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We study properties of polarons and excitons conˇned to a potential generated in a planar
semiconductor heterostructure of the Ga1−xAlxAs/GaAs/Ga1−xAlxAs type. In contrast with
results of other authors, peaks are found for the exciton energy and the polaron effective mass as
functions of the potential width while the polaron energy reveals rather monotonous behavior.

1. GENERAL DISCUSSION

The purpose of this article is to analyze the dependence of the energy of an
elementary excitation on the strength of the conˇnement potential, which exists
in a planar semiconductor heterostructure. Due to the fascinating technological
progress in the ˇeld of man-made structures, it has become possible to fabricate,
e.g., quantum wells of a widely varying shape. It is an interesting theoretical task
to discuss the excitation spectrum of such semiconductor structures as function
of the tunable parameters, such as well width, well height, etc.. Concerning the
excitations of interest, we concentrate on particle-phonon systems, the particles
being electrons or holes. The simplest example is that of a single polaron, that
is an electron, coupled to a certain branch of lattice vibrations. Another example
is that of a polaronic exciton, that is an electron-hole pair, coupled to phonons.
Whereas the latter one is important to characterize optical properties, the former
one has direct implications for the transport behavior of the materials of interest.

We assume that the interface(s)-induced conˇnement can be mimicked by
a simple potential Vn(zn), n being the particle number; zn, the corresponding
coordinate (the growth direction of the heterostructure will always be assumed as
z-direction). Explicit forms of Vn(zn) may be rectangular wells, parabolas, etc.
In addition, we suppose translation invariance to hold within the xy-plane. We
remark that effects as surface roughness would destroy this property and could
lead to the appearance of new phenomena (e.g., localized states).
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In the following equation, we deˇne the class of models under discussion:

H : =
1
2

N∑
n=1

pnmn
−1pn + U(r1, .., rN ) +

∑
k

�ωk a+
k ak +

1√
V
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(
gk,n e i krn ak + h.c.

)
= : Hel + Hph + Hint. (1)

The nomenclature is self-explaining. The quantity U(r1, r2) is to contain the
conˇnement potentials as well as the particle interaction:

U(r1, .., rN ) :=
N∑

n=1

Vn(zn) +
1
2

N∑
n,n′=1
n �=n′

Vn,n′(rn, rn′), (2)

where Vn,n′ has to be calculated as potential energy of particle n, exposed to
the electrostatic potential of particle n′. Because of the boundary conditions,
Vn,n′(rn, rn′) itself is not translation invariant (see, e.g., Ref. 1). The particle-
phonon coupling is of Fréohlich type. The most prominent example to be used
here is that of a coupling to (LO)-phonons.

The model has two relevant limiting cases, which should be reproduced by
any theory. Let the maximum of the well widths be L and the minimum L′.
If L′ tends to inˇnity, the conˇnement is irrelevant and the energy spectrum of
H is that of a three-dimensional well-material excitation. If L tends to zero,
the (ˇnite height) well is irrelevant, leaving us with the spectrum of a three-
dimensional barrier-material excitation. The behaviour for intermediate values of
the well widths can qualitatively be discussed as follows. Varying L,L′ from
sufˇciently large values to smaller ones, the binding energy should increase due
to the higher Coulomb correlation (for instance, the reader should recall that the
energy of the two-dimensional hydrogen ground state is four times larger than
that of a three-dimensional one). When L,L′ become smaller and smaller, the
ground-state wave function will more and more effectively tunnel into the barrier
material Å the energy approaches the barrier limit.

Thus, we might expect a maximum of the binding energy to appear at inter-
mediate values of L,L′. It was a controversely discussed question whether or not
this maximum appears at relevant (that is not too small) values of L. The answer
to this question might be not the same for different systems.

2. POLARONS

The physics of polarons, conˇned to quantum wells, passed a few stages,
and it is not possible to present here even a brief list of references. In particu-
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lar, it was found that different phonon modes contribute to the polaron binding
energy Å conˇned bulk 2 phonons inside the well, interface phonon mode and
half-space bulk phonon mode in the barrier. We cite only papers [2, 3] concern-
ing polarons conˇned to a ˇnite rectangular potential (one layer heterostructure)
where contributions of all phonon modes were taken into account. Anyway, there
are problems to be addressed while dealing with multilayered heterostructures.
Namely, we have to answer the following questions:

1) How to deal with multilayered heterostructures? The total number of
phonon modes becomes too large to make numerical calculations even with mod-
ern computers. Besides, a multilayered heterostructure can generate a conˇning
potential of rather complicated form, not only the rectangular one.

2) How to deal with mass- and dielectric mismatches in different layers? The
polaron effective mass m(z), the electron-phonon coupling constant α(z) and the
phonon dispersion law do depend on a layer, that is, on the electron position. To
glue solutions in different layers seems to be a cumbersome job.

To tackle these problems we suggest speciˇc approximations, which will
brie^y be indicated here.

• A multilayered GaAs/AlxGa1−xAs heterostructure is considered as an ef-
fective medium. Its mean parameters are to be deˇned by averaging over
different layers according to the way they enter the Hamiltonian.

• The bulk phonon mode only inhabits an effective medium with mean char-
acteristics.

We specify the electronic part of the Hamiltonian:

Hel = Hel,‖ + Hel,⊥ =
�p 2
‖

2m
+

p 2
z

2m
+ V (z), (3)

The mean electron band mass m is deˇned by the equation

Hel,⊥ψ1 = E1ψ1,
1
m

=

∞∫
−∞

dz
|ψ1(z)|2
m(z)

, (4)

where ψ1(z), E1 are the ground state wave function and the energy for the electron
motion in z direction. As ψ1 and E1 depend on m, we actually have the system
of two equations (4) to calculate the mean band mass m.

The free LO-phonon Hamiltonian reads as follows:

Hph = �ωLO

∑
�k

a†�k
a�k , ωLO =

∞∫
−∞

dz ω(z) |ψ1(z)|2. (5)
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As m is found already, we deˇne here the mean phonon frequency ωLO. Note
that in this paper we are not interested in processes of emission, absorption or
scattering of phonons. Instead we concentrate on virtual phonons in a cloud
around an electron. Subsequently, the properties of the effective phonons do
depend on the position of the electron as it follows from Eq. (5).

In the same way we deˇne the effective electron-phonon interaction Hamil-
tonian in the standard Fréohlich form with the mean Fréohlich coupling constant
α:

√
α =

∞∫
−∞

dz |ψ1(z)|2
ω(z)
ωLO

(
α(z)

√
mωLO

m(z)ω(z)

)1/2

. (6)

Evidently, this model belongs to the class deˇned in Eq. (1). As examples
we studied 1) a one-layer heterostructure described by a rectangular conˇning
potential

V (z) =
{

0, |z| ≤ L/2
V0, |z| > L/2 (7)

(the z-dependence of the masses and dielectric parameters is completely analo-
gous) and 2) a multilayered heterostructure corresponding to the RosenÄMorse
potential

V (z) = V0 tanh2

(
z

LRM

)
. (8)

We use perturbation theory in powers of α for both potentials, but in the
ˇrst case we perform the summation over all virtual states while in the case
of the RosenÄMorse potential the Green function (see [4, 5]) can be used. To
compare results for the RosenÄMorse and the rectangular potentials, an effective
width L of the RosenÄMorse potential has to be found. We deˇne it as the
width of a rectangular potential of the same height V0 with the same ground-state
energy. The dependence L(LRM) can then be calculated. The parametrization
for experimental data concerning GaAs/AlxGa1−xAs heterostructure is based
on the results reported in Ref. 6 with some modiˇcations, which are discussed
in our paper [7]. Actually we use the dependence of the parameters on the
Al mole fraction x which depends in turn on the coordinate z via the relation
V (z) = 600 · (1.155x+0.37x2) meV. The conˇning potential V (z) being given,
we know the dependence x(z) and, subsequently, the values of the parameters
α,m, ω at each point of the heterostructure which are averaged then following
Eqs. (4), (5), and (6).

The polaron energy and effective mass are calculated for x = 0.3. Peaks
are found for the effective mass at some potential widths, while the energy
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demonstrates rather a smooth behavior between the correct 3D-limits as is seen
in Fig. 1. As to the RosenÄMorse potential, the results are presented in Fig. 2
together with those for the rectangular potential of the corresponding effective
width. One can see an excellent coincidence of the results obtained within the
different techniques; clearly, this fact increases their reliability. A comparison is
also made with the results of the papers [2, 3], and the details are discussed in
our paper [7].

Fig. 1. The polaron binding energy and the effective mass in the rectangular potential.
Contributions of the discrete ∆disE (∆dism/m) and continuous ∆conE (∆conm/m)
spectrum are shown as well as the so-called leading term approximation ∆ltE (∆ltm/m)
when only the ground state is taken into account as an intermediate virtual state (dashed
line)

Fig. 2. Our results for the RosenÄMorse potential in comparison with these for the rectan-
gular potential (dashed line) of the same effective width L(LRM)
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3. EXCITONS

Sampling the previous literature, most work has been done on rectangular
quantum wells with conˇnement potentials of type (7). The electron-hole potential
can be calculated as indicated above and was given, e.g., in Ref. 1.

To treat eigenvalue problems as the present one, we use tractable decom-
positions of the Hamiltonian to generate lower bounds for the ground-state
energy. The basic idea is as follows: Assume we study the Hamiltonian
H = p2

z/2m+ V1(z) + V2(z) to ˇnd its ground-state energy E. Then we use the
decomposition

H1 = x
p2

z

2m
+ V1(z), H2 = (1 − x)

p2
z

2m
+ V2(z), 0 ≤ x ≤ 1. (9)

If E1(x), E2(x) are the corresponding ground-state energies of H1, H2, then a
lower bound for E is: E ≥ maxx(E1(x) + E2(x)).

Upper bounds are produced by variational methods: The trial wave-function
used in our calculations had the form:

Ψ(�r⊥, z1, z2) = Φ1(z1)Φ2(z2)e−a
√

r2
⊥+b(z1−z2)2 , (10)

Fig. 3. Comparison of results for the binding
energy of an exciton in a rectangular quantum
well as function of the well width

where Φi(zi) are the ground-state
eigenfunctions of the free elec-
tron (i = 1) or the hole
(i = 2) in the conˇning po-
tentials of the type (7). Evi-
dently, the variational parameters
a, b can be used to ˇt 3D and
2D limiting cases. If the masses
can be assumed as constant over
the heterostructure, these methods
can proˇtably be combined with
functional-integral techniques. Fig-
ure 3 shows our result [8] for
Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As
in comparison with experimental [10,
11] and previous theoretical results
[9]. Clearly, the maximum appears
at a relevant width.

A second class of conˇnement potentials is of parabolic type, that is,

Vi(z) =
miR

2
∞λ2

i

2�2
z2

i , (11)
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where λi denotes the dimensionless conˇnement strength, R∞ is the Rydberg
unit, which was extracted for reasons of convenience. To study the conˇnement-
induced effects on the spectrum as accurately as possible, we disregarded any
parameter mismatch. The quantity of interest is the diagonal element of the
reduced density operator, namely

Pβ(C) :=< C|trPhe
−βH |C > . (12)

In this formula C is an abbreviation for an arbitrary (but ˇxed) set of the position
coordinates of the particles involved. The right-hand side of Eq. (12) can be
represented as a functional integral

Pβ(C) = ZPh

∫
δ6R e−S[R]. (13)

In Eq. (13) ZPh is the free-phonon partition function, and S reads as follows:

S[R] :=
∫ β

0

dτ

(
2∑

n=1

mn

2
Ṙ2

n(τ) + U(R1(τ),R2(τ))

)

−
2∑

n,n′=1

∑
k

gk,ngk,n′

V

β∫
0

β∫
0

dτ dτ ′ G(τ − τ ′) eik[Rn(τ)−Rn′(τ ′)]. (14)

Within the functional integral (13),
∫
δ6R.... is to indicate integration over all

real, 6-dimensional paths R(τ), which start and end at the point C. The kernel
function G(τ − τ ′) is deˇned as

G(τ) :=
e�ω(β−|τ |) + e�ω|τ |

2[eβ�ω − 1]
. (15)

It is well known that functional integrals of type (13) with an action (14)
cannot be evaluated in analytical form. Starting from the exact expression, we use
variational procedures as in Feynman's famous paper on polarons to ˇnd upper
bounds on the ground-state energy. The necessary input is a trial action, which
is accessible to a numerical treatment.

The trial companions of the exact action (14) were combinations of oscillator
trial actions for the centre-of-mass and the z-coordinate and three-dimensional
(two-dimensional) Coulomb potentials for the three-dimensional (two-dimensional
in-plane) relative coordinates. The corresponding results (see Ref. 12) can be
found in the following ˇgures and are denoted as quasi three-dimensional (Q3D)
and quasi two-dimensional (Q2D or Q2Dalt) ansatz. In Fig. 4 we neglect any
phonon in^uence to demonstrate the smooth interpolation of the limiting values
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1R∞ and 4R∞ of the binding energy (actually we plotted there the ground-state
energy with the continuum edge being subtracted, that is, the quantity −EB).
Figure 5 shows results for the general case; we present data for the ground-state
energy as well as the continuum edge, which is the reference for the binding
energy and has to be calculated separately.

Fig. 4. Binding energy of an exciton
in a parabolic quantum well as function
of the electron conˇnement strength λ1.
The comparison is made for different ap-
proaches described in Ref. 12. The para-
meters σ2 = m1/m2 and χ = λ2/λ1 are
ˇxed as indicated

Fig. 5. Ground-state energy of an exciton-
phonon system in a parabolic quantum
well as function of the conˇnement elec-
tron strength λ1. The remaining parame-
ters η =

√
R∞/�ω and ξ = 1 − ε∞/ε0

are ˇxed as indicated. In addition, an up-
per bound for the energy of the continuum
edge is shown
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