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The tight-binding band structure of AV2O5 systems (A is alkali element) is studied by taking
into account the electron correlations in the framework of the Hubbard-like model. The evaluated band
gaps, energy dispersion relations and density of electronic states are in good agreement with available
experimental data. The correlated band gap provides the insulating state of the high-temperature
phase. For the best studied α′ÄNaV2O5 the low-temperature phase earlier misinterpreted as the
spin-Peierls state, is governed, in fact, by an opening of the Coulomb gap. Due to the nature of the
correlated energy the story supports the idea to give the name HeitlerÄLondon insulators to A+V2O5

compounds.

Since the discovery of a spin-Peierls behavior in quasi-1D CuGeO3 there
were a lot of efforts to ˇnd out similar effects in other inorganic materials. The
AVnO2n+1 family (A ≡ alkali or alkali earth element) has been quite perspective
in that respect. In the best studied α′− phase of NaV2O5 the opening of a
spin gap ∆0 ∼ 80−100 K at Tc ∼ 34−36 K was attributed ˇrstly to a spin-
Peierls transition [1, 2]. At present it has become evident, that this scenario is not
adequate for the description of the available experimental data (e.g., [3Ä5]).

The presented approach is based on the hypothesis that the α′−NaV2O5

properties are governed by the electron correlations U � ta (intra-rung/dimer
electron hopping integral) > tb (an electron hopping along legs in crystall b-
direction) > td (the hopping along ladder diagonals) > tbc,bm,qm

xy (interdimer
hoppings between vanadium ions on the nearest ladders) (Fig. 1). According to
the standard tight-binding method (U = 0) in solids for solving the Schréodinger
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equation the eigenfunctions of the problem are constructed on the basis of the
electron eigenfunctions of the isolated atoms, i.e., a conventional tight-binding
method is the more suitable the greater interatomic distances in the crystal. But
in this case the prevailing term in the Hamiltonian is strong electron-electron
repulsion, U , which cannot be reduced to the mean ˇeld and then the problem is
beyond the scope of the conventional SlaterÄKoster scheme at all.

Fig. 1. The schematic view of α′−NaV2O5. Each dimer/rung is replaced by a circle. The
inter(intra)dimer hopping tb (ta) in the b(a)-direction is set along the y(x) -axis. The
distances at room temperature between the nearest V-ions on neighboring dimers/rungs are
3.04 WA and the leg constant is 3.61 WA. The dimer size is 3.44 WA. Oxygen p-wave functions
(opened) enhance the hopping td along ladder diagonals. For T > Tc: the orthorhombic
unit cell with two dimers is shown in lower panel. For T < Tc: the size of arrows (lower
panel) reZects the charge disproportionation ∆n = na,d,m,q − nb,c,n,p in the monoclinic
unit cell; the shaded portions have a zigzag order

Reasonable simulation of the many-body effects is impossible in terms of
the Fermi operators which are c-numbers. The necessity to introduce in this
case the operators with more complicated permutation relations was indicated by
Bogoliubov when developing the polar theory of metals already in 1949 year [6].
The applied technique [7] for the generalized Okubo-Hubbard X-operators in the
superalgebra approach considers the tunneling part of any correlated Hamiltonian
as perturbation with respect to strong electron correlations included in eigen-
values of the unperturbed part of Hamiltonian. The Hamiltonians with correlated
electrons are rewritten in terms of basis and only basis vectors of corresponding
superalgebra. The perturbation theory is based on the generalized Wick's theorem
as an iteration procedure reducing the time-ordered product of n of X-operators
to the product of n − 1 of thereof. The ˇrst order self-energy is the tunneling
matrix itself from the perturbation Hamiltonian.
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Here in the framework of the su (2, 2) superalgebra approach for A+V2O5

systems we will neglect the effects of the scattering of correlated electrons at the
spin and charge Zuctuations, aiming at comparing the correlated electron spectra
with the conventional tight-binding results which are done in the ˇrst order of
the transfer energy. In the considered order of the perturbation theory we will
concentrate on the inZuence of band structure effects which are of signiˇcance
for multicomponent systems such as AV2O5.

Fig. 2. The high-temperature
(T > Tc) electron density of states
in α′−NaV2O5 for parameters ta =
0.35 eV, tb = 0.15 eV, td = 0.1 eV,
txy = 0.06 eV, U = 4 eV (i.e.,
the effective value I � 0.6 eV) as
a function of dimensionless energies
ξ /(tb + td), EF = 0 (main panel).
The inset shows the density of states
for noninteracting bonding electrons

Angular part of dxy-wave functions pro-
vides the layerness of α

′−NaV2O5 and the
small ratio rB/a (a is a lattice constant and
rB is the V-ion Bohr radii) enables to cal-
culate transfer integrals as power series of
(rB/a)

2. Their estimates show the strong in-
Zuence of a V-ion core on an electron hop-
ping and we will distinguish the txy magni-
tudes at T < Tc: tbcxy = t + δ, tbmxy = t,
tqm
xy = t − δ. Our main strategy is devel-
oped starting from the assumption that the
quarter-ˇlled dimers V2 form an ideal trian-
gular lattice in the layer of VO5 pyramides

(Fig. 1). Below Tc α
′−NaV4+/5+

2 O5 is in an
ordered valence phase whereas above Tc it
is in a mixed valence state. Phase transition
seems to be similar to the Verwey transition

at TV ∼ 120 K in magnetite FeFe2+/3+
2 O4 [8]

with the charge ordered Fe2+/3+
(
3d6/5

)
oc-

tahedral sites at T < TV .

Below Tc the dxy−electrons acquire the
on-site energies in a monoclinic unit cell,
εa,d,q,m=−εb,c,n,p ≡ −ε, inZuenced by neigh-
boring Coulomb repulsion V4+∆n/5−∆n: ε =
−V∆n. Sites a, b,m, n and p, q, c, d have
spin projections down and up, respectively.
This situation, in parallel with U � ta,b,xy,

allows one to consider spinless electrons. The energy dispersions are plotted in
Fig. 2. The Coulomb gap ∆C is provided by the zigzag order ∓ε (Fig. 1), parame-
ters ta,d and competing interdimer hops tb,xy. The critical value Vc ∼ 0.02 eV [9]
corresponds to our threshold εc (txy = 0.06 eV, δ = 0.01 eV) to trigger the phase
transition. For realistic ta,b,d,xy and ε the so-called ®spin-Peierls¯ phase transition
occurs at Tc = 35 K (Fig.2). At small interladder hoppings the Coulomb gap is
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∆C =
√
ε2 + (ta + 2tb)

2 +
√
ε2 + (ta − 2tb)

2 − 4td. (1)

Its estimated magnitude ∆C ≈ 1 eV (see Fig. 2) for disproportionation ∆n = 0.8,
V = 0.8 eV [10], ta = 0.35 eV, tb = 0.15 eV, td = 0.1 eV corresponds to
the observed strong absorption of the light [11]. Eq.(1) is the extension of the
splitting in terms of the ®charged-magnon¯ scenario used in Refs. 11, 12 for a
single V4+−V5+ rung (tb,d = 0).

Above Tc the tight-binding energy bands are split due to the electron corre-
lations as

ξ+p
tb + td

= ε±p +
1
2

√(
I

tb + td

)2

+ 4
(
ε±p
)2
,

ξ−p
tb + td

= ε±p − 1
2

√(
I

tb + td

)2

+ 4
(
ε±p
)2
, (2)

where dimensionless tight-binding noncorrelated energies are

ε±p = − cospy ± 2t cos
py

2
cos

px

√
3

2

(
t =

txy

2 (tb + td)

)
. (3)

The correlated band gap

∆g =
1
2

[√
I2 + 4t2b +

√
I2 + 4 (tb + txy)

2

]
− 2tb − txy, (4)

is governed by the on-dimer repulsion for bonding electrons

I = 2ta + U/2
[
1 −

√
1 + (4ta/U)2

]
.

If it were metallic carriers, the ε−p and ε+p would have provided the quasi-2D
saddle and the quasi-1D saddleless portions of the Fermi surface. Therefore it
would be quite interesting to investigate the doped oxides, e.g., Na1−xCaxV2O5,
Na1−xV2O5. For noncorrelated energies the partial densities of electronic states
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ρ (ε) have an explicit form

ρ
(
−1 − 2t ≤ ε− ≤ −1

)
=

4
π2

√
kt
K (q) ,

ρ
(
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)
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4
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√
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(
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)
,
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)
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4
π2q
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)
;

ρ
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4
π2

√
kt
F (arcsina; q) ,

ρ
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2
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=

4
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1
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;
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(5)

via elliptic integrals F and K of the ˇrst kind with q=
√

[2t (t+k)+1−ε2] /kt/2,
a =

√
(1 + ε) (t+ k) k/ [2t (t+ k) + 1 − ε2], where k =

√
t2 + 2 (1 − ε). The

main panel of Fig. 3 displays the density of correlated electron states, ρ(ξ), with
a gap ∆g . In a limiting noncorrelated case, the ρ (ε) (inset) reproduces the
essentials of the ˇrst principle computations [13]. Logarithmic divergencies inside
the band are clear manifestations of the 2D electronic structure. We would like
to emphasize that in the 1D case (txy → 0) the divergencies are square-root like
and they are located at the band edges ε = ±1 (noncorrelated case).

Fig. 3. The tight-binding energy dispersions for correlated dxy-electrons in α′−NaV2O5

below Tc for parameters ta = 0.35 eV, tb = 0.15 eV, td = 0.1 eV, tbm
xy = 0.06 eV,

tbc,qm
xy = tbm

xy ± δ (δ = 0.01 eV) and ε = V ∆n (V = 0.8 eV, ∆n = 0.8). Momenta are
given in units

∣
∣px

√
3
∣
∣ = |py| = π of the Brillouine zone boundaries, the Fermi energy,

EF = 0, is inside the Coulomb gap ∆C = 1 eV
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In summary, the analysis of the α
′−NaV2O5 band structure leads to the

conclusion about its pronounced 2D features. The phase transition at Tc is shown
to be not a spin-Peierls type but rather it is connected with the opening of the
Coulomb gap in the electronic spectrum. At T > Tc the character of the insulating
phase has been identiˇed with a correlated band gap.

By virtue of the fact, that nature of the correlated energy (see Eq. (4)) is
connected with the HeitlerÄLondon valence band state, our study supports the
earlier proposal [5] to give the name the HeitlerÄLondon insulators to such systems
as A+V2O5, whereas the A2+V2O5 materials are the MottÄHubbard insulators.
The presented description (also [14]) of the dimerized quarter-ˇlled compounds,
namely ˇrst members of AVnO2n+1 oxides, in terms of the Hubbard-like model
opens new possibilities to study a variety of their properties in terms of strongly
correlated electron picture.
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