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The eigenvectors of the Hamiltonian HN of N -sites quantum spin chains with elliptic exchange
are connected with the double Bloch meromorphic solutions of the quantum continuous elliptic
Calogero-Moser problem. This fact allows one to ˇnd the eigenvectors via the solutions to the system
of highly transcendental equations of Bethe-ansatz type which is presented in explicit form.

It is known [1] that for a one-parameter set HN of linear combinations of
N(N − 1)/2 elementary transpositions {Pjk}, HN = J

2

∑N
1≤j �=k ℘(j − k)Pjk at

arbitrary natural N ≥ 3, one can construct a variety {Im} (3 ≤ m ≤ N) of
operators which commute with HN . Being applied to SU(2) spin representations
of the permutation group, this proves the integrability of 1D periodic spin chains
with elliptic short-range interaction and the Hamiltonian

H(s) =
J

4

∑
1≤j �=k≤N

h(j − k)(
σj
σk − 1), (1)

where

h(j) =
(ω
π

sin
π

ω

)2
[
℘N(j) +

2
ω
ζN

(ω
2

)]
, (2)

where ℘N (x), ζN (x) are the Weierstrass functions deˇned on the torus TN =
C/ZN + Zω, ω = iα, α ∈ R+ is a free parameter.

The symmetry of two limiting cases of this one-parameter model, i.e., the
Bethe lattice with nearest-neighbor interaction [2] (α → 0) and long-range(

N
π sin πj

N

)−2
exchange [3] (α → ∞), is now well understood, and regular pro-

cedures of ˇnding eigenvectors are described in the literature [4Ä7]. At present, a
number of impressive results are known for both these models. In particular, they
include the additivity of the spectrum under proper choice of ®rapidity¯ variables
[2,3], the description of underlying symmetry [4,5], construction of thermody-
namics in the limit N → ∞ [9,10]. However, all that still cannot be applied to
the general elliptic case.

In the paper [8], I have shown that there is a remarkable connection be-
tween the eigenvectors of the Hamiltonian of the above model with M down
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spins and double Bloch meromorphic solutions to the quantum continuous elliptic
Calogero-Moser problem at the special value of the coupling constant, i.e., the
eigenfunctions of the differential operator

H = −1
2

M∑
j=1

∂2

∂x2
j

+
M∑

j �=k

℘N (xj − xk). (3)

This allows one in principle to ˇnd an ansatz for the eigenvectors and even try to
describe them completely if the solutions to (3) are known. This has been done
in the simplest nontrivial case M = 3 in [11], where I have used the result for
three-particle elliptic Calogero-Moser problem [12].

At that time, the explicit form of the eigenfunctions of (3) at M > 3 has not
been known. The situation has been changed after publishing the seminal paper
[13] where these eigenfunctions have been obtained in the process of constructing
solutions to the elliptic KnizhnikÄZamolodchikovÄBernard equations. It has been
a main motivation for this paper in which I shall describe the complete set of the
Bethe-ansatz-type equations for the eigenvectors of (1) at arbitrary M ≤ N/2.

The Hamiltonian (1) commutes with the operator of total spin 
S = 1
2

∑N
j=1 
σj .

Then the eigenproblem for it is decomposed into the problems in the subspaces
formed by the common eigenvectors of S3 and 
S2 such that S = S3 = N/2−M ,
0 ≤M ≤ [N/2],

H(s)|ψ(M) >= EM |ψ(M) > . (4)
The eigenvectors |ψ(M) > are written in the usual form

|ψ(M) >=
N∑

n1..nM

ψM (n1..nM )
M∏

β=1

s−nβ
|0 >, (5)

where |0 >= | ↑↑ ... ↑> is the ferromagnetic ground state with all spins up
and the summation is taken over all combinations of integers {n} ≤ N such

that
∏M

µ<ν(nµ − nν) �= 0. The substitution of (5) into (4) results in the lattice
Schréodinger equation for completely symmetric wave function ψM

N∑
s�=n1,..nM

M∑
β=1

℘N (nβ − s)ψM (n1, ..nβ−1, s, nβ+1, ..nM )

+


 M∑

β �=γ

℘N (nβ − nγ) − EM


ψM (n1, ..nM ) = 0. (6)

The eigenvalues {EM} are given by

EM = J
(ω
π

sin
π

ω

)2
{
EM +

2
ω

[
2M(2M − 1) −N

4
ζN

(ω
2

)
−Mζ1

(ω
2

)]}
,

(7)
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where ζ1(x) is the Weierstrass zeta function deˇned on the torus T1 = C/Z+Zω.
The solutions to (6) can be found with the use of the following ansatz for

ψM :

ψM (n1, ..nM ) =
∑

P∈πM

ϕ
(p)
M (nP1, ..nPM ), (8)

ϕ
(p)
M (n1, ..nM ) = exp

(
−i

M∑
ν=1

p̃νnν

)
χ

(p)
M (n1, ..nM ), (9)

where
p̃ν = pν − 2πN−1lν , lν ∈ Z, (10)

πM is the group of all permutations {P} of the numbers from 1 to M and χ(p)
M

is some special solution to the continuum quantum many-particle problem
−1

2

M∑
β=1

∂2

∂x2
β

+
M∑

β �=λ

℘N (xβ − xλ) − EM (p)


χ(p)

M (x1, ..xM ) = 0. (11)

It is speciˇed up to a normalization factor by the particle pseudomomenta (p1, ..pM ).
The standard argumentation of the FloquetÄBloch theory shows that due to peri-

odicity of the potential term in (49) χ(p)
M obeys the quasi-periodicity conditions

χ
(p)
M (x1, ..xβ +N, ..xM ) = exp(ipβN)χ(p)

M (x1, ..xM ), (12)

χ
(p)
M (x1, ..xβ+ω, ..xM ) = exp(2πiqβ(p)+ipβω)χ(p)

M (x1, ..xM ), 0 ≤ �e(qβ) < 1,
(13)

1 ≤ β ≤M.

The eigenvalue EM (p) is some symmetric function of (p1, ..pM ). As will be seen
later, the set {qβ(p)} is also completely determined by {p}.

It turns out [8] that the equation (6) with the use of (8),(9) can be recast in
the form

∑
P∈πM


−1

2

M∑
β=1

(
∂

∂nPβ
− fβ(p)

)2

+
M∑

β �=γ

℘N (nPβ − nPγ)−

EM +
M∑

β=1

εβ(p)


ϕ(p)(nP1, ..nPM ) = 0, (14)

where
fβ(p) = 2q̃β(p)ζ1(1/2) − ζ1(q̃β(p)), (15)
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εβ(p) =
1
2
℘1(q̃β(p)), (16)

q̃β(p) = qβ(p) +
lβ
N
ω. (17)

where ℘1(x), ζ1(x) are the Weierstrass functions deˇned on the torus T1 =
C/Z + Zω.

Turning to the deˇnition (9) of ϕ(p), one observes that each term of the left-
hand side of (14) has the same structure as the left-hand side of the many-particle
Schréodinger equation (11) and vanishes if EM and fβ(p) are chosen as

fβ(p) = −ip̃β, β = 1, ..M, (18)

EM = EM (p) +
M∑

β=1

εβ(p). (19)

One can see from (15-19) that it remains now to ˇnd the explicit dependence
of {q} and EM on {p}. It can be done by using the results given in [13] where

the explicit form of χ(p)
M (x) has been indicated. In suitable notations, it reads

χ
(p)
M (x) ∼ exp(i

M∑
β=1

pβxβ)
∑

s∈πm

l(s)
m∏

j=1

σ̃∑j
k=1(xc(s(k))−xc(s(k))+1)(ts(j)−ts(j+1)),

(20)
where m = M(M−1)/2, c is nondecreasing function c : {1, ..,m} → {1, ..,M−
1} such that |c−1{j}| = M − j, l(s) is an integer which is deˇned for the
permutation s by the relation xc(s(1))+1∂/∂xc(s(1))...xc(s(m))+1∂/∂xc(s(m))x

M
1 =

l(s)(x1...xM ), {t} is a set of m complex parameters obeying m relations [13]

∑
l:|c(l)−c(j)|=1

ρ(tj−tl)−2
∑

l:l �=j,c(l)=c(j)

ρ(tj−tl)+Mδcj,1ρ(tj) = i(pc(j)−pc(j)+1),

(21)

ρ(t) = ζN (t) − 2
N
ζN (N/2)t,

and

σ̃w(t) = exp((2/N)ζN (N/2)wt)
σN (w − t)
σN (w)σN (t)

,

σN being the Weierstrass sigma function on TN . The elementary building blocks
of the χ function obey the useful quasi-periodicity relations

σ̃w+N (t) = σ̃w(t), σ̃w+ω(t) = e2πit/N σ̃w(t). (22)
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One can see that in this construction the color function c(j) is of crucial role. It
is useful to write it explicitly. Namely, deˇne for every k=1,..M − 1 the segment
Sk

(k − 1)(2M − k)
2

+ 1 ≤ j ≤ k(2M − k − 1)
2

. (23)

Then some calculation shows that

c(j) = k if j ∈ Sk. (24)

The main advantage of the explicit form of χ function is that it allows one
to ˇnd the second set of relations between the Bloch factors {p}, {q}. It is easy
to see from (21) that {p}′s in the deˇnitions (12) and (20) are the same. The
problem consists in calculation of {q}. To do this, it is not necessary to analyze
each term in the sum over permutations in (20) since all of them must have the
same Bloch factors. It is convenient to choose the term which corresponds to the
permutation

s0 : s0(j) = m+ 1 − j, j = 1, ..m.

After some algebra, one ˇnds that this permutation gives nontrivial contribution
to the sum (20) with l(s0) = M !(M − 1)!...2!. Moreover, with the use of explicit
form of the color function (23-24) one ˇnds

c(s0(l)) = M − q if q(q − 1)/2 + 1 ≤ l ≤ q(q + 1)/2.

Now the problem of calculation of the second Bloch factors reduces, due to second
relation (21), to some long and tedious, but in fact simple calculations of the
product of factors which various σ̃ functions acquire under changing arguments
of χ function to the quasi-period ω. The ˇnal result is surprisingly simple,

qβ(p) = N−1


 ∑

l:c(l)=β

tl −
∑

l:c(l)=β−1

tl


 , 1 < β < M − 1, (25)

with the ˇrst and second term being omitted for β = M and β = 1.
The equations (25), together with (18) and (21), form a closed set for ˇnding

Bloch factors {p}, {q} at given integers {lβ} ∈ Z/MZ and determining the eigen-
values of the spin Hamiltonian (1,2) completely. The corresponding eigenvalue
of the continuum M -particle operator (11) is given by [13]

EM (p) =
2M(M − 1)

N
ζ

(
N

2

)
+

M∑
β=1

p2
β/2

−1
2


 m∑

k<l

(2δc(k),c(l)F (tk − tl) − δ|c(k)−c(l)|,1F (tk − tl)) −M
∑

c(k)=1

F (tk)


 ,
(26)
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where

F (t) = −℘N(t) + (ζN (t) − 2/NζN(N/2))2 + 4/NζN(N/2).

This allows one to ˇnd, via (7) and (19), the explicit form of the eigenvalues of
spin Hamiltonian (1,2). It is worth noting that for their real calculation one has
to solve the Bethe-type equations (18), (21), (25) at ˇrst.

In conclusion, it is demonstrated that the procedure of the exact diagonal-
ization of the lattice Hamiltonian with the nonnearest-neighbor elliptic exchange
can be reduced in each sector of the Hilbert space with given magnetization to
the construction of the special double quasi-periodic eigenfunctions of the many-
particle Calogero-Moser problem on a continuous line. The equations of the
Bethe-ansatz form appear very naturally as a set of restrictions to the particle
pseudomomenta. The proof of this correspodence between lattice and continuum
integrable models is based only on analytic properties of the eigenfunctions. One
can expect that the set of spin lattice states constructed by this way is complete.
This is supported by exact analytic proof in the two-magnon case.

The analysis of explicit form of the equations (21) available for M = 2, 3
shows that the spectrum of the lattice Hamiltonian with the exchange (1) is not
additive being given in terms of pseudomomenta {p} or phases which parametrize
the sets {p, q} [11]. For arbitrary M , this can be seen directly from (26). The
problem of ˇnding appropriate set of parameters which gives the ®separation¯ of
the spectrum remains open. It would be also of interest to consider various limits
(N → ∞, α → 0,∞) so as to recover the results of the papers [2,3] and prove
the validity of the approximate methods of asymptotic Bethe ansatz.
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