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Joint Institute for Nuclear Research, Dubna

Developing Fock's ideas, we consider here the topological effects in the gauge ˇeld theory. Two
closely related topological phenomena are studied at ˇnite density and temperature. These are chiral
anomaly and the ChernÄSimons term. It occurs that the chiral anomaly doesn't depend on density
and temperature. The ChernÄSimons term appearance in even dimensions is studied under two types
of constraints: chiral and usual charges conservation. In odd dimensions, by using different methods,
it is shown that µ2 = m2 is the crucial point for ChernÄSimons at zero temperature. So when
µ2 < m2, µ in�uence disappears and we get the usual ChernÄSimons term. On the other hand, when
µ2 > m2, the ChernÄSimons term vanishes because of nonzero density of background fermions. The
connection between parity anomalous ChernÄSimons in odd dimension and chiral anomaly in even
dimension is established at arbitrary density and temperature. These results hold in any dimension
both in Abelian and in non-Abelian cases.

� §¢¨¢ Ö ¨¤¥¨ ”µ± , ³Ò · ¸¸³ É·¨¢ ¥³ §¤¥¸Ó Éµ¶µ²µ£¨Î¥¸±¨¥ ÔËË¥±ÉÒ ¢ É¥µ·¨¨ ± ²¨¡·µ-
¢µÎ´ÒÌ ¶µ²¥°. ˆ§ÊÎ ÕÉ¸Ö ¤¢  É¥¸´µ ¸¢Ö§ ´´ÒÌ Éµ¶µ²µ£¨Î¥¸±¨Ì ÔËË¥±É  ¶·¨ ±µ´¥Î´ÒÌ ¶²µÉ´µ¸É¨
¨ É¥³¶¥· ÉÊ·¥. �Éµ ±¨· ²Ó´ Ö  ´µ³ ²¨Ö ¨ Î¥·´-¸ °³µ´µ¢¸±¨° Î²¥´. �± §Ò¢ ¥É¸Ö, ÎÉµ ±¨· ²Ó´ Ö
 ´µ³ ²¨Ö ´¥ § ¢¨¸¨É µÉ É¥³¶¥· ÉÊ·Ò ¨ ¶²µÉ´µ¸É¨. ƒ¥´¥· Í¨Ö Î¥·´-¸ °³µ´µ¢¸±µ£µ Î²¥´  ¨§ÊÎ -
¥É¸Ö ¢ Î¥É´µ³¥·´ÒÌ ¶·µ¸É· ´¸É¢ Ì ¶·¨ ¤¢ÊÌ É¨¶ Ì ¸¢Ö§¥°, µÉ· ¦ ÕÐ¨Ì ¸µÌ· ´¥´¨¥ ±¨· ²Ó´µ£µ
¨ µ¡ÒÎ´µ£µ § ·Ö¤µ¢. ‚ ´¥Î¥É´µ³¥·´ÒÌ ¶·µ¸É· ´¸É¢ Ì ¶·¨ ¨¸¶µ²Ó§µ¢ ´¨¨ · §²¨Î´ÒÌ ³¥Éµ¤µ¢
¶µ± §Ò¢ ¥É¸Ö, ÎÉµ µ2 = m2 Ö¢²Ö¥É¸Ö ±·¨É¨Î¥¸±µ° ÉµÎ±µ° ¤²Ö Î¥·´-¸ °³µ´µ¢¸±µ£µ Î²¥´  ¶·¨
´Ê²¥¢µ° É¥³¶¥· ÉÊ·¥. ’ ±, ¢ ¸²ÊÎ ¥, ±µ£¤  µ2 < m2, µ-§ ¢¨¸¨³µ¸ÉÓ ¨¸Î¥§ ¥É ¨ ³Ò ¶µ²ÊÎ ¥³
µ¡ÒÎ´Ò° Î¥·´-¸ °³µ´µ¢¸±¨° Î²¥´. ‘ ¤·Ê£µ° ¸Éµ·µ´Ò, ±µ£¤  µ2 > m2, Î¥·´-¸ °³µ´µ¢¸±¨° Î²¥´
¨¸Î¥§ ¥É ¡² £µ¤ ·Ö ´¥´Ê²¥¢µ° ¶²µÉ´µ¸É¨ Ëµ´µ¢ÒÌ Ë¥·³¨µ´µ¢. “¸É ´ ¢²¨¢ ¥É¸Ö ¸¢Ö§Ó ³¥¦¤Ê
P - ´µ³ ²Ó´Ò³ Î¥·´-¸ °³µ´µ¢¸±¨³ Î²¥´µ³ ¢ ´¥Î¥É´µ³¥·´ÒÌ ¨ ±¨· ²Ó´µ°  ´µ³ ²¨¥° ¢ Î¥É´µ-
³¥·´ÒÌ ¶·µ¸É· ´¸É¢ Ì ¶·¨ ¶·µ¨§¢µ²Ó´ÒÌ ¶²µÉ´µ¸ÉÖÌ ¨ É¥³¶¥· ÉÊ·¥. �É¨ ·¥§Ê²ÓÉ ÉÒ ¨³¥ÕÉ ¸¨²Ê
¶·¨ ²Õ¡µ° · §³¥·´µ¸É¨ ± ± ¢  ¡¥²¥¢µ³, É ± ¨ ¢ ´¥ ¡¥²¥¢µ³ ¸²ÊÎ ÖÌ.

1. INTRODUCTION

Famous Russian theorist V.A. Fock was one of the ˇrst physicists who
realized [1] the whole importance of topological phenomenons both in gauge
ˇeld theory and in general relativity (which, as is well known, may also be
viewed as a gauge theory). Namely this interesting subject is the topic of our
review article.

∗E-mail: shevch@nusun.jinr.ru
∗∗E-mail: solganik@thsun1.jinr.ru
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There is a lot of physical processes where density and temperature play
essential role. These are processes occurred under large density background, for
example, in quark-gluon plasma or in neutron stars. On the other hand, there exist
processes where even negligible density or temperature may give rise to principal
effects. One of the most interesting areas, where density and temperature in�uence
could be considerable, is the area of topological effects. Here, even negligible
density or temperature could change the topology of the problem as a whole,
what could lead to considerable in�uence. In particular, here we are interested
in the ChernÄPontriagin and the ChernÄSimons secondary characteristic classes.
That corresponds to chiral anomaly in even dimensions and to ChernÄSimons
(parity anomaly) in odd dimensions. Both phenomena are very important in
quantum physics. So, chiral anomalies in quantum ˇeld theory have certain direct
applications to the decay of π0 into two photons (π0 → γγ), in the understanding
and solution of the U(1) problem and so on. On the other hand, there are many
effects caused by the ChernÄSimons secondary characteristic class. These are, for
example, gauge particles mass appearance in quantum ˇeld theory, applications
to condense matter physics such as the fractional quantum Hall effect and high
Tc superconductivity, possibility of free of metric tensor theory construction, etc.

It must be emphasized that these two phenomena are closely related. As was
shown (at zero density) in [2Ä4] the trace identities connect even dimensional
anomaly with the odd dimensional ChernÄSimons. The main goal of this article
is to consider these anomalous objects at ˇnite density and temperature.

It was shown [5, 6] in a conventional zero density and temperature gauge
theory that the ChernÄSimons term is generated in the EulierÄHeisenberg effective
action by quantum corrections. Since the chemical potential term µψ̄γ0ψ is
odd under charge conjugation we can expect that it would contribute to P -
and CP -nonconserving quantity Å the ChernÄSimons term. As we will see,
this expectation is completely justiˇed. The zero density approach usually is
a good quantum ˇeld approximation when the chemical potential is small as
compared with characteristic energy scale of physical processes. Nevertheless,
for investigation of topological effects it is not the case. As we will see below,
even a small density could lead to principal effects.

In the excellent paper by Niemi [2] it was emphasized that the charge density
at µ �= 0 becomes nontopological object, i.e., contains both topological part
and nontopological one. The charge density at µ �= 0 (nontopological, neither
parity odd nor parity even object)∗ in QED3 at ˇnite density was calculated and
exploited in [8]. It must be emphasized that in [8] charge density (calculated in
the constant pure magnetic ˇeld) contains as well parity odd part corresponding to

∗For abbreviation, speaking about parity invariance properties of local objects, we will keep in
mind symmetries of the corresponding action parts.
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the ChernÄSimons term, so as parity even part, which can't be covariantized and
don't contribute to the mass of the gauge ˇeld. Here we are interested in ˇnite
density and temperature in�uence on covariant parity odd form in action leading
to the gauge ˇeld mass generation Å the ChernÄSimons topological term. Deep
insight on these phenomena at small densities was done in [2, 4]. The result for
the ChernÄSimons term coefˇcient in QED3 is[

th
1
2
β(m − µ) + th

1
2
β(m + µ)

]
,

see [4], formulas (10.18). However, to get this result it was heuristically supposed
that at small densities index theorem could still be used and only odd in energy
part of spectral density is responsible for parity nonconserving effect. Because of
this in [4] it had been stressed that the result holds only for small µ. However,
as we'll see below this result holds for any values of chemical potential. Thus,
to obtain trustful result at any values of µ one has to use transparent and free of
any restrictions on µ procedure, which would allow one to perform calculations
with arbitrary non-Abelian background gauge ˇelds.

It was shown at zero chemical potential in [2, 4, 5] that the ChernÄSimons
term in odd dimensions is connected with chiral anomaly in even dimensions
by trace identities. As we'll see below generalization of the trace identity on
nonzero density is not trivial. It connects chiral anomaly with the ChernÄSimons
term, which has µ- and T -dependent coefˇcient. We will see below that despite
chemical potential and temperature give rise to a coefˇcient in front of the ChernÄ
Simons term [9] they don't in�uence chiral anomaly [10,11]. Indeed, anomaly is
a short distance phenomenon, which should not be affected by medium (density
and temperature) effects, or more quantitatively, so as the anomaly has ultraviolet
nature, temperature and chemical potential should not give any ultraviolet effect
since distribution functions decrease exponentially with energy in the
ultraviolet limit.

The paper is organized as follows. In section 2 we brie�y discuss the intro-
ducing of the chemical potential, chiral chemical potential and temperature to a
theory. Section 3 is devoted to qualitative consideration of chiral anomaly in 2
and 4 dimensions. The rigorous proof of density and temperature independence
of axial anomaly is presented in section 4. Also, it is shown in 2-dimensional
Schwinger model that chiral anomaly is not in�uenced not only by chemical po-
tential µ, but also by Lagrange multiplier κ at the constraint of chiral charge
conservation. Section 5 is concerned to the ChernÄSimons term in even dimen-
sions and its reduction to odd dimension in high temperature limit. In section 6
we obtain the ChernÄSimons term in 3-dimensional theory at ˇnite density and
temperature by use of a few different methods. In section 7 we evaluate ChernÄ
Simons term in the presence of nonzero temperature and density in 5-dimensional
theory and generalize this result on arbitrary non-Abelian odd-dimensional theory.
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Nonrelativistic consideration is presented in section 8. In section 9 we generalize
trace identity on arbitrary density of background fermions on the basis of the
previous calculations. Section 10 is devoted to concluding remarks.

2. CHEMICAL POTENTIAL

As is well known, chemical potential can be introduced in a theory as La-
grange multiplier at corresponding conservation laws. In nonrelativistic physics
this is conservation of full number of particles. In relativistic quantum ˇeld theory
these are conserving charges. The ground state energy can be obtained by use of
variational principle

〈ψ∗Ĥψ〉 = min (1)

under charge conservation constraint for relativistic equilibrium system

〈ψ∗Q̂ψ〉 = const, (2)

where Ĥ and Q̂ are Hamiltonian and charge operators. Instead, we can use
method of undetermined Lagrange multipliers and seek absolute minimum of
expression

〈ψ∗(Ĥ − µQ̂)ψ〉, (3)

where µ is Lagrange multiplier. Since Q̂ commute with the Hamiltonian, 〈Q̂〉 is
conserved.

On the other hand, we can impose another constraint, which implies chiral
charge conservation

〈ψ∗Q̂5ψ〉 = const, (4)

or in Lagrange approach we have

〈ψ∗(Ĥ − κQ̂5)ψ〉 = min, (5)

where κ arises as Lagrange multiplier at 〈Q̂5〉 = const constraint. Thus, µ
corresponds to nonvanishing fermion density (number of particles minus number
of antiparticles) in background. Meanwhile, κ is responsible for conserving
asymmetry in numbers of left- and right-handed background fermions.

It must be emphasized that the formal addition of a chemical potential in
the theory looks like a simple gauge transformation with the gauge function
µt. However, it doesn't only shift the time component of a vector potential but
also gives corresponding prescription for handling Green's function poles. The
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correct introduction of a chemical potential redeˇnes the ground state (Fermi
energy), which leads to a new spinor propagator with the correct ε prescription
for poles. So, for the free spinor propagator we have (see, for example, [12,13])

G(p; µ) =
˜�p + m

(p̃0 + iε sgnp0)2 − �p 2 − m2
, (6)

where p̃ = (p0+µ, �p). Thus, when µ = 0 one at once gets the usual ε prescription
because of the positivity of p0 sgn p0. In the presence of a background YangÄ
Mills ˇeld we consequently have for the Green function operator (in Minkovski
space)

Ĝ = (γπ̃ − m)
1

(γπ̃)2 − m2 + iε(p0 + µ) sgn(p0)
, (7)

where π̃ν = πν + µδν0 , πν = pν − gAν(x).
In Euclidian metric one has

G(p; µ) =
˜�p + m

p̃0
2 + �p 2 + m2

, (8)

where p̃ = (p0 + iµ, �p).
For temperature introduction we will use a standard Matzubara approach valid

for systems in equilibrium. That is Euclidian generating functional with temper-
ature instead of time, and antiperiodic conditions on fermion ˇelds ψ(0, �x) =
−ψ(β, �x) and periodic for boson ones A(0, �x) = A(β, �x) . Thus, for transfer to
ˇnite temperature case we will use∫

dDx → i

∫ β

0

dx0

∫
dD−1x,

∫
dDk

(2π)D
→ i

β

∞∑
n=−∞

∫
dD−1k

(2π)D−1
,

together with p0 → ωn = (2n + 1)π/β. Here, the chemical potential also can be
introduced by adding it to a Matzubara frequency p0 → ωn = (2n + 1)π/β + iµ.

3. CHIRAL ANOMALY. QUALITATIVE CONSIDERATION

First of all let us consider simple but rather intuitive than rigorous derivation
of axial anomaly [14]. Let us start with 2Ädimensional right-handed Weyl fermion
theory coupled to a uniform electric ˇeld Ȧ1 = E in the temporal gauge. The
one component right-handed Weyl equation for ψR = 1/2(1 + γ5)ψ reads

iψ̇R(x) = (−i∂x − A1)ψR(x). (9)
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The dispersion law is ω(P ) = P . Corresponding to the classical equation of a
charged particle in the presence of an electric ˇeld where Ṗ = eE, the acceleration
of the right-handed particles in quantum theory is given by ω̇ = Ṗ = eE.
The creation rate of the right-handed particles per unit time and unit length is
determined by a charge of the Fermi surface, which distinguishes the ˇlled and
unˇlled states. Let the quantization length be L; the density of states per length
L is L/2π and the rate of change of right-handed particle number NR is

ṄR = L−1(L/2π)ω̇ = (e/2π)E. (10)

This particle creation is the axial anomaly. Consequently the chiral charge QR is
not conserved and Q̇R = ṄR = (e/2π)E. It follows from an analogous reasoning
that the annihilation rate of left-handed particles with the dispersion law ω = −P
is

ṄL = −(e/2π)E. (11)

Therefore the anomaly for the Dirac particles is

ṄR − ṄL = (e/π)E, (12)

which gives Q̇5 = (e/π)E.
In 4 dimensions we ˇrst calculate the energy levels of the right-handed Weyl

fermion in the presence of the applied uniform magnetic ˇeld along the third
direction given by

A2 = Hx1 and Aµ = 0 otherwise.

The solution to the equation for two-component right-handed ˇeld ψR of the form

[i∂/∂t− (P − eA)σ] ψR(x) = 0 (13)

is expressed in terms of a solution of the auxiliary equation

[i∂/∂t− (P − eA)σ] [i∂/∂t + (P − eA)σ] Φ = 0 (14)

as

ψR = [i∂/∂t + (P − eA)σ] Φ. (15)

From Eq. (14) the energy and the P2, P3 eigenfunction satisˇes an equation of
the harmonic oscillator type[

−(∂/∂1)2 + (eH)2(x1 + P2/eH) + (P3)2 + eHσ
]
Φ = ω2Φ,
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where σ = ±1. The energy levels are given by the Landau levels,

ω(n, σ, P3) = ±
[
eH(2n + 1) + (P3)2 + eHσ

]1/2
, (16)

(n = 0, 1, 2, ...)

except for the n = 0 and σ = −1 mode, where

ω(n = 0, σ = −1, P3) = ±P3. (17)

The eigenfunction takes the form

Φnσ(x) = Nnσ exp(−iP2x
2 − iP3x

3)
exp

[
−1/2eH(x1 + P2/eH)2

]
Hn(x1 + P2/eH)ξ(σ), (18)

with Nnσ as the normalization constant. Here ξ(σ) denotes the eigenfunctions
of the Pauli spin σ3 which can be taken as ξ(1) =

(
1
0

)
and ξ(−1) =

(
0
1

)
. The

solution of (14) is obtained by inserting (18) into (15). This leads to the relations

ψ
(n+1,σ=−1)
R = (Nn+1,σ=−1/Nn,σ=1)ψ

(n,σ=1)
R , n = 0, 1, ...

and

ψ
(n=0,σ=−1)
R = 0, with ω = −P3.

Thus the energy levels of ψR are (16) and

ω(n = 0, σ = −1, P3) = P3. (19)

Next a uniform electric ˇeld is turned on along the third direction parallel to
H . As for the zero mode (n = 0, σ = −1) the dispersion law is the same as that
for 2 dimensions and the creation rate of the particles is calculated in a similar
manner. It should be noted that when E varies adiabatically there is no particle
creation in the n= 0 modes. The density of the state per length L is LeH/4π2

and the creation rate is given by

ṄR = L−1(LeH/4π2)ω̇(n = 0, σ = −1, P3) = (e2/4π2)EH, (20)

which equals to Q̇R.
For the left-handed fermions the annihilation rate of the left-handed particles

is

ṄL = −(e2/4π2)EH, (21)

which is Q̇L.
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We then have for the Dirac ˇeld

Q̇5 = Q̇R − Q̇L = (e2/2π2)EH, (22)

that is the chiral anomaly.
Now we can easily estimate in�uence of background density on the anomaly

in this approach. From the above consideration we can see that the anomaly
is proportional to the time derivative of the zero mode energy. Taking into
account that nonzero fermion density in�uence just reduces to the shift of the
Landau levels on µ which doesn't depend on time, we can conclude that ˇnite
density doesn't in�uence the chiral anomaly. The same arguments are just for
the Lagrange multiplier at the axial charge κ, the only difference is that κ makes
shift for left- and right-handed fermions with opposite sign. So, until µ (κ) is
time independent it won't affect the chiral anomaly. We would like to stress that
here there was made adiabatic approximation, when we turn on electric ˇeld. So,
this consideration is just a plot and it needs a strict proof.

4. CHIRAL ANOMALY AT FINITE TEMPERATURE AND DENSITY

4.1. Two Dimensions. Since anomaly term originates from the ultraviolet
divergent part, it is not expected to be changed by the temperature. Indeed, it
was shown in several papers (see [10] and references therein). Moreover, the
same can be said about the in�uence of background fermion density that has been
checked in the works [11].

To clear understand the nature of anomaly µ independence we'll ˇrst consider
the simplest case Å 2-dimensional QED by the use of the Schwinger nonpertur-
bative method [16]. Thus, following Schwinger one writes

Jµ = −ig tr
[
γµG(x, x

′
) exp

(
−ig

∫ x

x′
dξµAµ(ξ)

)]
x′→x

, (23)

where G(x, x
′
) is a propagator satisfying the following equation

γµ
(
∂x

µ − igAµ(x)
)
G(x, x

′
) = δ(x − x

′
). (24)

Further we use Schwinger's anzats

G(x, x
′
) = G0(x, x

′
) exp

[
ig(φ(x) − φ(x

′
))

]
, (25)

where G0(x, x
′
) is a free propagator

γµ∂x
µG0(x, x

′
) = δ(x − x

′
).
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Thus, for φ we can write γµ∂µφ = γµAµ. At ˇnite density G0(x, x
′
) has the

form

G0(x, x
′
) =

∫
d2p

(2π)2
eip(x−x

′
) �p
p2 + iε(p0 + µ) sgnp0

=

= −i �∂
[∫

d2p

(2π)2
eip(x−x

′
) 1
p2 + iε

−

−2
∫ +∞

−∞

dp1

2π

∫ +∞

−∞

dp0

2π
θ(−p̃0 sgnp0) eip(x−x

′
)�m

1
p2 + iε

]
. (26)

So, beside the usual zero density part µÄdependent one appears. Further, we have
to regularize current by use of symmetrical limit x → x

′
. After some simple

algebra it is clearly seen that all µÄdependent terms after taking off the limit will
disappear. Thus, contribution to the current arises from the Schwinger part only,
so

Jµ = i
g2

2π

(
δµν − ∂µ∂ν

∂2

)
Aν

Jµ
5 = i

g2

2π

(
εµν − εµα ∂α∂ν

∂2

)
Aν , (27)

and we get usual anomaly in chiral current

∂µJµ = 0 , ∂µJµ
5 = i

g2

2π
εµν∂µAν = i

g2

4π
∗F. (28)

It is natural to introduce Lagrange multiplier κ at corresponding constraint
to support the conservation of the Q5 charge, i.e., the difference of left and
right fermion densities QL − QR. Since κ and µ are Lagrange multipliers at
corresponding conservation laws they, in principle, have to in�uence some way a
symmetry violation by a quantum corrections, i.e., anomalies. However, the rather
amazing situation occurs. The demand of chiral charge conservation (instead of
the usual charge conservation) on the quantum level doesn't in�uence the chiral
anomaly. Really, in 2-dimensions introduction of Lagrange multiplier κ at the
chiral charge conservation gives the term κψ̄γ5γ0ψ = κψ̄γ1ψ in Lagrangian. So,
κ affects in the same way as µ, i.e., κ doesn't in�uence the chiral anomaly (it is
also seen in direct calculations, which are similar to presented above for the case
with µ). That could be explained due to ultraviolet nature of the chiral anomaly,
while κ (µ) doesn't introduce new divergences in the theory.

From the calculations it is clearly seen the principal difference of the chiral
anomaly and ChernÄSimons. The ultraviolet regulator Å P exponent Å gives
rise to the anomaly, but (as we'll see below) doesn't in�uence ChernÄSimons.
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Thus, it is natural that the anomaly doesn't depend on µ, κ, and T because it
has ultraviolet regularization nature, while neither density nor temperature does
in�uence ultraviolet behavior of the theory. The general and clear proof of axial
anomaly temperature independence in any even dimension will be presented in
section 9 on the basis of the trace identities.

4.2. Four Dimensions. In [11] direct calculations of axial anomaly at ˇnite
temperature and density in 4-dimensional gauge theory were performed by using
imaginary and real time formalism by Fujikawa method [15]. Here we present
the derivation of the axial anomaly using the elegant Fujikawa procedure. Con-
sidering a system of fermions and gauge bosons in thermodynamical equilibrium
at temperature T = β−1 and nonzero chemical potential µ in the imaginary time
formalism one reads the generating functional of correlation functions

Z[Jν , η, η̄] =
∫

DADcDc̄DψDψ̄

exp

[∫ β

0

dτ

∫
d3x

(
L(�x, τ) + JνAν + ψ̄η + ψη̄

)]
, (29)

where
L(�x, τ) = Lψ + LY M + Lc + LGF

represents the effective Lagrangian density of the SU(N) YangÄMills ˇeld A =
= (Aj

ρ) coupled to fermion ˇelds ψ = (ψa
α), ψ̄ = (ψ̄a

α) and to FaddeevÄPopov
ghost ˇelds c = (cα), c̄ = (c̄α). η = (ηa

α), η̄ = (η̄a
α) and J = (Jj

ρ) are external
sources. Aj

ρ, Jj
ρ , cα, c̄α are periodic in τ with period β, while ψa

α, ψ̄a
α, ηa

α, η̄a
α

are antiperiodic. Upper latin indices and lower Greek ones indicate �avor and
SU(N) internal (color) indices respectively, and j = 1, ..., N2−1, the number of
standard SU(N) generators (T j). LY M and Lc are standard Lagrangian densities
for YangÄMills bosons and ghosts, while LGF describes gauge ˇxing. On the
other hand, one has

Lψ =
Nf∑
a=1

ψ̄a(i �Da
T,µ − ma)ψa

(lower color indices being also implicitly contracted), with Nf the number of
�avors,

i �Da
T,µ = i �DT + µaγ0

and
�DT = iγ0(∂/∂τ + A4) − γk(∂/∂xk + Ak),

where iAρ = gT jAj
ρ and the Wick rotation has been performed in the imaginary

time formalism (x0 → τ = ix0, A0 → A4 = −iA0) so that �DT becomes
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Hermitian. It is considered a chemical potential µa for each �avor (there is no
�avor mixing).

Following Fujikawa [15] we are interested in the chiral transformation of the
fermion ˇelds:

ψa
α → exp[iδ(�x, τ)γ5]ψa

α , ψ̄a
α → ψ̄a

α exp[iδ(�x, τ)γ5],

which produces a change in the fermion measure DψDψ̄ → CDψDψ̄, giving
rise to the anomaly factor in the chiral current conservation law, C, which is
the direct ˇnite temperature and density extension of the zero temperature and
density factor appearing in [15]. The chemical potential term is invariant under
the above chiral transformation. Then the only possible ˇnite temperature and
density effects must be contained in C. In order to display them, let us expand

ψa(�x, τ) =
∑

n

anφa
n(�x, τ) , ψ̄a(�x, τ) =

∑
n

b̄nφa
n

+(�x, τ),

an, b̄n being elements of the Grassmann algebra. On the other hand, φa
n(�x, τ),

which is antiperiodic in τ , is an eigenfunction of the Hermitian operator �Da
T,µ =

= �DT + µaγ0, i.e., �Da
T,µφa

n = λnφa
n, (λn being real and color indices being

omitted) and it fulˇlls

∫ β

0

dτ

∫
d3xφa

n
+φa

r = δnr.

Moreover, it can be FourierÄexpanded as

φa
n(�x, τ) =

1
β

∞∑
j=−∞

∫
d3k eiωnτ e−i	k	xφa

j (�k), (30)

ωn =
(2n + 1)π

β
.

Then, the measure DψDψ̄ becomes
∏

n dan

∏
m db̄m, and by extending directly

the zero temperature and density calculations [15], one ˇnds

C = exp

[
−2i

∫ β

0

dτ

∫
d3xδ(�x, τ)a(�x, τ)

]
(31)

with

a(�x, τ) =
Nf∑
a=1

∑
n

φa
n

+(�x, τ)γ5φ
a
n(�x, τ). (32)
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The ˇnite temperature and density anomaly a(�x, τ) can be regularized by extend-
ing again Fujikawa's trick as

a(�x, τ) = lim
M→∞

Nf∑
a=1

∑
n

φa
n

+(�x, τ)γ5 exp
[
−M−2(�Da

T,µ)2
]
φa

n(�x, τ), (33)

and by changing the basis vectors to ªplane wavesª with (30). We remark that
�Da

T,µ is equivalent to �DT provided that, in the latter, one replaces A4 by A4− iµa.
This replacement leaves Fρν invariant (Fρν = ∂ρAν − ∂νAρ + [Aρ, Aν ]): notice
that µa is constant and [µa, T j] = 0 for a = 1...Nf , j = 1...N2 − 1. One obtains

a(�x, τ) = Nf lim
M→∞

tr
(
γ5 {[γρ, γν ]Fρν}2

) 1
8M2

1
β

∞∑
n=−∞

∫
d3k

(2π)3
exp

[
−

(
ω2

n + �k2

M2

)]
, (34)

where the trace tr runs over both internal and γ matrices indices.
The inˇnite series on the right-hand side of (34) displays what is, quite likely,

the most important difference between the actual ˇnite temperature and density
case and the zero temperature and density one treated in [15]. We recall the
following formula valid for any M :

1
β

∞∑
n=−∞

exp
[
− π2

M2β2
(2n + 1)2

]
=

∫ ∞

−∞

dk0

2π
exp

[
−

(
k0

M

)2
]

. (35)

A simple derivation of (35) can be found in [25].
By using (35) in (34) and taking the trace over the γ matrices, we arrive at

the ˇnal formula:

a(�x, τ) = − Nf

16π2
tr

(
1
2
εσνρλFρλFσν

)
, (36)

where the trace now runs only over internal indices. We can see that there are
no ˇnite temperature and density corrections to the chiral anomaly, as we have
expected from the previous considerations.

5. CHERNÄSIMONS IN EVEN DIMENSIONAL THEORY

It will be natural to introduce in Lagrangian the classical conservation law
Å the conservation of the Q5 charge, i.e., the difference of left and right fermion
densities QL − QR. Thus the Lagrangian with constraint on Q5 has the form

L =
1
8

trFF + ψ̄
(
i∂̂ − gÂ + iκγ0γ5

)
ψ. (37)
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Thus, if we will deal with such a Lagrangian we must get theory in which Q5-
charge is conserved. To get effective action only background ˇeld dependent
we have to take over dψ̄ dψ integration. There are two ways to do it: one can
calculate straight forward by using the perturbation theory and get the effective
action, another one is proper time method. Certainly, we have to take into
account that at high temperatures dimensional reduction takes place. Thus, for
example, vacuum polarization tensor in reduced Å 3-dimensional Å theory can
be written as

Πij(p2) =
(
gijp

2 − pipj

)
Π(1)(p2) + ieijkpkΠ(2)(p2) + pipjΠ(3)(p2). (38)

The part of the vacuum polarization tensor containing LeviÄChivita tensor
ieijkpkΠ(2)(p2) gives rise to the ChernÄSimons term.

It is convenient to rewrite Lagrangian in more appropriate form using pro-
jection operators

L =
1
2

trFF + ψ̄L

(
i∂̂ − gÂ + iκγ0

)
ψL + ψ̄R

(
i∂̂ − gÂ − iκγ0

)
ψR, (39)

where we have used I = P+ + P− , γ5 = P+ − P− , P+ = 1+γ5

2 , P− = 1−γ5

2 .
So, now we can evaluate JL and JR separately. One can easily see that the

Lagrangian we have got is absolutely analogous to ˇnite temperature and density
Lagrangian with left(right)-handed fermions which was considered in [17] using
perturbative expansion.

Thus we can immediately write the answer for JL and JR currents

Jµ
(L/R) = (±)

κ

4π
βW [A], (40)

where W [A] is the ChernÄSimons term. And consequently for full current and
chiral current we'll get correspondingly

Jµ = 0, (41)

Jµ
5 = 2

κ

4π
βW [A]. (42)

It is also possible to obtain ChernÄSimons at zero temperature for κ �= 0 with
clear physical sense (see, for example, [18] where chiral fermions are considered at
ˇnite density and [14] where Weyl particles are considered). In the 2-dimensional
Schwinger model there is chiral anomaly

∂µJ5
µ = − 1

π
εµνFµν . (43)

It could be derived by using the picture of energy levels crossing, see for example
[14,19]. Here, we will exploit this method for consideration of the ChernÄSimons
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term. Thus we will consider the Schwinger model (37) on a ring with periodic
for Aµ and antiperiodic for ψ boundary conditions

A(x = −L/2, t) = A(x = L/2, t),
ψ(x = −L/2, t) = −ψ(x = L/2, t). (44)

Thus, ˇelds A and ψ could be expanded in Fourier modes exp(ikx2π/L) for
bosons and exp(i[k +1/2]x2π/L) for fermions. The Lagrangian (37) is invariant
under local gauge transformations:

ψ → ψ eiα(x,t) , Aµ → Aµ + ∂µα(x, t).

It is easily seen that due to local gauge transformations, we can put all modes
of A1 to be zero except for the zero-mode. Thus, we can consider A1 to be
x-independent. There exists another type of gauge transformations (large gauge
transformations)

α =
2π

L
nx,

where n is an integer number. Nevertheless, this gauge is not periodic, it satisˇes
condition (44). Really, ∂α/∂x = const and ∂α/∂t = 0, thus periodicity of Aµ

is conserved, the same is also true for ψ. So, we can consider the model on
the circle [0, 2π/L]. Further, we use adiabatic approximation, putting that A1

is independent of time (to a slight time dependence we will turn on later), and
that A0 = 0. This adiabatic approximation is quite natural from the physical
point of view, see for example elegant consideration by Shifman [19]. We now
calculate number density of real left(right) fermions nL/R[A1] and fermionic

energy density εL/R[A1], assuming that number density nL/R at Ȧ1 = 0 is ˇxed.
Note that system with ˇxed nL/R can be prepared by inserting fermions into the
box, which is initially empty.

It is straightforward to calculate the fermionic spectrum at A1 �= 0,

EL/R =
2π

L
(k ∓ NCS) , k = 0,±1,±2, ... , (45)

where

NCS =
1
2π

∫
A1dx1 (46)

is the ChernÄSimons number in (1+1) dimensions. As the gauge ˇeld changes
from zero to some ˇxed A1, [NCS ] levels of left-handed fermions cross zero
from above and the same number of right-handed fermionic levels cross zero
from below. This means that [NCS ] left-handed fermions ˇll the negative energy
levels in the Dirac sea, see Fig.1, and the same number of right-handed fermions
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leave it. We would like to stress, that in this physical clear picture it is essential
to use the adiabatic approximation. The number densities for left(right)-handed
fermions are

nL/R[A1] = n0
L/R ∓ nCS + O(L−1), (47)

where nCS = NCS/L is the average ChernÄSimons density.

Fig. 1. Behaviour of the left(right)-handed fermionic levels

Note that equation (47) is essentially the integral form of the anomaly equa-
tion (43). The average energy density of real fermions is

εL/R =
2
L

N0
L/R/2∑

[NCS]+1

εk =
π

2
(n0

CS ∓ nCS)2 + O(L−2). (48)

We can introduce chemical potential for left(right)-handed fermions in a
standard way

µL/R =
∂εL/R

∂nL/R
(49)

and we obtain

µL/R = π(nL/R ∓ nCS). (50)

Introducing the standard Legendre transform

ẼL/R[µL/R, A1] = EL/R ∓ µL/RNL/R (51)
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we ˇnd

∆E = (µR − µL)NCS, (52)

so, for the case when µR = µL = µ we'll get energy unchanged. On the other
hand, for chiral fermions [18] sign of term µR will change and

∆E = −2µNCS. (53)

If we impose conservation of the left- and right-handed fermions (with Lagrangian
multiple κ) instead of separate conservation of left (right)-fermions, we'll get

∆E = −2κNCS. (54)

Thus, the same result arises both for chiral fermions at ˇnite density, and for
usual fermions under conservation of chiral charge. One should notice that here
there were used two approximations. The ˇrst one is time independence of A0,
the second is adiabatic approximation. Nevertheless, this consideration is valuable
due to construction of clear physical picture of the phenomenon.

The ChernÄSimons term appearance in even dimensional theory could be
shown in simple and clear way. The only thing we need for it is temperature
and density independence of chiral anomaly (see previous sections). From the
deˇnition one has

∂Ieff

∂κ
=

∫
dDx〈J0

5 〉. (55)

Since axial anomaly doesn't depend on κ, effective action contains the term
proportional to anomalous Q5 charge with κ as a coefˇcient. The same is for a
chiral theory, there effective action contains the term proportional to anomalous
Q charge with µ as a coefˇcient, see for example [17,18,20]. So, we have

∆Ieff = −κ

∫
dx0W [A] (56)

in conventional gauge theory and

∆Ichiral
eff = −µ

∫
dx0W [A] (57)

in the chiral theory. Here W [A] is the ChernÄSimons term. Thus we get ChernÄ
Simons with Lagrange multiplier as a coefˇcient.

It is well known that at nonzero temperature in β → 0 limit the dimensional
reduction effect occurs. So, extra t-dependence of ChernÄSimons term in (56)
disappears and ChernÄSimons can be treated as a mass term in 3-dimensional
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theory with iκ/T coefˇcient (the same for chiral theory with µ, see [17]). For
anomalous parts of effective action we have

∆Ieff = −iκβW [A] , ∆Ichiral
eff = −iµβW [A] (58)

in conventional and chiral gauge theories correspondingly. The only problem
arises in treating ChernÄSimons as a mass term is that the coefˇcient is imaginary,
see discussions on the theme in [17,20]. The other problem is that the coefˇcient
is not the integer function, see discussions in conclusion. One can notice, that
results (56), (57) and (58) hold in arbitrary even dimension. Let us stress, that
we don't need any complicated calculations to obtain (56)Ä(58). The only thing
we need is the knowledge of chiral anomaly independence on µ, κ, and β.

This result also can be derived by use of the proper-time method. Chiral
current reads as follows

Jµ
5 = −ig tr

[
γ5γµG(x, x

′
)
]

= −ig tr
[
γ5γµ 1

i �∂ − g �A + γ5γ0κ

]
=

= −ig tr
[
γµ 1

i �∂ − gγ5 �A + γ0κ

]
. (59)

The propagator has the following form

G(x, x
′
) =

[
i �∂ − gγ5 �A

]
(−i)

∫ 0

−∞
dτU(x, x

′
; τ), (60)

where U(x, x
′
; τ) is the evolution operator in a proper time. The propagator after

substitution of the evolution operator can be rewritten as

G(x, x
′
) = exp

(
−igγ5

∫ x

x′
dζµAµ

) ∫
d4p

(2π)4
eip(x−x

′
)G(p), (61)

where G(p) has the form

G(p) = −iad

∫ 0

−∞

dτ

τd/2
exp

(
−1

2
tr ln

[
i

4τ
ch(gFτ)

]
−

−ip(gF )−1 th(gFτ)p
) [

γ5γα ( th(gFτ))αν pν− �p
]

exp
(
i
g

2
γ5σµνFµντ

)
, (62)

where ad = eiπd/4/(2π)d/2. Substituting expression for the propagator in (59),
we will get for the chiral current

Jµ
5 = gad

∫ 0

−∞

dτ

τd/2
exp

(
−1

2
tr ln

[
i

4τ
ch(gFτ)

])
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d4p

(2π)4
exp

(
−ip(gF )−1 th(gFτ)p

)
pν

tr
[(

γµγ5γα [ th(gFτ)]αν − γµγαgαν
)
exp

(
i
g

2
γ5σµνFµντ

)]
. (63)

Taking into account that p integration is at ˇnite density and temperature, i.e.,
integral in p0 is changed on sum, and extracting the LeviÄChivita tensor containing
part (it is really simple, if one takes traces in covariant form) we obtain

Jµ
5 =

g2

8π2
β

∫
dτ

τ2

∞∑
m=1

(−1)mm exp
(

i
β2m2

4τ

)
sh(βmκ) ∗Fµ0. (64)

To regulate this expression we use dimensional regularization, which can be
expressed in terms of generalized Riemann zeta functions. Also, we take high
temperature limit, i.e., β → 0, and ˇnally get

Jµ
5 = iκ

g2

2π2
∗Fµ0. (65)

6. CHERNÄSIMONS IN THREE-DIMENSIONAL THEORY

6.1. Constant Magnetic Field. Let us ˇrst consider a (2+1)-dimensional
Abelian theory in the external constant magnetic ˇeld. We will evaluate fermion
density by performing the direct summation over Landau levels. As a starting
point, we will use the formulae for fermion number at ˇnite density and temper-
ature [2]

N = −1
2

∑
n

sgn(λn) +
∑

n

[ θ(λn)
exp(−β(µ − λn)) + 1

−

− θ(−λn)
exp(−β(λn − µ)) + 1

]
=

=
1
2

∑
n

th
1
2
β(µ − λn)

β→∞−→ 1
2

∑
n

sgn(µ − λn). (66)

Landau levels in the constant magnetic ˇeld have the form [21]

λ0 = −m sgn(eB) , λn = ±
√

2n|eB| + m2, (67)

where n=1,2, ... It is also necessary to take into account in (66) the degeneracy
of Landau levels. Namely, the number of degenerate states for each Landau level
is |eB|/2π per unit area. Even now we can see that only zero modes (because of
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sgn(eB)) could contribute to the parity odd quantity. So, for zero temperature,
by using the identity

sgn(a − b) + sgn(a + b) = 2 sgn(a)θ(|a| − |b|),
one gets for zero modes

|eB|
4π

sgn (µ + m sgn(eB)) =
|eB|
4π

sgn(µ)θ(|µ| − |m|) +

+
|eB|
4π

sgn(eB) sgn(m)θ(|m| − |µ|), (68)

and for nonzero modes

1
2
|eB|
2π

∞∑
n=1

sgn(µ −
√

2n|eB| + m2) + sgn(µ +
√

2n|eB| + m2) =

=
|eB|
2π

sgn(µ)
∞∑

n=1

θ(|µ| −
√

2n|eB| + m2). (69)

Combining contributions of all modes we get for fermion density

ρ =
|eB|
2π

sgn(µ)
∞∑

n=1

θ
(
|µ| −

√
2n|eB| + m2

)
+

+
1
2
|eB|
2π

sgn(µ)θ(|µ| − |m|) +
1
2

eB

2π
sgn(m)θ(|m| − |µ|) =

=
|eB|
2π

sgn(µ)
(

Int
[
µ2 − m2

2|eB|

]
+

1
2

)
θ(|µ| − |m|) +

+
eB

4π
sgn(m)θ(|m| − |µ|). (70)

Here we see that zero modes contribute both to parity odd and to parity even
part, while nonzero modes contribute to the parity even part only (note that under
parity transformation B → −B). Thus, fermion density contains both ChernÄ
Simons part and parity even part. At ˇnite temperature it is also possible to get
ChernÄSimons. Substituting zero modes into (66) one gets

N0 =
|eB|
2π

1
2

th
[
1
2
β (µ + m sgn(eB))

]
=

=
|eB|
4π

[
sh(βµ)

ch(βµ) + ch(βm)
+ sgn(eB)

sh(βm)
ch(βµ) + ch(βm)

]
, (71)

so, excluding parity odd part, one gets for ChernÄSimons at ˇnite temperature
and density

NCS =
eB

4π

sh(βm)
ch(βµ) + ch(βm)

=
eB

4π
th(βm)

1
1 + ch(βµ)/ ch(βm)

. (72)
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So, the result coincides with the result for ChernÄSimons term coefˇcient by
Niemi and Semenoff [4] obtained for small µ[

th
1
2
β(m − µ) + th

1
2
β(m + µ)

]
.

It is obviously the limit to zero temperature. The lack of this method is that it
works only for Abelian and constant ˇeld case.

This result at zero temperature can be obtained using the Schwinger properÄ
time method. Consider (2+1)-dimensional theory in the Abelian case and choose
background ˇeld in the form

Aµ =
1
2
xνF νµ, F νµ = const.

To obtain the ChernÄSimons term in this case, it is necessary to consider the
background current

〈Jµ〉 =
δSeff

δAµ

rather than the effective action itself. This is because the ChernÄSimons term
formally vanishes for such the choice of Aµ but its variation with respect to Aµ

produces a nonvanishing current. So, consider

〈Jµ〉 = −ig tr
[
γµG(x, x

′
)
]

x→x′ , (73)

where

G(x, x
′
) = exp

(
−ig

∫ x

x′
dζµAµ(ζ)

)
〈x|Ĝ|x′〉. (74)

Let us rewrite Green function (7) in a more appropriate form

Ĝ = (γπ̃ − m)
[θ((p0 + µ) sgn(p0))

(γπ̃)2 − m2 + iε
+

θ(−(p0 + µ) sgn(p0))
(γπ̃)2 − m2 − iε

]
. (75)

Now, we use the well-known integral representation of denominators

1
α ± i0

= ∓i

∫ ∞

0

ds e±iαs,

which corresponds to introducing the ªproperÄtimeª s into the calculation of the
EulierÄHeisenberg Lagrangian by the Schwinger method [22]. We obtain

Ĝ = i(γπ̃ − m)
∫ ∞

0

ds
[
− exp

(
is

[
(γπ̃)2 − m2 + iε

])
θ((p0 + µ) sgn(p0)) +

+ exp
(
−is

[
(γπ̃)2 − m2 − iε

])
θ(−(p0 + µ) sgn(p0))

]
. (76)
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For simplicity, we restrict ourselves only to the magnetic ˇeld case, where A0 =
0, [π̃0, π̃µ] = 0. Then we easily can factorize the time dependent part of Green
function

G(x, x
′
) =

∫
d3p

(2π)3
Ĝ eip(x−x

′
) =

=
∫

d2p

(2π)2
Ĝ	x ei	p(	x−	x

′
)

∫
dp0

2π
Ĝx0 eip0(x0−x

′
0). (77)

By using the obvious relation

(γπ̃)2 = (p0 + µ)2 − �π2 +
1
2
gσµνFµν (78)

one gets

G(x, x
′
)|x→x′ = −i

∫
dp0

2π

d2p

(2π)2
(γπ̃ − m)

∫ ∞

0

ds[
eis(p̃2

0−m2) e−is	π2
eisgσF/2 − θ(−(p0 + µ) sgn(p0))

(
eis(p̃2

0−m2) e−is	π2
eisgσF/2 + e−is(p̃2

0−m2) eis	π2
e−isgσF/2

)]
. (79)

Here the ˇrst term corresponds to the usual µÄindependent case and there are
two additional µÄdependent terms. In the calculation of the current the following
trace arises:

tr
[
γµ(γπ̃ − m) eisgσF/2

]
= 2πνgνµ cos(g|∗F |s) +

+2
πνF νµ

|∗F | sin(g|∗F |s) − 2im
∗Fµ

|∗F | sin(g|∗F |s),

where ∗Fµ = εµαβFαβ/2 and |∗F | =
√

B2 − E2. Since we are interested in
calculation of the parity odd part ( ChernÄSimons term) it is enough to consider
only terms proportional to the dual strength tensor ∗Fµ. On the other hand the
term 2πνgνµ cos (g|∗F |s) at ν = 0 (see expression for the trace, we take in mind
that here there is only magnetic ˇeld) also gives nonzero contribution to the
current J0 [8]

J0
even = g

|gB|
2π

(
Int

[
µ2 − m2

2|gB|

]
+

1
2

)
θ(|µ| − |m|). (80)

This part of current is parity invariant because under parity B → −B. It is clear
that this parity even object does contribute neither to the parity anomaly nor to
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the mass of the gauge ˇeld. Moreover, this term has been obtained [8] in the
pure magnetic background and scalar magnetic ˇeld occurs in the argument's
denominator of the cumbersome function Å integer part. So, the parity even
term seems to be ªnoncovariantizableª, i.e., it can't be converted in covariant
form in effective action. For a pity, in papers [8] charge density consisting
of both parity odd and parity even parts is dubbed ChernÄSimons, what leads to
misunderstanding. The main goal of this article is to explore the parity anomalous
topological ChernÄSimons term in the effective action at ˇnite density. So, just
the term proportional to the dual strength tensor ∗Fµ will be considered. The
relevant part of the current reads

Jµ
CS =

g

2π

∫
dp0

∫
d2p

(2π)2

∫ ∞

0

ds
2im∗Fµ

|∗F | sin (g|∗F |s)[
eis(p̃2

0−m2) e−is	π2 − θ(−(p0 + µ) sgn(p0))

(
eis(p̃2

0−m2) e−is	π2
− e−is(p̃2

0−m2) eis	π2
)]

. (81)

Evaluating integral over spatial momentum we derive

Jµ
CS =

g2

4π2
m∗Fµ

∫ +∞

−∞
dp0

∫ ∞

0

ds

[
eis(p̃2

0−m2) −

−θ(−p̃0 sgn(p0))
(

eis(p̃2
0−m2) + e−is(p̃2

0−m2)m
)]

. (82)

Thus, we have got besides the usual ChernÄSimons part [6], also the µÄdependent
one. It is easy to calculate it by use of the formula∫ ∞

0

ds eis(x2−m2) = π

(
δ(x2 − m2) +

i

π
P 1

x2 − m2

)

and we get eventually

Jµ
CS =

m

|m|
g2

4π
∗Fµ

[
1 − θ(−(m + µ) sgn(m)) − θ(−(m − µ) sgn(m))

]
=

m

|m|θ(m
2 − µ2)

g2

4π
∗Fµ. (83)

Let us now discuss the non-Abelian case. Then Aµ = TaAµ
a and current

reads
〈Jµ

a 〉 = −ig tr
[
γµTaG(x, x

′
)
]

x→x′ .
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It is well known [6,23] that there exist only two types of the constant background
ˇelds. The ˇrst is the ªAbelianª type (it is easy to see that the selfÄinteraction
fabcAµ

b Aν
c disappears under that choice of the background ˇeld)

Aµ
a = ηa

1
2
xνF νµ, (84)

where ηa is an arbitrary constant vector in the color space, F νµ = const. The
second is the pure ªnon-Abelianª type

Aµ = const. (85)

Here the derivative terms (Abelian part) vanish from the strength tensor and it
contains only the selfÄinteraction part Fµν

a = gfabcAµ
b Aν

c . It is clear that to catch
the Abelian part of the ChernÄSimons term we should consider the background
ˇeld (84), whereas for the non-Abelian (derivative noncontaining, cubic in A)
part we have to use the case (85).

Calculations in the ªAbelianª case reduces to the previous analysis, except
the trivial adding of the color indices in the formula (83):

Jµ
a =

m

|m|θ(m
2 − µ2)

g2

4π
∗Fµ

a . (86)

In the case (85) all calculations are similar. The only difference is that the origin
of term σµνFµν in (78) is not the linearity A in x (as in Abelian case) but the
pure non-Abelian Aµ = const. Here term σµνFµν in (78) becomes quadratic in
A and we have

Jµ
a =

m

|m|θ(m
2 − µ2)

g3

4π
εµαβ tr

[
TaAαAβ

]
. (87)

Combining formulas (86) and (87) and integrating over ˇeld Aµ
a we obtain even-

tually

SCS
eff =

m

|m|θ(m
2 − µ2)πW [A], (88)

where W [A] is the ChernÄSimons term

W [A] =
g2

8π2

∫
d3xεµνα tr

(
FµνAα − 2

3
gAµAνAα

)
.

It may seem that covariant notation is rather artiˇcial. However, it helps us to
extract the LeviÄChivita tensor containing part of action, i.e., parity anomalous
ChernÄSimons term.
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6.2. Arbitrary External Field. One can see that the methods we have
used above for calculation of the ChernÄSimons term are noncovariant. Indeed,
both of them use the constant magnetic background. Therefore, here we will use
completely covariant approach, which allows an arbitrary initial ˇeld conˇguration
and non-Abelian ˇelds. We will employ the perturbative expansion at once in the
non-Abelian case.

Let us ˇrst consider non-Abelian 3-dimensional gauge theory. The only
graphs whose P-odd parts contribute to the parity anomalous ChernÄSimons term
are shown in Fig. 2.

Fig. 2. Graphs whose P-odd parts contribute to the ChernÄSimons term in non-Abelian 3D
gauge theory

Thus, the part of effective action containing the ChernÄSimons term looks as

ICS
eff =

1
2

∫
x

Aµ(x)
∫

p

e−ixpAν(p)Πµν(p)

+
1
3

∫
x

Aµ(x)
∫

p,r

e−ix(p+r)Aν(p)Aα(r)Πµνα(p, r), (89)

where polarization operator and vertices have a standard form

Πµν(p) = g2

∫
k

tr [γµS(p + k; µ)γνS(k; µ)]

Πµνα(p, r) = g3

∫
k

tr [γµS(p + r + k; µ)γνS(r + k; µ)γαS(k; µ)] , (90)

here, under integration we understand∫
x

= i

∫ β

0

dx0

∫
d�x and

∫
k

=
i

β

∞∑
n=−∞

∫
d�k

(2π)2
.

First consider the second order term (Fig. 2, graph (a)). It is well known that the
only object giving us the possibility of constructing P - and T -odd form in action
is LeviÄChivita tensor∗. Thus, we will drop all terms noncontaining LeviÄChivita

∗In three dimensions it arises as a trace of three γ matrices (Pauli matrices).
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tensor. Signal for the mass generation ( ChernÄSimons term) is Πµν(p2 = 0) �= 0.
So we get

Πµν = g2

∫
k

(−i2meµναpα)
1

(k̃2 + m2)2
. (91)

After some simple algebra one obtains

Πµν = −i2mg2eµναpα
i

β

∞∑
n=−∞

∫
d2k

(2π)2
1

(k̃2 + m2)2
=

= −i2mg2eµναpα
i

β

∞∑
n=−∞

i

4π

1
ω2

n + m2
, (92)

where ωn = (2n + 1)π/β + iµ. Performing summation we get

Πµν = i
g2

4π
eµναpα th(βm)

1
1 + ch(βµ)/ ch(βm)

. (93)

It is easily seen that at β → ∞ limit we'll get zero temperature result [9]

Πµν = i
m

|m|
g2

4π
eµναpαθ(m2 − µ2). (94)

In the same manner handling the third order contribution (Fig. 2b) one gets

Πµνα = −2g3ieµνα i

β

∞∑
n=−∞

∫
d2k

(2π)2
m(k̃2 + m2)
(k̃2 + m2)3

=

= −i2mg3eµνα i

β

∞∑
n=−∞

∫
d2k

(2π)2
1

(k̃2 + m2)2
(95)

and further all calculations are identical to the second order

Πµνα = i
g3

4π
eµνα th(βm)

1
1 + ch(βµ)/ ch(βm)

. (96)

Substituting (93), (96) in the effective action (89) we get eventually

ICS
eff = th(βm)

1
1 + ch(βµ)/ ch(βm)

g2

8π

∫
d3xeµνα

tr
(

Aµ∂νAα − 2
3
gAµAνAα

)
. (97)

Thus, we get ChernÄSimons term with temperature and density dependent
coefˇcient.
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7. CHERNÄSIMONS TERM IN ARBITRARY ODD DIMENSION

Let's now consider 5-dimensional gauge theory. Here the LeviÄChivita tensor
is 5-dimensional eµναβγ and the relevant graphs are shown in Fig. 3.

Fig. 3. Graphs whose P -odd parts contribute to the ChernÄSimons term in non-Abelian
5D theory

The part of effective action containing the ChernÄSimons term reads

ICS
eff =

1
3

∫
x

Aµ(x)
∫

p,r

e−ix(p+r)Aν(p)Aα(r)Πµνα(p, r)

+
1
4

∫
x

Aµ(x)
∫

p,r

e−ix(p+r+s)Aν(p)Aα(r)Aβ(s)Πµναβ(p, r, s)

+
1
5

∫
x

Aµ(x)
∫

p,r

e−ix(p+r+s+q)Aν(p)Aα(r)Aβ(s)Aγ(s)

×Πµναβγ(p, r, s, q). (98)

All calculations are similar to 3-dimensional case. First consider third order
contribution (Fig. 3a)

Πµνα(p, r) = g3

∫
k

tr [γµS(p + r + k; µ)γνS(r + k; µ)γαS(k; µ)] . (99)

Taking into account that trace of ˇve γ matrices in 5-dimensions is

tr
[
γµγνγαγβγρ

]
= 4ieµναβρ,

we extract the parity odd part of the vertices

Πµνα = g3 i

β

∞∑
n=−∞

∫
d4k

(2π)4
(i4meµναβσpβrσ)

1
(k̃2 + m2)3

, (100)

or in more transparent way

Πµνα = i4mg3eµναβσpαrσ
i

β

+∞∑
n=−∞

∫
d4k

(2π)4
1

(ω2
n + �k2 + m2)3

=
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= i4mg3eµναβσpαrσ
i

β

+∞∑
n=−∞

−i

64π2

1
ω2

n + m2
. (101)

Evaluating summation one comes to

Πµνα = i th(βm)
1

1 + ch(βµ)/ ch(βm)
g3

16π2
eµναβσpαrσ. (102)

In the same way operating graphs (b) and (c) (Fig. 3) one will obtain

Πµναβ = i th(βm)
1

1 + ch(βµ)/ ch(βm)
g4

8π2
eµναβσsσ (103)

and

Πµναβγ = i th(βm)
1

1 + ch(βµ)/ ch(βm)
g5

16π2
eµναβσ. (104)

Substituting (102)Ä(104) in the effective action (98) we get the ˇnal result for
ChernÄSimons in 5-dimensional theory

ICS
eff = th(βm)

1
1 + ch(βµ)/ ch(βm)

g3

48π2

∫
x

eµναβγ

tr
(

Aµ∂νAα∂βAγ +
3
2
gAµAνAα∂βAγ +

3
5
g2AµAνAαAβAγ

)
. (105)

It is remarkable that all parity odd contributions are ˇnite both in 3-dimen-
sional and in 5-dimensional cases. Thus, all values in the effective action are
renormalized in a standard way, i.e., the renormalizations are determined by
conventional (parity even) parts of vertices.

From the above direct calculations it is clearly seen that the chemical potential
and temperature-dependent coefˇcient is the same for all parity odd parts of
diagrams and doesn't depend on space dimension. So, the in�uence of ˇnite
density and temperature on the ChernÄSimons term generation is the same in any
odd dimension:

ICS
eff = th(βm)

1
1 + ch(βµ)/ ch(βm)

πW [A]
β→∞−→ m

|m|θ(m
2 − µ2)πW [A],

(106)
where W [A] is the ChernÄSimons secondary characteristic class in any odd di-
mension. Since only the lowest orders of perturbative series contribute to the
ChernÄSimons term at ˇnite density and temperature (the same situation is well
known at zero density), the result obtained by using formally perturbative tech-
nique appears to be nonperturbative. Thus, the µ- and T -dependent ChernÄSimons
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term coefˇcient reveals the amazing property of universality. Namely, it does de-
pend on neither dimension of the theory nor Abelian or non-Abelian gauge theory
is studied.

The arbitrariness of µ gives us the possibility to see ChernÄSimons coefˇcient
behaviour at any masses. It is very interesting that µ2 = m2 is the crucial point
for ChernÄSimons at zero temperature. Indeed, it is clearly seen from (106) that
when µ2 < m2, µ in�uence disappears and we get the usual ChernÄSimons term

ICS
eff = πW [A].

On the other hand, when µ2 > m2, the situation is absolutely different. One can
see that here the ChernÄSimons term disappears because of nonzero density of
background fermions. We would like to emphasize the important massless case
m = 0 considered in many papers, see for example [4,6,24]. Here even negligible
density or temperature, which always take place in any physical processes, leads
to vanishing of the parity anomaly. Let us stress again that we nowhere have used
any restrictions on µ. Thus we not only conˇrm result of [4] for ChernÄSimons
in QED3 at small density, but also expand it on arbitrary µ, non-Abelian case
and arbitrary odd dimension.

8. NONRELATIVISTIC CONSIDERATION

Here, we will show that in nonrelativistic case there is no ChernÄSimons term,
there is only pseudo ChernÄSimons, which is even under parity transformation. It
is also presented the possibility of getting mixed ChernÄSimons term in nontrivial
external ˇeld.

First, we would like to notice that there are two approaches in fermion number
deˇnition. The ˇrst one is (see for example [32])

〈Q〉β,µ =
∑

n

1
eβ(λn−µ) + 1

, (107)

and a normal ordering is performed at the given value of the chemical potential
µ. (This normal ordering is suppressed here since it is inessential to the present
discussion.) The other deˇnition (see [2]) is related to the above by

〈Q〉β,µ = 〈N〉β,µ +
1
2
ζH(0), (108)

where ζH is the Riemann ζ function related to the even part of the spectral density
of the Hamiltonian H

ζH(s) =
∫ ∞

0

dλ [ρH(λ) + ρH(−λ)] λ−s. (109)
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So, the difference in the deˇnitions is given by a β and µ independent con-
stant, ζH(0). Indeed, one can easily check that at the operator level, these two
deˇnitions are related as

Q = N +
1
2

∫
dx

{
ψ+(x), ψ(x)

}
, N =

1
2

∫
dx

[
ψ+(x), ψ(x)

]
. (110)

As we have seen above, the fermion number density has the following form

N =
1
2

∑
n

th
1
2
β(µ − λn)

β→∞−→ 1
2

∑
n

sgn(µ − λn). (111)

Landau levels in the relativistic case are

λ0 = −m sgn(eB) , λn = ±
√

2n|eB| + m2, (112)

where n = 1, 2, ... . On the other hand, in the nonrelativistic case energy levels
have the form

λn = (n +
1
2
)Ω, (113)

where Ω = |eB|/m cyclotron frequency, n = 0, 1, 2,...
As we have seen above in the relativistic case fermion density has the form

N =
|eB|
2π

sgn(µ)
(

Int
[
µ2 − m2

2|eB|

]
+

1
2

)
θ(|µ| − |m|) +

+
eB

4π
sgn(m)θ(|m| − |µ|). (114)

Thus we can see that in the relativistic case there is especial zero mode, the only
mode which contributes to parity-odd part of fermion number. On the contrary,
in the nonrelativistic case there is no special zero mode, all modes contribute to
the parity even part only. Thus, we have at zero temperature

Q =
|eB|
2π

∑
n

θ

(
µ − (n +

1
2
)Ω

)
=

|eB|
2π

Int
[

µm

|eB| +
1
2

]
. (115)

One can see that fermion number in the nonrelativistic case is parity even (B →
−B under parity). Therefore, it does not give rise to the parity-odd ChernÄSimons
term in action. Instead of being variational derivative of the true ChernÄSimons,
fermion number is the derivative of the pseudo ChernÄSimons [26]

〈Q〉 =
δ

δA0
IpseudoCS . (116)
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In the same manner it is possible to get fermion number with temperature
introduced. For example, such calculations were done in [27], there was used
another method. There the pseudo- ChernÄSimons term coefˇcient has the form

ΠE
1 =

1
π

∑
n

(exp β(λn − µ) + 1)−1 −

− 1
8π

β

ml2

∑
n

(2n + 1)sech2

(
1
2
β(λn − µ))

)
. (117)

It is clearly seen that this expression can be rewritten in the way

ΠE
1 =

1
π

∑
n

[ 1
exp β(λn − µ) + 1

−

− βλn

exp β(λn − µ) + exp(−β(λn − µ)) + 2

]
. (118)

After taking β → ∞ limit one gets

ΠE
1 =

1
π

∑
n

θ(µ − λn), (119)

that coincides with the above calculations.
Another paper is [26]. There was also considered chemical potential in�uence

on fermion number in nonrelativistic case. In this section we treat a nonrelativistic
electron gas conˇned to a plane. We expect that some new qualitative features
arise from the fact that in this case the spin degree of freedom is not enslaved
by the dynamics. We continue to use a relativistic notation with ∂µ = (∂0,∇,
∂µ = (∂0,−∇), where ∇ is the gradient operator, and Aµ = (A0,A).

Let us consider the Lagrangian

L = Ψ†(i∂0 + µ − HP)Ψ + bΨ†σ3

2
Ψ (120)

which governs the dynamics of the Pauli spinor ˇeld Ψ, with Grassmann com-
ponents ψ↑ and ψ↓ describing the electrons with spin-↑ and ↓. The role of
the chemical potential µ and the spin source b is the same as in the previous
calculation. The Pauli Hamiltonian

HP =
1

2m
(i∇ + eA)2 − g0µB

σ3

2
B + eA0, (121)

with µB = e/2m Å the Bohr magneton and g0 Å the electron g-factor, contains
a Zeeman term which couples the electron spins to the background magnetic ˇeld.
Usually this term is omitted. The reason is that in realistic systems the g factor
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is much larger than two, the value for a free electron. In strong magnetic ˇelds
relevant to the QHE the energy levels of spin-↓ electrons are too high and cannot
be occupied; the system is spin polarized, and the electron spin is irrelevant to
the problem. Setting again A0 = A1 = 0, A2 = Bx1, one ˇnds as eigenvalues
for HP

En,± =
|eB|
m

(n +
1
2
) − eB

m
S±, (122)

with S± = ± 1
2 for spin-↑ and spin-↓ electrons, respectively. We note that in the

nonrelativistic limit, corresponding to taking m → +∞, the relativistic Landau
levels reduce to

E+n → const +
|eB|
m

(n +
1
2
) − eB

2m
, (123)

where we omitted the negative energy levels which have no meaning in this limit.
The main difference with (122) stems from the fact that there the spin degree of
freedom is considered as an independent quantity, not enslaved by the dynamics
as is the case in the relativistic problem.

The induced fermion number density and spin density may be obtained in a
similar calculation as in the preceding section. From the effective action,

Seff = −i tr ln(i∂0 − HP + µ +
b

2
σ3), (124)

one obtains

Leff =
|eB|
2π

∞∑
n=0

∫
dk0

2πi

[
ln(k0 − En,+ + µ +

b

2
) +

+ ln(k0 − En,− + µ − b

2
)
]
. (125)

The resulting value of the induced fermion number density is

ρ =
|eB|
2π

(N+ + N−), (126)

with N± the number of ˇlled Landau levels for spin-↑ and spin-↓ electrons,

N± =
[
mµ±
|eB| +

1
2

]
, (127)

and

µ± = µ +
eB

m
S± (128)

their effective chemical potentials. The square brackets denote again the integer-
part function. Implicit in this framework is the assumption that, just like in
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the relativistic case, the chemical potential lies between two Landau levels. The
induced fermion number density (126) is related to a ChernÄSimons term in the
effective action, with a coefˇcient

θ = sgn(eB)
1
2π

(N+ + N−). (129)

Because of the presence of the sgn(eB) factor, which changes sign under a parity
transformation, this ChernÄSimons term is invariant under such transformations.
The induced spin density turns out to be independent of N±, viz.

s =
eB

4π
. (130)

This follows from the symmetry in the spectrum En+1,+ = En,− (eB > 0), or
En,+ = En+1,− (eB < 0). The magnetic moment, M can be obtained from
(130) by multiplying s with twice the Bohr magneton, µB. This leads to the
text-book result for the magnetic spin susceptibility χP

χP =
∂M

∂B
=

e2

4πm
= 2µ2

B ν2D(0), (131)

with ν2D(0) = m/(2π) the density of states per spin degree of freedom in two
space dimensions.

At zero ˇeld, ρ reduces to the standard fermion number density in two space
dimensions ρ → µm/π = k2

F/(2π), where kF denotes the Fermi momentum. A
single �uxon carries according to (130) a spin S⊗ = 1

2 and, since for small ˇelds

ρ → µm

π
+

|eB|
2π

, (132)

also one unit of fermion charge. That is, in the nonrelativistic electron gas the
�uxon may be thought of as a fermion in that it has both the spin and charge of
a fermion. However, the close connection between spin of a �uxon and induced
ChernÄSimons term for arbitrary ˇelds that we found in the relativistic case is
lost. This can be traced back to the fact that in the nonrelativistic case the electron
spin is an independent degree of freedom. In the next section we point out that
the spin of the �uxon does not derive from the ordinary ChernÄSimons term,
but from the so-called mixed ChernÄSimons term. Such a term is absent in the
relativistic case.

To see how the spin contribution (131) to the magnetic susceptibility com-
pares to the orbital contribution we evaluate the k0-integral in the effective action
(125) with b = 0 to obtain

Leff =
|eB|
2π

∞∑
n=0

∑
ς=±

(µ − En,ς)θ(µ − En,ς). (133)
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The summation over n is easily carried out with the result for small ˇelds

Leff =
1
4π

∑
ς=±

[
µ2

ςm − (eB)2

4m

]
=

µ2m

2π
+

(eB)2

8πm
[(2σ)2 − 1], (134)

where σ = 1
2 and µ± is given by (128). The ˇrst term in the right-hand side of

(134), which is independent of the magnetic ˇeld, is the free particle contribution

µ2m

2π
= −2

∫
d2k

(2π)2

(
k2

2m
− µ

)
θ

(
µ − k2

2m

)
. (135)

The second term yields the low-ˇeld susceptibility

χ = (−1)2σ+12µ2
B ν2D(0)

[
(2σ)2 − 1)

]
. (136)

Equation (136) shows that the ratio of orbital to spin contribution to χ is different
from the three-dimensional case. Also, whereas a 3D electron gas is paramagnetic
(χ > 0) because of the dominance of the spin contribution, the 2D gas is not
magnetic (χ = 0) at small ˇelds since the orbital and spin contributions to χ
cancel.

8.1. Mixed ChernÄSimons Term. As we have seen above, in the non-
relativistic case there are no true ChernÄSimons terms. Now, we will present
consideration of this problem in nontrivial background ˇeld.

In this section we investigate the origin of the induced spin density (130) we
found in the nonrelativistic electron gas. To this end we slightly generalize the
theory (120) and consider the Lagrangian

L = Ψ†
[
i∂0 − eA0 + µ − 1

2m
(i∇ + eA)2

]
Ψ +

e

m
BaΨ†σa

2
Ψ. (137)

It differs from (120) in that the spin source term is omitted, and in that the
magnetic ˇeld in the Zeeman term is allowed to point in any direction in some
internal space labelled by latin indices a, b, c = 1, 2, 3. As a result also the spin
will have components in this space. It is convenient to consider a magnetic ˇeld
whose direction in the internal space varies in space-time. We set

Ba(x) = Bna(x), (138)

with na a unit vector in the internal space. The gauge potential Aµ appearing in
the ˇrst term of (137) still gives εij∂iA

j = B. Equation (138) allows us to make
the decomposition

Ψ(x) = S(x)χ(x) ; S†S = 1, (139)

with S(x) a local SU(2) matrix which satisˇes

σ · n(x) = S(x)σ3S†(x). (140)
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In terms of these new variables the Lagrangian (137) becomes

L = χ†
[
i∂0 − eA0 − V0 + µ − 1

2m
(i∇ + eA + V)2

]
χ +

eB

2m
χ†σ3χ, (141)

where the 2 × 2 matrix Vµ = −iS†(∂µS) represents an element of the SU(2)
algebra, which can be written in terms of (twice) the generators σa as

Vµ = V a
µ σa. (142)

In this way the theory takes formally the form of a gauge theory with gauge
potential V a

µ . In terms of the new ˇelds the spin density operator,

ja
0 = Ψ†σa

2
Ψ, (143)

becomes [29]

ja
0 = Rabχ

† σb

2
χ = −1

2
Rab

∂L
∂V b

0

. (144)

In deriving the ˇrst equation we employed the identity

S†(θ)σaS(θ) = Rab(θ)σb, (145)

which relates the SU(2) matrices in the j = 1
2 representation, S(θ) = exp( i

2θ ·σ),
to those in the adjoint representation (j = 1), R(θ) = exp(iθ · Jadj). The matrix
elements of the generators in the latter representation are

(
Jadj

a

)
bc

= −iεabc.
The projection of the spin density ja

0 onto the spin quantization axis, i.e. the
direction na of the applied magnetic ˇeld [29],

n · j0 = −1
2

∂L
∂V 3

0

, (146)

only involves the spin gauge ˇeld V 3
µ . So when calculating the induced spin

density s = 〈n · j0〉 we may set the ˇelds V 1
µ and V 2

µ equal to zero and consider
the simpler theory

L =
∑
ς=±

χ†
ς

[
i∂0 − eAς

0 + µς −
1

2m
(i∇ + eAς)2

]
χς , (147)

where the effective chemical potentials for the spin-↑ and spin-↓ electrons are
given in (128) and eA±

µ = eAµ ± V 3
µ . Both components χ↑ and χ↓ induce a

ChernÄSimons term, so that in total we have

LCS =
e2

2
εµνλ(θ+A+

µ ∂νA+
λ + θ−A−

µ ∂νA−
λ ) (148)

=
θ+ + θ−

2
εµνλ(e2Aµ∂νAλ + V 3

µ ∂νV 3
λ ) + e(θ+ − θ−)εµνλV 3

µ ∂νAλ,
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where the last term involving two different vector potentials is a mixed ChernÄ
Simons term. The coefˇcients are given by

θ± =
1
2π

sgn(eB)N±, (149)

assuming that |eB| > 1
2 |εij∂iV

3
j |, so that the sign of eB is not changed by spin

gauge contributions. The integers N± are the number of ˇlled Landau levels for
spin-↑ and spin-↓ electrons given by (127). Since N+ − N− = sgn(eB), we
obtain for the induced spin density s precisely the result (130) we found in the
preceding section,

s = 〈n · j0〉 = −1
2

∂Leff

∂V 3
0

∣∣∣∣
V 3

µ =0

=
eB

4π
. (150)

The present derivation clearly shows that the induced spin in the nonrelativistic
electron gas originates not from the standard ChernÄSimons term, but from the
mixed ChernÄSimons term involving the electromagnetic and spin gauge potential.

The ˇrst term in (148) is a standard ChernÄSimons term, the combination
θ++θ− precisely reproduces the result (129) and is related to the induced fermion
number density (126).

9. TRACE IDENTITY

As was shown in [2Ä4] the trace identities connect the ChernÄSimons term
and chiral anomaly. These identities may be derived for Hamiltonians of the form

H =
[

m D
D+ −m

]
. (151)

Here m is a constant; D, a differential operator of the form D = iPi∂i + Q(x);
and D+, the hermitian conjugate of D. The Pi are constant matrices that satisfy
P+

i Pj+P+
j Pi = 2δij and PiP

+
j +PjP

+
i = 2δij and Q(x) includes all background

ˇelds. It is assumed that these background ˇelds are static, so

H = H0 + mΓc = iΓi∂i + K(x) + mΓc, (152)

where

Γi =
[

0 Pi

P+
i 0

]
, Γc =

[
1 0
0 −1

]
, K(x) =

[
0 Q(x)
Q+(x) 0

]
, (153)

here Γ matrices satisfy the Euclidian Dirac algebra and the operator H0 anticommu-
tes with Γc. As a consequence H2 = H2

0 + m2 ≥ m2 and all eigenvalues of H

HΨ = H

[
u
v

]
= λ

[
u
v

]
= λΨ (154)



144 SISSAKIAN A.N., SHEVCHENKO O.YU., SOLGANIK S.B.

satisfy λ2 ≥ m2. Using (151) we obtain the ˇrst-order equations

D+u = (λ + m)v, Dv = (λ − m)u (155)

and by iterating, we ˇnd

DD+u = (λ2 − m2)u, (156)

D+Dv = (λ2 − m2)v. (157)

If u is a solution of (156) with eigenvalue λ2 − m2 = χ �= 0, then D+u is a
solution of (157) with the same eigenvalue χ. However, if u is a zero mode of
D+, in general it is not a zero mode of D. Every solution of (156) or (157)
yields two solutions of (154) if λ �= ±m and one if λ = ±m, and consequently
the Dirac problem (154) is equivalent to (156), (157).

The fermion number operator has the form (for discussion on fermion number
deˇnition see beginning of section 8)

N =
1
2

∫
dx

[
Ψ+(x), Ψ(x)

]
. (158)

At the time t = 0 the second quantized fermion ˇeld operator can be expanded as

Ψ(x) =
∑

n

bnωn(x) +
∑

n

d+
n φn(x) +

∫
dk

(
bkωk(x) + b+

k φk(x)
)
, (159)

where ωn(x) and φn(x) are the positive and negative energy bound state solutions
of the eigenvalue equation

Hψn = λnψn, (160)

and ωk(x) and φk(x) are the positive and negative energy continuum solutions.
Thus, the fermion number operator can be rewritten as follows

N = N0 −
1
2
ηH , (161)

where we have deˇned

N0 =
∑

n

[
b+
n bn − d+

n dn

]
+

∫
dk

[
b+
k bk − d+

k dk

]
,

ηH =
∑

k

sgn(λk). (162)
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The summation extends over both the discrete and continuum portions of the
spectrum, and if a continuum spectrum is present, we rather write as

ηH =
∫

dλρH(λ) sgn(λ). (163)

Here ρH(λ) is the spectral density function of the Hamiltonian H , and we may
express it in terms of its even and odd parts:

ρH(λ) =
1
2

[ρH(λ) + ρH(−λ)] +
1
2

[ρH(λ) − ρH(−λ)] = τH(λ) + σH(λ). (164)

If we substitute it in (163) we obtain

ηH =
∫

dλσH(λ) sgn(λ) (165)

since only the odd part of ρH(λ) can contribute to ηH . So, ηH yields the differ-
ence in the number of positive and negative energy eigenstates of the Hamiltonian
H , and thus it is a measure of its spectral asymmetry. However, the sum is not
absolutely convergent and it needs to be regulated: the AtiyahÄPatodiÄSinger η
invariant of the Hamiltonian H is deˇned by

ηH(s) =
∑

k

sgn(λk)|λ|−s =
∫

dλσH(λ) sgn(λ)|λ|−s. (166)

For a large class of Hamiltonians the residue at s = 0 vanishes, and we assume
that s = 0 is a regular point of ηH(s), so we can deˇne

ηH = lim
s→0

ηH(s) =
∑

k

sgn(λk) ≡
∫

dλσH (λ) sgn(λ). (167)

We shall now show how the spectral density ρH(λ) of the Hamiltonian (151)
can be represented in terms of the spectral densities ρDD+(χ) and ρD+D(χ) of the
operators DD+ and D+D, respectively. For this we ˇrst consider the following
Stieltjes transformation of the even part of ρH(λ):∫ ∞

−∞
dλρH(λ)

1
λ2 + z2

= 2
∫ ∞

|m|
dλτH(λ)

1
λ2 + z2

. (168)

Here z2 is an arbitrary complex number which does not belong to the spectrum
of H . Introducing the coordinate representation we obtain

2
∫ ∞

|m|
dλτH(λ)

1
λ2 + z2

=
∫

dx tr〈x| 1
H2 + z2

|x〉

=
∫

dx

(
tr〈x| 1

DD+ + m2 + z2
|x〉 + tr〈x| 1

D+D + m2 + z2
|x〉

)

=
∫

dχ (ρDD+(χ) + ρD+D(χ))
1

χ + m2 + z2
≡ F (m2 + z2). (169)
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Comparing (168) with (169) we conclude that

τH(λ) = |λ|
(
ρDD+(λ2 − m2) + ρD+D(λ2 − m2)

)
. (170)

Similarly, we ˇnd a representation for the odd part of ρH(λ) by considering

2
∫ ∞

|m|
dλσH(λ)

λ

λ2 + z2
=

∫
dx tr〈x| H

H2 + z2
|x〉

=
∫

dx

(
tr〈x| m

DD+ + m2 + z2
|x〉 − tr〈x| m

D+D + m2 + z2
|x〉

)

=
∫

dχ (ρDD+(χ) − ρD+D(χ))
m

χ + m2 + z2
≡ mG(m2 + z2). (171)

We conclude that the odd spectral density, which contributes to (167), is given
by

σH(λ) = m sgn(λ)
[
ρDD+(λ2 − m2) − ρD+D(λ2 − m2)

]
. (172)

Since the fermion number is essentially a Mellin transformation of the odd
spectral density, we ˇnd the following spectral representation for the fermion
number

N = −m

∫ ∞

0

dλ
[
ρDD+(λ2 − m2) − ρD+D(λ2 − m2)

]
=

= −1
2

∫ ∞

0

dχ [ρDD+(χ) − ρD+D(χ)]
m√

χ + m2
=

= −m

π

∫ ∞

0

dωG(m2 + ω2), (173)

where G(m2 + ω2) is deˇned by (171). We shall now show how the axial
anomaly is connected with fermion number. First notice that

tr〈x| m

DD+ + m2 + ω2
|y〉 − tr〈x| m

D+D + m2 + ω2
|y〉 =

= tr〈x|Γc m

H2 + ω2
|y〉. (174)

Further, we get

tr〈x|Γc m

H2 + ω2
|y〉 = i

m

σ
tr〈x|Γc 1

H0 + iσ
|y〉, (175)

where σ =
√

m2 + ω2. Let's now consider

tr〈x|iΓi∂iΓc 1
H0 + iσ

− Γc 1
H0 + iσ

iΓi∂i|y〉 =

= 2iσ tr〈x|Γc 1
H0 + iσ

|y〉 + tr
(

[K(y) − K(x)]〈x|Γc 1
H0 + iσ

|y〉
)

. (176)
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Combining (175) and (176) we then obtain the following trace identity

i
m

σ
tr〈x|Γc 1

H0 + iσ
|y〉 =

m

2σ2
[∂x + ∂y] tr〈x|iΓiΓc 1

H0 + iσ
|y〉 +

+
m

2σ2
tr

(
[K(y) − K(x)]〈x|Γc 1

H0 + iσ
|y〉

)
. (177)

Notice that (177) has the structure of the standard axial anomaly equation for the
Dirac operator H0 + iσ. Thus, when we take x → y limit we need to discuss
two cases:

First, if the space dimension D is odd the second term on the right-hand side
of (177) vanishes, since there are no axial anomaly in this case, and the only
contribution to fermion number gives the ˇrst term (boundary term).

Second, if the space dimension D is even, the second term on the right-hand
side of (177) gives the axial anomaly, and taking in mind (173) we get for fermion
number

N = − 1
2π

∫ ∞

0

dω
m

m2 + ω2

(
2TD +

∫
dSi tr〈x|iΓiΓc 1

H0 + iσ
|x〉

)
, (178)

here TD is the Pontryagin index of the background gauge ˇelds that arises from
the space integral of anomaly term. There is also boundary term, which vanishes
for a trivial gauge background.

Let us consider 2-dimensional case, for the Hamiltonian

H0 = −iσ2 d

dx
+ σ1φ(x). (179)

Since this Hamiltonian can be interpreted as a one-dimensional Dirac oper-
ator, and since there are no anomalies in one dimension, the fermion number is
given by

N = − 1
2π

∫ ∞

0

dω
m

m2 + ω2

∫ +∞

−∞
dx

d

dx
tr〈x|iΓ1Γc 1

H0 + iσ
|x〉 =

=
1
2π

∫ ∞

0

dω
m

m2 + ω2

[
tr〈∞|σ1 1

H0 + iσ
|∞〉 −

− tr〈−∞|σ1 1
H0 + iσ

| −∞〉
]
, (180)

where we have used the representation Γ1 = σ2 and Γc = σ3 of the Dirac algebra.
We assume that the soliton ˇeld φ(x) has the asymptotes φ(±∞) = φ̂±. Taking
in mind that

tr〈±∞|σ1 1
H0 + iσ

| ±∞〉 =
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= tr〈±∞| 1
−σ3∂ − φ(x) − iσ2σ3

√
m2 + ω2

| ±∞〉 =

2 tr〈±∞| φ(x)
∂2 − φ2(x) − m2 − ω2

| ±∞〉 =

= −2φ̂±

∫ +∞

−∞

dk

2π

1

k2 + φ̂2
± + m2 + ω2

, (181)

we ˇnd for fermion number

N = − 1
2π

[
arctan

[
φ̂+

m

]
− arctan

[
φ̂−
m

]]
. (182)

This result [4, 31] is obtained without the use of any speciˇc soliton proˇle.
However, at the presence of nonzero density (µ), fermion number depends not
only on asymptotic properties of soliton proˇle, but also it depends on the local
properties of the soliton proˇle such as the width of the soliton [32].

The result for fermion number at the presence of density and temperature can
be found in [32]. There was studied the Hamiltonian [33]

H0 = σ2 d

dx
+ σ1φ(x) + σ3ε. (183)

This Hamiltonian has the following positive- and negative-energy continuum so-
lutions and a bound state solution (assuming a soliton proˇle which has only one
bound state)

ψkα =
[

[(αE + ε)/2αE]1/2uk

[2αE(αE + ε)]1/2(∂x + φ)uk

]
,

ψs = N0

[
exp[−

∫ x
dx′φ(x′)]

0

]
, (184)

where N0 is a normalization factor, α = ±1 distinguishes positive and negative
energy solutions. In the ground state the soliton charge is deˇned as

Q =
∫ ∞

−∞
dx

∑ [
ρs

i (x) − ρ0
i (x)

]
, (185)

where ρs
i (x) and ρ0

i (x) are the fermion number density at a point x in the presence
and absence of the soliton, due to occupied state i.

The generalization of (185) to ˇnite µ and T is straightforward since we have
a noninteracting sea of fermions

Q(µ, T ) =
∫ ∞

−∞
dx

∑ [
ρs

i (x) − ρ0
i (x)

]
n(εi − µ), (186)
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where n(ε−µ) = [exp[β(ε − µ)] + 1]−1 is the Fermi distribution function. Thus,
substitution of ρ yields

Q =
∫ ∞

−∞
dx

∑
α=±1

∫ ∞

−∞

dk

2π
(|us

k|2 − |u0
k|2)n(αE − µ)

+
∑

α=±1

∫ ∞

−∞

dk

2π

[
(∂x|us

k|2 + 2|uk|2φ)|x=+∞
x=−∞

4αE(αE + ε)

]
n(αE − µ) + n(ε − µ). (187)

The square bracket in the second term of the above expression can be simpliˇed
further using (∂x|us

k|2 +2|uk|2φ)|x=+∞
x=−∞ = 2. For T = 0 and µ = 0 the ˇrst term

is easily evaluated using the completeness properties of uk. But for ˇnite µ we
have to choose a soliton proˇle. So, we take φ(x) = φ0 th(φ0x), for which the
eigenfunctions us

k(x) are known exactly [33] to be

uk(x) = − exp(ikx)
[

thφ0x − (ik/φ0)
1 + (ik/φ0)

]
. (188)

Substitution of the uk in (187) yields

Q(µ, T ) = −2φ0

∑
α=±1

∫ ∞

−∞

dk

2π

n(αE − µ)
k2 + φ2

0

+

+2φ0

∑
α=±1

∫ ∞

−∞

dk

2π

n(αE − µ)
2αE(αE + ε)

+ n(ε − µ). (189)

In particular, this integrals can be evaluated exactly for zero temperature and
ˇnite µ to get [32]

Q(µ, 0) = − sgn(µ)Q0(ε) − θ(µ)G(kF , ε) + θ(−µ)G(kF ,−ε) (190)

for |µ| > m, where

Q0(ε) = − 1
π

tan−1

[
φ0

ε

]
,

G(kF , ε) =
w

π
tan−1

[
φ0tan[12 tan−1(kF /m)]

m + ε

]
,

kF = (µ2 − m2)1/2 , m = (φ2
0 + ε2)1/2.

As we have seen above, the boundary term is dependent on soliton proˇle at
ˇnite density. Thus, the generalization of the trace identities on ˇnite density and
temperature is hardly possible because of nontopological part of it.

At ˇnite temperature and zero density trace identity still holds and one has
for fermion number [2, 4]
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〈N〉β = − 1
2β

+∞∑
−∞

m

m2 + ω2
n(∫

dx(anomaly) +
∫

dx∂i tr〈x|iΓiΓc 1
H0 + i

√
m2 + ω2

n

〉
)

. (191)

Now we'll prove that chiral anomaly doesn't depend on temperature at any
even dimension. The second term at left-hand side of (191) is a surface term,
which doesn't contribute to topological part of the trace identity [2, 4]. So, we
won't consider nontopological part of the trace identity, i.e., nontopological part
of fermion density and surface term. Thus for topological part trace identity takes
the form

〈N〉topological
β = − 1

2β

+∞∑
−∞

m

m2 + ω2
n

(∫
dx(anomaly)

)
. (192)

The result for left-hand side of Eq. (192) we know in arbitrary odd dimension.
Really, from (106) we have

〈N〉CS
β = 〈N〉topological

β =
δIC.S

eff

gδA0
. (193)

By using the fact that

1
2β

+∞∑
n=−∞

m

ω2
n + m2

=
1
4

sh(βm)
1 + ch(βm)

, (194)

one can see that the only possibility to reconcile left and right sides of Eq. (192) is
to put temperature independence of anomaly. Thus, we proof that axial anomaly
doesn't depend on temperature in any even-dimensional theory.

Moreover, now we can generalize trace identity on arbitrary ˇnite density.
Really, taking in mind (106) and (193) one can see

〈N〉CS
β,µ = −1

4
th(βm)

1
1 + ch(βµ)/ ch(βm)

∫
dx (anomaly) , (195)

where 〈N〉CS
β,µ Å odd part of fermion number in D-dimensional theory at ˇnite

density and temperature, (anomaly) Å axial anomaly in (D − 1)-dimensional
theory. On the other hand, as we have seen above, the anomaly doesn't depend
on µ in 2- and 4-dimensions and doesn't depend on T in any even-dimensional
theory. Our comprehension of the problem allows us to generalize these on arbi-
trary even dimension. Indeed, anomaly is the result of ultraviolet regularization,
while µ and T don't effect on ultraviolet behavior of a theory. Taking in mind
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(195) and that at ˇnite density

1
2β

+∞∑
n=−∞

m

ω2
n + m2

=
1
4

th(βm)
1

1 + ch(βµ)/ ch(βm)
(196)

we can identify 〈N〉topological
β,µ and 〈N〉CS

β,µ. So, we get generalized on ˇnite
density trace identity

〈N〉CS
β,µ = 〈N〉topological

β,µ = − 1
2β

+∞∑
−∞

m

m2 + ω2
n

(∫
dx(anomaly)

)
. (197)

Let us take, for example, 3-dimensions. We know that chiral anomaly in
2-dimensions has the form ∫

d2x
e

4π2
εijFij , (198)

substituting this in (197) we'll get for fermion number

〈N〉CS
β,µ =

e

16π2
th(βm)

1
1 + ch(βµ)/ ch(βm)

∫
d2xεijFij . (199)

Covariantizing fermion number we get for the ChernÄSimons term in action

ICS
eff = th(βm)

1
1 + ch(βµ)/ ch(βm)

g2

16π

∫
x

eµνα tr (AµFνα) . (200)

Really, we've seen that only zero modes contribute to P -odd part in contrast
to P -even part which is contributed by all modes. Therefore, index theorem and
trace identities hold only for parity odd part of fermion number. Thus, the main
result of this section is Eq. (197) which connects the ChernÄSimons term and
chiral anomaly in arbitrary-dimensional theory at ˇnite density and temperature.

10. CONCLUSIONS

Thus, there is obtained ˇnite temperature and density in�uence on the ChernÄ
Simons term generation in any odd-dimensional theory both for Abelian, and for
non-Abelian case. It is very interesting that µ2 = m2 is the crucial point for
ChernÄSimons at zero temperature. Indeed, it is clearly seen from (106) that
when µ2 < m2, µ in�uence disappears and we get the usual ChernÄSimons term
ICS
eff = πW [A]. On the other hand, when µ2 > m2, the ChernÄSimons term

disappears because of nonzero density of background fermions. The coefˇcient
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at the ChernÄSimons term is the same in any odd dimension. It must be stressed
that at m = 0 even negligible density or temperature, which always take place in
any physical processes, lead to vanishing of the parity anomaly.

It is shown that the chiral anomaly is not in�uenced by medium effects such
as chemical potential and temperature in any even-dimensional theory. Moreover,
even if we introduce conservation of chiral charge on quantum level, the chiral
anomaly arises and isn't affected.

The appearance of the ChernÄSimons number in even-dimensional theories
is discussed under two types of constraints. So, it is shown both for conserved
charge, i.e., ˇnite density of the background fermions, and for conserved ax-
ial charge what corresponds to conservation of the left(right)-handed fermions
asymmetry in the background.

The topological part of the trace identity is generalized on ˇnite density.
Thus, the connection between the ChernÄSimons term and chiral anomaly at
ˇnite density and temperature is obtained in arbitrary dimensional theory.

In conclusion we would like to touch the problem, which has attracted re-
cently a wide interest [34, 35]. This is gauge invariance of the effective action
under large gauge transformations. Really, the ChernÄSimons term coefˇcient
has to be ªtopologically quantizedª for gauge invariance of the effective action
under large gauge transformations. But as we have seen above (56), (57), (58),
even in nonperturbative calculations of ChernÄSimons in even dimensions (due
to existence of the chiral anomaly), it gets chemical potential (temperature) as
a coefˇcient, which is not an integer function. This fact is hardly understand-
able. One can treat these that density or temperature just break invariance under
large gauge transformations, leaving action invariant under local ones. On the
other hand, one can hope that the whole effective action will be gauge invari-
ant [34,35]. But, for example, essentially nonperturbative and simple calculations
in one dimension [34] do not give understandable contradiction between fermion
number and effective action. That is the fermion number here is not a functional
derivative of the effective action, what is very strange.

The amazing fact is that at zero temperature and ˇnite density the ChernÄ
Simons term coefˇcient does not break gauge invariance. Indeed, theta function
gives us 0 or 1 as the coefˇcient, and we have two topological domains µ2 > m2

and µ2 < m2 connected by large gauge transformations.
Thus, this area is yet an open ˇeld for research.
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