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FREE ENERGY AND NON-LINEAR SUSCEPTIBILITIES
OF O(n)-SYMMETRIC SYSTEMS AT CRITICALITY
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Renormalized coupling constants g6 and g8 entering the small-ˇeld expansion of the free energy
and determining the system non-linear susceptibilities are calculated for the 3D n-vector model in
the four-loop and three-loop approximations, respectively. Four-loop expansion for g6 of the 2D
Ising model is also found. The Pad@eÄBorelÄLeroy technique is used for resummation of these
renormalization-group series, and numerical estimates for universal critical values of g6 and g8 are
obtained.

Higher-order renormalized coupling constants g2k for the basic models of
phase transitions became the target of intensive theoretical studies in recent years
(see, e.g., [1, 2] and references therein). These constants enter the small-ˇeld
expansion of the free energy and scaling equation of state, determine the system
nonlinear susceptibilities and thus play a key role at criticality. Along with critical
exponents, they are universal, i.e., possess, under T → Tc, numerical values which
depend only on the space dimensionality and the symmetry of the order parameter.
Calculation of the universal critical values of g6, g8, etc., for the 3D Ising model
by various methods showed that the ˇeld-theoretical renormalization-group (RG)
approach in ˇxed dimensions yields the most accurate numerical estimates. It is a
consequence of a rapid convergence of the iteration schemes originating from RG
expansions [3,4]. It is natural, therefore, to use the ˇeld theory for calculation of
renormalized higher-order coupling constants for more general, O(n)-symmetric
model and for the Ising model in two dimensions. In the report, the 3D RG
expansions of the renormalized coupling constants g6 and g8 for arbitrary n will
be presented along with the 2D RG series for g6 at n = 1 and numerical estimates
for their universal critical values will be obtained.

The 3D O(n)-symmetric model is described at criticality by Euclidean ˇeld
theory with the Hamiltonian

H =
∫

d3x

[
1
2
(m2

0ϕ
2
α + (∇ϕα)2) + λ(ϕ2

α)2
]
, (1)

where m2
0 is proportional to T −T

(0)
c , T

(0)
c being the phase transition temperature

in the absence of the order parameter Quctuations. The Quctuations give rise to
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many-point correlations 〈ϕ(x1)ϕ(x2)...ϕ(x2k)〉 and, correspondingly, to higher-
order terms in the expansion of the free energy in powers of the magnetization
M :

F (M, m) = F (0, m) +
∞∑

k=1

g2km3−k(1+η)M2k, (2)

where m is a renormalized mass, η is a Fisher exponent, and g2k are dimensionless
coupling constants. Let, as usually, g2 = 1/2. Then g4, g6, g8,... will acquire,
under T → Tc, the universal values.

The asymptotic critical values of g4, g∗4(n), determining critical exponents
and other universal quantities, have been found from the 6-loop expansion for RG
β-function [1, 5Ä7]; they are known with rather high accuracy. To estimate the
universal values g∗6 and g∗8 of the higher-order couplings, we calculate correspond-
ing RG series and perform their resummation by means of the PadéÄBorelÄLeroy
technique. The RG series for g6 and g8 are obtained from conventional Feynman
graph expansions for the 6-point and 8-point vertices in terms of the bare coupling
constant λ. In its turn, λ is expressed perturbatively via the renormalized coupling
constant g4. Substituting then the series for λ into the ®bare¯ expansions, we
obtain the RG expansions for g6 and g8.

As was earlier shown [3,8], the 1-, 2-, 3-, and 4-loop contributions to g6 are
formed by 1, 3, 16, and 94 one-particle irreducible Feynman graphs, respectively.
In this case, the calculations just described give [9]:

g6 =
9
π

g3
4

[
n + 26

27
− 17 n + 226

81π
g4 + (0.000999164 n2 + 0.14768927 n

+1.24127452)g2
4 − (−0.00000949 n3 + 0.00783129 n2

+0.34565683 n + 2.14825455)g3
4

]
. (3)

In the case of g8, the 1-, 2-, and 3-loop contributions are given by 1, 5, and
36 graphs, respectively [8]. Corresponding RG expansion is found to be [9]:

g8 = − 81
2π

g4
4

[
n + 80

81
− 81 n2 + 7114 n + 134960

13122π
g4

+(0.00943497 n2 + 0.60941312 n + 7.15615323)g2
4

]
. (4)

Being a ˇeld-theoretical perturbative expansions these series are divergent
(asymptotic). To get reasonable numerical estimates for g∗6 and g∗8 some procedure



192 SOKOLOV A.I. ET AL.

of making them convergent should be applied. The BorelÄLeroy transformation

f(x) =
∞∑

i=0

cix
i =

∞∫
0

tbe−tF (xt)dt, F (y) =
∞∑

i=0

ci

(i + b)!
yi. (5)

can play a role of such a procedure. Since the RG series considered turns out to
be alternating, the analytical continuation of the BorelÄLeroy transform may be
then performed by using Padé approximants [L/M].

For g6 we have the 4-loop RG expansion and can construct, in principle,
three different Padé approximants: [2/1], [1/2], and [0/3]. To obtain proper
approximation schemes, however, only diagonal [L/L] and near-diagonal Padé
approximants should be employed. That's why further we limit ourselves with
approximants [2/1] and [1/2]. Moreover, the diagonal Padé approximant [1/1]
will be also dealt with although this corresponds to the usage of the lower-order,
3-loop approximation.

The algorithm of estimating g∗6 we use here is as follows. Since the Taylor
expansion for the free energy contains as coefˇcients the ratios R2k = g2k/gk−1

4

we work with the RG series for R6. It is resummed in three different ways based
on the Padé approximants just mentioned. The BorelÄLeroy integral is evaluated
as a function of the parameter b under g4 = g∗4(n). For the ˇxed point coordinate
g∗4(n) the values extracted from the six-loop RG expansion are adopted [1, 5].
The optimal value of b providing the fastest convergence of the iteration scheme
is then determined. It is deduced from the condition that the Padé approximants
employed should give, for b = bopt, the values of R∗

6 which are as close as
possible to each other. Finally, the average over three estimates for R∗

6 is found
and claimed to be a numerical value of this universal ratio.

The results of our calculations of g∗6 are presented in the Table. It contains
numerical estimates resulting from the 4-loop RG expansion (column 3) and their
analogs given by the PadéÄBorel resummed 3-loop RG series [1] (column 4). As
is seen, with increasing n the difference between the 4-loop and 3-loop estimates
rapidly diminishes: being small (0.9 %) even for n = 1, it becomes negligible at
n = 10 and practically disappears for n ≥ 14. Such a behaviour is quite natural
since with increasing n the approximating properties of RG series for g6 become
better [1, 9].

How close to the exact values of g∗6 may the numbers in column 3 be? To
clear up this point, let us compare our 4-loop estimate for R∗

6 at n = 1 with those
obtained recently by an analysis of the 5-loop scaling equation of state for the 3D
Ising model [4, 10]. R. Guida and J. Zinn-Justin have obtained R∗

6 = 1.644 and,
taking into account some additional information, R∗

6 = 1.643, while our estimate
is R∗

6 = 1.648. Keeping in mind that the exact value of R∗
6 should lie between

the 4-loop and 5-loop estimates (the RG series is alternating), our estimate can
differ from the exact number by no more than 0.3 %. Since for n > 1 the RG
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Table. Our estimates of universal critical values of the renormalized sextic coupling
constant for the 3D n-vector model (column 3). The ˇxed point coordinates g∗ are

taken from [5] (1 ≤ n ≤ 3) and [1] (4 ≤ n ≤ 40). The g∗
6 estimates extracted from the

PadeÄBorel resummed 3-loop RG expansion (column 4), from the exact RG equations
(column 5), obtained by the lattice calculations (column 6), resulting from a

constrained analysis of the ε-expansions (column 7), and given by the 1/n-expansion
(column 8) are presented for comparison

n g∗ g∗
6 g∗

6 [1] g∗
6 [11] g∗

6 [12] g∗
6 [2] g∗

6 (1/n)

2 3 4 5 6 7 8
1 1.415 1.608 1.622 1.52 1.92(24) 1.609(9)
2 1.406 1.228 1.236 1.14 1.27(25) 1.21(7)
3 1.392 0.951 0.956 0.88 0.93(20) 0.931(46)
4 1.3745 0.747 0.751 0.68 0.62(15) 0.725(29) 1.6449
5 1.3565 0.596 0.599 1.0528
6 1.3385 0.483 0.485 0.7311
8 1.3045 0.329 0.331 0.319(4) 0.4112
10 1.2745 0.235 0.236 0.2632
12 1.2487 0.174 0.175 0.1828
16 1.2077 0.105 0.105 0.1032(4) 0.1028
20 1.1773 0.0693 0.0694 0.0658
24 1.1542 0.0487 0.0488 0.0457
32 1.1218 0.0276 0.0276 0.0275(1) 0.0257
40 1.1003 0.0176 0.0176 0.0164

expansion (3) should provide better numerical estimates than in the Ising case,
this value (0.3 %) represents an upper bound for the deviation of the numbers in
column 3 of the Table from their exact counterparts.

It is interesting to compare our estimates with those obtained by other meth-
ods. Since 1994, the universal values of the sextic coupling constant for the 3D
O(n)-symmetric model were estimated by solving the exact RG equations [11],
by lattice calculations [12], and by a constrained analysis of the ε-expansion [2];
corresponding results are collected in columns 5, 6, and 7 of the Table respec-
tively. As is seen, they are, in general, in accord with ours. For large n, our
estimates are consistent also with those given by the 1/n-expansion which are
presented in column 8.

The RG expansion for the octic coupling constant g8 turns out to be worse
than the series (3) from the point of view of their summability. Indeed, the
series (4) diverges considerably stronger and is one term shorter than that for
g6. It implies that the only Pade approximant Å [1/1] Å may be really used
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in a course of the resummation of this series. In the Ising case n = 1, such a
simple PadeÄBorel procedure, when applied to the 3-loop RG expansion for g8,
was found to lead to rather crude numerical estimates [8]. As our analysis shows,
with increasing n the situation becomes better but, nevertheless, the RG estimates
for g∗8(n) remain much less accurate than those obtained for the sextic coupling
constant. Corresponding numerical results are presented elsewhere [9].

For the 2D Ising model the four-loop calculations lead to the following RG
expansion for the renormalized sextic coupling constant [13]:

g6 =
36
π

g3
4

(
1 − 3.2234882 g4 + 14.957539 g2

4 − 85.7810 g3
4

)
. (6)

This series is resummed in a manner quite similar to that used in three dimensions.
For the ˇxed point coordinate the value g∗4 = 0.6125 [14Ä16] is accepted which
was extracted from lengthy high-temperature expansions and is believed to be the
most accurate estimate for g∗4 available nowadays. As our calculations show, for
b = bopt all three working Padé approximants yield practically the same value of
g∗6 . It is as follows:

g∗6 = 1.10. (7)

To estimate an (apparent) accuracy of this number we analyze the sensitivity of
estimates given by RG expansion (6) to the type of resummation. The results
produced by Padé approximant [2/1] turn out to be most strongly dependent on
the parameter b. This situation resembles that for 3D O(n)-symmetric model
where Padé approximants of [L− 1/1] type for β-function and critical exponents
lead to numerical estimates demonstrating appreciable variation with b while for
diagonal and near-diagonal approximants the dependence of the results on the
shift parameter is practically absent [1, 5]. In our case, Padé approximants [1/1]
and [1/2] generate such ®stable¯ approximations for g∗6 . For b varying from 0
to 15 (i.e., for any reasonable b) the magnitude of g∗6 averaged over these two
approximations is found to remain within the segment (1.044, 1.142) [13]. Hence,
the value (7) is believed to differ from the exact one by no more than 5%. Very
good agreement between our estimate and those obtained recently from the high-
temperature expansions [14] (g∗6 = 1.104) and by matching of corresponding
ε-expansion with the exact results known for D = 1 and D = 0 [2] may be
considered as an argument in favor of this belief.
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