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It is demonstrated that renormalizations in a softly broken SUSY gauge theory follow those of an
unbroken one with the modification of the coupling constants. This gives an explicit relation between
the soft and rigid coupling renormalizations. Substituting the modified couplings into renormalization
constants, RG equations, solutions to these equations, approximate solutions, fixed points, etc., one
can get corresponding relations for the soft terms by a simple Taylor expansion over the Grassmannian
variables. Some new examples including the MSSM in high tan 3 regime and softly broken N=2
SUSY Seiberg-Witten model are given.

1. INTRODUCTION

In a recent paper [1], which is based on the previous publications [2,3] we
have shown that renormalizations in a softly broken SUSY theory follow from
those of an unbroken SUSY theory in a simple way.

The main idea is that a softly broken supersymmetric gauge theory can be
considered as a rigid SUSY theory imbedded into external space-time independent
superfield, so that all couplings and masses become external superfields. The
crucial statement is that the singular part of effective action depends on external
superfield, but not on its derivatives, so that one can calculate it when the external
field is a constant, i.e., in a rigid theory. This approach to a softly broken
sypersymmetric theory allows us to use remarkable mathematical properties of
N = 1 SUSY theories such as nonrenormalization theorems, cancellation of
quadratic divergences, etc. The renormalization procedure in a softly broken
SUSY gauge theory can be performed in the following way:

One takes renormalization constants of a rigid theory, calculated in some
massless scheme, substitutes instead of the rigid couplings (gauge and Yukawa)
their modified expressions, which depend on a Grassmannian variable, and expand
over this variable.

This gives renormalization constants for the soft terms. Differentiating them
with respect to a scale one can find corresponding renormalization group equa-
tions.
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In fact as it has been shown in [4] this procedure works at all stages. One
can make the above-mentioned substitution on the level of the renormalization
constants, RG equations, solutions to these equations, approximate solutions, fixed
points, finiteness conditions, etc. Expanding then over a Grassmannian variable
one obtains corresponding expressions for the soft terms. This way one can get
new solutions of the RG equations and explore their asymptotics, or approximate
solutions, or find their stability properties, starting from the known expressions
for a rigid theory.

Below we give some examples and in particular consider the MSSM within
high tan § regime, where analytical solutions are known in iterative form and
obtain iterative solutions to the RG equations for the soft mass terms. Another
example is the N=2 SUSY model, where the exact (nonperturbative) Seiberg—
Witten solution is known. Here one can extend the S—W solution to the soft
terms.

2. SOFT SUSY BREAKING AND RENORMALIZATION

Consider an arbitrary N = 1 SUSY gauge theory with unbroken SUSY. The
Lagrangian of a rigid theory is given by

1 ~ 1 N
2 e 2 e
Lrigia = /d ) p: W Wa+/d 0 7 TeW W,
+ /d29d2§ éi(ev)g@j+/d29 W+/d2§ W, (1)

where W is the field strength chiral superfield and the superpotential V¥ has the
form

1 . 1. ..
W= 6/\”k<l>i<l>j<1>k + 5 MY D05 2)

To perform the SUSY breaking, which satisfies the requirement of «softness»,
one can introduce a gaugino mass term as well as cubic and quadratic interactions
of scalar superpartners of the matter fields [2]

M

_L:soft—breaking = 7>\)\ + EAljk¢i¢j¢k + 53”(1)1(;5] +he |+ (m2);¢:¢]7

3)
where A is the gaugino field and ¢; is the lower component of the chiral matter
superfield.

One can rewrite the Lagrangian (3) in terms of N=1 superfields introducing
the external spurion superfields [2] 7 = 6% and 7 = 62, where 6 and 0 are
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Grassmannian parameters, as [3]

1 1 S
2 2 a 2 2 el
£Soft:/d 0 g1~ MO W Wa+/d 0 g2 (1= 2TV,

n / d20d20 (5% — (m2)kni)(eV )@,

1 .. - 1 . -
+/d29 {g(wv - A”kn)@@j@k+§(M” - B”n)fbicbj} +h.c. (4)

Comparing Egs. (1) and (4) one can see that Eq.(4) is equivalent to Eq. (1)
with modification of the rigid couplings g%, A%, and M?¥, so that they become
external superfields dependent on Grassmannian parameters #% and #%. The scalar
mass term m?nf modifies fields ® and ®, however, finally it can be rewritten as
a modification of the Yukawa couplings (n = 62, 7 = 6?).

g2 = g2(1+ M+ My + 2M; M), (5)
- . .. 1 . . . . ..
A’L]k} _ )\mk _ A’L]k}n 4 5 (An]k(mQ)zL 4 )\znk(mQ)% + Az]n(mQ)l:L) ,'7777 (6)
N = Nk — Arf o (2 4 N (M) 4 Xosr (M)
/\zjk = )\zjk ik + D) (/\n]k’(m )z + )\znk(m )j + /\z]n(m )k) n7. (7)

These modifications of the couplings and fields are valid not only for the classical
Lagrangian but also for the quantum one.”

In what follows we would like to simplify the notations and consider numer-
ical rather than tensorial couplings. When group structure and field content of
the model are fixed, one has a set of gauge {g;} and Yukawa {\;} couplings.
It is useful to consider the following rigid parameters o; = g2/167%, V) =
Ak Ak /1672, then Egs.(5)—(7) look like

a; = ai(1+ Min+ M;ij + (M;M; + %4,)n7),

Vi = Yi(1+ Apn+ Apij + (A Ak + Z)nn), ®)
where to standardize the notations we have redefined parameter A: A — A\ in a
usual way and have changed the sign of A to match it with the gauge soft terms.

Here Y}, stands for a sum of m? soft terms, one for each leg in the Yukawa
vertex, and

Sa, = MiM; + 107, )

*Throughout the paper we use a supergraph technique and assume the existence of some SUSY
invariant regularization.
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where m;hi is the soft ghost mass, which is eliminated by solving the RG equation
and in one-loop m7, = 0.

One can make the expansion for any analytic solution in a rigid theory.
Below we consider two particular examples, namely the MSSM in high tan 3
regime and the Seiberg—Witten N=2 SUSY model.

3. EXAMPLES
The MSSM in High tan 5 Regime

Consider the MSSM in high tan 5 regime. One has three gauge and three
Yukawa couplings. The one-loop RG equations are [6]

di = —biof, Vi =Yi()_ i — Y anY), (10)
i 1
where - = d/dt, t = log M, ,/Q? and
b; = {33/5,1,-3}, auy=1{6,1,0}, aw =1{1,6,1}, a ={0,3,4},
ci = {13/15,3,16/3}, cp = {7/15,3,16/3}, cri = {9/5,3,0}.

The general solution to Eqgs.(10) can be written as [7]

0 Yy

ai:io, Yk:k—Ukt, (11)

L+ biajt L+ apk Yy [o ux

where the functions {u} obey the integral system of equations
E, E;
uy = 0 rt ’ Ur = 0 rt ’
(1+6Y, o up)/® (1+6Y) o up)'/?
E

= - (12)

(14 6Y,2 [y ) /(1 +4Y0 [ u,)/4

and the functions E}, are given by Ej = Hle(l + biaft)cri/bi,

Let us stress that Eqgs. (11) give the exact solution to Egs. (10), while the uy’s
in Egs. (12), although solved formally in terms of the E;’s and Y;?’s as continued
integrated fractions, should in practice be solved iteratively.

To get the solutions for the soft terms it is enough to perform substitution
a; — a; and Y, — f/k, from Egs. (8) and expand over 1 and 7. One has [8]:

m? Ag/YkO + akk fukek
=70 A=-e+t 0
14 b0t 1Y + apr [
(AR)?/ Y = S/ Y + an [ uré
1/Y2 + apr [ ’

m;

Yk = & + A7 4 2e, Ay — (13)
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where the new functions ey, and & have been introduced which obey the iteration
equations. For illustration we present below the corresponding expressions for e,
and &

1 dEt Ag fub — fubeb

€t = Ed—n 1/YE)0 T 6be )
(14)
¢ 1 d?E, 5 1 dE; AY [y — [ upe (AY [up — fubeb)2
t = R — T 7 -
Eydndny " Ey dn 1/Y2+6 [u (1/¥2 +6fub)2
_ (Zg + (Ag)Q) fub — 2A2 fubeb + fubfb
1/YE)O + 6fub ’
where the variations of Ej, should be taken at 7 = 77 = 0 and are given by
1 dE, >
_ om0
T d = th;ﬂalmi, (15)
n,7=0 i=1
1 &E : ’
k 2 0
= =t 0y
B (Sweant) +
n,1=0 i=1
3 3
+2tz ckiai(mg)Q —¢? Z ckibiaf (m?)Q. (16)
i=1 i=1

When solving Egs. (12) and (15) in the nth iteration one has to substitute in the
r.h.s. the (n — 1)-th iterative solution for all the corresponding functions.

The same procedure works for the approximate solutions [9]. Once one gets
an approximate solution for the Yukawa couplings, one immediately has those
for the soft terms as well [9].

N=2 SUSY

Consider now the N = 2 supersymmetric gauge theory. The Lagrangian
written in terms of N = 2 superfields is [10]:

1 1
L=—ImTr / d%60,d%0,—70?, (17)
47 2
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where N = 2 chiral superfield W(y,61,6) is defined by constraints Da¥ = 0
and Dd\I/ =0 and
4 0 topological

T=1— +

7o (18)

The expansion of ¥ in terms of # can be written as
\Il(yv 91; 92) = \Il(l)(y’ 91) + \/593\:[1512) (ya 91) + 93920(\1/(3) (ya 91)7

where y* = a# 40,00, + 103005 and UF) (y,01) are N = 1 chiral superfields.
The soft breaking of N = 2 SUSY down to NV = 0 can be achieved by
shifting the imaginary part of :

Imr — Im7 = Im7(1 + M167 + Mo03 + M36763). (19)
This leads to

_ | M, M
AL = TN = R (

M M3 -
)6 +hec.| — (- + —5)99,

MMy My
4 4

where the fields A are the gauginos, ¥ and ¢ are the spinor and scalar matter
fields, respectively.

Now one can use the power of duality in N = 2 SUSY theory and take the
Seiberg—Witten solution [11]

dap  da
=—/— 20
du " du’ (20)
where
1 1—-u
G’D(u) = 5(“ - 1)F(1/27 1/2a 2; 2 )7
2
=+/2(1 F(-1/2,1/2,1; ——).
a(w) = VA WF(-1/2,1/2,1;7)
~In perturbative domain when u ~ Q*/A* — oo, a = v2u, ap =
Za(21lna + 1) one reproduces the well-known one-loop result
dr 1, Q?
== 43 21
el el (1)

Assuming that renormalizations in N = 2 SUSY theory follow the properties
of those in N = 0 one can try to apply the same expansion procedure for a
nonperturbative solution. Substituting Eq. (19) into (20) with

u— @ = u(l+ MPO7 + MI03 + MI6703)
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and expanding over 67 and 62, one gets an analog of S-W solution for the mass

terms:
" " " "
(G- %)] (i -5
My =M ‘o 7 Mo = MY oo 7
! ! Im T ’ ? 2 Im T ’
" 1" " a 1 " 2 1" 2 " 2
{55 (-5 (8) D)
G‘D a G‘D a aD a aD a
Ms = .
ImT
In perturbative regime one has
v MY MY e M§ — MOM
YT nQ2/AZ 3 2T mQ2/A2+ 3 ST QAT+ 3

4. CONCLUSION

We conclude that the Grassmannian expansion in softly broken SUSY theories
happens to be a very efficient and powerful method which can be applied in
various cases where the renormalization procedure is concerned. It demonstrates
once more that softly broken SUSY theories are contained in rigid ones and
inherit their renormalization properties.

Acknowledgements. Financial support from RFBR, grants No. 99-02-16650
and No. 96-15-96030, is kindly acknowledged.

REFERENCES

—_

. Avdeev L.A., Kazakov D.I., Kondrashuk IN. — Nucl. Phys., 1988, v.B510, p.289; hep-
ph/9709397.

2. Girardello L., Grisaru M.T. — Nucl. Phys., 1982, v.B194, p.65.
3. Yamada Y. — Phys. Rev., 1994, v.D50, p.3537.
4. Kazakov D.I. — Phys. Lett., 1999, v.B449, p.201; hep-ph/9812513.
5. Jack L, Jones D.R.T. — Phys. Lett., 1997, v.B415, p.383; hep-ph/9709364.
6. Ibanez L.E., Lopez C., Muiioz C. — Nucl. Phys., 1985, v.B256, p.218.
7. Auberson G., Moultaka G. — hep-ph/9907204.
8. Kazakov D.I., Moultaka G. — hep-ph/9912271.
9. Codoban S., Kazakov D.I. — hep-ph/9906256.
10. See, e.g., Alvarez-Gaume L., Hassan S.F. — Fortsch. Phys., 1997, v.45, p.159; hep-th/9701069.

—_
—

. Seiberg N., Witten E. — Nucl. Phys., 1994, v.B426, p.19.



