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The generating functionals (GF) method in Bogoliubov's formulation and its application for
particle physics is considered. Effectiveness of the method is illustrated by two examples. So, GF
method can be used as the technical trick solving the inˇnite sequence of algebraic equations. We will
consider the example, where GF allows one to express the multiplicity distributions (topological cross
sections) through the particles correlation functions (inclusive cross sections) to ®predict¯ the so-called
KobaÄNielsenÄOlesen scaling. We will use the GF to deˇne validity of the thermal description of the
multiple production phenomena also. It will be seen that this will lead to the ®correlations relaxation
condition¯ of N.N.Bogoliubov. This will allow one to offer the experimentally measurable criteria of
applicability of thermodynamical description of multiple production processes. As a result, we will
ˇnd the closed form of perturbation theory applicable for kinetic phase of nonequilibrium processes.
A way is shown how the approach may be adapted to the deˇnite external conditions.

1. INTRODUCTION

It is hard to imagine modern particle physics without such fundamental no-
tions as, for instance, the phase transitions, topological defects, taken from statis-
tical physics. This extremely fruitful connection among two branches of physics
is based on the Euclidean postulate [1]: the formulae of particle physics coincide
with corresponding formulae of statistical physics if the transformation t→ it is
applied. But this coincidence exists if the media is equilibrium only, since the
time order of physical process is lost after the transition to imaginary time it. So,
the particles static properties only can be considered by Euclidean ˇeld theories.

The Euclidean postulate does not ®work¯ for arbitrary element of S matrix
and, by this reason, there is no, at ˇrst glance, general connection between parti-
cles and statistical physics. Our aim is to demonstrate this connection considering
the multiple production example, staying in the real-time theory frame.

The multiple production is a typical dissipative process of the incident kinetic
energies transition into the energies (masses) of produced particles. This is the
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nonequilibrium process and the Wuctuations, generally speaking, may be high in
it. Experimental data conˇrms this general expectation at the mean multiplicities
region, when n ∼ n̄ [2].

Considering multiple production we would like to note ˇrstly that the mean
multiplicity n̄ of hadrons for modern accelerator energies (∼10 Tev) is large
n̄(s) �100. So, it is practically impossible to describe the system with
N = 3n̄− 10 � 300 degrees of freedom using ordinary methods.

Secondly, it is natural to assume that the entropy S tends to maximum with
rising multiplicity n and reaches the maximum at n ∼ nmax ∼

√
s, since the

dissipation takes place in the vacuum (presumably with zero energy density)∗.
But the experiment shows that at high energies n ∼ n̄(s) ∼ ln2 s << nmax(s)
are essential. This means that there is no total dissipation of incident energy in
the considered thermalization process [3]. Absence of thermalization may be a
consequence of hidden conservation laws [4].

We would like to adopt the following fundamental principle of nonequilib-
rium statistics introduced by N.N.Bogoliubov [5]. It is natural to assume that
the system evaluates to the equilibrium in such a way that the ®nonequilibrium¯
Wuctuations in it should tend to zero. In the frame of Bogoliubov's principle
the quantitative measure of ®nonequilibrium¯ Wuctuation is the mean value of
correlation functions and, therefore, these quantities should tend to zero when the
media tends to equilibrium.

In our interpretation the Bogoliubov's correlations relaxation principle means
the following. So, for nonequilibrium state the presence of ®nonequilibrium¯
Wuctuations in the form of the macroscopic Wow of, for instance, energy ε is
natural. Then the mean value ofm-point correlation functionsKm cannot be small
as the consequence of macroscopic Wow. But in the vicinity of equilibrium the
macroscopic Wows should relax and, accordingly, the mean value of correlation
functions should be small, Km ≈ 0. To characterize the equilibrium one may
consider also the particles, charge, spin, etc., densities macroscopic Wows and
their relaxation.

We would like to show in result that the correlations relaxation principle
leads to the quantitative connection with real time thermodynamics of SchwingerÄ
Keldysh type∗∗ [6]. Just for this purpose the generating functionals (GF) method
of Bogoliubov will be used since it allows one to ˇnd the quantitative connections,
where the Euclidean postulate is not applicable.

We will use more the natural, for particles physics, microcanonical formalism.
In this formalism the thermodynamical ®rough¯ variables are introduced as the

∗This consideration lies in the basis of the earliest FermiÄLandau ®statistical¯ model of hadrons
multiple production.

∗∗Last one includes the nonequilibrium thermodynamics also.
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Lagrange multipliers of corresponding conservation laws. Their physical meaning
is deˇned by corresponding equations of state. So, if the Wuctuations in the
vicinity of solutions of corresponding equations are Gaussian, then one can use
these variables for description of the system. Corresponding condition is the
Bogoliubov's correlations relaxation condition.

Formally, the generating functions method presents the integral transforma-
tion to new variables. One can choose them as the ®rough¯ thermodynamical
variables. To describe the far from equilibrium system we will introduce the
®local equilibrium hypothesis¯. In its frame the preequilibrium state consist of
equilibrium domains. In this case new variables should depend on the coordinates
of domain and, in result, we are forced to use the generating functionals (GF)
formalism.

We will consider two examples to illustrate effectiveness of the GF method.
In Sec. 2 we will consider the transformation (multiplicity n → activity z) to
show the origin of the KobaÄNielsenÄOlesen scaling (KNO-scaling)∗.

In Sec. 3 we will investigate a possibility of temperature description of the
multiple production processes. We will consider for this purpose the transforma-
tion (particles energies ε → temperature 1/β) to ˇnd the S-matrix interpretation
of thermodynamics. It will be shown that this interpretation would be rightful if
the correlations are relax.

In Sec. 4 we will use this interpretation to formulate the perturbation the-
ory in the case when β and z are local coordinates of temperature (x, t) [7].
One can use this closed form of perturbation theory for description of nonequi-
librium media (in kinetic phase) and for description of the multiple production
process as well.

2. KNO-SCALING

We would like to start from the note that the generating functions method
allows one to connect inclusive spectra fk [8] and exclusive cross sections σn(s).
One can use for this purpose the normalization condition:

f̄kσtot ≡
∫
dωk(q)fk(q1, q2, ..., qk) =

∑
n=k

n!
(n− k)!σn, f̄k ≡ 0 k > nmax,

(2.1)

∗In private discussion with one of the authors (A.S.) in summer of 1973 Z.Koba noted that the
main reason of investigation leading to the KNO-scaling was just the GF method of N.N.Bogoliubov.



GENERATING FUNCTIONALS METHOD 107

where, as usual,

dωk(q) =
k∏

i=1

d3qi/(2π)32ε(qi), ε(q) =
√
q2 +m2

is the Lorentz-covariant element of phase space.
Eq. (2.1) can be considered as the set of coupled equations for σn. One may

multiply both sides of (2.1) on (z − 1)k/k! and sum over k to solve them. We
will see that this is equivalent of introduction of ®big partition function¯ Ξ(z),
where z is the ®activity¯: the chemical potential µ ∼ ln z.

We will ˇnd in result of summation over k that

Ξ(z) ≡
∑
k

(z − 1)k
k!

f̄k =
∑
n

zn
σn
σtot

. (2.2)

Then, assuming that Ξ(z) is known,

σn = σtot
1
2πi

∮
C

dz

zn+1
Ξ(z), (2.3)

where the closed contour C includes point z = 0. Here Ξ(z) is deˇned by
left-hand side of (2.2) and is the generating function of σn.

The coefˇcients Cm in decomposition:

ln Ξ(z) =
∑
m

(z − 1)m
m!

Cm (2.4)

are the (binomial) correlators. Indeed,

C1 = f̄1 = n̄, C2 = f̄2 −
{
f̄1
}2
, C3 = f̄3 − 3f̄2

{
f̄1
}2 + 2

{
f̄1
}3

(2.5)

an so on. If Cm = 0, m > 1, then σn is described by Poisson formulae:

σn = σtote
−n̄ (n̄)

n

n!
. (2.6)

It corresponds to the case of absence of correlations.
Let us consider more week assumption:

Cm(s) = γm (C1(s))
m , (2.7)

where γm is the energy independent constant. Then

ln Ξ(z, s) =
∑
m=1

γm
m!

{(z − 1)n̄(s)}m. (2.8)
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To ˇnd consequences of this assumption let us ˇnd the most probable values of
z. The equation:

n = z
∂

∂z
ln Ξ(z, s) (2.9)

is increasing with n solutions z̄(n, s) since Ξ(z, s) is the increasing function of z,
if Ξ(z, s) is the nonsingular at ˇnite z function. Last condition has deep physical
meaning and practically assumes the absence of the ˇrst order phase transition [9].

Let us introduce new variable:

λ = (z − 1)n̄(s). (2.10)

Corresponding Eq. (2.9) looks as follows:

n

n̄(s)
=
(
1 +

λ

n̄(s)

)
∂

∂λ
ln Ξ(λ). (2.11)

So, with O(λ/n̄(s)) accuracy, one can assume that

λ � λc(n/n̄(s)) (2.12)

are essential. It follows from this estimation that such scaling dependence is
rightful at least in the neighborhood of z = 1, i.e., in the vicinity of main
contributions to σtot. This gives:

n̄(s)σn(s) = σtot(s)ψ(n/n̄(s)), (2.13)

where

ψ(n/n̄(s)) � Ξ(λc(n/n̄(s))) exp{n/n̄(s)λc(n/n̄(s))} ≤ O(e−n) (2.14)

is the unknown function. The asymptotic estimation follows from the fact that
λc = λc(n/n̄(s)) should be, as follows from nonsingularity of Ξ(z), nondecreas-
ing function of n.

The estimation (2.12) is rightful at least at s→ ∞. The range validity of n,
where solution of (2.12) is acceptable, depends on the exact form of Ξ(z). Indeed,
if ln Ξ(z) ∼ exp{γλ(z)}, γ = const > 0, then (2.12) is rightful at all values of
n and it is enough to have the condition s→ ∞. But if ln Ξ(z) ∼ (1 + aλ(z))γ ,
γ = const > 0, then (2.12) is acceptable if n << n̄2(s).

Representation (2.13) shows that just n̄(s) is the natural scale of multiplicity
n [10]. This representation was offered ˇrstly as a reaction on the so-called
Feynman scaling for inclusive cross section:

fk(q1, q2, ..., qk) ∼
k∏

i=1

1
ε(qi)

. (2.15)



GENERATING FUNCTIONALS METHOD 109

As follows from estimation (2.14), the limiting KNO prediction assumes that
σn = O(e−n). In this regime Ξ(z, s) should be singular at z = zc(s) > 1. The
normalization condition

∂Ξ(z, s)
∂z

|z=1 = n̄(s)

gives: zc(s) = 1 + γ/n̄(s), where γ > 0 is the constant. Note, such behavior
of big partition function Ξ(z, s) is natural for stationar Markovian processes
described by logistic equations [11]. In the ˇeld theory such equation describes
the QCD jets [12].

It is known that at Tevatron energies the mean hadrons multiplicity rises
with transverse momentum. The associated mean multiplicity is

C1(qtr) = n̄(qtr) =
∑

n ndσn/dqtr∑
n dσn/dqtr

.

So, if

Cm(qtr) = γm (C1(qtr))
m : fk(q1, q2, ..., qk) ∼

k∏
i=1

1
ε(qi)

Ω(qtr),

then:

n̄(qtr)
dσn/dqtr∑
n dσn/dqtr

= Ψ(n/n̄(qtr)).

This prediction is in good agreement with the experiment [13].

3. TEMPERATURE DESCRIPTION

By deˇnition,

σabn (s) =
∫
dωn(q)δ(qa + qb −

n∑
i=1

qi)|Aab
n |2, (3.1)

where Aab
n is the amplitude of n creation at interaction of particles a and b.

Considering Fourier transform of energy-momentum conservation δ function
one can introduce the generating function ρn [14]. We may ˇnd in result that σn
is deˇned by equality:

σn(s) =
∫ +i∞

−i∞

dβ

2π
eβ

√
sρn(β), (3.2)

where
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ρn(β) =
∫ { n∏

i=1

d3qie
−βε(qi)

(2π)32ε(qi)

}
|Aab

n |2. (3.3)

The most probable value of β is deˇned by equation of state:

√
s = − ∂

∂β
ln ρn(β). (3.4)

Let us consider the simplest example of noninteracting particles:

ρn(β) = {2πmK1(βm)/β}n ,

where K1 is the Bessel function. Inserting this expression into (3.4) we can ˇnd
that in the nonrelativistic case (n � nmax)

βc =
3
2

(n− 1)
(
√
s− nm) .

That is, Ekin = 3
2T , where Ekin = (

√
s− nm) is the kinetic energy.

It is important to note that the equation (3.4) has unique real rising with n
and decreasing with s solution βc(s, n) [15].

The expansion of integral (3.2) near βc(s, n) unavoidably gives asymptotic
series with zero convergence radii since ρn(β) is the essentially nonlinear function
of β. From physical point of view this means that, generally speaking, Wuctuations
in the vicinity of βc(s, n) may be arbitrarily high and in this case βc(s, n) has not
any physical sense. But if Wuctuations are small (strictly speaking, they may be
arbitrarily high, but distribution in the vicinity of βc(s, n) should be Gaussian),
then ρn(β) should coincide with partition function of n particles and βc(s, n)
may be interpreted as the inverse temperature.

Let us deˇne the conditions when the Wuctuations are small [7]. Firstly, we
should expand ln ρn(β + βc) over β:

ln ρn(β + βc) = ln ρn(βc)−
√
sβ +

1
2!
β2 ∂

2

∂β2
c

ln ρn(βc)−

− 1
3!
β3 ∂

3

∂β3
c

ln ρn(βc) + ... (3.5)

and, secondly, expand the exponent in the integral, for instance, over
∂3 ln ρn(βc)/∂β3

c neglecting higher decomposition terms in (3.5). As a result,
kth term of the perturbation series

ρn,k ∼
{

∂3 ln ρn(βc)/∂β3
c

(∂2 ln ρn(βc)/∂β2
c )3/2

}k

Γ
(
3k + 1
2

)
. (3.6)
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Therefore, one should assume that

∂3 ln ρn(βc)/∂β3
c � (∂2 ln ρn(βc)/∂β2

c )
3/2 (3.7)

to neglect this term. One of the possible solutions of this condition is

∂3 ln ρn(βc)/∂β3
c ≈ 0. (3.8)

If this condition is hold, then the Wuctuations are Gaussian, but arbitrary since
their value is deˇned by {∂2 ln ρn(βc)/∂β2

c}1/2, see (3.5).
Let us consider now (3.8) carefully. We will ˇnd computing derivatives that

this condition means the following approximate equality:

ρ
(3)
n

ρn
− 3ρ

(2)
n ρ

(1)
n

ρ2n
+ 2

(ρ(1)n )3

ρ3n
≈ 0, (3.9)

where ρ(k)n means the kth derivative. For identical particles (see deˇnition (3.3)),

ρ(k)n (βc) = nk(−1)k
∫ { n∏

i=1

ε(qi)
d3qie

−βε(qi)

(2π)32ε(qi)

}
|Aab

n |2 =

= σtotn
k

∫ { k∏
i=1

ε(qi)
d3qie

−βε(qi)

(2π)32ε(qi)

}
f̄k(q1, q2, ..., qk), (3.10)

where f̄k is the (n − k) ≥ 0-point inclusive cross section. It coincides with
k-particle distribution function in the n-particle system. Therefore, l.h.s. of (3.9)
is the 3-point correlator K3:

K3 ≡
∫
dω3(q)×

×
(
<

3∏
i=1

ε(qi) >βc −3 <
2∏

i=1

ε(qi) >βc< ε(q3) >βc +2
3∏

i=1

< ε(qi) >βc

)
,

(3.11)

where the index means averaging with the Boltzmann factor exp {−βcε(q)}.
As a result, to have all Wuctuations in vicinity of βc Gaussian, we should

have Km ≈ 0, m ≥ 3. But, as follows from (3.7), the set of minimal conditions
looks as follows:

Km � K2, m ≥ 3. (3.12)
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If experiment conˇrms this conditions, then, independently of the number of
particles, the ˇnal state may be described by one parameter βc with high enough
accuracy βc.

Considering βc as physical (measurable) quantity, we are forced to assume
that both the total energy of the system

√
s = E and the conjugate to it variable

βc may be measured with high accuracy∗.

4. REAL-TIME FINITE TEMPERATURE
GENERATING FUNCTIONALS

We would like to show now why and in a what conditions our S-matrix
interpretation of statistics is rightful.

In modern formulations, see, e.g., the textbook [16], the temperature is intro-
duced by the so-called periodic KuboÄMartinÄSchwinger (KMS) boundary con-
dition [17]. Namely, in the FeynmanÄKac functional integral representation of
the partition function

Ξ(β) =
∫
Dϕe−Sβ(ϕ) (4.1)

the action Sβ(ϕ; z) is deˇned on the Matsubara imaginary time contour CM :
(ti, ti − iβ), but ˇelds should obey KMS boundary condition:

ϕ(ti) = ϕ(ti − iβ). (4.2)

This is a natural consequence of deˇnition: Ξ(β) = Spe−βH.

It was offered to deform Matsubara contour in the following way:

CM → CSK : (ti, tf ) + (tf , ti + iβ), (4.3)

where CSK is the Mills time contour [18] and tf > ti belongs to real axis
[19]. Including the real-time parts we obtain a possibility of describing the time
evolution of the system

But this attempt was not successful. First of all, we have not an evident
interpretation of ti and tf [20]. Secondly, in spite of the real-time parts, this
formulation is unable to describe the time evolution [21].

∗Note, the uncertainty principle ∼ � did not restrict ∆E and ∆β.
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4.1. Equilibrium Media. It was shown above that if σn is deˇned by (3.1),
then one may introduce ρn using deˇnition (3.3). The Fourier transform (3.2)
connects σn < ρn. On the other hand, ρn reminds the partition function.

To ˇnd complete analogy with statistical physics we should consider transition
m→ n particles with amplitude Anm =< out;n|in;m >. Summation over n and
m is assumed. The corresponding δ function of energy-momentum conservation
law should be written in the form:

δ(
n∑
i=1

qi −
m∑
i=1

pi) =
∫
d4Pδ(P −

n∑
i=1

qi)δ(P −
m∑
i=1

pi), P = (E, /P ). (4.4)

This will lead to necessity to introduce independently the temperature of initial
(1/βi) and ˇnal (1/βf ) states. In particle physics we can consider the ˇnal state
temperature only.

As a result we get to the FourierÄMellin transform ρ(β, z) = ρ(βi, zi;βf , zf).
Direct calculations give important factorized form:

ρ(β, z) = eN̂(β,z;φ)ρ0(φ),

where the operator

N̂(β, z;φ) =
∫
dxdx′(φ̂+(x)D+−(x− x′, βf , zf )φ̂−(x′)−

−φ̂−(x)D−+(x− x′, βi, zi)φ̂+(x′)), φ̂ =
δ

δφ
(4.5)

acts on the functional:

ρ0(φ±) =
∫
DΦ+DΦ−e

iS(Φ+)−iS(Φ−)−iV (Φ++φ+)+iV (Φ−+φ−). (4.6)

At the very end of calculations one should take auxiliary variables φ± equal to
zero.

Here D+− < D−+ are the frequency correlation functions:

D±∓(x− x′, β) = ∓i
∫
dω(q)e±iq(x−x′+i∓β)z(q).

They obey the equations:

(∂2 +m2)xG+− = (∂2 +m2)xG−+ = 0.

So, all ®thermodynamical¯ information is contained in the operator N̂(β, z;φ),
but interactions are described by ρ0(φ). One can say that the operator N̂ (adiabat-
ically) maps the interacting ˇled system on the observable states. This important
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property allows one to consider only ®mechanical¯ processes and exclude from
consideration the ®thermal¯ ones.

Calculating ρ0(φ) perturbatively one can ˇnd:

ρ(β, z) = e−iV (−iĵ+)+iV (−iĵ−)e
i
2

∫
dxdx′ja(x)Dab(x−x′,β,z)jb(x

′), (4.7)

where D++ is the Feynman (causal) Green function and

D−− = (D++)∗

is the anticausal one and, as usual, ĵ = δ/δj. At the very end one should
take j = 0.

Let us assume now that our system is a subsystem of bigger system. This
would lead to transformation of Boltzmann factor exp{−βε} on corresponding
statistics occupation number N̄(−βε). This means that our interacting ˇelds
system is surrounded by black body radiation. This is mechanical model of the
thermostat (heat bath of thermodynamics).

In result the matrix Dab takes the form (we put for simplicity zi = zf = 1):

iG(q;β) =

(
i

q2−m2+iε 0
0 − i

q2−m2−iε

)
+

+2πδ(q2 −m2)

(
ñ(βf+βi

2 |q0|) ñ(βi|q0|)a+(βi)
ñ(βf |q0|)a−(βf ) ñ(βf+βi

2 |q0|)

)
, (4.8)

where
a±(β) = −e

β
2 (|q0|±q0).

Following Green functions:

Dab(x− x′, β) =
∫

d4q

(2π)4
eiq(x−x′)Gab(q, β)

was introduced and the occupation number

n++(q0) = n−−(q0) =
{
e|q0|(βf+βi)/2 − 1

}−1

≡ ñ(|q0|
βi + βf
2

), (4.9)

and

n+−(q0) == Θ(q0)(1 + ñ(q0βf )) + Θ(−q0)ñ(−q0βi), (4.10)

n−+(q0) = Θ(q0)ñ(q0βi) + Θ(−q0)(1 + ñ(−q0βf )). (4.11)
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Assuming that βi = βf = βc, it is easy to ˇnd:

G+−(t− t′) = G−+(t− t′ − iβ), G−+(t− t′) = G+−(t− t′ + iβ), (4.12)

i.e., our Green function obeys KMS boundary condition.
So, representation (4.7) with Green functions (4.8) coincides identically with

(4.1), calculated perturbatively, see also [19].
4.2. Nonequilibrium Media. Our attempt to introduce the temperature as the

quantitative characteristic of the whole system is based on the assumption that
mean value of correlators is small. We can ®localize¯ this condition assuming
that this rough description may be extended only on subdomains of the system.
For deˇniteness the subdomains may be marked by space-time coordinate r.

It should be underlined that we divide on the subdomains not the system
under consideration but the device, where external particles are measured. Noting
that external Wow consist of noninteracting particles (including the Wow of black
body radiation) the division on subdomains cannot affect the ˇelds interaction.

In result we introduce the ®local¯ temperature 1/β(r) for rth group of in-
teracting particles assuming that Wuctuations in the vicinity of β(r) are Gaussian.
This means that the mean value of correlation in the group is small, but the
correlation between groups may be high. Nevertheless, last one is not important
since the external particles are on the mass shell. At the same time dimension of
group may be arbitrary, but larger than some r0 to have possibility to introduce
the temperature as the collective variable.

We can distinguish the following scales. Let Lq be the characteristic 4-scale
of quantum Wuctuations, Ls be the scale thermodynamical Wuctuations and L be
the scale of subdomain. It is natural to assume that Ls � L� Lq.

Corresponding generating functional has the form:

ρcp(α1, α2) = eN̂(φ∗
aφb)ρ0(φ±).

One may note that the ®localization¯ gives inWuence on the operator only:

N̂(φ∗aφb) =
∫
dY dyφ̂a(Y + y/2)ñab(Y, y)φ̂b(Y − y/2).

The occupation numbers nab(Y, q) have the same form, β → β(Y ) and

ñij(Y, y) =
∫
dω(q)eiqynij(Y, q).

We ˇnd calculating ρ0 perturbatively that:

ρcp(β) = exp{−iV (−iĵ+) + iV (−iĵ−)} ×

exp{i
∫
dY dy[ja(Y + y/2)Gab(y, (β(Y ))jb(Y − y/2)}, (4.13)

where the matrix Green function G(q, (β(Y ))) was deˇned in (4.8).
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5. CONCLUSION

One more detail. Our consideration has shown the uniqueness of Bogo-
liubov's solution of the nonequilibrium thermodynamics problem. Indeed, with-
out vanishing of the correlations, perturbation series in the βc vicinity, being
asymptotic, is divergent.

We would like to stress in conclusion that Bogoliubov's creative works nat-
urally unite particle and statistical physics. In result, using Bogoliubov's math-
ematical basis, we have the united scientiˇc space in which both branches of
physics, thermodynamics and quantum ˇeld theory, supplement each other.
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