s), the coordinate x is measured in ®light
second¯ (ls) and wave packet amplitudes are dimensionless.

At t = 1s in Fig. 2, the overlapping is small and we have

|Φ(x, t)| ≈ |Ψ(x − t)| + |Ψ∗(x + t)|. (15)

We see that the initial condition Φ(x, 0) is local (Fig. 1) only because at t = 0
the nonlocal parts cancel each other by destructive interference. We may describe
the appearance of nonlocality as a sort of ®curtain effect¯. The nonlocal nature of
each wave packet Ψ(x−t) and Ψ∗(x+t) is hidden behind a ®curtain¯ at the initial
time and emerges immediately afterwards. Each of the nonlocal wave packets
is complex and propagates at the speed of light. We see that the localization
of wave packets corresponding to positive frequency is unstable and involves
complex space structures.

I mention only that the same results are obtained in relativistic quantum ˇeld
theory. I want also to emphasize the analogy with EPR. The two waves which
are formed are still correlated at arbitrary distance. In principle if you would
measure one, you could predict that some observer sitting at arbitrary distance
would ˇnd the other.

2. THE DYNAMICS OF DRESSING

Let us consider the well-known Friedrichs model. In this model we have
a discrete state |1〉 representing a bare particle coupled to continuous states |k〉
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corresponding to ˇeld modes [4]. The Hamiltonian is

H = H0 + λV

= |1〉ω1〈1| +
∑

k

|k〉ωk〈k| (16)

+ λ
∑

k

Vk (|k〉〈1|〉 + |1〉〈k|〉) .

We will assume that
vk = V−k = real (17)

and that the dispersion relation for the ˇeld modes (or ®photons¯) is

ωk = c|k| (18)

with c = 1.
We consider a one-dimensional system enclosed in a box of size L with

usual periodic boundary conditions. We will consider the limit L → ∞ where
the spectrum of photon energies is continuous.

We further assume that

Vk ∼ L1/2 (19)

which corresponds to the usual volume dependence of matter-ˇeld interactions.
We may interpret our model as a simpliˇed version of a two-level atom

interacting with radiation. In this interpretation |1〉 represents the atom in its bare
excited level, and no photons present, and |k〉 represents the atom in its ground
level, together with a photon of momentum k. The interaction λV induces
transitions from |1〉 to |k〉 or vice versa. We will often refer to |1〉 as the ®bare
particle¯, with the understanding that this particle is in an excited state, virtual
processes are neglected.

We shall now consider in this simple case the dynamics of dressing and relate
it to Hegerfeldt's theorem. We shall consider the simplest possible case which
corresponds to the integrable Friedrichs model.

Let us consider the eigen states of the Hamiltonian. For this case we obtain

H |φ1〉 = ω̃1|φ1〉. (20)

The exact expression for |φ1〉 can be shown to be [4].

|φ1〉 = N
1/2
1

[
|1〉 −

∑
k

λV

ωk − ω̃1
|k〉

]
, (21)

where N1 is a normalization constant and the perturbed energy ω̃1 is the solution
of the usual dispersion equation. Note that |φ1〉 has a cloud and a long tail. In
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other words, it decays in space in a polynomial way. So we have on one side,
a localized unperturbed state and an exact state which has a long tail. Now we
can consider the transformation of the localized state to the dressed state. This
occurs in a way reminding very much the conclusion of paragraph 1. Indeed
the bare state can be considered as a superposition of the virtual photon cloud
corresponding to the dressing and interfering negatively with a compensating
cloud. But this situation is not stable. The compensating cloud is dividing in
two and escaping while the dressing remains. We have again a kind of curtain
effect. The compensating cloud carries away the excess energy of the bare
state. We remain with the dressed state (21). The existence and the motion
of the compensating cloud has been veriˇed by numerical simulations. It is an
irreversible process in the sense that by taking away the excess energy we go to a
more stable situation. The main point here is of course that we have a transition
from a localized state into a delocalized state. The moving cloud can be observed
at arbitrary distances. It is interesting to see that the dressing of the atom can be
related to Hegerfeldt's theorem.

Let me indicate brieKy a last example. That belongs to scattering theory. We
send a photon wave packet on an excitable atom but the wave packet as we have
seen is unstable. It leads to long tails. Therefore there will be interactions before
the wave front of the photon wave packet reaches the particle. This curious result
has also been veriˇed by numerical simulation.

3. CONCLUDING REMARKS

Nonlocal structures simulate to some extent a superluminosity. The superlu-
minosity in wave guide or tunneling has been observed by Enders and Nimtz [5].
We hope that our theory can be applied to their observations. Anyway this result
leads to new questions in special relativity. There the description is in terms of
points. But delocalized structures act more like a rigid body. This requires a
reconsideration of synchronization.

I want to thank my colleagues Professors E. Karpov, G. Pronko, T. Petrosky,
and G. Ordonez for their participation in this work. The main ideas are their.
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Fig. 1. The real part (dashed lines) and the imaginary part (solid lines) of Ψ(x − t) (a),
Ψ∗(x + t) (c), and Φ(x, t) = Ψ(x − t) + Ψ∗(x + t) (e) as functions of x at t = 0; the
absolute values |Ψ(x − t)| (b), |Ψ∗(x + t)| (d), and |Φ(x, t)| �= |Ψ(x − t)|+ |Ψ∗(x + t)|
(f) as functions of x at t = 0
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Fig. 2. The real part (dashed lines) and the imaginary part (solid lines) of Ψ(x − t) (a),
Ψ∗(x + t) (c), and Φ(x, t) = Ψ(x − t) + Ψ∗(x + t) (e) as functions of x at t = 1s; the
absolute values |Ψ(x − t)| (b), |Ψ∗(x + t)| (d), and |Φ(x, t)| �= |Ψ(x − t)|+ |Ψ∗(x + t)|
(f) as functions of x at t = 1s
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Fig. 3. Localized bare state (left), Virtual photon dressing (right) (a) and Compensating
photons (right) (b)

Fig. 4. Sticking cloud (a), Photon escaping (b), t1 < t2
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