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From the point of view of Bogoliubov axiomatic approach change of the
geometry of the momentum space leads to the modiˇcation of extension of the S-
matrix off the mass shell [1,2] as compared with the standard procedure when the
geometry of p-space is Euclidean, i.e., to the different dynamical description [7].
Snyder quantum space (QS) which will be considered here is based on a modiˇ-
cation of the geometry of momentum space. We can think that some background
interaction exists, which modiˇes the geometry of the momentum space. We
refer the reader to review articles [5,7,8,9] for further references including ones
to original papers by H.Snyder, I.E.Tamm, W.Pauli, Y.C.Ningh, Yu.A.Golfand,
V.G.Kadyshevsky and others. In turn changing the geometry of momentum space
naturally suggests quantum conˇgurational space concept, because boosts gener-
alizing translations of p-space don't commute. The explicit character of Snyder's
approach to space-time quantization has a remarkable consequence: we can deˇne

the spectrum of a commutative set of operators constructed from
∧
xµ and other

generators of isometry group of the momentum space. As has been shown in [7],
the formulation of the generalized causality condition and QFT in terms of the
points of this quantum space-time is as comprehensive as it is in the usual QFT
with the Minkovskian space-time. In this approach the structure of the singu-
lar ˇeld-theoretic functions is entirely reconstructed as compared to the standard
QFT, and the corresponding perturbation theory is free of ultraviolet divergences.

It was noticed long ago [5] that Fock theory of Hydrogen atom in momen-
tum space of constant curvature can be considered as the nonrelativistic version
of Snyder QS. Following V.A.Fock [3] we consider the non-Euclidean geometry
of momentum space. The Coulomb ˇeld performs the role of the background
interaction mentioned above, which provides the non-Euclidean geometry of mo-
mentum space. The modiˇed shifts of the last (which are up to some similarity
transformation the RungeÄLenz vector's components) can be considered as non-
relativistic analogues of Snyder's coordinates. The present work is a further
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development of [5] based on modern ideas of noncommutative differential geom-
etry and noncommutative differential calculus [11Ä16].

For the continuous part of the energy spectrum it is pseudo-Euclidean
3-dimensional space of negative curvature (Lobachevsky space). Introducing
4-dimensional projective momenta Pµ (µ = 0, 1, 2, 3) we have

→
P=

2q
→
p

→
p

2

− q2

, P0 =
→
p

2

+ q2

→
p

2

− q2

, q =
√

2µE, P 2
0−

→
P

2

= 1. (1)

Equation (1) describes the two-sheet hyperboloid (the upper sheet corresponds
to 1 ≤ P0 < +∞, the lower one to −∞ < P0 ≤ −1). It is convenient

to use the hyperspherical coordinates
→
P = sinhα

→
n P0 = ± coshα,

→
n=

(sin θ cosφ, sin θ sinφ, cos θ). The Schréodinger equation in momentum space is
manifestly invariant under the isometry group of the Lobachevsky momentum
space (1) which is Lorentz group. Generators of Lorentz group boosts

∧
xi= −i

[
P0

∂

∂P i
− Pi

∂

∂P 0

]
(2)

up to some similarity transformation coincide with the additional integrals of
motion of the Coulomb problem, i.e., RungeÄLenz invariants. From the other
side their similarity to Snyder coordinates [8] is evident.

As it was shown by V.A.Fock [3] the solutions of the Schréodinger equation
in momentum space are the eigen-functions of the LaplaceÄBeltrami operator on
the Lobachevsky space (1), or the Casimir operator of the Lorentz group:

(
→
x

2
− 1

�2

→
L

2
)

Φr(P ) =
(

1 +
r2

a2

)
Φr(P ), (3)

where
→
L is the vector of angular momentum operators. Atomic units of length

(Bohr radius), and energy, momentum are correspondingly a = �2/µe2, ea =
µe4/�2, πa = µe2/�. The solutions of (3) are the matrix elements of unitary
irreducible (inˇnite dimensional) representations of the Lorentz group. For the
principal series of unitary representations of Lorentz group the parameter r runs
over the interval 0 ≤ r < ∞ which coincides with the physically admitted region
of variation. Let us consider quantities

Φr(P ) =<
→
r |
→
P>=

∣∣∣P0−
→
P
→
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∣∣∣−1−i r
a

,
→
r= r
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→
n

2
= 1. (4)

The expression (4) from the one side is the solution of the equation (3), from the
other side it is the generating function for the radial solutions of the Schréodinger
equation in the momentum space. The expression (4) plays the role of the plane
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wave in quantum r-space. For plane waves (4) the completeness and orthogonality
conditions are valid:

1

(2π)3

∫
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r |
→
P><

→
P |
→
r′> dΩP = δ

(
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r −

→
r′

)
, (5)

1
(2π)3

∫
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(
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P −
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P ′

)
P0.

The plane wave in quantum space obeys the following equations off the energy
shell, i.e., for Ep �= Eq or p �= q:

∧
H0<

→
r |
→
P>= EP <

→
r |
→
P> , (6)

where
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(7)

and EP = ea (|P0| − 1) = 2ea sinh2(α/2). This is differential-difference Schréo-
dinger equation describing a free motion of a particle in QS. Another strong
argument for the idea that plane wave (4) and equation (7) describe the free motion
in the quantum r-space is the existence of three more differential-difference

operators
∧
pi for which (4) is the eigenfunction with eigenvalues equal to the

momentum components
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where
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Generators of Lorentz group are also deformed by typical ˇnite-difference oper-
ators. For example

∧
M12=

∧
r1

∧
p2 − ∧r2

∧
p1= −i�

∂

∂φ
eia ∂

∂r . (10)
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Let us show that the ˇnite-difference Schréodinger equation (6) is naturally de-
scribed in terms of noncommutative differential calculus [11Ä16]. This calculus
can be most easily introduced on a ground of the theory of differential forms as its
deformation. Our case corresponds to the differential calculus over an associative
algebra A over R or C. The necessity to consider an algebra over C follows
from the form of ˇnite-difference Schréodinger equation, containing shifts by the
imaginary quantity ia. This is general property of ˇnite-difference Schréodinger
equation (6) corresponding to the continuous part of the spectrum of hydrogen
atom, requiring to consider the wave functions in the complex r-plane. Finite
linear combinations of elements of A and ˇnite products are again elements of
A. The multiplication is associative. A differential calculus on A is a Z-graded
associative algebra over C

Ω (A) =
∑
r=0

⊕ Ωr (A) , (11)

Ω0 (A) = A, Ωr (A) = {0} ∀r < 0. (12)

The elements of Ωr (A) are called r-forms. There exist an exterior derivative
operator d which satisˇes conditions

d2 = 0 (13)

and

d (ωω′) = (dω)ω′ + (−1)rωdω′, (14)

where ω and ω′ are r- and r′-forms, respectively. A is the commutative algebra
generated by the coordinate functions. Correspondingly we introduce right and
left (see ( [8])) δ-operations

→
δ=
→∗ d

→∗ ,
←
δ=
←∗ d

←∗ . (15)

Let us concentrate on the one-dimensional case. It is generated by canonical
coordinate function of one variable ψ(r) = r. One of the simplest deformations
of the ordinary differential calculus on A is

[dr, r] =
ia

2
dr. (16)

Equation (16) can be generalized to the total algebra A as

dr ψ(r) = ψ

(
r +

ia

2

)
dr. (17)
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Then we can introduce the generalized derivatives (left and right) corresponding
to our deformed differential calculus. For the left derivative we write

dψ(r) =
(→
∂ ψ(r)

)
dr = dr

(←
∂ ψ(r)

)
. (18)

From Leibniz rule we have
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(→
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)
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= dr
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)
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)
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after using (17)
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(→
∂ ψ(r)

)
ϕ(r) + dr ψ(r +

ia

2
)
(→
∂ ϕ(r)

)
. (20)

Now from the commutativity of functions ψ(r)ϕ(r) = ϕ(r)ψ(r) it follows also
that equivalent of the Leibniz rule for the left derivative is valid:

d (f(r) g(r)) = dr
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∂ (f(r) g(r))

)
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= dr
(→
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2 )
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)
.

(21)

Then the following expressions for the left and right partial derivatives can be
established (cf. [8])

→
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ψ(r + ia
2 ) − ψ(r)
ia
2

,
←
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2
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Now let us write down the Hamiltonian operator (7) and the angular momentum
operator (10) in terms of noncommutative differential calculus. First we introduce
left and right deformation operators in the form

→
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Hamiltonian operator now can be written in the form

∧
H0=

1
2
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←
H0

)
, (24)
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where

→
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r2

)
e2
→
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←
H0= h∗e2

←
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r
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The rotation generator (10) can be written in the form

∧
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(
−i�

∂

∂φ

)
→
q

2

. (26)

Operator
∧
M12 transfers simply into the standard generator −i�∂/∂φ in the limit

r/a → ∞, which corresponds to great values of impact parameter. The Poincare

Lie algebra is also deformed by typical factors e2
→
s , e2

←
s . For example[

∧
M12,

∧
p1

]
→
q

2
= i�

∧
p2, (27)

where [
∧
A,
∧
B

]
→
q

=
∧
A e

→
s ∧

B −
∧
B e

→
s ∧

A . (28)

From the usual point of view the interaction term V (r) when introduced
into the differentialÄdifference Schréodinger equation (6) corresponds to the per-
turbed Coulomb potential. Let us consider an example of integrable case for the
Schréodinger equation with interaction. We write the ladder operators

a± = ∓ i√
2πa cos r

2a

e
± 1

2

(
r

λ0

)2 ∧
p e
∓ 1

2

(
r

λ0

)2

, (29)

where
∧
p= 1

2

(→
p +

←
p
)

is the non-commutative differential operator of radial

momentum introduced in [8], ω is the frequency, λ0 is a parameter of dimension of
length: λ0 =

√
�/µω. The ladder operators (29) obey the deformed commutation

relation [
a−, a+

]
q

= qa−a+ − q−1a+a− = 2
(
q−1 − q

)
, (30)

q is a dimensionless quantity, parameter of deformation, which is expressed in
terms of physical parameters:

q = exp
{
− a2

4λ2
0

}
= exp

{
− �ω

4ea

}
= exp

{
− ω�3

4µe4

}
. (31)

The energy spectrum is

En = 2ea

{
exp

(
�ω

2ea
(n + 1/2)

)
− cosh

�ω

4ea

}
. (32)

This integrable case can be easily identiˇed with the well known q-oscillator.
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