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The problem of electronic spectrum and superconductivity in strongly correlated electronic
liquids is discussed. A microscopical theory within the framework of the ¢-J model is considered.
Constraint of no double occupancy for electron hopping results in the kinematical interaction that
induces strong electron-electron coupling by spin and charge fluctuations. Rigorous treatment of
the constraints is achieved by applying the Hubbard operator technique within the Green’s function
method of Bogoliubov.

1. INTRODUCTION

In developing a theory of superconductivity it is necessary to solve two
problems which are of foremost importance and which are definitely interrelated:
namely, what is the nature of the normal state for the electrons in the metal and
what is the mechanism of the formation of the superconducting phase? While in
conventional superconductors the picture of the Fermi liquid with a properly deter-
mined spectrum of quasiparticles (QP) near the Fermi surface is well established,
in recently discovered unconventional metals, as heavy-fermion compounds and
copper oxides we have many experimental evidences for anomalous behavior of
low-energy electronic excitation spectra. These materials can be called marginal
electronic liquids where strong electron correlations play an important role and the
conventional Fermi-liquid description in terms of single-particle excitations may
be violated. Therefore, the Bardeen—Cooper—Schrieffer (BCS) theory of pairing
which works perfectly well for the system of weakly bounded QP in conven-
tional metals, can be questioned for the system of electrons with strong Coulomb
correlations.

In the present report we discuss the problem of high-temperature supercon-
ductivity in copper oxides. In spite of an unprecedented scientific activity we are
still far from the solution of the problem and there is no consensus on theoretical
explanation of unusual normal and superconducting behavior of high temperature
superconductors (for a review of experiment and theory see, for example, Ref. 1).
Experimental studies of high-temperature superconductors have provided strong
support for a major role of strong electron correlations in copper-oxide materials
as it first has been proposed by P.W. Anderson [2,3].
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The simplest model allowing for the electron correlations is the one-band
Hubbard model [4]:

H==Y tijcicio+UY nin, M
ijo 7

where %;; is an effective transfer integral and U is the Coulomb one-site energy.
In the strong coupling limit, U > |t;;|, we can reduce the Hubbard model (1) (or
a more realistic for copper oxides p-d model [5]) to the ¢-J model [6]:
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Here the electron operators & +

S =c¢; (1 —ni_,) act in the space without double
occupancy. n; =y ézf,éw is the number operator for electrons. The second
term describes spin-1/2 Heisenberg antiferromagnet (AF) with exchange energy
J for the nearest neighbors which is equal to J = 4t?/U for the Hubbard model
(1) or can be considered as independent parameter in the case of the p-d model.
In the model two main features of a doped hole motion in copper-oxides are
properly taken into account: constraints on no double occupancy for holes on
lattice sites due to strong electron correlations and interaction of holes with AF
spin fluctuations that brings about strong renormalization of the QP spectrum.
Exclusion of doubly occupied states in electronic hopping and strong coupling of
charge carriers with spin fluctuations make it difficult to apply mean field type
approximations or perturbation theory.

To deal with the strong coupling limit for the Hubbard model and the ¢-J
model a number of numerical methods for finite clusters has been developed (for
reviews see [7], [8]). These studies show strong antiferromagnetic correlations
which lead to the formation of the d,2_, pairing correlations. However, the
finite cluster calculations due to known limitations (finite size effects, few filling
fractions, etc.) can give only restricted information. For instance, as it was
shown recently by applying the constrained-path Monte Carlo method [9] to the
two-dimensional Hubbard model, small lattice sizes and weak interactions show
dg2_,2 pairing correlations while with increasing lattice size or interaction they
vanish. So to prove superconducting pairing in the strong coupling limit an
analytical treatment is highly demanded.

The main problem in studies of the ¢-J model is the so-called kinematical
interaction imposed by the projected character of electron operators acting in the
subspace of singly occupied lattice sites. To take into account the constraints of
no double occupancy different types of slave-boson (-fermion) technique were
proposed (see [10-13] and references therein). In the mean field approximation
(MFA) the local constraints are approximated by a global one, that reduces the
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problem to free fermions and bosons in the mean field [10]. To treat the con-
straints in a systematic way, in [11,12] a large-N expansion, with N being a
number of states (orbitals) at a lattice cite, was used. In that approach the lo-
cal constraints are relaxed and a weak coupling approximation is possible. By
using the 1/N expansion, the d-wave superconducting instability induced by the
exchange interaction was obtained in the ¢-J model close to half filling [12].

Another method is based on the Baym-Kadanoff variational technique for
Green’s functions in terms of the Hubbard operators [14]. The method was used
in [15,16], also in the limit of large IV, to consider superconducting pairing
in the ¢-J model. It was shown that in the lowest order of 1/N there is a
strong compensation of different contributions to the pairing interaction and for
J = 0 the superconducting T, is extremely small. For a finite J the d-wave
superconducting instability mediated by exchange and charge fluctuations was
obtained below T, ~ 0.01¢. However, in the large-N expansion the kinematical
interaction is suppressed and this approach, being rigorous in the limit N — oo,
is difficult to extrapolate to real spin systems with N = 2.

A formally rigorous method to treat the unconventional commutation rela-
tions for the projected electron operators is based on the diagram technique for
the Hubbard operators [17] since in this method the local constraints are rigor-
ously implemented by the Hubbard operator algebra. A superconducting pairing
due to the kinematical interaction in the Hubbard model in the limit of strong
electron correlations (U — oo) was first obtained by Zaitsev and Ivanov [18]
who studied the lowest order diagrams for a two-particle vertex equation. Their
approximation, being equivalent to the MFA for a superconducting order parame-
ter, gives only the s-wave pairing. Close results were obtained for the Hubbard
model in [19,20] by applying the Bogoliubov equation of motion method for the
thermodynamical Green’s functions. However, as was shown later [21,22], the
s-wave pairing in the limit of strong correlations violates an exact requirement
of no single-site pairs and should be rejected. In [21,22] the BCS mean field
theory for the ¢-J model was developed within the formally exact projection tech-
nique [23] for Green’s functions in terms of the Hubbard operators. It was proved
that the d-wave superconducting pairing mediated by the exchange interaction is
thermodynamically stable and has high 7. ~ 0.1 ¢ for J ~ 0.4 ¢.

On the basis of the diagram technique, detailed studies of spin fluctuations
and superconducting pairing in the ¢-J model were performed by Izyumov et
al. [24]. Summation of the first order diagrams for the self-energy reproduced the
results of the MFA in [21,22]. In the second order diagrams only the exchange
interaction J was taken into account while the corresponding contributions due
to the kinematical interaction ¢;; were disregarded. Estimations done in the weak
coupling limit for the Dyson equation revealed quite a low superconducting 7.

In the limit of small hole concentrations, one can consider a one-hole motion
on the antiferromagnetic background within the spin-polaron representation for
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the ¢-J model [25,26]. A number of studies of this model (see, e.g., [27,28] and
references therein) predicts that a doped hole dressed by antiferromagnetic spin
fluctuations can propagate coherently as a spin-polaron QP even for a finite hole
doping [28]. It was suggested that the same spin fluctuations could mediate a
superconducting pairing of the spin-polaron QP. This problem was treated in the
framework of the weak coupling BCS formalism for a phenomenological model
of QP with numerically evaluated spectrum [29, 30]. A self-consistent numerical
solution of the Dyson equations for spin-polarons and magnons in the ¢-J model
has been given in [31]. A strong renormalization of the hole spectrum due to
spin-fluctuations and the d- wave pairing of spin-polaron QP with maximum
T. ~ 0.01t were obtained.

However, numerical studies [32] of the 2D ¢-J model at moderate doping
have questioned the single spin-polaron QP picture for the paramagnetic regime.
To elucidate the problem, in the recent paper [33] we propose a theory of electron
spectrum and superconducting pairing for the ¢-J model in paramagnetic state
by applying the projection technique [23] for the Green’s function method of
Bogoliubov [34]. Below we present the main results of this approach.

2. APPLICATION OF BOGOLIUBOV GREEN’S FUNCTION

By using the Hubbard operator (HO) representation for &;; = X7 and
ajo = X7 we write the Hamiltonian of the ¢-J model (2) in the form:

1 _ _
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3)
where ¢ = —o. We introduced also the chemical potential ;1 which can be cal-
culated from the equation for the average number of electrons n =) _(X77) =
2o (X70X]7).

To discuss the superconducting pairing within the model (3) we consider the
thermodynamical GF introduced by Bogoliubov and Tyablikov [34]

Gijo(t —t') = (Wi ()|, () 4)

in terms of the Nambu operators:

Ve = ( Xi(_)g ) U = (X?O XQE) (3)
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By differentiating the GF (4) over time ¢ we get for the Fourier component the
following equation

WGijU (w) = 5ijQ0 + <<[\Ilim H] | \Ilja»un (6)
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where Q, = %‘7 C;)—

relation for the HO

) with Q, = (X?°+ X?77). By using the completeness

XP 4y X7 =1, )

which rigorously preserves the constraint of no double occupancy we can write for
the correlation function in a spin-singlet state Q, = 1 — (X77) =1 —n/2 = Q.
To calculate the many-particle GF in the left-hand side of Eq. (6) we use the
equation of motion for the HO:

: d Oc 00’ 1 00’
(ZE + u> X7 = - thiZBz—M/Xl +3 Elj Jit(Bioor = 650 ) X0, (8)
where we have introduced the operator
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The Bose-like operator (9) describes electron scattering on spin and charge fluc-
tuations caused by the nonfermionic commutation relations for the HO (the first
term in (8) — the kinematical interaction) and by the exchange spin-spin interaction
(the second term in (8)).

By projecting out the linear part of the equation of motion (8) we introduce
the zero-order GF in the generalized mean field approximation (MFA)

Glio (@) = Q{wiodi; — Eijo} ™", (10)
with the frequency matrix Eijg

Eijo = ({[Vie, H, ¥, }) Q7" (11)

The nonlinear part of equation of motion (8) gives the irreducible GF in Eq. (6)
which is essentially many-particle GF. By writing down an equation of motion for
them with respect to the second time ¢’ for the right-hand side operator \I/ja ()
and performing the same projection procedure we can obtain the Dyson equation
for the GF (4) in the form (see [33]):

Gijo(w) = GPig (@) + > GOy (@) Skio(w) Grjo(w), (12)
kl

where the self-energy operator f]kj,,(w) is defined by the equation

S (irr irr) T irr _
Sijo(w) = Q12U | Zm yim L, (13)
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with Zi(;rr) = [V, H] = Y, Fuo Vs | <{ZA§;M),\IIL}> = 0. The self-energy
operator (13) is given by the irreducible part, (irr), of the scattering matrix that
has no parts connected by the single zero-order GF (10).

To calculate the self-energy operator (13) we employ the noncrossing approx-
imation (or the self-consistent Born approximation) which is given by the two-time
decoupling of the corresponding many-particle correlation functions [33]:

(X5 OB 0 X0 (0) Bigor (D) |y iir = (X5 O X07 () By Bioor (1)) - (14)

Using the spectral representation for the GF, we obtain in the noncrossing
approximation the following expression for the normal (diagonal) and anomalous
(nondiagonal) components of the self-energy, S,s(k,w) = Q¥as(k,w), in the
k-space:

—+00
o8 1 (e
211(12)(1€,w) =N Z// dzdQN (w, z, Q) A112) (¢, k — q | Q)Au(u) (q,2),
q — 00
(15)

where N (w, z,) = [tanh(2/2T) + coth(£2/2T)]/2(w — 2 — Q) . Here we intro-
duce for the GF G,p(k,w) = (1/Q)Gqp(k,w) the spectral density:

o 1 ~o .
A1 (12)(a,2) = —;Im G112y (¢, 2 + i0). (16)

The electron-electron interaction functions caused by spin-charge fluctuations are
given by

1 .
Mia2) (@ k—q| Q) = g*(q,k — ¢)[~—Im DTk —q,Q+id)], (A7)

where g(q,k — q) = t(q) — 2J(k — q). The spectral density for the spin-charge
fluctuations is defined by the boson-like commutator GF

D*(3,9) = ({8, | S_q))a + 1 {{ng | 7 )a, (18)

for the spin S, and number density n, operators.
The resulting Dyson equation (12) can be written in the form

G (k,w) = {wfo — (Bf — p+6p)7s — AL# — S(k,w)} 7, (19)

where 7y, 71, 73 are the Pauli matrices. The energy of the quasiparticles EY,
the renormalization of the chemical potential d, and the gap function Af in the
MFA are given by k-representation of Eq.(11).
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The equation for the anomalous self-energy in Eq. (15) in comparison with
the diagram technique [24] has an additional contribution proportional to 3(gq)
due to the kinematical interaction in (17) which enhances the d-wave pairing.

By using the imaginary frequency technique a numerical study of the lin-
earized system of the Dyson equations (19),(15) was performed in [33]. The
electron spectral density Eq.(16) shows QP excitations at the FS crossing and
a dispersive incoherent band. For small hole concentration the QP dispersion is
small while the intensity of the incoherent band is quite large. With doping the QP
band width strongly increases and the incoherent band is suppressed. The results
for single-electron spectral functions are in general agreement with the studies
within exact-diagonalization technique [32]. The occupation numbers N (k) have
the characteristic behavior for strongly correlated systems. Being large throughout
the BZ, due to the incoherent contribution, they show only a small drop at the FS.
The volume of the FS at small doping is proportional to the hole concentration
0 that does not obey the Luttinger theorem. The superconducting pairing due to
the exchange and the kinematic interactions (in the second order) has the d-wave
symmetry and high T, ~ 0.04¢ ~ 200 K. The calculations confirm the results
of the d-wave superconducting pairing obtained within the spin-polaron ¢ — J
model [31].

The advantage of the proposed microscopical theory of the d-wave spin-
fluctuation superconducting pairing, in comparison with phenomenological ap-
proaches based on the Fermi liquid models close to AFM instability, is that we
rigorously take into account local constraints of no double occupancy due to
strong correlations that result in electron—spin-fluctuation interaction. Therefore
in our approach we used only two basic parameters for the model, the hop-
ping energy, t;;, and the (super)exchange energy, J, which are characteristic
of strongly correlated systems and no artificial parameters for electron scatter-
ing on antiferromagnetic spin-fluctuation were introduced as in phenomenological
theories [35].

Generalization of the calculations for the asymmetric (p-d) Hubbard model [36]
is presented in [37]. A possibility of s 4+ d mixing of the order parameter (the
gap function) in orthorhombic phase is discussed in [38].
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