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We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described
by large-scale vacuum ˇeld ?uctuations. This solution decays exponentially at large distances. It is
stable only if the interaction of the instanton with the background vacuum ˇeld is small and additional
constraints are introduced. The CI solution is explicitly constructed in the ansatz form, and the
two-point vacuum correlator of gluon ˇeld strengths is calculated in the framework of the effective
instanton vacuum model. At small distances the results are qualitatively similar to the single instanton
case, in particular, the form factor D1 is small, which is in agreement with the lattice calculations.

The nonperturbative vacuum of QCD is densely populated by long-wave
?uctuations of gluon and quark ˇelds. The order parameters of this compli-
cated state are characterized by the vacuum matrix elements of various singlet
combinations of quark and gluon ˇelds, condensates: 〈: q̄q :〉,

〈
: F a

µνF
a
µν :

〉
,〈

: q̄(σµνF
a
µν

λa

2 )q :
〉
, etc. The nonzero quark condensate 〈: q̄q :〉 is responsible

for the spontaneous breakdown of chiral symmetry, and its value was estimated a
long time ago within the current algebra approach. The nonzero gluon condensate〈
: F a

µνF
a
µν :

〉
through trace anomaly provides the mass scale for hadrons, and

its value was estimated within the QCD sum rule (SR) approach. The values of
low-dimensional condensates were obtained phenomenologically from the QCD
SR analysis of various hadron channels.

The nonlocal vacuum condensates or vacuum correlators [1, 2] describe the
distribution of quarks and gluons in the nonperturbative vacuum. Physically,
it means that vacuum quarks and gluons can ?ow through the vacuum with
nonzero momentum. From this point of view the standard vacuum expectation
values (VEVs) like 〈: q̄q :〉,

〈
: q̄D2q :

〉
,

〈
: g2F 2 :

〉
, . . . appear as expansion

coefˇcients of the quark M(x) =
〈
: q̄(0)Ê(0, x)q(x) :

〉
and gluon Dµν,ρσ(x)
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correlators in a Taylor series in the variable x2/4. The correlator Dµν,ρσ(x) of
gluonic ˇeld strengths

Dµν,ρσ(x − y) ≡
〈
: TrFµν(x)Ê(x, y)F ρσ(y)Ê(y, x) :

〉
, (1)

may be parameterized in the form consistent with general requirements of the
gauge and Lorentz symmetries as

Dµν,ρσ(x) ≡ 1
24

〈
: F 2 :

〉{
(δµρδνσ − δµσδνρ)[D(x2) +D1(x2)]+ (2)

+ (xµxρδνσ − xµxσδνρ + xνxσδµρ − xνxρδµσ)
∂D1(x2)
∂x2

}
,

where Ê(x, y) = P exp
(
i
∫ y

x
Aµ(z)dzµ

)
is the path-ordered Schwinger phase

factor (the integration is performed along the straight line) required for gauge

invariance and Aµ(z) = Aa
µ(z)

λa

2
, Fµν(x) = F a

µν(x)
λa

2
, F a

µν(x) = ∂µA
a
ν(x)−

∂νA
a
µ(x)+ fabcAb

µ(x)Ac
ν(x). The P -exponential ensures the parallel transport of

color from one point to another. In (2),
〈
: F 2 :

〉
=

〈
: F a

µν(0)F a
µν(0) :

〉
is a gluon

condensate, and D(x2) and D1(x2) are invariant functions which characterize
nonlocal properties of the condensate in different directions. The form factors are
normalized at zero by the conditions D(0) = κ, D1(0) = 1 − κ, that depend on
the dynamics considered. For example, for the self-dual ˇelds κ = 1, while in
the Abelian theory without monopoles the Bianchi identity provides κ = 0.

In [3], one has shown that the instanton model of the QCD vacuum provides a
way to construct nonlocal vacuum condensates. Within the effective single instan-
ton (SI) approximation one has obtained the expressions for the nonlocal gluon
Dµν,ρσ

I (x) and quark MI(x) condensates and derived the average virtualities of
quarks λ2

q and gluons λ2
g in the QCD vacuum. The behavior of the correlation

functions demonstrates that in the SI approximation the model of nonlocal con-
densates can well reproduce the behavior of the quark and gluon correlators at
short distances. Really, the quark and gluon average virtualities, deˇned via the
ˇrst derivatives of the nonlocal condensates MI(x2), DI(x) at the origin,

λ2
q ≡ − 8

MI(0)
dMI(x2)
dx2

∣∣∣∣x=0 = 2
1
ρ2

c

, λ2
g ≡ −8

dDI(x2)
dx2

∣∣∣∣x=0 =
24
5

1
ρ2

c

,

(3)

are connected with vacuum expectation values that parameterize the QCD SR,

λ2
q ≡

〈
: q̄D2q :

〉
〈: q̄q :〉 , λ2

g ≡

〈
: F a

µνD̃
2F a

µν :
〉

〈: F 2 :〉 = 2

〈
: fF 3 :

〉
〈: F 2 :〉 − 2

〈
: g4J2 :

〉
〈: F 2 :〉 , (4)
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where
〈
: fF 3 :

〉
=

〈
: fabcF a

µνF
b
νρF

c
ρµ :

〉
, J2 = Ja

µJ
a
µ and Ja

µ = q̄(x)
λa

2
γµq(x).

The value of λ2
q ≈ 0.5 GeV2 estimated in the QCD SR analysis [4] is reproduced

at ρc ≈ 2 GeV−1. This number is close to the estimate from the phenomenology
of the QCD vacuum in the instanton liquid model. Nevertheless, the SI approx-
imation used evidently fails in the description of physically argued distributions
at large distances.

In [5], it was suggested that the instanton ACI
µ (x) is developed in the physical

vacuum ˇeld bµ(x) interpolating large-scale vacuum ?uctuations. One has found
that at small distances the instanton ˇeld dominates, and at large distances it
decreases exponentially. This solution is called constraint instanton (CI). The
long-wave vacuum ˇeld bµ(x) is speciˇed by the correlation function B̃(x2)
determined by its strength

〈
F 2

b

〉
b
and the correlation length R. Within this model,

by averaging over random color vector orientations of the background ˇeld with
respect to the ˇxed instanton ˇeld orientation, one has found the equation

Dab
µ

[
ACI

]
FCI,b

µν (x) −
Nc

〈
F 2

b

〉
b

24(N2
c − 1)

x2Φ
(
x2

)
ACI,a

µ (x) + Constraint term = 0,

(5)

governing the deformation of the instanton under the in?uence of the weak back-
ground vacuum ˇeld. The constraint term is added to stabilize the instanton
against shrinking [6]. In (5)

Φ
(
x2

)
= 4

∫ 1

0

dα

∫ 1

0

dβαβB̃
[
(α− β)2 x2

]
, Φ (0) = 1, (6)

and Nc is the number of colors. The constraint independent asymptotics of the
instanton solution at large distances is found as

ACI,a
µ,asympt(x) = ηa

νµ

2xν

x2
a4/3(ρηg)2K4/3

[
2
3

(ηg |x|)3/2

]
,

where

a4/3 =
2

Γ (1/3)31/3
(7)

is the normalization coefˇcient, K4/3(z) is modiˇed Bessel function and Γ(z) is
the Gamma-function. This solution is exponentially suppressed at large distances

∼ exp
[
−2

3
(ηg |x|)3/2

]
unlike the powerful decreasing SI. It is important to

note that the form of this asymptotics is also independent of the model for

the background ˇeld and the driven parameter ηg ∼
(

Nc

9 (N2
c − 1)

R
〈
F 2

b

〉
b

) 1
3
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only weakly depends on it. Assuming that the external ˇeld is weak, the CI
proˇle function is close to SI proˇle at distances smaller than ρc and it decreases
exponentially at distances larger than η−1

g . The knowledge of the constraint-
independent parts of CI allowed to construct the solution in the ansatz form

ACI,a
µ (x) = ηa

νµ

xν

x2
ϕg

(
x2

)
, ϕg

(
x2

)
=

ρ2
(
x2

)
x2 + ρ2 (x2)

, (8)

where the notation

ρ2
(
x2

)
= a4/3η

2
gx

2K4/3

[
2
3
(ηgx)3/2

]
, ρ2 (0) = ρ2

is introduced. By translational invariance the centre of CI can be shifted in (8)
from the origin to an arbitrary position x0: x→ x− x0.

By averaging over the instanton orientations in the color space and taking
the trace over color matrices the invariant functions D

(
x2

)
and D1

(
x2

)
can be

extracted. It is convenient to deˇne the combinations of functions D
(
x2

)
and

D1

(
x2

)
A

(
x2

)
= δµρδνσ

Dµν,ρσ(x)〈
0

∣∣F 2
µν

∣∣ 0
〉CI

= D
(
x2

)
+D1

(
x2

)
+

1
2
x2 ∂D1

(
x2

)
∂x2

,

B
(
x2

)
= 4

xµxρ

x2
δνσ

Dµν,ρσ(x)〈
0

∣∣F 2
µν

∣∣ 0
〉CI

= D
(
x2

)
+D1

(
x2

)
+ x2 ∂D1

(
x2

)
∂x2

, (9)

taking the boundary condition, D(0) +D1(0) = 1 and the asymptotic conditions
D(∞) = D1(∞) = 0. The ˇnal expressions for form factors A and B [5] are:

A(x2) =
8
π
ND

∫ ∞

0

drr2
∫ ∞

0

dt {[ω1 (z+)ω1 (z−) + ω3 (z+)ω3 (z−)]

×
(
3 − 4 sin2(αz)

)
− 2ω2 (z+)ω2 (z−)

×
[
r2x2

(
1 − 2 sin2(αz)

)
− rx (z+ · z−) sin(2αz)

]}
, (10)

B(x2)=
16
π
ND

∫ ∞

0

drr2
∫ ∞

0

dt
{
ω1 (z+)ω1 (z−)

(
3 − 4 sin2(αz)

)
(11)

−ω1 (z+)ω2 (z−)
[
z2
− + 2t2−

(
1 − 2 sin2(αz)

)
+ 2rt− sin(2αz)

]
−ω2 (z+)ω1 (z−)

[
z2
+ + 2t2+

(
1 − 2 sin2(αz)

)
− 2rt+ sin(2αz)

]
+ω2 (z+)ω2 (z−)

[
z2
+z

2
− + 2t+t− (z+ · z−)

(
1 − 2 sin2(αz)

)
+2rxt+t− sin(2αz)]} ,
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where

ω1 (x) = x2ϕ2
g

(
x2

)
− ϕg

(
x2

)
, ω2 (x) = ϕ2

g

(
x2

)
+
∂ϕg

(
x2

)
∂x2

, (12)

x2
ρ = x2 + ρ2,

z± = (r, t±), t± = t± x

2
, ND is the normalization factor

N−1
D = 6

∫ ∞

0

dyy3
(
ω2

1 (y) + ω2
3 (y)

)
, (13)

and the phase factor

αz = r

∫ x
2

−x
2

dτϕg

(
r2 + (t+ τ)2

)
,

Fig. 1. The form factors D (top lines) and
D1 (bottom lines) (all normalized by D(0))
versus physical distance x, for the instanton
size ρ = 0.3 fm and parameters (ρηg)

2 = 0
(solid lines) and (ρηg)

2 = 1 (dashed lines)

re?ects the presence of the Ê exponent
in the deˇnition of the bilocal correlator.
The form factors D(x2) and D1(x2) are
determined numerically by solving the
equations (9) and plotted in the Figure
in coordinate space. As it turns out, at
a reasonable set of parameters, guaran-
teeing the smallness of the large-scale
vacuum ˇeld ?uctuations, the D

(
x2

)
structure is close to the SI induced
function with the exponential asymptot-
ics being developed at large distances.
At the same time, the D1

(
x2

)
struc-

ture is about two orders smaller than
the D

(
x2

)
function at any reasonable

choice of the parameter ρcηg . The lat-
tice data are in qualitative agreement
with predictions of the constrained in-
stanton model.

The nonperturbative part of the
invariant functions A(x2) and B(x2)
are the sum of short-range instan-
ton induced contributions (10) and (11), multiplied by the weight factor
nc32π2/

〈
0

∣∣F 2
∣∣ 0

〉
total

, and the long-range contribution

B̃
(
z2

)
= D̃

(
z2

)
+ D̃1

(
z2

)
+ z2∂D̃1

(
z2

)
/∂z2 (14)
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modeled by exponentially decreasing function B̃E

(
x2

)
= exp(− |x| /R), with the

weight factor
〈
F 2

b

〉
b
/

〈
0

∣∣F 2
∣∣ 0〉

total
. The constrained instanton model introduces

two characteristic scales (correlation lengths). One is related to short distance be-
havior of the correlation functions and another with long range distance behavior.
The ˇrst one, λ−1

g , is predictable and expressed in terms of physical quantities.
The instanton model predicts the behaviour of nonpertirbative part of gluon

correlation functions in the short and intermediate region assuming that it is
dominated by instanton vacuum component, while the large-scale asymptotics is
dominated by the background ˇeld.
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