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QUANTUM FIELD THEORY AND SYMMETRIES
IN NUCLEAR PHYSICS

A.M.Baldin

Joint Institute for Nuclear Research, 141980 Dubna, Russia

Nuclear physics embraces a wide area of knowledge ranging from fundamen-
tal problems of matter structure up to the origin of the universe. Applied aspects
of this science bear a direct relation to the most urgent problems of people's life Å
ecology and energetics. The present talk deals with one of these aspects, namely, a
possible description of the properties of nuclear matter by means of the methods of
modern mathematical physics which N.N.Bogoliubov has greatly contributed to.

The problem of describing nuclear processes, like all other physical processes,
is solved on the basis of the construction of the space of deˇning parameters
linking real physical objects. Nuclear physics originates from the discovery of
the Mendeleev Periodic Law in which the parameters: atomic weight A and
charge Z, play the fundamental role in the description of atomic properties. The
proton-neutron structure of all the nuclei, including the synthesized ones, is given
in the Figure, as a function of the parameters A − Z and Z. The creation of
quantum mechanics has resulted in the introduction of the quantum parameters
of the ground and excited states of atomic nuclei. Later on, it was found that
it was necessary to introduce the concept of non-nucleon degrees of freedom,
as well as the concept of quark-gluon or colour degrees of freedom of nuclei.
Then, the idea itself that matter consists of elementary particles has undergone
essential changes. However the idea that the primary concept of physics is the
concept of space has kept its fundamental importance. The comparison of the
deˇning parameters' space with the mathematical one is the essential point of the
construction of mathematical models.

Complicated real physical situations require simpliˇed descriptions and de-
terminations of the region of validity (measurability) of the introduced concepts.
We have to deˇne the region of applicability of the concept ®elementary particle¯.
By tradition, the elementary particles are taken to mean indecomposable structure
constituents of matter. This concept has been formed in a close connection with
the idea about the discrete structure of matter at the microscopic level. When
constructing models the elementary particles are thought of as absolutely identical
and their ensembles are described by the quantum ˇelds which are just the basis
of the mathematical space of a model. However, quantum ˇeld theory is suc-
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Fig. 1.

cessfully applied to both particles possessing inherent structure and decomposable
objects, for example, helium atoms at low temperatures.

In atomic physics, the criterion that restricts the applicability of such an ap-
proach is the smallness of the kinetic energy of relative motion in comparison
with the energy of the ˇrst excited level of the atom. In the opposite case, the
interaction of atoms with one another results in a violation of the identity and
it becomes necessary to enlarge the parameters' space. A relativistic generaliza-
tion of the criterion of applicability of the concept ®elementary particle¯ can be
obtained by using the four-momentum conservation law p1 + p2 = p3 + p∗ :

(p1 + p2)2 = (p3 + p∗)2.

From the deˇnition of the threshold for the creation of an excited state of one of
the colliding particles we have

(p1 + p2)2 = (p3 + p∗)2 = (m+m∗)2

from where

b12 = −(u1 − u2)2 =
m−m∗

m

[
4 +

m−m∗

m

]
� 1. (1)
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Here, m are the masses of the identical particles, and m∗ is the mass of the
excited state; p1, p2, p3, and p∗, their momenta, respectively; ui = pi/mi, the
four-velocity vectors.

The four-velocity space is fundamental for describing relativistic multiparti-
cle production processes. The criterion (1) is formulated in terms of invariant,
dimensionless and measurable quantities, it does not involve parameters like the
particle size, the degree of pointlikeness, the spacing, and so on.

On the basis of the criterion (1), we obtain the following classiˇcation of the
nuclear systems:

Å The region 0 ≤ bik ≤ 10−2 corresponds to nonrelativistic nuclear physics.
Nucleons can accurately be treated as elementary particles.

Å The region bik ∼ 1 corresponds to excitation of the internal hadron (isobar,
resonance) degrees of freedom. It is necessary to introduce non-nucleon degrees
of freedom Å the ˇeld quanta different from nucleon ones.

Å The region bik � 1 corresponds to dominance of quark and gluon ˇelds,
that is, of quanta carrying color.

Values bik ∼ 10−9 characterize atomic physics. Here, for example, helium
atoms lose electrons and are transformed from bosons into fermions. In relativistic
nuclear physics, one collision process involves all relative velocities bik and,
respectively, very different quanta.

Particle and nuclear physicists use the basic theoretical framework to describe
the behavior of quantum system in quantum ˇeld theory. A basis for the Hilbert
space of the system of arbitrary numbers of particles is composed of the following
states:

| O〉 the ®no particle¯ state,

| p〉 the ®single particle¯ states,

| p1p2〉 the ®two-particle¯ states,

...
| p1 . . . pN 〉 the ®N -particle¯ states.

...

The norm of this Hilbert space is

〈p | p′〉 = (2π)3δ3(�p− �p ′)2Ep,

〈p1, p2 | p1′, p2′〉 =

= (2π)62Ep12Ep2

{
δ3(�p1 − �p1

′)δ3(�p2 − �p2
′) + δ3(�p1 − �p2

′)δ3(�p2 − �p1
′)
}
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and the obvious generalization to the other states. This Hilbert space is called a
Fock space. A general state in this space is

| Ψ〉 = Ψ0 | O〉 +
∫

d3p

(2π)32E1
· Ψ(�p) | p〉+

+
1
2!

∫
d�p1d�p2

(2π)62E1 · 2E2
Ψ2(�p1, �p2) | p1, p2〉 + . . .

A more convenient notation is to label the states by N(p) which ®counts¯
particles with momentum p

P̂µ =
∫

d3p

(2π)32E
N̂(p)pµ

that can be expressed by introducing the creation and annihilation operators as
basic operators from which we shall construct all observables[

âp, â
+
p′

]
= (2π)32Eδ3(�p− �p ′),

N̂(p) ≡ â+
p · âp,

â+
p creates an extra particle and âp annihilates particle with momentum p,[

N̂(p), â+
p

]
= (2π)3δ3(�p− �p ′) · 2Ep · â+

p .

From these deˇnitions it follows that an ensemble consisting of massless
particles possesses a mass. For example, the eigenvalue of the operator of the
four-momentum of a system consisting of two photons with momenta k1 and k2 is

P̂µ | k1, k2〉 = (kµ
1 + kµ

2 ) | k1, k2〉 = Pµ | k1, k2〉

and
Pµ · Pµ = (k1 + k2)2 = 2(k1 · k2).

Experimentalists measuring the mass of a neutral π meson decaying into two
photons have been knowing this fact for a long time. Another example is the
discovery of the electron-positron pair production which has made it possible to
deˇne the ®positive electron¯ mass and has signiˇed the necessity of expanding
the Fock space to electron ˇeld quanta, that is, the creation of the MaxwellÄDirac
electrodynamics (QED).

In nuclear physics, the introduction of color ˇelds∗ , the quanta of which
have a negligibly small mass, has made the Fock space as a basis for constructing
quark models (quark-parton model, models on the light cone, and so on).

∗See the talk of N.N.Bogoliubov at a general meeting of the Academy of Sciences of the USSR
on March 1985, JINR Communications D2-85-206, Dubna, 1985.
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The obtaining of the color ˇeld Lagrangian on the basis of gauge symmetry
has resulted in the formulation of quantum chromodynamics (QCD). Hovewer, the
analogy between QED and QCD is far from being total. The auxiliary conditions
which are to be imposed on the solutions of the EilerÄLagrange equations are
cardinally different in QCD and QED. Most of all, this concerns the deˇnition
of the quark and gluon asymptotic states. Without additional hypotheses on the
boundary and initial conditions, on the quark-gluon structure of hadrons, and on
the transformation of quarks and gluons into hadronic jets it is impossible to
connect QCD with observable processes.

In solving differential equations it is necessary to take into account the prop-
erties of the space as a whole. In nonlinear models, to which QCD is attributed,
there arise extended localized structures: solitons, vortices, instantons, skyrmeons,
and so on.

In the 1930's and 1940's L.S.Pontrjagin and other mathematicians have dis-
covered, without undergoing the in_uence of physical models, interesting topo-
logical invariants playing an ever-growing role in modern physics.

Merging of the newest areas of mathematics and theoretical physics enables
us to hope that, along this way, one will succeed in ˇnding an approach to
nonperturbative solutions of QCD.

The perturbative QCD solutions are based on a speciˇc dependence of the
®invariant charge¯, discovered by N.N.Bogoliubov and D.V.Shirkov [1] and un-
happily named ®running coupling constant¯, on the momentum transfer. The
decrease of the running coupling constant at large momentum transfers predicted
theoretically and conˇrmed by experiment has given rise to a very important con-
cept Å ®asymptotic freedom¯. Unlike the invariant charge, topological invariants
are not the invariants of the Lee group. However both are additional conditions
on the solutions.

The topological integral of motion is a particle number N in dynamics where
the processes of production and annihilation of new particles are eliminated. This
law of conservation is important in nonrelativistic nuclear physics.

As a hypothesis about the properties of the solutions of statistical physics
N.N.Bogoliubov has formulated the correlation depletion principle [2]. The prin-
ciple is based on the intuitive idea that the correlation between spatially separated
groups of particles of a microscopic system practically vanishes. The correlation
depletion principle was successfully applied to the development of the theory
of ferromagnetism, super_uidity and superconductivity. Also it is possible to
formulate the notion of quasi-averages and the properties of the solutions that
afterwards were given the name of spontaneous symmetry breaking. It is inter-
esting that the well-known attempt of Dirac to formulate a relativistic theory of
dynamical systems [3] led him to the realization that it was possible to state only
the necessary but not the sufˇcient conditions for this theory to exist. At the
end of his remarkable article, Dirac writes, ®Some further condition is needed to
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ensure that the interaction between two physical objects becomes small when the
objects become far apart. It is not clear how this condition can be formulated
mathematically¯. Bogoliubov's correlation depletion principle is formulated as an
asymptotic form of the Green functions as universal (independent of the speciˇc
features of the system) linear form from averages of the product of ˇeld functions.
This principle gives mathematical formulation for the additional condition of the
relativistic theory (Poisson's brackets) developed by Dirac.

In Refs. 4, 5 the correlation depletion principle is formulated in both the
relative four-velocity space and the Lobachevsky space. The application of this
principle to quantum chromodynamics of large distances (or, more precisely,
of small relative velocities), to the description of multiple particle production
processes, and, particularly, to relativistic nuclear physics was found to be espe-
cially productive. In these areas, the perturbative approach does not work, thus
hypotheses of a fundamental character, i.e., auxiliary conditions, are needed. A
collision of relativistic nuclei results in the production of many particles, and the
interaction picture is very complicated. Both nucleon and quark-gluon degrees
of freedom participate in the same collision. The number of the parameters of
the problem is extremely large, and it is particularly important to discover the
invariants.

Relativistic nuclear physics that was born at the beginning of the '70s at
Dubna became one of the most intensively developed areas of high energy physics
in many laboratories of the world. The discovery of the laws of relativistic nuclear
physics is a part of the general search for the laws describing relativistic multipar-
ticle systems. These problems were studied by outstanding scientists of the 20th
century. The ˇrst studies were devoted to the transport equations which allowed
the formulation of the thermodynamic properties of dilute relativistic multiple
systems. The great success of quantum ˇeld theory in describing multiparticle
systems on the basis of the Hamiltonian method has not resulted however in great
progress in the development of the problems of relativistic nuclear physics.

In Refs. 5, 6 it is shown that the approach to relativistic nuclear physics
based on the geometry of velocity space and the hypotheses about the asymptotic
nature of the laws in this space allows us to put in order an enormous amount of
experimental data and make quantitative predictions. Some of these predictions
make many experiments on huge accelerators unnecessary and even condemned
to failure. The methods of symmetry of the solutions utilized in these papers are
analogous to the methods of the mechanics of continuous media.

In the case of relativistic nuclear physics, the deˇning parameters are the cross
sections, quantities derived from them, and the invariant dimensionless intervals
in relative four-velocity space �ui = �pi/mi ; ui

0 = Ei/mi:

bik = −(ui − uk)2 = 2 [(ui · uk) − 1] = 2
[
Ei · Ek − �pi · �pk

mi ·mk
− 1

]
.
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As far as the energies Ei and the momenta �pi are linked by the known relation
Ei

2−�pi
2 = mi

2, then (ui)2 = (uo)2−(�ui)2 = 1. Instead of the four-dimensional
space it is possible to introduce a three-dimensional one with a fourth coordinate
expressed in terms of the other three:

u0
i = ±

√
1 + u2

x + u2
y + u2

z. (2)

This equation is a two-sheeted hyperboloid. The geometry on the surface of
the hyperboloid is the geometry of the three-dimensional Lobachevsky space,
analogous to the geometry on the surface of a sphere. The interval between
the points on the surface of a sphere is given by the cosine of the angle of the
great circle, and the interval on the surface of the hyperboloid is given by the
hyperbolic cosine of the rapidity

ρ =
1
2

ln
E+ | �p |
E− | �p | .

The relation between the intervals bik and ρik is of the form:

bik = 2 [(ui · uk) − 1] = 2 [chρik − 1] .

The number of the parameters of bik is n(n − 1)/2. The most complete
description of the ˇnal states of nuclear collisions is connected with the use of
triangulation and the construction of polyhedra in velocity space.

The introduction of the variables NI and NII characterizing the effective
numbers of particles participating in the collisions of nuclei I and II has proved
to be very productive. In a wide interval of relative velocities, the additional
variables NI and NII turned out to be continuous and smooth.

The invariant that is employed to express a large number of the laws of
relativistic nuclear physics has the meaning of the minimal mass

min
[
m2

0(uINI + uIINII)2
]1/2

= 2m0

∏

under the condition of conservation of four-momentum:

m0uINI +m0uIINII =
∑

i

pi.

Here, uI and uII are the four-velocities of the nucleus as a whole, m0 is the
mass of one nucleon. The introduction of the single self-similarity parameter
(invariant) ∏

=
1
2

√
(uINI + uINII)2 (3)
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allowed a quantitative description of the cumulative effect, deep subthreshold,
near-threshold phenomena, and antimatter production in nucleus-nucleus colli-
sions. Of special interest is the prediction, on this basis, of the results of future
experiments on nuclear colliders that are presently being designed.

Building of nuclear colliders and huge detectors is motivated by the possibility
of obtaining at bI,II � 1 of an extremely excited nuclear matter Å quark-
gluon plasma. The quantitative predictions based on the dependence of the cross
sections upon the invariants (3) make it possible to conclude that the hopes for
obtaining dense and hot matter in heavy ultrarelativistic nuclear collisions will
not be realized (see the talk by A.I.Malakhov at a Parallel Session of the present
Conference).

The best studied domain of nuclear physics that corresponds to nucleon
relative motion, characterized by the criterion bik �< 10−2, contains a large
amount of theoretical approaches (models), results and research goals. In a
nonrelativistic approach, the nucleus is thought of as a system, consisting of a
deˇnite number of nucleons.

The Hamiltonian of a nonrelativistic nuclear physics is of the form:

H=
∑
f1f ′

{T (f1f ′)−λδf1f ′} â+
f1
âf ′−1

4

∑
f1f2f2

′f1
′

V (f1f2; f2′f1′)â+
f1
â+

f2
âf ′

2
âf ′

1
,

where â+
f and âf are the nucleon creation and annihilation operators, f is

the set of quantum numbers describing the nucleon state, and λ stands for the
chemical potential.

Using geometric, kinematic and dynamic symmetries one succeeds, to a large
extent, in putting in order the nuclear level system and essentially simplifying the
ˇnding of the solutions describing a broad spectrum of phenomena of nuclear
physics. The HartreeÄFock variational method is one of the fundamental ap-
proaches to the study of the many-body problem. This method is used to ˇnd the
energy minimum with the aid of a class of one-particle wave functions. In this
case, pairing and more complicated correlations are not taken into account.

N.N.Bogoliubov has suggested a new variational principle, a natural gener-
alization, of the HartreeÄFock method. According to Bogoliubov's method, the
energy minimum is found with the aid of a wider class of functions: in addition
to the one-particle wave functions, the wave functions of pairs of particles are
taken into account. The method, named the HartreeÄFockÄBogoliubov method,
was discussed at a Parallel Session devoted to nuclear physics.

Special attention should be given to the in_uence of Bogoliubov's ideas
and methods on nuclear physics. In Ref. 7 Bogoliubov has suggested that the
mathematical methods, developed in constructing the superconductivity theory
are very general and may be applied to the description of nuclear matter. This
idea has initiated the study of the effect of super_uidity on the description of the
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ground and excited nuclear states. Later on, it was shown that the superconducting
pairing correlations are of great importance in medium and heavy nuclei. At the
Conference devoted to the centenary of the discovery of Mendeleev's Table
(TokinoÄRoma 15Ä21 September 1969), in his talk, Bogoliubov has described
the main results obtained by V.G.Soloviev and his colleagues concerning the
development of the nuclear super_uid model. There are also given concrete
physical results based on experimental data. (For review see [8]).

Bogoliubov's idea about the existence of bosons in the nucleus and about a
possible consideration of the ground states of even-even nuclei as boson conden-
sates was further developed as applied to supersymmetry in nuclear physics [9, 10].

The supergroups are relevant to mixed systems of bosons and fermions. The
bosons are the low-lying collective degrees of freedom of a heavy nucleus. Six
dynamical bosons, namely scalar, I=0 , (called s) and quadrupole, I=2 , (called d)
are assigned to the six-dimensional representation of U(6). The boson creation
and annihilation operators are:

b̂+α (b̂α), α = 1, . . . , 6 (Bogoliubov's bosons).

The 36 generators of U(6) are:

G
(B)
αα′ = b̂+α b̂α′ .

The dimension of the fermionic degrees of freedom is m =
∑

i(2ji + 1).
For the shell 50-85

j = 5/2, 7/2, 11/2, 3/2, 1/2.

The creation and annihilation operators for fermions are denoted as

â+
i (âi), i = 1, . . . ,m.

The m2 generators of U(m) are:

G
(F )
ii′ = â+

i âi′ .

The mixed problem of bosons and fermions is described by the Hamiltonian

H = HB +HF +VBF , HB = H0 +
∑
αα′

∈αα′ G
(B)
αα′ +

∑
αα′ββ′

Uαα′ββ′G
(B)
αα′G

(B)
µβ′ ,

HF = H ′
0 +

∑
ii′

ηii′G
(F )
ii′ +

∑
ii′,kk′

νii′kk′G
(F )
ii′ , VBF =

∑
αα′ii′

ωαα′ii′G
(B)
αα′G

(F )
ii′ .

The supergroup appropriate to nuclear problems appears to be U(6/m) in the
matrix form (

b+b b+a
a+ b a+ a

)
.

The Bose sector of the algebra is U (B)(n) × U (F )(m).
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If the supersymmetry scheme applies, all states in the supermultiplet should
be described by the same energy formula corresponding to the chain of subgroups:

U(6/4) ⊃ U (B)(6) ⊕ U (F )(4) ⊃ SO(B)(6) ⊕ SU (F )(4)
⊃ spin(6) ⊃ spin(5) ⊃ spin(3) ⊃ spin(2).

In quantum ˇeld theory and particle physics, supersymmetry implies some-
what different mathematical constructions. Search for supermultiplets uniting
bosons and fermions brings these concepts together. Nevertheless, Yu.A.Gol'fand,
one of the discoverers of supersymmetry, in his paper ®Supersymmetry¯ published
in Physical Encyclopaedia, remarks that the preˇx ®super¯ in this word bears no
semantic load at all. In nuclear physics, supermultiplets are found among the
low-lying levels of complex nuclei. Search for supermultiplets in the elementary
particle physics is the most difˇcult and extremely expensive problem of the
high-energy experimental physics.
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