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and Erwin Schréodinger International Institute for Mathematical Physics

We construct a Hamiltonian which in a scaling limit becomes equivalent to one that can be
diagonalized by a Bogoliubov transformation. There may appear simultaneously a mean-ˇeld and
a superconducting phase. For instance, an attractive mean ˇeld may stimulate the superconducting
phase even at high temperatures.

INTRODUCTION

In quantum mechanics a mean ˇeld theory means that the particle density
ρ(x) = ψ∗(x)ψ(x) (in second quantization) tends to a c-number in a suitable
scaling limit. Of course, ρ(x) is only an operator-valued distribution, and the
smeared densities ρf =

∫
dx ρ(x)f(x) are (at best) unbounded operators, so

norm convergence is not possible. The best one can hope for is strong resolvent
convergence in a representation where the macroscopic density is built in. The
BCS-theory of superconductivity is of a different type where pairs of creation
operators with opposite momentum ψ̃∗(k) ψ̃∗(−k) (ψ̃ the Fourier transform and
with the same provisio) tend to c-numbers. This requires different types of
correlations and one might think that the two possibilities are mutually exclusive.
We shall show that this is not so by constructing a pair potential where both
phenomena occur simultaneously. On purpose we shall use only one type of
fermions as one might think that the spin-up electrons have one type of correlation
and the spin-down Å the other. Also the state which carries both correlations
is not an artiˇcial construction but it is the KMS-state of the corresponding
Bogoliubov Hamiltonian. Whether the phenomenon occurs or not depends on
whether the emerging two coupled ®gap equations¯ have a solution or not, which
happens to be the case in certain regions of the parameter space (temperature,
chemical potential, relative values of the two coupling constants). Moreover, in
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the new phases with λB , λM < 0 transition temperature Tc may become arbitrarily
high. Our considerations hold for arbitrary space dimension.

1. QUADRATIC FLUCTUATIONS IN A KMS-STATE

The solvability of the BCS-model [1] rests upon the observation [2] that in an
irreducible representation the space average of a quasi-local quantity is a c-number
and is equal to its ground state expectation value. This allows one to replace the
model Hamiltonian by an equivalent approximating one [3]. Remember that two
Hamiltonians are considered to be equivalent when they lead to the same time
evolution of the local observables [4].

The same property holds on also in a temperature state (the KMS-state) and
under conditions to be speciˇed later it makes the co-existence of other types of
phases possible.

To make this apparent, consider the approximating (Bogoliubov) Hamiltonian

H ′
B =

∫
dp

{
ω(p)a∗(p)a(p) +

1
2
∆B(p) [a∗(p)a∗(−p) + a(−p)a(p)]

}

=
∫

W (p)b∗(p)b(p) , (1.1)

which has been diagonalized by means of a standard Bogoliubov transformation
with real coefˇcients (the irrelevant inˇnite constant in H ′

B has been omitted)

b(p) = c(p)a(p) + s(p)a∗(−p) , a(p) = c(p)b(p) − s(p)b∗(−p)

with

c(p) = c(−p) , s(p) = −s(−p) , c2(p) + s2(p) = 1 , (1.2)

so that the following relations hold (keeping in mind that ∆,W, s, c will be
β-dependent)

W (p) =
√

ω2(p) + ∆2
B(p) = W (−p),

c2(p) − s2(p) = ω(p)/W (p) , 2c(p)s(p) = ∆B(p)/W (p). (1.3)

Hamiltonian (1.1) generates a well deˇned time evolution and a KMS-state
for the b-operators. For the original creation and annihilation operators a, a∗ this
gives the following evolution

a(p) → a(p)
(
c2(p)e−iW (p)t + s2(p)eiW (p)t

)
− 2ia∗(−p)c(p)s(p) sinW (p)t
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and nonvanishing termal expectations

〈a∗(p)a(p′)〉 = δ(p− p′)
{

c2(p)
1 + eβ(W (p)−µ)

+
s2(p)

1 + e−β(W (p)−µ)

}

:= δ(p− p′){p}, (1.4)

〈a(p)a(−p′)〉 = δ(p− p′)c(p)s(p) tanh
β(W (p)−µ)

2
:=δ(p−p′)[p], (1.5)

{p} = {−p}, [p] = −[−p]

c and s are multiplication operators and are never HilbertÄSchmidt. Thus different
c and s lead to inequivalent representations and should be considered as different
phases of the system.

The expectation value of a biquadratic (in creation and annihilation operators)
quantity is expressed through (1.4,5)

〈a∗(q)a∗(q′)a(p)a(p′)〉 = δ(q + q′)δ(p + p′)[q][p]−
−δ(p− q)δ(p′ − q′){p}{p′} + δ(p− q′)δ(p′ − q){p}{p′}. (1.6)

So far we have written everything in terms of the operator valued distributions
a(p). They can be easily converted into operators in the Hilbert space generated
by the KMS-state by smearing with suitable test functions. Thus, by smearing
with, e.g.,

e−κ(p+p′)2−κ(q+q′)2v(p)v(q), v ∈ L2(Rd) (1.7)

one observes that in the limit κ → ∞ the ˇrst term in (1.6) remains ˇnite

0 <

∫
dp dq v(p) v(q)[p][q] < ∞ ,

while the two others vanish

lim
κ→∞

∫
dp dp ′e−2κ(p+p′)2 v(p) v(p′){p}{p′} = lim

κ→∞
κ−3/2

∫
dpv2(p){p}2 = 0.

Since we are in the situation of Lemma 1 in [5], we have thus proved the
following statement

s- lim
κ→∞

∫
dp dp′V(q, q′, p, p′)e−κ(p+p′)2a(p)a(p′) =

∫
dpV(q, q′, p,−p)[p]

(1.8)

for kernels V such that the integrals are ˇnite.
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With this observation in mind, a potential which acts for κ → ∞ like (1.1)
might be written as

VB=κ3/2

∫
dp dp′ dq dq′ a∗(q)a∗(q′)a(p)a(p′)VB(q, q′, p, p′) e−κ(p+p′)2−κ(q+q′)2

(1.9)

with VB(q, q′, p, p′) = −VB(q′, q, p, p′), etc., in order to respect the Fermi-nature
of a's. This potential has the property

‖V ‖ < ∞ for κ < ∞,

‖V ‖ → ∞ for κ → ∞.

Despite this divergence, potential (1.9) may still generate a well-deˇned time evo-
lution. The strong resolvent convergence in (1.8) is essential, weak convergence
would not be enough since it does not guarantee the automorphism property

τ t
κ(ab) = τ t

κ(a)τ t
κ(b) → τ t

∞(ab) = τ t
∞(a)τ t

∞(b) .

Note that the parameter κ plays in this construction the role of the volume from
the considerations in [2].

In the mean-ˇeld regime we want an effective Hamiltonian

H ′′
B =

∫
dp [ω(p)a∗(p)a(p) + ∆M (p)a∗(p)a(p)] . (1.10)

Here the KMS-state is deˇned for the operators a, a∗ themselves and one should
rather smear by means of

e−κ(q−p)2−κ(q′−p′)2v(p)v(p′) (1.11)

instead of (1.7), thus concluding that

s- lim
κ→∞

∫
dp dqe−κ(q−p)2a∗(q)a(p)VM (q, q′, p, p′) = −

∫
dp

VM (p, q′, p, p′)
1 + eβ(ε(p)−µ)

,

(1.12)

with ε(p) = ω(p)+ ∆M(p). Relation (1.12) then suggests another starting poten-
tial

VM=κ3/2

∫
dp dp′ dq dq′ a∗(q)a∗(q′)a(p)a(p′)VM (q, q′, p, p′) e−κ(q−p)2−κ(q′−p′)2

(1.13)

with the same symmetry for the density VM as in (1.9). However, in both cases
a Gaussian form factor in the smearing functions (1.7),(1.11) has been chosen
just for simplicity. In principle, this might be C∞

o functions which have the
δ-function as a limit.
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2. THE MODEL

Consider the following Hamiltonian

H = Hkin + VB + VM , (2.1)

where Hkin is the kinetic term and VB , VM are given by (1.9),(1.13). The
solvability of the model for κ → ∞ depends on whether or not it would be
possible to replace (2.1) by an equivalent Hamiltonian that might be readily
diagonalized. The object of interest is the commutator of, say, a creation operator
with the potential. With (1.8), (1.12) taken into account, it reads

[a(k), V ]=2
∫
dp {c(p)s(p) [p]VB(k,−k, p,−p)a∗(−k)+VM (p, k, p, k) {p} a(k)} .

(2.2)

The Bogoliubov-type Hamiltonian for our problem should be a combination of
(1.1) and (1.10), that is of the form

HB=
∫

dp

{
a∗(p)a(p)[ω(p) + ∆M (p)] +

1
2
∆B(p)[a∗(p)a∗(−p) + a(−p)a(p)]

}
.

(2.3)

This Hamiltonian becomes equivalent to the model Hamiltonian (2.1), provided
the commutator [a(k), HB −Hkin] equals (2.2). Thus we are led to a system of
two coupled ®gap equations¯

1
2
∆M (k) =

∫
VM (k, p)

{
c2(p)

1+eβ(W (p)−µ)
+

s2(p)
1+e−β(W(p)−µ)

}
dp, (2.4)

∆B(k) =
∫

VB(k, p)
∆B(p)
W (p)

tanh
β(W (p) − µ)

2
dp , (2.5)

with

W (p) =
√

[ω(p) + ∆M (p)]2 + ∆2
B(p) . (2.6)

c (and thus s, Eq.(1.2)) are determined by either of the following conditions

c2(p) − s2(p) = [ω(p) + ∆M (p)]/W (p) , 2c(p)s(p) = ∆B(p)/W (p) .
(2.7)

The temperature and the interaction-strength dependence of the system (2.4Ä7)
encode the solvability of the model [6].
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3. HIGH Tc CASE

We are now looking for a mechanism for high temperature superconductivity,
i.e., a high Tc where ∆B starts to vanish. If we make the ansatz

VB(k, p) = λBv(k)v(p) ,
∫

v2(p)dp = 1 , v(p) = −v(−p) ,

then (2.5) becomes

∆B(k) = λBv(k)
∫

dp
v(p)∆B(p)

W (p)
tanh

β(W (p) − µ)
2

.

For λB < 0 we must have W < µ and since tanhx < x ,∀x > 0, we conclude
that

T <
|λB |
2

∫
dpv2(p)

(
µ

W̄ (p)
− 1

)
.

If ∆B starts to vanish, W (p) = |ω(p) + ∆M (p)|, so if ∆M < 0 and near ω(p),
Tc can become arbitrarily high

Tc <
|λB|
2

(
−1 + µ

∫
dpv2(p)

|ω(p) + ∆M (p)|

)
.

Thus a negative mean ˇeld which almost cancels the kinetic energy ω gives the
electrons so much mobility to respond to λB < 0 that even at high temperatures
a gap ∆B can develope. There is a small problem since ∆B(−k) = −∆B(k).
However v(k) need not be continuous and since only ∆2

B enters in W the gap
parameter ∆2

B(0) can effectively be 
= 0. This problem disappears if we include
spin and thus have a↑(p)a↓(−p) in VB .

4. CONCLUSION

Our model has four parameters, λM , λB , µ, T , but by scaling only their ratios
are essential. For inˇnite temperature β = 0 Eqs. (3.1Ä3) admit only the mean
ˇeld solution ∆B = 0 , ∆M = λM , W = µ + λM . By lowering the temperature
one meets also the BCS-type solution but in a rather complicated region in the
3-dimensional parameter space.

Whenever λB is positive, it must be also > µ. Also for negative λB, λM

and λM > −µ there exists a ˇnite gap for λB . A perturbation theory with
respect to λB is in general doomed to failure since for no point on the λB = 0
axis there is a neighbourhood full of the ∆B 
= 0 phase.

It is interesting that without a mean ˇeld (the λM = 0 axis) there are
superconducting solutions only for λB > µ. An attractive mean ˇeld (λM < 0)
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stimulates superconductivity since then it also appears for negative λB . However,
too strong mean ˇeld attraction destroyes it again.

The most remarkable fact is that whilst for λ > 0 the temperature for a
superconducting phase is limited as in the BCS theory by T � (λB − µ)/2, in
the new phases for λB < 0, λM < 0 we only get T < |λB ||λM |/2(µ − |λM |)
and thus for λM → −µ, T can become arbitrarily big.
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