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The method called ®the Bosonization of Nonlocal Currents¯ (BNC), used for calculations of
bound states in a quark model, is demonstrated within the simplest relativistic quantum ˇeld model
of two scalar ˇelds with the Yukawa type interaction.

Hadronization of quarks and gluons is one of the most important and interest-
ing problems of QCD. In papers [1] we have formulated ®the Model of Induced
Nonlocal Quark Currents¯, based on the assumption that QCD vacuum is realized
by the (anti-)self-dual homogeneous vacuum ˇeld. All calculations of the meson
spectrum and other characteristics of light mesons in this model were done by
the method of ®Bosonization of Nonlocal Currents¯ and quite good agreement
with experimental data was obtained. Our method is quite close to the so-called
Z2 = 0 method (see, for example, [2Ä4]) and differs from the known axiomatic
methods (see, for example, [5Ä7]). In this talk I would like to demonstrate our
method on a simple but nontrivial QFT model.

Our initial idea is based on the standard physical interpretation of a La-
grangian of a system of ˇelds (for example, φ). Usually the Lagrangian can be
represented in the form L = L0[φ]+gLI [φ]. The physical particles φ are described
by the ®free Lagrangian¯ L0[φ], which is quadratic over ˇelds φ. The interactions
of particles are described by the ®interaction Lagrangian¯ LI [φ], which contains
the ˇeld operators φ in the third or more degree. This interpretation can be rea-
sonable if the coupling constant g is small enough. The generating functional, or
partition function contains amplitudes of all physical processes and can be written
in the form of the functional integral

Z[J ] = Z[J ;φ] =
∫

Dφ ei
∫
dxL0[φ]+ig

∫
dxLI [φ]+

∫
dxφJ . (1)

Usually we can perform calculations expanding the generating functional over the
coupling constant g.

Let us suppose that we are able after some functional transformations and
changing the functional variables to rewrite the representation (1) in the form

Z[J ] = Z[J ;B] =
∫

DB ei
∫
dxL0[B]+igeff

∫
dxLI [B]+W [B,J]. (2)



20 EFIMOV G.V.

Here the ®free Lagrangian¯ L0[B] is quadratic over ˇelds B and the ®interaction
Lagrangian¯ LI [B] contains the ˇeld B in the third or more degree. The effective
coupling constant geff should be small enough. Then we can say that the new
Lagrangian L = L0[B] + geffLI [B] describes the physical particles B and these
paricles can be considered as bound states of the initial particles φ.

Let us demonstrate our method on the simple quantum ˇeld model describing
the Yukawa interaction of charged scalar bosons Φ and neutral bosons φ. The
Lagrangian density is

L(x) = Φ+(✷ − M2)Φ +
1
2

φ(✷ − m2)φ + gΦ+Φφ. (3)

In this model it is possible to retrace all details of bound states arising in quantum
ˇeld theory. Generalization to the case of the Dirac ˇeld presents no difˇculties of
principle and leads to technical problems connected with the algebra of γ-matrices
only. This model is superrenormalizable so that the renormalization procedure
has the simplest form.

1. The Initial Representation. Let us put the Lagrangian (3) into the
representation (1) and integrate over the ˇeld φ, we get

Z =
∫ ∫

DΦDΦ+ · e−(Φ+D−1
M Φ)+ g2

2 (Φ+ΦDmΦ+Φ), (4)

(Φ+D−1
M Φ) =

∫
dx Φ+(x)(−✷ + M2)Φ(x),

g2

2
(Φ+ΦDmΦ+Φ) =

∫
dx

∫
dy Φ+(x)Φ(x)Dm(x − y)Φ+(y)Φ(y).

For simplicity we have omitted the term with the current J , which can be restored
without any problems.

Let us introduce the bilocal current:

J(y1, y2) =
√

Dm(y1 − y2)(Φ+(y1)Φ(y2)),

and use the Gaussian representation

e
g2
2 (Φ+ΦDmΦ+Φ) = e

g2
2 (J+J) =

∫
DA e−

1
2 (A+A)−g (A+J).

Here A = A(x1, x2) is a bilocal ˇeld. Now we can calculate in (4) the Gaussian
integral over Φ and Φ+:

Z =
∫

DA e−
1
2 (A+A)−tr ln[1+g(A+√Dm)DM ]. (5)



BOUND STATES IN QUANTUM FIELD THEORY 21

2. Linear Term. Our problem is to give the standard particle interpretation
to the action S[A] in (5). For this aim this action should be represented in the
form

S[A] = −1
2
(A+R−1A) + Iint[A], Iint[A] = O(A3).

It means that we have to remove the term linear in A and extract the quadratic
term out of S[A]. Let us introduce the displacement

A(y1, y2) = A1(y1, y2) +
a(x1 − x2)

g
√

Dm(x1 − x2)
.

The term linear in A will be equal to zero if

a(x1 − x2) = −g2Dm(x1 − x2)D(x1 − x2),

where
D = DM · 1

1 + aDM
, D̃(k2) =

1
M2 + k2 + ã(k2)

,

which is the SchwingerÄDyson equation. In the momentum representation this
SchwingerÄDyson equation contains the logarithmic ultraviolet divergence which
can be removed by the renormalization of the mass M . It means that we should
put

M2 + ã(k2) = M2
r + ãr(k2), ãr(k2) = ã(k2)− ã(−M2

r ),

where Mr is the ®physical¯ mass of the constituent particle Φ and the renormal-
ized function ar(k2) = ã(k2)− ã(−M2

r ) satisˇes the equation

ar(k2) = g2

∫
dp

(2π)4
·
[

1
(m2 + (q − p)2)(M2

r + p2 + ar(p2))

∣∣∣∣
q2=−M2

r

− 1
(m2 + (k − p)2)(M2

r + p2 + ar(p2))

]
. (6)

This functional equation is of the type ar(k2) = F [ar, k2] and can be solved by

the ˇxed point method, i.e., we choose the initial ®point¯ a
(0)
r (k2) and calculate

a(n+1)
r (k2) = F [a(n)

r , k2], and lim
n→∞

a(n)
r (k2) = ar(k2).

In subsequent calculations we use the zeroth approximation

D̃(k2) = D̃r =
1

M2
r + k2

which gives quite acceptable qualitative semiquantitative estimations.
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3. From Bilocal to Local Fields. After removing the linear term we have

S[A] = −1
2
(A+A)− tr ln1

[
1 + g(A+

√
Dm)Dr

]
,

ln1(1 + s) = ln(1 + s)− s.

Let a system of functions {UQ(y)} with quantum numbers Q = (nl{µ}),
where n, l and {µ} are radial, orbital and magnetic quantum numbers, be ortho-
normal, i.e.,

(UQU∗Q′) =
∫

d4y UQ(y)U∗Q′(y) = δQQ′ = δnn′δll′δ{µ}{µ′},∑
Q

UQ(y)U∗Q(y
′) = δ(y − y′). (7)

Let us introduce in the ®tr ln1

[
1 + g(A+

√
Dm)Dr

]
¯ new variables

xj = zj +
yj
2

, xj+1 = zj −
yj
2

,

and represent the bilocal functions in the form:

A(xj , xj+1) =
∑
Q

WQ(zj)UQ(−yj). (8)

Then we have

(A+
√

Dm) = (WV ) =
∑
Q

WQ(z)VQ
(↔

p x

)
,

↔
p x=

1
i

(←
∂ x −

→
∂ x

)
,

VQ

(↔
p x

)
=

∫
dy

√
Dm(y)UQ(y)e−i

y
2

↔
p x . (9)

The basic representation for the partition function gets the form

Z =
∫ ∏

Q

DWQ · e−
1
2 (WW )−tr ln1[1+gr(WV )Dr]. (10)

4. Particle Interpretation of the Quadratic Term. Let us extract the
quadratic form from S[W ]

S[W ] = −1
2
(W [I − g2

rΠ]W )− tr ln2[1 + gr(WV )Dr], (11)

ln2(1 + s) = ln(1 + s)− s +
s2

2
.
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Here

(Wg2
rΠW ) =

∑
QQ′

∫ ∫
dxdx′ WQ(x)g2

rΠQQ′(x − x′)WQ′ (x′).

The polarization operator g2
rΠ̃QQ′ looks

g2
rΠQQ′(x − x′) = g2

r

∫ ∫
dydy′ UQ(y)P (x − x′; y, y′)U∗Q′(y′),

P (x; y, y′) =
√

Dm(y)Dr

(
x − y − y′

2

)
Dr

(
x +

y − y′

2

) √
Dm(y′),

P̃ (p; y, y′) =
∫

dx eipxP (x; y, y′).

In the momentum space we get

g2
rΠ̃QQ′(p) = g2

r

∫
dk

(2π)4
· VQ(k)VQ′(k)(

M2
r +

(
k + p

2

)2
)(

M2
r +

(
k − p

2

)2
) . (12)

The orthonormal system {UQ(x)} should be chosen so that the polarization
operator Π̃QQ′(p) should be diagonal in radial (n, n′) and orbital (l, l′) quantum
numbers. The index structure of the diagonal polarization operator Π̃(nl)

{µ}{µ′}(p)
looks like

Π̃(nl)
{µ}{µ′}(p) = Π̃(nl)(p2) · δ{µ}{µ′} +

∑
j

Π̃(nl)
j (p2) · tj{µ}{µ′}(p), (13)

where the tensors tj{µ}{µ′}(p) contain combinations of the vectors pµpµ′ .
The diagonal quadratic form of (11) gives the equation of motion for the

ˇeld WQ(x) = W
(nl)
{νµ2...µl}(x)[

δQQ′ − g2
rΠ̃QQ′

(
∂

i∂x

)]
WQ′(x) = 0,

[
δQQ′ − g2

rΠ̃QQ′ (p)
]

W̃Q′(p) = 0.

The requirement that this equation on the mass shell should be the KleinÄGordon
equation gives the constraint

∂

∂xν
W (nl)

νµ2...µl
(x) = 0 or pνW̃

(nl)
{νµ2...µl}(p) = 0

on the mass shell. Thus, the function W̃
(nl)
{µ} (p) satisˇes the equation

[
1− g2

rΠ̃
(nl)(p2)

]
W̃

(nl)
{µ1...µl}(p) = 0. (14)
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The mass of the state with quantum numbers Q = (nl) is deˇned by

1− g2
rΠ̃

(nl)(−M2
(nl)) = 0. (15)

Let us write

−1 + g2
rΠ̃

(nl)(p2) = −Z(nl)(p2 + M2
(nl)) + Σ(nl)(p2),

Z(nl) = g2
r

[
−Π̃′(nl)(−M2

(nl))
]

, Σ(nl)(p2) = O((p2 + M2
(nl))

2).

The constant Z(nl) is positive.
New ˇeld variables can be introduced as follows:

WQ(x) =
ϕQ(x)√

Z(nl)

. (16)

The representation (10) assumes the form

Z =
∫ ∏

Q

DϕQ e−
1
2 (ϕD−1ϕ)−Iint[ϕ]. (17)

Here the kinetic term is

(ϕD−1ϕ) = (ϕ
[
−✷ + M2

b +Σb

]
ϕ) (18)

=
∫

dp
∑
Q

ϕ̃+
Q(p)

[
p2 + M2

(nl) +Σ(nl)(p2)
]

ϕ̃Q(p)

and the interaction term is

Iint[ϕ] = tr ln2 [1 + (hϕV )D] , (19)

(hϕV ) =
∑
Q

hQϕQVQ, hQ =
1√

−Π′Q(−M2
Q)

.

The effective dimensionless coupling constants are deˇned as

λ
(eff)
Q =

h2
Q

16πM2
r

=
1

16π[−M2
r Π̃′(nl)(−M2

(nl))]
. (20)

As a result, the ˇnal representation (17) can be interpreted as a partition
function of the quantum ˇeld system of bosonic ˇelds {φQ} which have masses
MQ and interact by means of the nonlocal interaction Lagrangian (19).

We would like to stress that the resulting representation for the generating
functional does not contain the initial coupling constant g.
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All calculations with the generating functional (17) can be performed by
perturbation expansions in coupling constants hQ. We can trust these calculations
if and only if the effective coupling constants (20) are small enough:

λ
(eff)
Q 	 1.

5. The Orthonormal System. The next step is to determine the orthonormal
system (7). The problem is to ˇnd the spectrum and eigenfunctions of the operator
P̃ (p; y, y′) in (12), i.e.,∫

dy′P̃(p; y, y′)UQ(y′, p) = EQ(p)UQ(y, p), Q = (n, l, {µ}). (21)

This equation can be represented in a standard form of the BetheÄSalpeter equation
in the one-boson exchange approximation. Using the relation

K+K− ·
∫

dx eipxDr

(
x − y − y′

2

)
Dr

(
x +

y − y′

2

)
= δ(y − y′)

with

K± =

[
M2

r +
(

i
∂

∂y
± p

2

)2
]

and introducing the functions

ΨQ(y, p) =
1√

Dm(y)
· UQ(y, p)

we get the standard form of the BetheÄSalpeter equation (see, for example, [10])[
M2

r +
(

i
∂

∂y
+

p

2

)2
]
·
[
M2

r +
(

i
∂

∂y
− p

2

)2
]
ΨQ(y, p) = g2

rDm(y)ΨQ(y, p),

where the spectrum is deˇned by the equation

g2
rEQ(−M2

Q) = 1.

Thus the diagonalization of the operator P̃ (p; y, y′) is equivalent to the solution
of the BetheÄSalpeter equation in one-boson exchange approximation.

Now we would like to remark the following. Our mathematical task is to
diagonalize an operator and we are not able to do it analytically. There exist
two ways to overcome this difˇculty and these ways are deˇned by physical
problems under consideration. If we calculate corrections to precision experiments
(for example, quantum electrodynamics phenomena), which require quite high
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accuracy, we have to get solutions, accuracy of which should be around 10−5 ÷
10−6 %. This accuracy can be obtained by numerical methods using quite
powerful computers only. If we consider particle physics phenomena where
required accuracy is not so high, then the mathematical method with accuracy
1 ÷ 5 % is completely acceptable. Our method formulated in the given paper is
relative to the second point of view.

The main problem to use the BetheÄSalpeter basis is that the BetheÄSalpeter
equation can only be solved by numerical methods. Even the solution obtained
by Wick and Cutkosky [8,10] is reduced to the differential equation which should
be numerically computed. Our aim is to continue analytic calculations as long
as possible in order to get a visible general picture of arising bound states in the
system under consideration. Therefore we choose a more practical way, namely,
we use an orthonormal basis that is simple enough from an analytic point of view
and is directly connected with the problem under consideration. In this case the
operators g2

rΠ̃QQ′ are not diagonal so that we should diagonalize them. The idea
consists in ˇnding an effective basis for diagonalization of g2

rΠ̃QQ′ such that its
lowest function would provide a good qualitative description for the eigenvalues
E(nl) and the next two or three functions only give a good quantitative description
for those eigenvalues.

This effective basis {UQ(x)} can be constructed using the standard boson
Green function Da(u) with a mass a as a weight function inducing uniquely the
system of orthonormal polynomials in the space R4. Thus, the full orthonormal
system of functions (7) can be chosen in the form

UQ(x, a) = il
√

Da(x)aPQ(ax). (22)

Here PQ(u) are real polynomials. The mass parameter a that enters into the
orthonormal system is ˇxed by a variation condition formulated below.

The construction of this basis is presented in the Appendix A in [11].
6. The Polarization Operator. The problem is that our basis does not diago-

nalize the polarization operators (12) for states Q = (nl{µ}) and Q′ = (n′l{µ′})
and does not have the form (13), so that the diagonalization procedure should be
performed. In the momentum space the nondiagonal polarization operators (12)
for states Q = (nl{µ}) and Q′ = (n′l{µ′}) according to the representation (13)
for p2 = −M2

b look like

g2
rΠ̃

(nn′,l)(p2|a) = 32λrM
2
r

(2π)2
· 2l(l!)2

(2l + 1)!
·
∞∫
0

dk k3+2l · V(nl)(k2|a)V(n′l)(k2|a)×

×
1∫

0

dt (1− t2)
1
2 +l(

M2
r − M2

b

4 + k2
)2

+ k2M2
b t2

,
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where λr =
g2

r

16πM2
r
and the vertex looks

V(nl)(k2|m, a) =
∫

dx
√

Dm(x)Da(x)a1+lP(nl)(a2x2)eixp. (23)

We shall use the approximation√
Dm(x)Da(x) ≈ D m+a

2
(x), (24)

the accuracy of which is quite acceptable for our consideration. In particular

V(0l)(k2|m, a) =
a1+l 2l/2

M2+2l
r

((
m+a
2Mr

)2

+ k2

M2
r

)1+l
. (25)

Now we formulate the variational principle which deˇnes the parameter a.
The mass M(nl) of the bound state with quantum numbers (nl) should be deˇned
by the equation

1 = λrΠ̃(nn,l)(M(nl)|m, a).

The function Π̃(nl) = Π̃(nn,l) is the largest eigenvalue of the matrix Π̃(n1n2,l)

for n1, n2 ≥ n, therefore the parameter a = an can be deˇned by the variation
requirement

Π̃(nl)(b, ξ) = max
a

Π̃(nn,l)(Mb|m, a), (26)

which gives a = a(nl)(b, ξ) where the notions b =
(

Mb

2Mr

)2

, ξ = m
Mr

are

used. Thus, the parameter a(nl)(b, ξ) is a function of m and Mb. The mass

M(nl) = M(nl)(λr , ξ) = 2Mr · b(nl)(λr, ξ)

is deˇned by the equation

1 = λrΠ̃(n,l)(b(nl), ξ). (27)

In order to show that this orthonormal functions with the parameter η = a
Mr

give quite good approximation for the eigenvalues of the matrix Π̃(nn′)(p2) we
have calculated the matrix

P(N) =
{
Π̃(n1n2)(b, ξ, η), (n1, n2 = 0, 1, 2, ..., N)

}
and their eigenvalues

E(N)
n = diag

{
P(N)

}
= diag

{
E

(N)
0 , E

(N)
1 , ..., E

(N)
N

}
.
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Then we have to compare E
(N)
n for different N = 0, 1, ....

The numerical results are given in the Table: the ˇrst case for ξ = .5, b =
.25, η = 2.451 and the second case for ξ = .2, b = .9, η = 1.22. One can
see that for the lowest eigenvalue practically the ˇrst lowest eigenfunction can be
used, i.e., our choice of the orthonormal system gives quite a good accuracy.

Table. Diagonalization of the matrix PN

N E0 E1 E2 E3 E0 E1 E2 E3

0 .04165 .1239
1 .04166 .009941 .1262 .03564
2 .04173 .010279 .002755 .1262 .03616 .01162
3 .04175 .010368 .003295 .0007482 .1263 .03645 .01298 .003789
4 .04175 .010402 .003546 .0010336 .1263 .03655 .01373 .004710

In conclusion we can say that the representations (4) and (17) are equivalent
and the representation (17) contains the bound states of the initial system (3) of
particles Φ and φ.
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