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NEW PERTURBATION THEORY WITH CONVERGENT
SERIES: CALCULATIONS WITH ARBITRARY VALUES

OF COUPLING CONSTANTS
V.V.Belokurov, E.T.Shavgulidze, Yu.P.Solovyov, I.L.Yudin

Moscow State University, 119899, Moscow, Russia

A new method which allows one to calculate the physical quantities represented by a ˇnite
number of terms of their asymptotic PT-expansion is developed. The method is applicable for
arbitrary values of coupling constant. In the framework of this method several examples including
β-function in scalar ϕ4

(4)
ˇeld theory are considered and the critical exponent α for the phase transition

of He4 is calculated accurately.

It is widely adopted now that power series in quantum ˇeld theory diverge
and are nothing but asymptotic expansions in the small range of coupling constant
in the vicinity of zero [1].

We propose a quite different approach to approximative calculation of phys-
ical quantities represented by the traditional perturbation theory (PT) series. This
approach is a direct generalization of the method developed in a number of our
recent papers [2Ä7].

Let us consider the class of alternating series of the form

∞∑
n=0

fng
n . (1)

The following three properties describe this class:
(A) The coefˇcients fn satisfy the condition

|fn| ∼ Cn!annb = f̃n , (2)

where a, b, C are some positive constants.
(B) The series (1) is the Taylor expansion at the point of g = 0. The

function is inˇnitely differentiable at g ≥ 0 and has analytical continuation to the
right half-plane {Reg > 0}. Also it satisˇes the following estimate uniformly in
g ∈ {Reg > 0} ∣∣∣∣∣f(g)−

N−1∑
n=0

fng
n

∣∣∣∣∣ < CN
1 N !N

αgN . (3)
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Under these conditions the function f(g) is uniquely deˇned by the series (1).
(C) Represent f(g) in the form

f(g) =
∫ ∞

0

e−gt F (t) dt , (4)

where F (g) is a distribution. Let us demand the validity of the following inequality

∞∫
0

xn |F (x)| dx ≤ const

∣∣∣∣∣∣
∞∫
0

xn F (x) dx

∣∣∣∣∣∣ , n ≥ 0 . (5)

It should be noted that the inequality (5) puts rather tough conditions on the
series to be considered. In particular, in such a series one cannot change any
ˇnite number of terms because (5) does not take place for polynomials.

Rewrite (4) in the following form

f(g) = lim
R→∞

f(g,R) = lim
R→∞

∫ +R

−R

ϕ̃m(ρ)
(∫ ∞

0

cos{ρ[gt]1/2m}F (t) dt
)
dρ ,

(6)

where

ϕ̃m(ρ) =
1
2π

∫ +∞

−∞
exp{−r2m}e−iρr dr (7)

with some integer m.
The regularized function f(g,R) can be expanded into the absolutely con-

vergent series of the form

f(g,R) =
∞∑

n=0

1
(2n)!

g
k
mA2n(m,R)B k

m
, (8)

where we denote

A2n(m,R) =
(−1)n
2π

∫ +∞

−∞
ρ2nϕ̃m(ρ) dρ

and

Bα =
∫ ∞

0

tα F (t) dt .

Our method allows one to deal with large g as well. Instead of (6) by the
substitution ρ→ ρg−1/2m we obtain

f(g) = lim
R→∞

f(g,R) =
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= g−
1

2m lim
R→∞

∫ +R

−R

ϕ̃m(ρg−
1

2m )
(∫ ∞

0

cos{ρt1/2m}F (t) dt
)
dρ , (9)

which also can be expanded into the convergent series in inverse powers of g:

f(g,R) =
∞∑

n=0

(−1)n
(2n)!

g−
2n+1
2m E2n(m,R,∞) , (10)

E2n(m,R,N) =
1
2πm

N∑
k=0

(−1)k
(2k)!

Γ
(
2n+ 1
2m

)
2R2n+2k+1

2n+ 2k + 1
B k

m
.

Now one can approximate the sum f(g,R) of the absolutely convergent series (8)
or (10) by some ˇnite number of its terms. In case of large g, the conclusive
approximant takes the following form (for the m given):

f(g,R,N) =
mN∑
n=0

1
(2n)!

g−
2n+1
2m E2n(m,R,mN) . (11)

The coefˇcients Bα with integer indices α are nothing but the coefˇcients of
the traditional perturbation theory. For the coefˇcients Bα with noninteger α we
have worked out new methods of evaluation [7].

We describe here one of these methods for the case α = k/4, where k is an
integer. Consider the function χ(α) = lnBα and suppose that χ(n)(α) < 1. It is
easy to see, that

χ(αn) ≈
9
16

[
χ(αn +

1
8
) + χ(αn − 1

8
)
]
− 1
16

[
χ(αn +

3
8
) + χ(αn − 3

8
)
]
,

hence

B 1
4 (n− 1

2 ) ≈
(
Bn−1

4

)9/16 (
Bn

4

)9/16
(
Bn−2

4

)−1/16 (
Bn+1

4

)−1/16

. (12)

Also we have

B 1
4 (n− 1

2 )
= C(n)

∞∫
0


 ∞∫

0

(
cos(ξx

1
8 )−

n−1∑
k=0

(−1)k
(2k)!

ξ2kx
k
4

)
F (x)dx


 ξ−2n dξ ,

(13)

where

C(n) =
(−1)n 2 (2n− 1)!

π
.
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The integral (11) can be approximated by the sum

B 1
4 (n− 1

2 ) ≈ C(n)
4N−1∑
k=0

(−1)k
(2k)!

a2k−2n+1

2k − 2n+ 1B k
4
, (14)

where a is a free parameter the accuracy of the approximation depends on.
From (12) and (14) we obtain the system of equations for the approximate eval-
uation of Bα with noninteger indices.

With this method the coefˇcients Bk/4 for k = 5, 6, 7, 9, 10, 11, 13 were
calculated in case of the ®zero-dimensional¯ functional integral (see ˇrst model
example below), where they can be calculated explicitly:

B k
m
= Γ

(
4k + 2
2m

)
.

Comparison of the results of the calculations with our method is given in the
Table. The ˇrst column here is for the exact values given by the gamma-function
and the second one is for those calculated by the method exposed above. We get
a very good coinsidence in this case.

Table

k Bk/4 B̃k/4
|Bk/4−B̃k/4|

Bk/4

5 2 1.957 0.0214
6 3.323 3.281 0.01269
7 6 5.89 0.0184
9 24 24.494 0.0206

10 52.343 54.175 0.035
11 120 123.804 0.0317
13 720 693.432 0.0369

Another key point of the method is how to pick the sufˇcient value of
parameter R. The following statement can be proved: For ˇxed interval of the
parameter g : 0 < g < g0 and ˇxed N , there exists a continuous function R∗(g)
such that

f(g,R∗(g), N) = f(g).

If we take a segment ∆R = [R1, R2] containing the point R∗(g) inside, we can
ˇx any R ∈ ∆R and approximate the function f(g) by the f(g,R,N). In this
case the error of the approximation is

δf =
∣∣∣∣max∆R

f(g,R,N)−min
∆R

f(g,R,N)
∣∣∣∣ .
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Now the constructive idea is the following: since R is the cut-off parameter,
then there should be a ˇnite segment ∆R for any given ε and N ˇxed such
that |f(g,R,N)− f(g)| ≤ ε uniformly in R ∈ ∆R. The boundary values of R
on the segment ∆R are stipulated by regularization features and the number of
traditional PT terms available. The calculations performed for several model
examples demostrate that such a segment does exist and for diverse cases turns
out to be somewhere inside the interval [5, 7]. As the value of the function f(g)
one can take now the mean value:

f̄ =
1
2

(
max
∆R

f(g,R,N) + min
∆R

f(g,R,N)
)
.

Thereby the function f(g) is calculated with the accuracy

δf =
1
2

[
max
∆R

f(g,R,N)−min
∆R

f(g,R,N)
]
.

We have veriˇed the method developed above for a number of model exam-
ples, where the exact solutions are known, either analytically or numerically, and
the coefˇcients of the PT exhibit factorial growth. Thus, the ®zero-dimensional¯
version of functional integral (see Fig. 1; curve I is the exact solution, curve II is
our approximant and curve III is obtained by naé]f summation of the ˇrst ˇve PT
terms)

I(g) =
∫ +∞

−∞
e−x2−gx4

dx = exp
{
1
8g

}
K 1

4

(
1
8g

)
1√
4g

has the PT coefˇcients

I(g) =
∞∑

n=0

ak(−g)k, ak =
1
(k)!

√
π

24k

(4k)!
(2k)!

.

The problem of determining the electron energy levels in the Coulomb ˇeld
of a nucleus with Z > 137 supplies another model example (see Fig. 2). Here a
divergent power series appears [10]

I(g) =
∞∑

k=1

ak(−g)k, ak =
1
2πk

[
(−1)kB2k +

Γ(k − 1/2)
Γ(k)Γ(−1/2) − 1

]
,

where B2k are Bernulli numbers. On the other hand, for the I(g) one can
analytically obtain

I(g) = − 1
π

{
ψ(g−1/2) +

1
2

[
ln

g

1 + g
+ 1 + g1/2 − (1 + g)1/2

]}
,
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Fig. 1. Fig. 2.

where ψ(x) = Γ′(x)/Γ(x). In this case, it is more appropriate to consider
exp{−I(g)} instead of I(g). The coefˇcients Bk/m of our series are

B1/4 = 0.7436; B2/4 = 0.5432; B3/4 = 0.3867; B5/4 = 0.2675;

B6/4 = 0.27; B7/4 = 0.2725; B9/4 = 0.3346; B10/4 = 0.4024;

B11/4 = 0.4795; B13/4 = 0.7672; B14/4 = 1.022; B15/4 = 1.346;

B17/4 = 2.51; B18/4 = 3.577; B19/4 = 5.123.

The result is shown in Fig. 2, where curves are the same as in Fig. 1.
For these examples rather good coincidence with the exact solution in a wide

range of the coupling constants has been obtained.
With our method, we have investigated the behavior in the region 0 < g < 20

of the β-function in the scalar ϕ4
(4) ˇeld theory, those ˇrst ˇve terms are calculated

in the MS-scheme [8]:

βMS =
5
3
g2 − 10

3
g3 + 20.043g4 − 175.257g5+ 1922.33g6 .

It is more convenient to consider the function f(g) = exp{−β(g)/g}. Calculating
the coefˇcients Bk/4 in the way outlined above, one obtains

B1/4 = 1.0; B1/2 = 1.1; B3/4 = 1.31; B5/4 = 2.273;

B3/2 = 3.380; B7/4 = 5.445; B9/4 = 17.532; B5/2 = 34.609;

B11/4 = 72.21; B13/4 = 361.8; B7/2 = 858.3; B15/4 = 2097.9;

B17/4 = 13526; B9/2 = 3601 · 10; B19/4 = 988 · 102

(see [7] for more details).
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Fig. 3.

We have considered two cases,
namely when four (N = 4) and ˇve
(N = 5) terms of traditional PT are
taken as known. In our approach, the
approximants are very close to each
other (see Fig. 3) and both have the er-
ror less than 0.1. It should be stressed
here that as we consider the β-function
to be satisfying the conditions formu-
lated above (1)Ä(5), the error we ob-
tain is the absolute one. So the true
β-function lies within the closed in-
terval for all g ∈ [0, 20]. This is the
crucial point which distinguishes our

method principally from others, where one obtains only relative error.
The method was also applied for calculation of the critical exponent α for

phase transition of He4. The value of α being calculated by our method shows
rather good coincidence with the experimental one, obtained very precisely in
experiments [11]

α = −0.0129± 0.0008, αexp = −0.0128± 0.0004 .

It should be noted that the authors of [12] also got the rather good result
using the seven-loop term. Thus, the new approach developed above could be
considered as a next step after the traditional PT calculations. It allows one to
use more comprehensively the information obtained with the traditional PT theory
and to ˇnd the numerical values with very high accuracy for arbitrary values of
coupling constant.
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