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Currently, the theoretical substantiation of statistical physics of condensed
media with spontaneously broken symmetry is a quasi-average concept by
N.Bogoliubov [1]. Said concept extends Gibbs distribution to degenerate con-
densed media. Within liquid crystals, there occurs a spontaneous breaking of
rotational and in some cases of translational invariance within a conˇguration
space. Dynamic features of such media have been previously investigated mainly
by phenomenology methods [2,3].

There in report is introduced an order-parameter operator for liquid crys-
tals, which is expressed in terms of ˇeld operators. Thermodynamics and ideal
hydrodynamics for uniaxial nematic was built. There is reviewed a connection
between presently-proposed and phenomenological Hamiltonian approaches. A
quasi-average of physical value is deˇned by relation

〈a(x)〉 ≡ limν→0 limV →∞ Spwν â(x),
ŵν ≡ exp(Ων − Yaγ̂a − νF̂ ).

(1)

Here γ̂a ≡
∫
d3xγ̂a(x) are operators of additive motion integrals (Ĥ =∫

d3xε̂(x) is Hamiltonian, P̂k =
∫
d3xπ̂k(x) is a momentum operator, N̂ =∫

d3xn̂(x) is a particle number operator), (Ya ≡ Y0, Yk, Y4) are thermodynamic
forces, (for simply we allow Yk = 0). Thermodynamic potential Ων should be
deˇned from the normalization condition of Spwν = 1. Operator F̂ possesses the
symmetry of the investigated phase and eliminates the degeneration of equilibrium
state of statistical equilibrium. Let us deˇne the liquid crystals order parameter
by formula:

Q̂uv ≡ ∇uψ̂
+(x) ∇vψ̂(x) + ∇vψ̂

+(x) ∇uψ̂(x) − 2
3
δuv∇jψ̂

+(x) ∇jψ̂(x). (2)

The source F̂ is a linear functional of the order parameter operator Q̂uv:

F̂ =
∫
d3x fik(x, t)Q̂ik(x). (3)
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Here fik(x, t) are the c-number functions of coordinates and time respectively,
which characterize equilibrium state values Qik(x) = 〈Q̂ik(x)〉. Structure of
functions fik(x, t) is determined by the symmetry properties of the equilibrium
phases. Taking into account deˇnition (2) and form of additive integrals of motion
one can obtain the following algebra:

[ N̂ , Q̂uv(x) ] = 0, i[ P̂k, Q̂uv(x) ] = −∇kQ̂uv(x),
i[ L̂i, Q̂uv(x) ] = −εiujQ̂jv(x) − εivjQ̂ju(x) − εiklxk∇lQ̂uv(x),

(4)

where L̂i orbital momentum. The quasi-average of order parameter Qik(x, ρ̂) =
Sp ρ̂ Q̂ik(x), where ρ̂ is an arbitrary statistical operator, possesses the properties:
Quv(x, ρ̂) = Qvu(x, ρ̂), Quu(x, ρ̂) = 0 , and, therefore, contains ˇve independent
values. Let us parametrize said values by relation

Qik(x, ρ̂) = Q(x, ρ̂)
(
li(x, ρ̂)lk(x, ρ̂) − 1

3
δik

)
+

+Q′(x, ρ̂)
(
mi(x, ρ̂)mk(x, ρ̂) − 1

3
δik

)
. (5)

Here Q,Q′ are modules of order parameter, l,m are vectors of spatial
anisotropy and there are real and orthonormalized vectors (directors) l2 = m2 =
1, lm = 0. In general case the order parameter (5) describes biaxial liquid
crystals. Individual cases with uniaxial liquid crystals are reproduced from this
factor by limit transition Q→ 0, or Q′ → 0.

Symmetry of equilibrium state of uniaxial nematics with respect to rotation
in real space has the form:

[ ŵ, P̂k ] = 0, [ ŵ, liL̂i ] = 0, (6)

where li Å vector of spatial anisotropy. Taking into account formulae (6) and
operator algebra (4) we come to the equations determining equilibrium structure
of order parameter:

iSp[ ŵ, liL̂i ] = −li(εiujQjv(x, Y, l) + εivjQju(x, Y, l)) = 0,
iSp[ ŵ, P̂k ] = −∇kQju(x, Y, l) = 0,

whereby the solution hereof is formed as

Quv(x, Y, l) ≡ Quv(Y, l) = Q(Y )(lulv − 1
3
δik), Q(Y ) = Q(Y0, Y4).

It is not a problem to ˇnd, in similar way, that function fuv has the form fuv =
lulv − 1

3δuv . Such liquid crystal is described by statistical operator ŵ = ŵ(Y, l),
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which depends on thermodynamic forces and director, whereby dependence of
averages from last argument is kept the same after limits V → ∞, ν → 0.

Let's introduce into consideration densities and ^ux densities of additive
integral of motion. According to [4]

˙̂n(x) = −∇kĝk(x), ĝk(x) = i

∫
d3x′ x′k

∫ 1

0

dλ[ ε̂(x−(1−λ)x′), n̂(x+λx′) ]

(7)
is ^ux density operator of particle number,

˙̂πi(x) = −∇k t̂ik(x),
t̂ik(x) = −ε̂(x)δik + i

∫
d3x′ x′k

∫ 1

0 dλ[ ε̂(x − (1 − λ)x′), π̂i(x + λx′) ]
(8)

is ^ux density operator of momentum,

˙̂ε(x) = −∇kq̂k(x), q̂k(x) =
i

2

∫
d3x′ x′k

∫ 1

0

dλ[ ε̂(x−(1−λ)x′), ε̂(x+λx′) ]

(9)
is ^ux density operator of energy. According to (5), relation

Qik(x, ρ̂) ≡ 3
2
lj(x, ρ̂)Qjp(x, ρ̂)lp(x, ρ̂)(li(x, ρ̂)lk(x, ρ̂) − 1

3
δik) (10)

can be deˇned indirectly a unit anisotropy vector (director) in terms of order
parameter for uniaxial liquid crystal. Let's introduce spatial anisotropy vector
operator in accordance with approach [5]

δlk(x, ρ̂) ≡ Spδρl̂k(x, ρ̂). (11)

We have to ˇnd explicit form of operator l̂k(x, ρ̂) in terms of order parameter
operator Q̂ik(x). This will allow us to obtain dynamical equations for set of
parameters of abridge description and to establish connection between proposed
microscopic approach and Hamilton approach. Varying of (10) and taking into
account indentity li(x, ρ̂)l̂i(x, ρ̂), one can obtain

l̂j(x, ρ̂) =
Q̂uv(x)lv(x, ρ̂)

Q(x)
δ⊥uj(l(x, ρ̂)). (12)

In accordance with (10),(12) we obtain the following expression:

iSpρ̂[ π̂i(x), l̂λ(x, ρ̂) ] = −li(x′, ρ̂)δ⊥uλ(l(x, ρ̂)∇′
uδ(x−x′)−δ(x−x′)∇ilλ(x, ρ̂).

(13)
At the investigation of condensed matter with spontaneously broken symmetry

within microscopic approach, an important role is paid of local transformations
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with the generator of broken symmetry. For liquid crystals it's necessary to
consider local spatial deformations, deˇned by the following unitary operator

Uf = exp(−i)
∫
d3x fi(x)π̂i(x), (14)

where fi(x) is some arbitrary function of spatial coordinates, that determines a
unitary transformation of deformations Uf . The ˇeld operators are transformed
thereby as

U+
f ψ̂(x)Uf =

∣∣∣∣∂x
′

∂x

∣∣∣∣
1/2

ψ̂(x), U+
f ψ̂

+(x)Uf =
∣∣∣∣∂x

′

∂x

∣∣∣∣
1/2

ψ̂+(x), (15)

where x′i = xi−ui(x),|∂x′

∂x | = det ∂x′
i

∂xj
= det bij = J(x) , where ui(x) Å vector

of displacement, being a transformation parameter functional fi(x) and point
xi:ui(x) = ui(fi(x′)x) , whereby ui(0,x) = 0. At transformations arbitrary
deformations (15) ρ̂f = Uf ρ̂U

+
f director li(x, ρ̂) changes as follows:

li(x, U+
f ρ̂Uf) = li(x′(fi(x′)x), ρ̂).

In case of inˇnitesimal transformations δρ̂f = i
∫
d3x′δfj(x′)[ π̂j(x′, ρ̂ ], taking

into account (13), (15), one can obtain:

δli(x) = δfj(x)∇j li(x) + lj(x)δ⊥ik(l(x))∇kδfj(x). (16)

Let's consider local-equilibrium states of liquid crystals. Statistical operator
for such states according to (1), (6) has the form:

ŵν(Y, l) ≡ exp{Ων(Y, l) −
∫
d3xYa(x)ζ̂a(x) − ν

∫
d3x lilkU

+
f Q̂ik(x)Uf}.

(17)
Here thermodynamic forces Ya(x) and director lk(x′) ≡ ljbkj(x′)/|lλbpλ(x′)|,
(lj- const) are arbitrary functions of the coordinates. Varying the thermodynamic
potential

Ω = Ω(Y (x′), l(x′)) =
∫
d3xω(x, Y (x′), l(x′)) (18)

(18) with respect to the thermodynamics forces and to director, we obtain the
form of the second law of thermodynamics for the local equilibrium state:

δω =
∂ω

∂Ya
δYa +

(
∂ω

∂li
−∇k

∂ω

∂∇kli

)
δli, (19)

where ω is a density of thermodynamic potential. Now, let us ˇnd the expression
for ^ux densities of additive integral of motion in local-equilibrium state. We
ˇnd ^ux density of energy from relations [6]:

Y a(Ykζa
+ Y0ζak

) = 0, (20)
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which is adequate also in the given case. According to (7)Ä(9), (15), (16) ^ux
densities of additive integral of motion have the form

ζak = − ∂

∂Ya

ωYk

Y0
+

[
∂ω

∂∇klj
∇ilj +

∂ω

∂lk
li − li∇j

∂ω

∂∇klj

]
∂

∂Ya

Yi

Y0
. (21)

Let us establish connection between given microscopic approach and Hamil-
ton approach. For this reason we deˇne Poisson bracket by equality

{ a(x), b(x′) } ≡ −iSp ρ̂[ â(x, ρ̂)b̂(x′, ρ̂) ].

Here in the right-hand side of this relation â(x, ρ̂)b̂(x′, ρ̂) are a variation of
physical values operators. Since these are explicit form of additive integrals of
motion and order parameter in terms of ˇeld operators, we obtain Poisson brackets

{n(x), n(x′) } = 0, { πi(x), n(x′) } = n(x)∇′
iδ(x − x′),

{ πi(x), πk(x′) } = −πi(x)∇kδ(x − x′) + πk(x)∇′
iδ(x − x′),

{ πi(x), lλ(x′) } = δ(x − x′)∇ilλ(x) + li(x′)δ⊥λu(lx′)∇′
uδ(x − x′)+

e−W (x′) 1
2δ

⊥
λν(lx′)lu(x′)∇i[∇u(δ(x − x′)∇νh(x)) + ∇ν(δ(x − x′)∇uh(x))],

{n(x), lλ(x′) } = 2πν(x′)e−W (x′)∇′
uδ(x − x′)[lν(x′)δ⊥λu(lx′) + lu(x′)δ⊥λν(lx′)],

{n(x),W (x′) } = 4πj(x′)e−W (x′)∇′
jδ(x − x′),

{ πi(x),W (x′) } = 2li(x′)lj(x′)∇jδ(x − x′) + ∇′
iδ(x − x′)+

∇iW (x)δ(x − x′) + e−W (x′)∇i∇j [δ(x − x′)∇jn(x)],

where W (x) ≡ lnQ(x). It is obvious from represented formulas, that for har-
monization of Poisson brackets algebra it's necessary to supplement the total set
of hydrodynamic parameters by an additional value W (x), being physically the
smectic variable parameter. When W � 1, Poisson brackets can be simpliˇed,
eventually becoming [2,3].

{n(x),W (x′) } = 0, {n(x), li(x′) } = 0, { πi(x),W (x′) } = ∇iW (x)δ(x − x′),

{ πi(x), lλ(x′) } = ∇ilλ(x)δ(x − x′) + li(x′)δ⊥λu(lx′)∇′
uδ(x − x′).

(22)
Hypothesis of abridged description in latter case for nematic liquid crystals is
expressed like

ρ̂(t) −−−−→
t�τ

ρ̂(ζ(x, t), l(x, t)), (23)

where τ is relaxation time, and smectic properties are not considered here. Equa-
tions of motion for parameters of abridge description using equations (11), (13),
(22), (23) have the form

ζ̇a(x) = −∇kSpρ̂(ζ, l)ζ̂ak(x), l̇i(x) = iSpρ̂(ζ, l)[ Ĥ, l̂i(x) ]. (24)
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In the leading approximation with respect to the gradients of thermodynamic
forces and to director, we obtain hydrodynamic equation of nematics

ζ̇a(x) = −∇kζak(x), l̇i(x) = −(Yk(x)/Y0(x))∇kli(x)−
lk(x)δ⊥ik(lx)∇j(Yk(x)/Y0(x)).

(25)

Following from equations (25) and deˇnition of entropy density σ = −ω+Yaζa,
there appears an adiabaticity of motion of considering condensed matter σ̇ =
∇i(σYi/Y0).
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