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TOPOLOGICAL EFFECTS IN MEDIUM
A.N.Sissakian, O.Yu.Shevchenko; S.B.Solganik™

Joint Institute for Nuclear Research, Dubna

Developing Fock’s ideas, we consider here the topological effects in the gauge field theory. Two
closely related topological phenomena are studied at finite density and temperature. These are chiral
anomaly and the Chern-Simons term. It occurs that the chiral anomaly doesn’t depend on density
and temperature. The Chern—Simons term appearance in even dimensions is studied under two types
of constraints: chiral and usual charges conservation. In odd dimensions, by using different methods,
it is shown that u2 = m? is the crucial point for Chern-Simons at zero temperature. So when
u? < m?2, p influence disappears and we get the usual Chern—Simons term. On the other hand, when
p? > m?2, the Chern-Simons term vanishes because of nonzero density of background fermions. The
connection between parity anomalous Chern—Simons in odd dimension and chiral anomaly in even
dimension is established at arbitrary density and temperature. These results hold in any dimension
both in Abelian and in non-Abelian cases.

P 3BuB 1 ugen Mok , MBI P CCM TPHB €M 371eCh ToHojorndeckne 3heKTsl B TEOPHH K THOpPO-
BOYHBIX Tofeit. M3yd 10TCs 1B TECHO CBA3 HHBIX TONONOTMYECKMX 3(h(heKT IPH KOHEUYHBIX IIIOTHOCTH
U TeMmriep Type. DTO KUp JIbH g HOM Jiud M 4epPH-C HMOHOBCKMIA uneH. OK 3bIB €TCs, YTO KHUp JIbH 5

HOM JIMSl HE 3 BHCHUT OT TE€MIIEp TYpHl M IUIOTHOCTU. I'eHep 1md uyepH-c HIMOHOBCKOrO 4ileH M3yd -
€Tcsl B YETHOMEPHBIX MPOCTP HCTB X NPH JABYX THII X CBA3ed, OTP X IOIIMX COXP HEHHE KHUP JIbHOrO
U OOBIYHOTO 3 PSNOB. B HEYEeTHOMEPHBIX NPOCTP HCTB X MPU MCIHONB30B HUM P 3JMYHBIX METONOB
oK 3bIB etTcsl, uto p? = m? gBideTcs KPUTHUECKOl TOUKOfi ISl YepH-C HMOHOBCKOrO WieH NpH
HyneBoil Temnep Type. T K, B ciyd €, korx p? < m?2, p-3 BUCHMOCTh HCUe3 €T M MBI IONYY eM
0ObIuHBIT uepH-c fiMoHOBCKHMil wien. C pyroii cTopomsl, Kory p2 > m?, depH-c HMOHOBCKHIl dlieH
ucye3 er O Tox ps HEHYIeBOH IUTOTHOCTH (POHOBBIX (DEPMHOHOB. YCT H BIIMB €TCS CBSI3b MEXIY
P- HOM JIBHBEIM YepH-C HMOHOBCKMM WJIEHOM B HEYETHOMEPHBIX M KHUp JILHOM HOM JIMell B YeTHO-
MEpHBIX TIPOCTP HCTB X HPU IPOU3BOJILHBIX INIOTHOCTSAX M TeMIIEp Type. DTH Pe3yabT Thl UMEIOT CHITY
npu Mo60i p 3MEPHOCTH K K B GelieBoM, T K U B He GelleBOM CITyd sX.

1. INTRODUCTION

Famous Russian theorist V.A. Fock was one of the first physicists who
realized [1] the whole importance of topological phenomenons both in gauge
field theory and in general relativity (which, as is well known, may also be
viewed as a gauge theory). Namely this interesting subject is the topic of our
review article.

*E-mail: shevch@nusun.jinr.ru
**E-mail: solganik@thsunl. jinr.ru
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There is a lot of physical processes where density and temperature play
essential role. These are processes occurred under large density background, for
example, in quark-gluon plasma or in neutron stars. On the other hand, there exist
processes where even negligible density or temperature may give rise to principal
effects. One of the most interesting areas, where density and temperature influence
could be considerable, is the area of topological effects. Here, even negligible
density or temperature could change the topology of the problem as a whole,
what could lead to considerable influence. In particular, here we are interested
in the Chern—Pontriagin and the Chern—Simons secondary characteristic classes.
That corresponds to chiral anomaly in even dimensions and to Chern—Simons
(parity anomaly) in odd dimensions. Both phenomena are very important in
quantum physics. So, chiral anomalies in quantum field theory have certain direct
applications to the decay of 7 into two photons (79 — <), in the understanding
and solution of the U(1) problem and so on. On the other hand, there are many
effects caused by the Chern—Simons secondary characteristic class. These are, for
example, gauge particles mass appearance in quantum field theory, applications
to condense matter physics such as the fractional quantum Hall effect and high
T, superconductivity, possibility of free of metric tensor theory construction, etc.

It must be emphasized that these two phenomena are closely related. As was
shown (at zero density) in [2—4] the trace identities connect even dimensional
anomaly with the odd dimensional Chern—Simons. The main goal of this article
is to consider these anomalous objects at finite density and temperature.

It was shown [5,6] in a conventional zero density and temperature gauge
theory that the Chern—Simons term is generated in the Eulier—Heisenberg effective
action by quantum corrections. Since the chemical potential term g% is
odd under charge conjugation we can expect that it would contribute to P-
and C'P-nonconserving quantity — the Chern—Simons term. As we will see,
this expectation is completely justified. The zero density approach usually is
a good quantum field approximation when the chemical potential is small as
compared with characteristic energy scale of physical processes. Nevertheless,
for investigation of topological effects it is not the case. As we will see below,
even a small density could lead to principal effects.

In the excellent paper by Niemi [2] it was emphasized that the charge density
at © # 0 becomes nontopological object, i.e., contains both topological part
and nontopological one. The charge density at u # 0 (nontopological, neither
parity odd nor parity even object)* in QQFE D3 at finite density was calculated and
exploited in [8]. It must be emphasized that in [8] charge density (calculated in
the constant pure magnetic field) contains as well parity odd part corresponding to

*For abbreviation, speaking about parity invariance properties of local objects, we will keep in
mind symmetries of the corresponding action parts.
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the Chern—Simons term, so as parity even part, which can’t be covariantized and
don’t contribute to the mass of the gauge field. Here we are interested in finite
density and temperature influence on covariant parity odd form in action leading
to the gauge field mass generation — the Chern—Simons topological term. Deep
insight on these phenomena at small densities was done in [2,4]. The result for
the Chern—Simons term coefficient in QFE D3 is

thB0m — ) + thy flm + )|

see [4], formulas (10.18). However, to get this result it was heuristically supposed
that at small densities index theorem could still be used and only odd in energy
part of spectral density is responsible for parity nonconserving effect. Because of
this in [4] it had been stressed that the result holds only for small ;. However,
as we’ll see below this result holds for any values of chemical potential. Thus,
to obtain trustful result at any values of y one has to use transparent and free of
any restrictions on p procedure, which would allow one to perform calculations
with arbitrary non-Abelian background gauge fields.

It was shown at zero chemical potential in [2,4, 5] that the Chern—Simons
term in odd dimensions is connected with chiral anomaly in even dimensions
by trace identities. As we’ll see below generalization of the trace identity on
nonzero density is not trivial. It connects chiral anomaly with the Chern—Simons
term, which has p- and T-dependent coefficient. We will see below that despite
chemical potential and temperature give rise to a coefficient in front of the Chern—
Simons term [9] they don’t influence chiral anomaly [10,11]. Indeed, anomaly is
a short distance phenomenon, which should not be affected by medium (density
and temperature) effects, or more quantitatively, so as the anomaly has ultraviolet
nature, temperature and chemical potential should not give any ultraviolet effect
since distribution functions decrease exponentially with energy in the
ultraviolet limit.

The paper is organized as follows. In section 2 we briefly discuss the intro-
ducing of the chemical potential, chiral chemical potential and temperature to a
theory. Section 3 is devoted to qualitative consideration of chiral anomaly in 2
and 4 dimensions. The rigorous proof of density and temperature independence
of axial anomaly is presented in section 4. Also, it is shown in 2-dimensional
Schwinger model that chiral anomaly is not influenced not only by chemical po-
tential w, but also by Lagrange multiplier s at the constraint of chiral charge
conservation. Section 5 is concerned to the Chern—Simons term in even dimen-
sions and its reduction to odd dimension in high temperature limit. In section 6
we obtain the Chern—Simons term in 3-dimensional theory at finite density and
temperature by use of a few different methods. In section 7 we evaluate Chern—
Simons term in the presence of nonzero temperature and density in 5-dimensional
theory and generalize this result on arbitrary non-Abelian odd-dimensional theory.
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Nonrelativistic consideration is presented in section 8. In section 9 we generalize
trace identity on arbitrary density of background fermions on the basis of the
previous calculations. Section 10 is devoted to concluding remarks.

2. CHEMICAL POTENTIAL

As is well known, chemical potential can be introduced in a theory as La-
grange multiplier at corresponding conservation laws. In nonrelativistic physics
this is conservation of full number of particles. In relativistic quantum field theory
these are conserving charges. The ground state energy can be obtained by use of
variational principle

(" Hy) = min M
under charge conservation constraint for relativistic equilibrium system

(1*Qu) = const, ©)

where H and Q are Hamiltonian and charge operators. Instead, we can use
method of undetermined Lagrange multipliers and seek absolute minimum of
expression

(W (H — pQ)), 3)

where 1 is Lagrange multiplier. Since ) commute with the Hamiltonian, <Q) is
conserved.

On the other hand, we can impose another constraint, which implies chiral
charge conservation

(¥*Qs1) = const, 4

or in Lagrange approach we have
(" (H — £Qs)¢) = min, 5)

where « arises as Lagrange multiplier at <Q5> = const constraint. Thus,
corresponds to nonvanishing fermion density (number of particles minus number
of antiparticles) in background. Meanwhile, « is responsible for conserving
asymmetry in numbers of left- and right-handed background fermions.

It must be emphasized that the formal addition of a chemical potential in
the theory looks like a simple gauge transformation with the gauge function
ut. However, it doesn’t only shift the time component of a vector potential but
also gives corresponding prescription for handling Green’s function poles. The
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correct introduction of a chemical potential redefines the ground state (Fermi
energy), which leads to a new spinor propagator with the correct e prescription
for poles. So, for the free spinor propagator we have (see, for example, [12,13])

]B—l—m
(Po + i€ sgnpg)? — p2 — m?’

G(pip) = (©)
where p = (po+pu, p). Thus, when 1 = 0 one at once gets the usual ¢ prescription
because of the positivity of pg sgnpg. In the presence of a background Yang—
Mills field we consequently have for the Green function operator (in Minkovski
space)

N 1
G=(nr—m)— - , 7
b ) (v7)? — m? + ie(po + 1) sgn(po)
where 7, = 7, + 1oy , T = pu — gA,(T).
In Euclidian metric one has
]B +m
Gpip) = ———=—> (8)

where p = (po + iy, D).

For temperature introduction we will use a standard Matzubara approach valid
for systems in equilibrium. That is Euclidian generating functional with temper-
ature instead of time, and antiperiodic conditions on fermion fields (0, %) =
—1(B, £) and periodic for boson ones A(0,%) = A(8,Z) . Thus, for transfer to
finite temperature case we will use

B
/de—>i/ dxo/dD_lx,
0

[ =52 e

n=-—oo

together with pg — w,, = (2n 4 1)7/3. Here, the chemical potential also can be
introduced by adding it to a Matzubara frequency py — w, = (2n+ 1)7/8 + iu.

3. CHIRAL ANOMALY. QUALITATIVE CONSIDERATION

First of all let us consider simple but rather intuitive than rigorous derivation
of axial anomaly [14]. Let us start with 2—dimensional right-handed Weyl fermion
theory coupled to a uniform electric field A; = E in the temporal gauge. The
one component right-handed Weyl equation for ¢)g = 1/2(1 + 75 )% reads

ipp(z) = (—idy — AY)Yr(z). 9)
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The dispersion law is w(P) = P. Corresponding to the classical equation of a
charged particle in the presence of an electric field where P = ¢E, the acceleration
of the right-handed particles in quantum theory is given by w = P = ¢E.
The creation rate of the right-handed particles per unit time and unit length is
determined by a charge of the Fermi surface, which distinguishes the filled and
unfilled states. Let the quantization length be L; the density of states per length
L is L/27 and the rate of change of right-handed particle number Ng is

Ng = L™ YL/27)é = (e/27)E. (10)

This particle creation is the axial anomaly. Consequently the chiral charge Qg is
not conserved and Qg = Nr = (e/2m)E. It follows from an analogous reasoning
that the annihilation rate of left-handed particles with the dispersion law w = —P
is

Np = —(e/27)E. (11)
Therefore the anomaly for the Dirac particles is
Ng — N, = (e/n)E, (12)
which gives Qs = (¢/n)E.

In 4 dimensions we first calculate the energy levels of the right-handed Weyl
fermion in the presence of the applied uniform magnetic field along the third
direction given by

A =Hz' and A" =0 otherwise.
The solution to the equation for two-component right-handed field ¢ r of the form
[(0/0t — (P — eA)o] pr(x) =0 (13)
is expressed in terms of a solution of the auxiliary equation
[i0/0t — (P —eA)o][i0/0t + (P —eA)o] P =0 (14)
as
Yr =[i0/0t+ (P — eA)o] . (15)

From Eq. (14) the energy and the P, Ps; eigenfunction satisfies an equation of
the harmonic oscillator type

[—(0/0")? + (eH)*(z" + P2/eH) + (Ps5)* + eHo| & = w’®,
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where o = £1. The energy levels are given by the Landau levels,

w(n,o, P3) =+ [eH(2n +1)+ () + eHa} 1/2 , (16)
(n=0,1,2,...)
except for the n = 0 and ¢ = —1 mode, where
wn=0,0=—1,P;) ==£P;. a7

The eigenfunction takes the form
®,»(z) = Nno exp(—iP2x2 — 2P3x‘3)
exp [—1/2eH (z1 + Py/eH)?| Hy(z1 + P2 /eH)é(0), (18)

with Nno as the normalization constant. Here {(o) denotes the eigenfunctions

of the Pauli spin o3 which can be taken as £(1) = ((1)) and £(—1) = ((1)) The

solution of (14) is obtained by inserting (18) into (15). This leads to the relations
gH_LU:_l) - (NnJrl,U:fl/Nn,o':l) g%U:D y = 07 ]-a

and

(n=00="1D — 0, with w = —P;.

Thus the energy levels of ¥ are (16) and

w(n=0,0 =—1,P3) = Ps. (19)

Next a uniform electric field is turned on along the third direction parallel to
H. As for the zero mode (n = 0,0 = —1) the dispersion law is the same as that
for 2 dimensions and the creation rate of the particles is calculated in a similar
manner. It should be noted that when E varies adiabatically there is no particle
creation in the n = 0 modes. The density of the state per length L is LeH /4>
and the creation rate is given by

Ng = L™ YLeH/4n?)i(n = 0,0 = —1, P3) = (¢?/4n?)EH, (20)

which equals to Qxr.
For the left-handed fermions the annihilation rate of the left-handed particles
is

Np = —(e?/47*)EH, 1)

which is Q7.
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We then have for the Dirac field
Qs = Qr—Qr = (¢*/2n*)EH, (22)

that is the chiral anomaly.

Now we can easily estimate influence of background density on the anomaly
in this approach. From the above consideration we can see that the anomaly
is proportional to the time derivative of the zero mode energy. Taking into
account that nonzero fermion density influence just reduces to the shift of the
Landau levels on p which doesn’t depend on time, we can conclude that finite
density doesn’t influence the chiral anomaly. The same arguments are just for
the Lagrange multiplier at the axial charge s, the only difference is that x makes
shift for left- and right-handed fermions with opposite sign. So, until yu (k) is
time independent it won’t affect the chiral anomaly. We would like to stress that
here there was made adiabatic approximation, when we turn on electric field. So,
this consideration is just a plot and it needs a strict proof.

4. CHIRAL ANOMALY AT FINITE TEMPERATURE AND DENSITY

4.1. Two Dimensions. Since anomaly term originates from the ultraviolet
divergent part, it is not expected to be changed by the temperature. Indeed, it
was shown in several papers (see [10] and references therein). Moreover, the
same can be said about the influence of background fermion density that has been
checked in the works [11].

To clear understand the nature of anomaly p independence we’ll first consider
the simplest case — 2-dimensional QED by the use of the Schwinger nonpertur-
bative method [16]. Thus, following Schwinger one writes

JH = —ig tr [V”G(w, 7') exp <—i9 / x df“’%(&)ﬂ 7 (23)

’
r —X

where G(z, :c') is a propagator satisfying the following equation

(0% —igAu(x)) Gz, ) =6(x—2). (24)

Further we use Schwinger’s anzats

’

Glr,a') = G (@,a) exp [ig(o(x) — 6(a))] . (25)

where GO(z,2) is a free propagator

/

7“8§G0(m,x/) =6z —x).
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Thus, for ¢ we can write v#0,,¢ = " A,. At finite density GO(z,z') has the
form

2 ’
GO(z,2') = / dD_ in(a—a') : L =
(2m)? p? +ie(po + 1) sgnpo

d’p ’ 1
- 4 2P gip(z—az) —
”4/(2@26 PP ic

_2/”"@ T dpo

09(—130 sgnpo) ePE=T )G . (26)

Coo 2T J_o 2m

p? +ie

So, beside the usual zero density part yu—dependent one appears. Further, we have
to regularize current by use of symmetrical limit z — z . After some simple
algebra it is clearly seen that all y—dependent terms after taking off the limit will
disappear. Thus, contribution to the current arises from the Schwinger part only,

SO
2 oAV
JH = Zg_ (5#«” _ 99 )Au

o 02
2 o QU
g v _pa0%0
JE = i (6“ — et 5 )Al,, 27

and we get usual anomaly in chiral current

2 2
Bt =0, 9,J" = ig—WeH”aHAV - ZZ—WF (28)
It is natural to introduce Lagrange multiplier « at corresponding constraint
to support the conservation of the Q° charge, i.e., the difference of left and
right fermion densities Q; — Q. Since x and p are Lagrange multipliers at
corresponding conservation laws they, in principle, have to influence some way a
symmetry violation by a quantum corrections, i.e., anomalies. However, the rather
amazing situation occurs. The demand of chiral charge conservation (instead of
the usual charge conservation) on the quantum level doesn’t influence the chiral
anomaly. Really, in 2-dimensions introduction of Lagrange multiplier « at the
chiral charge conservation gives the term x1)y°v%) = k1)y'1) in Lagrangian. So,
k affects in the same way as p, i.e., k doesn’t influence the chiral anomaly (it is
also seen in direct calculations, which are similar to presented above for the case
with p). That could be explained due to ultraviolet nature of the chiral anomaly,
while x (u) doesn’t introduce new divergences in the theory.
From the calculations it is clearly seen the principal difference of the chiral
anomaly and Chern—Simons. The ultraviolet regulator — P exponent — gives
rise to the anomaly, but (as we’ll see below) doesn’t influence Chern—Simons.
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Thus, it is natural that the anomaly doesn’t depend on u, x, and T' because it
has ultraviolet regularization nature, while neither density nor temperature does
influence ultraviolet behavior of the theory. The general and clear proof of axial
anomaly temperature independence in any even dimension will be presented in
section 9 on the basis of the trace identities.

4.2. Four Dimensions. In [11] direct calculations of axial anomaly at finite
temperature and density in 4-dimensional gauge theory were performed by using
imaginary and real time formalism by Fujikawa method [15]. Here we present
the derivation of the axial anomaly using the elegant Fujikawa procedure. Con-
sidering a system of fermions and gauge bosons in thermodynamical equilibrium
at temperature 7' = 3~ and nonzero chemical potential y in the imaginary time
formalism one reads the generating functional of correlation functions

21y, 0] = / DADDEDYDY

B
exp [/ dr/d3a: (ﬁ(f, T+ LAY + 1;77 + ¢ﬁ) ) (29)
0

where
L(Z,7)=Ly+Lym+Le+ Lar

represents the effective Lagrangian density of the SU(N) Yang-Mills field A =
= (AJ) coupled to fermion fields ¢ = (¥2), ¢ = (1%) and to Faddeev—Popov
ghost fields ¢ = (ca), ¢ = (¢a). 1= (n%), 7 = (71%) and J = (J}) are external
sources. Af;, Jg, Ca, Cq are periodic in 7 with period 8, while ¢, _g, ne, ne
are antiperiodic. Upper latin indices and lower Greek ones indicate flavor and
SU(N) internal (color) indices respectively, and j = 1, ..., N2 — 1, the number of
standard SU (N generators (T7). Ly s and L, are standard Lagrangian densities
for Yang—Mills bosons and ghosts, while L5 describes gauge fixing. On the
other hand, one has

Ny
Ly =) Ui P, —m e

a=1
(lower color indices being also implicitly contracted), with N; the number of
flavors,

it =i+ py
and
Dr =in(0/01 + As) —¥"(0/02" + Ap),

where iA, = gT7 A% and the Wick rotation has been performed in the imaginary
time formalism (zg — 7 = ixg, Ag — A4 = —iAp) so that Pt becomes
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Hermitian. It is considered a chemical potential u* for each flavor (there is no
flavor mixing).

Following Fujikawa [15] we are interested in the chiral transformation of the
fermion fields:

P — explid(Z, )50, P& — % explid(Z, T)7s),

which produces a change in the fermion measure DyYDy — CDyD1), giving
rise to the anomaly factor in the chiral current conservation law, C, which is
the direct finite temperature and density extension of the zero temperature and
density factor appearing in [15]. The chemical potential term is invariant under
the above chiral transformation. Then the only possible finite temperature and
density effects must be contained in C'. In order to display them, let us expand

VT T) =Y andl(#7) P& T) =Y bttt (&, 7),

an,Bn being elements of the Grassmann algebra. On the other hand, ¢%(Z, ),
which is antiperiodic in 7, is an eigenfunction of the Hermitian operator I)7. , =
=Pr + p, ie, Pt 0% = Andy, (A, being real and color indices being

omitted) and it fulfills
B
/ dT/d?’mg* ¢ = .
0

Moreover, it can be Fourier—expanded as

- 1 . iwnT —ikT ca (L
(@)= g > /d3ke e R k), (30)
j=—o00
2
o = ( ’I’L—l—l)ﬂ'.
B

Then, the measure D1)D1) becomes IL, dan 1, db,,, and by extending directly
the zero temperature and density calculations [15], one finds

B
C =exp l—Qz’/ dT/d‘%é(f, 7)a(Z, T)] (31)
0

with

a(@ ) = 303 60 (@ )b (@ 7). (32)
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The finite temperature and density anomaly a(Z, 7) can be regularized by extend-
ing again Fujikawa’s trick as

a(Z,7) = lim ZZ¢ (Z,7)7vs exp [— 72(17%7“)2] b (L, 7), (33)

M—o0
a=1 n

and by changing the basis vectors to “plane waves” with (30). We remark that
D7, is equivalent to )7 provided that, in the latter, one replaces A4 by Ay —ip®.
This replacement leaves F),, invariant (F,, = 9,4, — 0, A, + [4,, A,]): notice
that p is constant and [p®,T7] = 0 for a = 1...Ny, j = 1...N? — 1. One obtains

a(Z,7) = Ny Hin tr(%{[ 1) )W;
3 2 2
N

where the trace tr runs over both internal and ~ matrices indices.

The infinite series on the right-hand side of (34) displays what is, quite likely,
the most important difference between the actual finite temperature and density
case and the zero temperature and density one treated in [15]. We recall the
following formula valid for any M:

ﬁ Z exp{ M262(2n+1)} /jo dQ—];_OeXp [— (%)2] (35)

n=-—o00 ©

A simple derivation of (35) can be found in [25].

By using (35) in (34) and taking the trace over the + matrices, we arrive at
the final formula:
Nf
1672

1
tr (2 VPR AFW) : (36)

where the trace now runs only over internal indices. We can see that there are
no finite temperature and density corrections to the chiral anomaly, as we have
expected from the previous considerations.

5. CHERN-SIMONS IN EVEN DIMENSIONAL THEORY

It will be natural to introduce in Lagrangian the classical conservation law
— the conservation of the Q° charge, i.e., the difference of left and right fermion
densities Q7 — Qr. Thus the Lagrangian with constraint on )5 has the form

L= é trFF + (z’é —gA+ z'/vyo'y5) 1. (37)
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Thus, if we will deal with such a Lagrangian we must get theory in which Q°-
charge is conserved. To get effective action only background field dependent
we have to take over di dv) integration. There are two ways to do it: one can
calculate straight forward by using the perturbation theory and get the effective
action, another one is proper time method. Certainly, we have to take into
account that at high temperatures dimensional reduction takes place. Thus, for
example, vacuum polarization tensor in reduced — 3-dimensional — theory can
be written as

() = (9i0° — pips) TD (9?) + ieijrp™ P (p2) + pip; 1O (%), (38)

The part of the vacuum polarization tensor containing Levi—Chivita tensor
ie;jrp"T1?) (p?) gives rise to the Chern—Simons term.

It is convenient to rewrite Lagrangian in more appropriate form using pro-
jection operators

L= % trFF + 9y, (ié Y z'mo) vr + Un (ié —gA- im‘)) bR, (39)
where we have used [ = P, + P_, =P, — P_, P, = ”2—75, P_= 1;75.
So, now we can evaluate J;, and Jgr separately. One can easily see that the
Lagrangian we have got is absolutely analogous to finite temperature and density
Lagrangian with left(right)-handed fermions which was considered in [17] using
perturbative expansion.
Thus we can immediately write the answer for Jr, and Jg currents

K

WA (40)

Hom = &)

where W[A] is the Chern—Simons term. And consequently for full current and
chiral current we’ll get correspondingly

JH =0, (41)
Jb = 2%5W[A]. (42)

It is also possible to obtain Chern—Simons at zero temperature for £ # 0 with
clear physical sense (see, for example, [18] where chiral fermions are considered at
finite density and [14] where Weyl particles are considered). In the 2-dimensional
Schwinger model there is chiral anomaly

1
), = = . (43)

It could be derived by using the picture of energy levels crossing, see for example
[14,19]. Here, we will exploit this method for consideration of the Chern—Simons
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term. Thus we will consider the Schwinger model (37) on a ring with periodic
for A,, and antiperiodic for ) boundary conditions

Az = —L/2,t) = Az = L/2,1),
Y(z=-L/2,t) = —¢(z = L/2,t). (44)

Thus, fields A and ¢ could be expanded in Fourier modes exp(ikx2m/L) for
bosons and exp(i[k + 1/2]x27 /L) for fermions. The Lagrangian (37) is invariant
under local gauge transformations:

P — 1p @ A, — A, + Oua(z,t).

It is easily seen that due to local gauge transformations, we can put all modes
of A; to be zero except for the zero-mode. Thus, we can consider A; to be
z-independent. There exists another type of gauge transformations (large gauge
transformations)

where n is an integer number. Nevertheless, this gauge is not periodic, it satisfies
condition (44). Really, dcar/Ox = const and Ja/Ot = 0, thus periodicity of A,
is conserved, the same is also true for 7). So, we can consider the model on
the circle [0,27/L]. Further, we use adiabatic approximation, putting that A;
is independent of time (to a slight time dependence we will turn on later), and
that Ag = 0. This adiabatic approximation is quite natural from the physical
point of view, see for example elegant consideration by Shifman [19]. We now
calculate number density of real left(right) fermions ny,g[A1] and fermionic
energy density €7,/ r[A1], assuming that number density ny,/ at Ay = 0 is fixed.
Note that system with fixed ny /g can be prepared by inserting fermions into the
box, which is initially empty.
It is straightforward to calculate the fermionic spectrum at A; # 0,

2
EL/R=%(k¢NCS) L k=0,+1,42 ... | (45)
where
1 1
Neg = — [ Ayda (46)
27

is the Chern—-Simons number in (1+1) dimensions. As the gauge field changes
from zero to some fixed A, [N¢s| levels of left-handed fermions cross zero
from above and the same number of right-handed fermionic levels cross zero
from below. This means that [N¢g]| left-handed fermions fill the negative energy
levels in the Dirac sea, see Fig.1, and the same number of right-handed fermions
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leave it. We would like to stress, that in this physical clear picture it is essential
to use the adiabatic approximation. The number densities for left(right)-handed
fermions are

np/rlA1] =n9 ) p Fres +O(L), (47)
where ncs = Neg/L is the average Chern—Simons density.

E (left) E (right)

\

Y
Y

S =

Fig. 1. Behaviour of the left(right)-handed fermionic levels

Note that equation (47) is essentially the integral form of the anomaly equa-
tion (43). The average energy density of real fermions is

Ng/R/Q

2 ™
cL/R=7T Yooa= §(n%S:Fncs)2+O(L_2). (48)
[Nes]+1

We can introduce chemical potential for left(right)-handed fermions in a
standard way

Ocr/r
= 49
HL/R oL (49)
and we obtain
pr/r = T(nL/R F NCs)- (50)

Introducing the standard Legendre transform

Errlir A1) = Erjr F o rNL R (51)
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we find

AE = (pg — pz)Nes, (52)

so, for the case when pur = pur = p we’ll get energy unchanged. On the other
hand, for chiral fermions [18] sign of term i will change and

AE = —Q/.LNcs. (53)

If we impose conservation of the left- and right-handed fermions (with Lagrangian
multiple x) instead of separate conservation of left (right)-fermions, we’ll get

AFE = —2,‘£Ncs. (54)

Thus, the same result arises both for chiral fermions at finite density, and for
usual fermions under conservation of chiral charge. One should notice that here
there were used two approximations. The first one is time independence of Ay,
the second is adiabatic approximation. Nevertheless, this consideration is valuable
due to construction of clear physical picture of the phenomenon.

The Chern—Simons term appearance in even dimensional theory could be
shown in simple and clear way. The only thing we need for it is temperature
and density independence of chiral anomaly (see previous sections). From the
definition one has

ol.
Wff = /d%ug). (55)

Since axial anomaly doesn’t depend on k, effective action contains the term
proportional to anomalous ()5 charge with  as a coefficient. The same is for a
chiral theory, there effective action contains the term proportional to anomalous
@ charge with p as a coefficient, see for example [17,18,20]. So, we have

AIeff = —Ii/d.l?oW[A] (56)
in conventional gauge theory and
AT = —p / dzoW[A] (57)
in the chiral theory. Here W[A] is the Chern—Simons term. Thus we get Chern—
Simons with Lagrange multiplier as a coefficient.
It is well known that at nonzero temperature in 5 — 0 limit the dimensional

reduction effect occurs. So, extra ¢t-dependence of Chern—Simons term in (56)
disappears and Chern—Simons can be treated as a mass term in 3-dimensional
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theory with ix/T coefficient (the same for chiral theory with p, see [17]). For
anomalous parts of effective action we have

Alsy = —ikfWI[A4] , AIC?ifml = —ipfW[A] (58)

€

in conventional and chiral gauge theories correspondingly. The only problem
arises in treating Chern—Simons as a mass term is that the coefficient is imaginary,
see discussions on the theme in [17,20]. The other problem is that the coefficient
is not the integer function, see discussions in conclusion. One can notice, that
results (56), (57) and (58) hold in arbitrary even dimension. Let us stress, that
we don’t need any complicated calculations to obtain (56)—(58). The only thing
we need is the knowledge of chiral anomaly independence on u, x, and S3.

This result also can be derived by use of the proper-time method. Chiral
current reads as follows

! ].
'u:—' t 5 ® = —1 t 5 H =
Js ig r[vv G(w,x)} ig r[vv ié?—gA+v5v%}
1
= —ig tr |y* . (59
g9 1"[’7 i@—g’ﬁA—i—’YOIi} (59)

The propagator has the following form
0
Gle,a)=[i 9= 97" A (=) / drU (z,a';7), (60)
—o0

where Uz, z' 7) is the evolution operator in a proper time. The propagator after
substitution of the evolution operator can be rewritten as

xT 4 ,
Gla,7') = exp <—igw5 / d@AH) | Gt ereham. o

where G(p) has the form

. O dr 1 i
G(p) = —wd/ gy exp(—§ trln [E ch(gFr)] _

—ip(gF)™" th(gFT)p) [v5y* (th(gF7))* p¥'— o]
exp (igv%uF’”T) : (62)

where aq = ™%/ /(27)%/2, Substituting expression for the propagator in (59),
we will get for the chiral current

0 .
dr 1 i
no_ or _t -t
JE = gad/i —aj2 &P ( 5 trln [47_ ch(gF T)])
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/ (ZdALTp;Ll exp (—ip(gF) ™" th(gFr)p) p

[(7“757“ [th(gFT)]™" —A*y*g™) eXp( gv o T )} (63)

Taking into account that p integration is at finite density and temperature, i.e.,
integral in pg is changed on sum, and extracting the Levi—Chivita tensor containing
part (it is really simple, if one takes traces in covariant form) we obtain

2

2
JY 87r26/ ™m exp ( 54:’_1 ) sh(Bmer) *FH. (64)

To regulate this expression we use dimensional regularization, which can be
expressed in terms of generalized Riemann zeta functions. Also, we take high
temperature limit, i.e., 3 — 0, and finally get

2
T = in s o, (65)

2m

6. CHERN-SIMONS IN THREE-DIMENSIONAL THEORY

6.1. Constant Magnetic Field. Let us first consider a (2+1)-dimensional
Abelian theory in the external constant magnetic field. We will evaluate fermion
density by performing the direct summation over Landau levels. As a starting
point, we will use the formulae for fermion number at finite density and temper-
ature [2]

— 223 sen( An) -
N= 2 < & +Z{exp u An)) +
M) ] _
eXp(—ﬁ(A —n)+1
= —Z th= B = An) iy Z sgn(p (66)

Landau levels in the constant magnetic field have the form [21]

Ao = —msgn(eB) | An = £4/2n|eB| + m2, (67)

where n=1,2, ... It is also necessary to take into account in (66) the degeneracy
of Landau levels. Namely, the number of degenerate states for each Landau level
is |eB|/2m per unit area. Even now we can see that only zero modes (because of
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sgn(eB)) could contribute to the parity odd quantity. So, for zero temperature,
by using the identity

sgn(a —b) + sgn(a +b) = 2 sgn(a)f(|a| — b)),
one gets for zero modes

leB| leB|

B son (-t msn(e) = 2L sgnu(inl — pmi) +
B
L ey sen(mpp(m| — lul), (68

and for nonzero modes

1 |eB| &
2 |627r| nz::l sgn(p — /2nleB| +m?) + sgn(u + v/2nleB| + m?) =

o0

gn(p Z (Ju| = v/2nleB| +m?2).  (69)

LI p

Combining contributions of all modes we get for fermion density

sgn Z@ <|u| V/2nleB| +m2) +

1 leB leB
+§% sen(i)0(|u| — [ml) + 55— sen(m)8(|jm| — |u]) =
B -m’] 1
:%Fugm>Qm[%mé?}+5)wmrwmw+
B
+Z—W sgn(m)d(jm| — |u]). (70)

Here we see that zero modes contribute both to parity odd and to parity even
part, while nonzero modes contribute to the parity even part only (note that under
parity transformation B — —B). Thus, fermion density contains both Chern—
Simons part and parity even part. At finite temperature it is also possible to get
Chern—Simons. Substituting zero modes into (66) one gets

leB| 1

Ny =
07 or 2

th 5 (b+m sgn(eB))} =

_|eB| sh(6p) sh(fm) }
dr | ch(Bu) + cu(Bm) ch(Bp) + ch(Bm) ]’
so, excluding parity odd part, one gets for Chern—Simons at finite temperature
and density
eB sh(pm) _eB 1

Nes = o hBn) + ch(@m) ~ an th(Bm) 1= ch(fp)/ ch(Bm)’

+ sgn(eB) (71)

(72)
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So, the result coincides with the result for Chern—Simons term coefficient by
Niemi and Semenoff [4] obtained for small

thBm — ) + thyfm + )

It is obviously the limit to zero temperature. The lack of this method is that it
works only for Abelian and constant field case.

This result at zero temperature can be obtained using the Schwinger proper—
time method. Consider (2+ 1)-dimensional theory in the Abelian case and choose
background field in the form

1
AHF = §xVFW’ FY" = const.

To obtain the Chern—Simons term in this case, it is necessary to consider the
background current

0Sery

0A,

rather than the effective action itself. This is because the Chern—Simons term
formally vanishes for such the choice of A* but its variation with respect to A*
produces a nonvanishing current. So, consider

(JH) =

() = —ig tr [y"G(z,2)] (73)

r—x

where .
G(z,z) = exp (—ig // dC“A”(C)) (z|Glz). (74)

Let us rewrite Green function (7) in a more appropriate form

G = (v —m) [9((}70 + 1) sgn(po)) " 0(—(po + 1) sgn(po))] (75)

()2 — m?2 + ie (v7)%2 —m?2 —ice

Now, we use the well-known integral representation of denominators

1 o0
- :FZ/ ds e:l:zas
a =£10 0

which corresponds to introducing the “proper—time” s into the calculation of the
Eulier-Heisenberg Lagrangian by the Schwinger method [22]. We obtain

G=i(ym — m)/o ds [— exp (is [(v7)? — m® + ie])
0((po + 1) sgn(po)) +
+ eXp(—is [(v7)? = m? — ie])H( (po + p) sgn(po )} (76)



TOPOLOGICAL EFFECTS IN MEDIUM 129

For simplicity, we restrict ourselves only to the magnetic field case, where Ay =
0, [0, ,] = 0. Then we easily can factorize the time dependent part of Green
function

G(a:,x/):/ il G ele—a) —

(2m)?
d?p - o dpo A . ’
-/ Gl ™ D[ P, e, 77)
By using the obvious relation
1
(v@)?2 = (po 4+ p)? — 72 + 590 " (78)
one gets
' dpy d?p /oo
G - — d
(2 )]s z/ o7 (2m)? (v —m) ; s
[ is(po—m”) e isT ezsgaF/Q 9(—(p0+,LL) Sgn(po))
(eis(;ﬁgme) —isit? ezsgaF/Q + e (ﬁgfm2) eisﬁ’2 eisgo’F/Q)‘| ) (79)

Here the first term corresponds to the usual p—independent case and there are
two additional u—dependent terms. In the calculation of the current the following
trace arises:

tr [1# (3 —m) 9°72] = 21 g"¥ cos(g|Fls) +

TV VR *Fl
+2 sin(g["F|s) —
3R "E

sin(g[*Fs),

where *F* = ehPF,5/2 and |*F| = /B2 — E2. Since we are interested in
calculation of the parity odd part ( Chern—Simons term) it is enough to consider
only terms proportional to the dual strength tensor *F'*. On the other hand the
term 27V g"#* cos (g|*F'|s) at v = 0 (see expression for the trace, we take in mind
that here there is only magnetic field) also gives nonzero contribution to the
current JO [8]

0 l9B| > —m? 1
Poen =952 (1wt | “5 | 4 5 ) 00l = . (50)

This part of current is parity invariant because under parity B — —B. It is clear
that this parity even object does contribute neither to the parity anomaly nor to
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the mass of the gauge field. Moreover, this term has been obtained [8] in the
pure magnetic background and scalar magnetic field occurs in the argument’s
denominator of the cumbersome function — integer part. So, the parity even
term seems to be “noncovariantizable”, i.e., it can’t be converted in covariant
form in effective action. For a pity, in papers [8] charge density consisting
of both parity odd and parity even parts is dubbed Chern—Simons, what leads to
misunderstanding. The main goal of this article is to explore the parity anomalous
topological Chern—Simons term in the effective action at finite density. So, just
the term proportional to the dual strength tensor *F'* will be considered. The
relevant part of the current reads

g d*p [ 2im*FH
Jro=2 [a / — / ds——— F
ts =5 / o e S F] sin (g["F|s)
. ~2 2 s =2
[ eis(Bo—m?) g—isT _ 9(—(}70 + ,LL) sgn(po))
(eis(ﬁg*m% e*iSﬁ:Z — e*is(ﬁgme) eiSﬁ:Z)‘| . (81)
Evaluating integral over spatial momentum we derive
2 +oo >
_ g * is(~27’m2)

Jés—mmw/,m dpo/o ds[e B B
—0(—po sgn(po)) ( is(Bp—m?) + e_is(ﬁg—mz)m)] : (82)

Thus, we have got besides the usual Chern—Simons part [6], also the p—dependent
one. It is easy to calculate it by use of the formula

o : 2 2 Z 1
/ ds (@ —m) — (5($2 -m?) + —P5—— )
0 ™

2 —m?2

and we get eventually

2
Tes = i F (L= 0(=0n ) sgn(m) = 0(—(m = o) sgn(m))]
_ m 22 9_2*
= |m|9( L )47T F*, (83)

Let us now discuss the non-Abelian case. Then A" = T,AY and current
reads

,
T—T

(JHY = —ig tr [’y“TaG(m,x’)
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It is well known [6,23] that there exist only two types of the constant background
fields. The first is the ”Abelian” type (it is easy to see that the self—interaction
fbc Al AV disappears under that choice of the background field)

1
Al = g, P, (84)
where 7, is an arbitrary constant vector in the color space, F** = const. The
second is the pure “non-Abelian” type

AP = const. (85)

Here the derivative terms (Abelian part) vanish from the strength tensor and it
contains only the self—interaction part F* = g f “bcAg AY. Tt is clear that to catch
the Abelian part of the Chern—Simons term we should consider the background
field (84), whereas for the non-Abelian (derivative noncontaining, cubic in A)
part we have to use the case (85).

Calculations in the ”Abelian” case reduces to the previous analysis, except
the trivial adding of the color indices in the formula (83):

2
m g
JH = —0(m? — p?)=—*FH, 86
In the case (85) all calculations are similar. The only difference is that the origin
of term o, F'* in (78) is not the linearity A in = (as in Abelian case) but the
pure non-Abelian A* = const. Here term o, F'*¥ in (78) becomes quadratic in
A and we have

m m 2 2 93 naf a AB
Jh = me( —u )EE tr [TaA A ] . (87)

Combining formulas (86) and (87) and integrating over field A# we obtain even-
tually

SC8, = %G(mQ — W2)W(4], (88)
where W[A] is the Chern—Simons term
W[A] = g / d3 e tr (FWAa - ggA“Al,Aa> .
82 3

It may seem that covariant notation is rather artificial. However, it helps us to
extract the Levi—Chivita tensor containing part of action, i.e., parity anomalous
Chern—Simons term.
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6.2. Arbitrary External Field. One can see that the methods we have
used above for calculation of the Chern—Simons term are noncovariant. Indeed,
both of them use the constant magnetic background. Therefore, here we will use
completely covariant approach, which allows an arbitrary initial field configuration
and non-Abelian fields. We will employ the perturbative expansion at once in the
non-Abelian case.

Let us first consider non-Abelian 3-dimensional gauge theory. The only
graphs whose P-odd parts contribute to the parity anomalous Chern—Simons term
are shown in Fig. 2.

p\ﬁu\j\

S
S

Fig. 2. Graphs whose P-odd parts contribute to the Chern—Simons term in non-Abelian 3D
gauge theory

Thus, the part of effective action containing the Chern—Simons term looks as

1 ,
155 =5 [ 4@ [ e amno)
x p
by [Aue) [ e A A o), (89)
x p,T

)

where polarization operator and vertices have a standard form
(p) = g¢° / tr[y"S(p + ki )y S (ks )]
k

n**(p,r) = g¢° /k tr [y S(p + 7+ ks )y S(r + ks u)y®S (ks )], (90)

here, under integration we understand

/m—z'/oﬁdxo/df and /k—%nim/%

First consider the second order term (Fig. 2, graph (a)). It is well known that the
only object giving us the possibility of constructing P- and 7T-odd form in action
is Levi—Chivita tensor*. Thus, we will drop all terms noncontaining Levi—Chivita

*In three dimensions it arises as a trace of three -y matrices (Pauli matrices).
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tensor. Signal for the mass generation ( Chern—Simons term) is IT*¥ (p? = 0) # 0.
So we get
™ = ¢? /(—iQme’“’apa)%. 1)
X (k2 + m?)2

After some simple algebra one obtains

- dk 1
" = —i2mg2e® ai / = =
g b B Z (277)2 (k2 +m2)2

n=—oo

. ) ) 1
= —i2mg*e" *pq B Z Tr o (92)
n=-—o0o n

where w, = (2n + 1)7/8 + iu. Performing summation we get

2
g 1
I = §=—e"“p, th . 93
e M) TG T ) ©y
It is easily seen that at 5 — oo limit we’ll get zero temperature result [9]
2
I = Z|m| Z Mo f(m? — ). (94)
In the same manner handling the third order contribution (Fig. 2b) one gets
j d2k k'2
Iwve  — 2g Ze,ul/oz Z / m +m ) _
5 (2 + m2)
L / 95
g B z_: /<:2 + m2) ©%)
and further all calculations are identical to the second order
g° 1
e = ¢=—ef* th . 96
“an© ) G0 h Fm) (96)
Substituting (93), (96) in the effective action (89) we get eventually
1 ' 3
IS = th = [ d°zet"®
= Om g e ]
2
tr <AM8,,AQ - ggAuAl,Aa> . 97)

Thus, we get Chern—-Simons term with temperature and density dependent
coefficient.
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7. CHERN-SIMONS TERM IN ARBITRARY ODD DIMENSION

Let’s now consider 5-dimensional gauge theory. Here the Levi—Chivita tensor
is 5-dimensional e#**#7 and the relevant graphs are shown in Fig. 3.

R

AVAVAV]
AVAVAV]

e

a b c

Fig. 3. Graphs whose P-odd parts contribute to the Chern—Simons term in non-Abelian
5D theory

The part of effective action containing the Chern—Simons term reads

1 —ix r va
1G5 =5 [ [ e ap Ao g
x p,T

/%w/emwmwm%m%@mmmm>

s

L1
4

13 [ [ oA ) 4,0 4004, 0

s

xIIH P (p, 7, s, q). (98)

All calculations are similar to 3-dimensional case. First consider third order
contribution (Fig. 3a)

"% (p,r) = g / tr [y S(p + 7+ k)" S(r + ks )y S(ks )] . (99)
k

Taking into account that trace of five v matrices in 5-dimensions is
tr [,yu,yy,yoz,yﬂ,yp} _ 41'6‘“/0‘5’),

we extract the parity odd part of the vertices

T~ d*k 1
I#ve — 3° i4 prafo ) — 100
g Bn:ZOO / @y (Ame™ pore) (100)
or in more transparent way
. +oo 4
) 7 d*k 1
#ve = i4mg‘3e“”°‘ﬁ(’parg— / = =
B 2 (2m)* (w2 + k2 4 m2)3

n=—oo
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i X -1
= idmgPervBoy ro — - - 101
idmg°e parﬁn;w64w2w%+m2 (101)
Evaluating summation one comes to
e = th(Bm) 1 g’ eHoBoy o (102)
1+ ch(Bu)/ ch(Bm) 1672 “
In the same way operating graphs (b) and (c) (Fig. 3) one will obtain
I#/*8 = j th(Bm) : O euss (103)
T T (B ch(Bm) 8r2
and
1 g°
187 = j th(Bm) ehveho, (104)

1+ ch(Bu)/ ch(Bm) 1672

Substituting (102)—(104) in the effective action (98) we get the final result for
Chern—Simons in 5-dimensional theory

15 = th(om) 1 L [
eff 1+ ch(Bp)/ ch(Bm) 4872 J,

tr (A“(‘mla(?ﬁ/l7 + ;gA“AVAa(‘)BAV + §QQANAVAQA5A,Y) . (105)

It is remarkable that all parity odd contributions are finite both in 3-dimen-
sional and in 5-dimensional cases. Thus, all values in the effective action are
renormalized in a standard way, i.e., the renormalizations are determined by
conventional (parity even) parts of vertices.

From the above direct calculations it is clearly seen that the chemical potential
and temperature-dependent coefficient is the same for all parity odd parts of
diagrams and doesn’t depend on space dimension. So, the influence of finite
density and temperature on the Chern—Simons term generation is the same in any
odd dimension:

1 B—oo M 2 2
T K T A
(106)
where W[A] is the Chern—Simons secondary characteristic class in any odd di-
mension. Since only the lowest orders of perturbative series contribute to the
Chern—Simons term at finite density and temperature (the same situation is well
known at zero density), the result obtained by using formally perturbative tech-
nique appears to be nonperturbative. Thus, the u- and T'-dependent Chern—Simons

IS5 = th(Bm)
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term coefficient reveals the amazing property of universality. Namely, it does de-
pend on neither dimension of the theory nor Abelian or non-Abelian gauge theory
is studied.

The arbitrariness of p gives us the possibility to see Chern—Simons coefficient
behaviour at any masses. It is very interesting that ;2 = m? is the crucial point
for Chern—Simons at zero temperature. Indeed, it is clearly seen from (106) that
when 12 < m?2, p influence disappears and we get the usual Chern—Simons term

ISy = nWA].

On the other hand, when /ﬂ > m?2, the situation is absolutely different. One can
see that here the Chern—Simons term disappears because of nonzero density of
background fermions. We would like to emphasize the important massless case
m = 0 considered in many papers, see for example [4,6,24]. Here even negligible
density or temperature, which always take place in any physical processes, leads
to vanishing of the parity anomaly. Let us stress again that we nowhere have used
any restrictions on u. Thus we not only confirm result of [4] for Chern—Simons
in QE D3 at small density, but also expand it on arbitrary p, non-Abelian case
and arbitrary odd dimension.

8. NONRELATIVISTIC CONSIDERATION

Here, we will show that in nonrelativistic case there is no Chern—Simons term,
there is only pseudo Chern—Simons, which is even under parity transformation. It
is also presented the possibility of getting mixed Chern—Simons term in nontrivial
external field.

First, we would like to notice that there are two approaches in fermion number
definition. The first one is (see for example [32])

1
(Qon =2 Fomm 1 (107)

n

and a normal ordering is performed at the given value of the chemical potential
. (This normal ordering is suppressed here since it is inessential to the present
discussion.) The other definition (see [2]) is related to the above by

(@ = (V) + 5 (0), (108)

where (z is the Riemann ( function related to the even part of the spectral density
of the Hamiltonian H

)= [ TN o) + pr (=N A (109)
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So, the difference in the definitions is given by a § and p independent con-
stant, (z(0). Indeed, one can easily check that at the operator level, these two
definitions are related as

1 1
Q=N+ ; [dofrr @@} . N=3 [do[st@.v@)]. awo)
As we have seen above, the fermion number density has the following form
1 1 —oo 1
N = Ezn: th3B(n = A) b=s P sgn( — An). (111)

Landau levels in the relativistic case are

Ao = —msgn(eB) An = £4/2n|eB| + m2, (112)

where n = 1,2, ... . On the other hand, in the nonrelativistic case energy levels
have the form

e, (113)

/\nz(n—l—2

where () = |eB|/m cyclotron frequency, n = 0,1, 2,...
As we have seen above in the relativistic case fermion density has the form

N = 8 o (1w [ 2]+ ) ot - e +

+Z sgn(m)d(m| ~ lul). (114
47
Thus we can see that in the relativistic case there is especial zero mode, the only
mode which contributes to parity-odd part of fermion number. On the contrary,
in the nonrelativistic case there is no special zero mode, all modes contribute to
the parity even part only. Thus, we have at zero temperature

|€B|Ze< 1)Q> |62f|1t[|63|+1} (115)

One can see that fermion number in the nonrelativistic case is parity even (B —
— B under parity). Therefore, it does not give rise to the parity-odd Chern—Simons
term in action. Instead of being variational derivative of the true Chern—Simons,
fermion number is the derivative of the pseudo Chern—Simons [26]

é
<Q> 5A pseudoCS (116)
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In the same manner it is possible to get fermion number with temperature
introduced. For example, such calculations were done in [27], there was used
another method. There the pseudo- Chern—Simons term coefficient has the form

1P = 23 (exp S — )+ 1) -

n

(2n + 1)sech? (%ﬁ()\n — u))) . (117)

 8rmi2
n

It is clearly seen that this expression can be rewritten in the way

1 1
Hf - ;Z{expﬁ()\n _M) +1 B

n

BAn

— . (118)
exp B(An — p) + exp(=B(An — 1)) + 2
After taking 3 — oo limit one gets
1
IF == 0= M), (119)

that coincides with the above calculations.

Another paper is [26]. There was also considered chemical potential influence
on fermion number in nonrelativistic case. In this section we treat a nonrelativistic
electron gas confined to a plane. We expect that some new qualitative features
arise from the fact that in this case the spin degree of freedom is not enslaved
by the dynamics. We continue to use a relativistic notation with 0, = (0o, V,
O" = (99, —V), where V is the gradient operator, and A* = (A%, A).

Let us consider the Lagrangian

3
EZ\IIT(i80+M—Hp)\I/+b\I/T%\II (120)

which governs the dynamics of the Pauli spinor field ¥, with Grassmann com-
ponents 1 and 1| describing the electrons with spin-T and |. The role of
the chemical potential x4 and the spin source b is the same as in the previous
calculation. The Pauli Hamiltonian
. 9 o’
Hp = —(iV+¢eA)* — goup— B + e Ay, (121)
2m 2
with ug = e/2m — the Bohr magneton and gy — the electron g-factor, contains
a Zeeman term which couples the electron spins to the background magnetic field.
Usually this term is omitted. The reason is that in realistic systems the g factor
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is much larger than two, the value for a free electron. In strong magnetic fields
relevant to the QHE the energy levels of spin-| electrons are too high and cannot
be occupied; the system is spin polarized, and the electron spin is irrelevant to

the problem. Setting again A° = A! =0, A% = , one finds as eigenvalues
for Hp
B 1 B
B = Pl by Ly, (122)
m 2 m

with Sy = i% for spin-T and spin-| electrons, respectively. We note that in the
nonrelativistic limit, corresponding to taking m — +oo, the relativistic Landau

levels reduce to
E t+|eB|( +1) b
n — COIL E— -) - —

+n — CONS — n 5

where we omitted the negative energy levels which have no meaning in this limit.
The main difference with (122) stems from the fact that there the spin degree of
freedom is considered as an independent quantity, not enslaved by the dynamics
as is the case in the relativistic problem.

The induced fermion number density and spin density may be obtained in a
similar calculation as in the preceding section. From the effective action,

Gy (123)

b
Seg = —i trln(idy — Hp + p + 503), (124)

one obtains

eB dk b
eff—| |nz:/ 0 n(ko — n++M+2)+

b
+n(ky = Bno+ 1= 3] (125)

The resulting value of the induced fermion number density is

leB]

S (N + N0, (126)

p=

with N1 the number of filled Landau levels for spin-{ and spin-| electrons,

mus+ 1
Ny = [ + ] (127)
[eB|
and B
e
e =pt+ —St (128)
m

their effective chemical potentials. The square brackets denote again the integer-
part function. Implicit in this framework is the assumption that, just like in
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the relativistic case, the chemical potential lies between two Landau levels. The
induced fermion number density (126) is related to a Chern—Simons term in the
effective action, with a coefficient

0= sgn(eB)%(NJr + N_). (129)

Because of the presence of the sgn(eB) factor, which changes sign under a parity
transformation, this Chern—Simons term is invariant under such transformations.
The induced spin density turns out to be independent of N, viz.
eB
=—. 130
S= (130)
This follows from the symmetry in the spectrum E,, 1 + = E,, _ (eB > 0), or
E.4+ = E,y1— (eB < 0). The magnetic moment, M can be obtained from
(130) by multiplying s with twice the Bohr magneton, pp. This leads to the
text-book result for the magnetic spin susceptibility xp

2

Xp = g—]g = 476;—m = 2u3 vop(0), (131)

with v5p(0) = m/(27) the density of states per spin degree of freedom in two
space dimensions.

At zero field, p reduces to the standard fermion number density in two space

dimensions p — pum/m = k& /(2m), where kr denotes the Fermi momentum. A

single fluxon carries according to (130) a spin Sg = % and, since for small fields

B
pm  |eB]| (132)

P 271’
also one unit of fermion charge. That is, in the nonrelativistic electron gas the
fluxon may be thought of as a fermion in that it has both the spin and charge of
a fermion. However, the close connection between spin of a fluxon and induced
Chern—Simons term for arbitrary fields that we found in the relativistic case is
lost. This can be traced back to the fact that in the nonrelativistic case the electron
spin is an independent degree of freedom. In the next section we point out that
the spin of the fluxon does not derive from the ordinary Chern—Simons term,
but from the so-called mixed Chern—Simons term. Such a term is absent in the
relativistic case.

To see how the spin contribution (131) to the magnetic susceptibility com-
pares to the orbital contribution we evaluate the kg-integral in the effective action
(125) with b = 0 to obtain

B oo
,Ce{-f = % Z Z(M - En,c)g(ﬂ - En,()' (133)

n=0¢==+
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The summation over n is easily carried out with the result for small fields

_ 1 2 (63)2 _NQm (@B)Q 2
Leg = E; {,ugm— g ]_ st [(20)% —1], (134)

where o = % and p4 is given by (128). The first term in the right-hand side of
(134), which is independent of the magnetic field, is the free particle contribution

2 2 2 2
wm d°’k [k k
— =2 —|——p)l|lp—=—). 135
o / (2m)2 (2m ”) (“ om (135)
The second term yields the low-field susceptibility
x = (=123 v5p(0) [(20)* — 1)] . (136)

Equation (136) shows that the ratio of orbital to spin contribution to x is different
from the three-dimensional case. Also, whereas a 3D electron gas is paramagnetic
(x > 0) because of the dominance of the spin contribution, the 2D gas is not
magnetic (x = 0) at small fields since the orbital and spin contributions to x
cancel.

8.1. Mixed Chern-Simons Term. As we have seen above, in the non-
relativistic case there are no true Chern—Simons terms. Now, we will present
consideration of this problem in nontrivial background field.

In this section we investigate the origin of the induced spin density (130) we
found in the nonrelativistic electron gas. To this end we slightly generalize the
theory (120) and consider the Lagrangian

1 a
L=0"]idy— Ao+ p— —(iV+eA)?| v+ B ol w.  (137)
2m m 2

It differs from (120) in that the spin source term is omitted, and in that the
magnetic field in the Zeeman term is allowed to point in any direction in some
internal space labelled by latin indices a,b,c = 1,2,3. As a result also the spin
will have components in this space. It is convenient to consider a magnetic field
whose direction in the internal space varies in space-time. We set

B%(z) = Bn®(x), (138)

with n® a unit vector in the internal space. The gauge potential A, appearing in
the first term of (137) still gives €ijaiAj = B. Equation (138) allows us to make
the decomposition

U(z) = S(x)x(z); ST5=1, (139)

with S(z) a local SU(2) matrix which satisfies

o-n(z) = S(z)0*ST(x). (140)
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In terms of these new variables the Lagrangian (137) becomes

1 B
L=t iy — edo — Vo + (iV + cA + V)2 X+;—mXTa3X, (141)

" om

where the 2 x 2 matrix V,, = —iS7(9,.59) represents an element of the SU(2)
algebra, which can be written in terms of (twice) the generators ¢ as

V. =Vio® (142)

In this way the theory takes formally the form of a gauge theory with gauge
potential V/{". In terms of the new fields the spin density operator,

O.a

jo = \1/*7\1/, (143)
becomes [29]
b 1 oL
o= Rty = SRy 144
Jo abX' 5 X oty (144)
In deriving the first equation we employed the identity
ST(0)0*S(0) = Rap(8)0?, (145)

which relates the SU(2) matrices in the j = 1 representation, S(6) = exp(%6-0),

to those in the adjoint representation (j = 1), R(6) = exp(if - J*Y). The matrix
elements of the generators in the latter representation are (J24), = —ieqp..
.. . . . e, Jbe .
The projection of the spin density j§ onto the spin quantization axis, i.e. the

direction n® of the applied magnetic field [29],

__lat
Jo = 28%37

n- (146)
only involves the spin gauge field V/f. So when calculating the induced spin
density s = (n - jo) we may set the fields VI} and Vu2 equal to zero and consider
the simpler theory

) i 1 . :

L=>x! [zao —edf+pg = 5 (iV+ eA9)?| e, (147)
s==+

where the effective chemical potentials for the spin-T and spin-| electrons are

given in (128) and eA¥ = eA, £ V. Both components x; and x| induce a

Chern-Simons term, so that in total we have

2
(& —
'CCS = EENV)\ (0+A:ay141> + ng;aVA)\ ) (148)

6, +06_
D20 N (24,0, Ay + VEO,VE) + e(0y — 0_)e™ V30, Ay,
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where the last term involving two different vector potentials is a mixed Chern—
Simons term. The coefficients are given by

1
01 = —sgn(eB)Ny, (149)
2m

assuming that |eB| > %|eij5‘iVj3 , so that the sign of eB is not changed by spin
gauge contributions. The integers N4 are the number of filled Landau levels for
spin-1 and spin-| electrons given by (127). Since Ny — N_ = sgn(eB), we
obtain for the induced spin density s precisely the result (130) we found in the
preceding section,

. 1 8£eff eB

s={n-jo) = —3 G lysy In (150)

The present derivation clearly shows that the induced spin in the nonrelativistic

electron gas originates not from the standard Chern—Simons term, but from the

mixed Chern—Simons term involving the electromagnetic and spin gauge potential.

The first term in (148) is a standard Chern—Simons term, the combination

0+ +0_ precisely reproduces the result (129) and is related to the induced fermion
number density (126).

9. TRACE IDENTITY

As was shown in [2—-4] the trace identities connect the Chern—-Simons term
and chiral anomaly. These identities may be derived for Hamiltonians of the form
m D }

Dt (151)

H= [
Here m is a constant; D, a differential operator of the form D = iP;0; + Q(z);
and D, the hermitian conjugate of D. The P; are constant matrices that satisfy
Pij—i—PfPi = 20;; and PinJr —|—PjP;r = 20;; and Q(z) includes all background
fields. It is assumed that these background fields are static, so

H = Hy + mI = il0; + K (z) + mI'°, (152)

where
P
riz[opj . ],Fc=[é 21}71((@:[0@(%) 0@@)}7 (153)

here I" matrices satisfy the Euclidian Dirac algebra and the operator H, anticommu-
tes with T'°. As a consequence H? = HZ + m? > m? and all eigenvalues of H

u

onl2] ]

} = \T (154)
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satisfy A2 > m?2. Using (151) we obtain the first-order equations
Dtu=(\+m)v, Dv=(\—-m)u (155)
and by iterating, we find

DD u = (\? — m?)u, (156)

DT Dv = (A —m?)v. (157)

If u is a solution of (156) with eigenvalue A\ — m? = y # 0, then DT u is a
solution of (157) with the same eigenvalue y. However, if u is a zero mode of
D7, in general it is not a zero mode of D. Every solution of (156) or (157)
yields two solutions of (154) if A\ # +m and one if A = +m, and consequently
the Dirac problem (154) is equivalent to (156), (157).

The fermion number operator has the form (for discussion on fermion number
definition see beginning of section 8)

N = %/dm (U (z), ¥(z)] . (158)

At the time ¢ = 0 the second quantized fermion field operator can be expanded as
U(z) = anwn(x) + Zd;%(x) + /dk (brwr(2) + b d(2)),  (159)
n n

where w,, (z) and ¢, (x) are the positive and negative energy bound state solutions
of the eigenvalue equation

Hwn = )\nwn7 (160)

and wy(x) and ¢y (z) are the positive and negative energy continuum solutions.
Thus, the fermion number operator can be rewritten as follows

1
N = No— Snu, (1e1)

where we have defined

No =Y [biby —dfdn] + /dk (b b — difdi]

n

na =Y sgn(Ax). (162)

k
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The summation extends over both the discrete and continuum portions of the
spectrum, and if a continuum spectrum is present, we rather write as

- / dApr (V) sgn(N). (163)

Here pp () is the spectral density function of the Hamiltonian H, and we may
express it in terms of its even and odd parts:

1 1
pr(A) = 5 lpr(A) + pu (=N + 5 [pr(A) = pr(=A)] = 7H(A) + 01 (A). (164)
If we substitute it in (163) we obtain

- / Ao (A) sgn()) (165)

since only the odd part of py(A) can contribute to ng. So, ny yields the differ-
ence in the number of positive and negative energy eigenstates of the Hamiltonian
H, and thus it is a measure of its spectral asymmetry. However, the sum is not
absolutely convergent and it needs to be regulated: the Atiyah-Patodi—Singer n
invariant of the Hamiltonian H is defined by

na(s) = sgn(A)A| ™" = /dAJH(A) sgn(A)|A| 7%, (166)
k
For a large class of Hamiltonians the residue at s = 0 vanishes, and we assume
that s = 0 is a regular point of 1y (s), so we can define

Ny = ilir(l) ne(s) = zk: sgn(Ag) = /d/\aH(/\) sgn(N). (167)

We shall now show how the spectral density pg () of the Hamiltonian (151)
can be represented in terms of the spectral densities ppp+ (x) and pp+p(x) of the
operators DDT and D D, respectively. For this we first consider the following
Stieltjes transformation of the even part of pg(A):

o 1 o 1
dpp(N) ——— =2 dtg(N) ——. 168
/_OO pa( >)\2+22 . 7 ( )AQ_'_ZQ (168)
Here 22 is an arbitrary complex number which does not belong to the spectrum
of H. Introducing the coordinate representation we obtain

° 1 1
2 [, Do = [ lel e
~ [da(u )+ el o)
v DD+—|—m2—|— DDV +m2+ 22" DD me 27

- /dx (ppp+(X) + Pp+D(X)) .

- _=Fm?+7%. U6
N (m? +2%).  (169)
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Comparing (168) with (169) we conclude that
TH()\) = |/\| (pDD+()\2 - m2) + pD+D()\2 - m2)) . (170)

Similarly, we find a representation for the odd part of pg(\) by considering

e A H

|m]

—/d tr( |+|>—tr< |+|>
o . DDt vzt 2 DDy m2 22"
_ m _ 2 2
= /dx (ppp+(X) — PD+D(X)) TR =mG(m?+2%). (171

We conclude that the odd spectral density, which contributes to (167), is given
by
ou(A) =msgn(A) [ppp+ (A —m?) — pp+p(A* —m?)]. (172)

Since the fermion number is essentially a Mellin transformation of the odd
spectral density, we find the following spectral representation for the fermion
number

N =-m [ a\ (oo )~ ppsp (A - m?)] =

- /Ooo ax oo+ () = o+ (V)] s =

N

- —@/ dwG(m? + w?), (173)
™ Jo

where G(m? + w?) is defined by (171). We shall now show how the axial
anomaly is connected with fermion number. First notice that

m m

t — t —
r<x|DD+ +m2+w2|y> r<"PC|D+D+m2 +w2|y>
.om
Further, we get
m m
t Iée——— =i—t Te 175
I'<.1?| H?2 _|_w2 |y> ¢ o I'<.13| HO + Z0'|y>, ( )
where 0 = vVm?2 + w?. Let’s now consider
. 1 1 )
t 1 o; ¢ —-TIe 1 0; =
I‘<J)|Z ! Hy +io Ho-i—iO’Z z|y>
=2i0 t Ie t K - K Ie . 176
i (el )+ o (1K) = K@l ) ) 076)
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Combining (175) and (176) we then obtain the following trace identity

zg tr ([T ly) = %[ax +8,] tr(z]il'T® ly) +

Hy+io Hy+io

m

+gms 1 (IKG) - K@t ). a7

Notice that (177) has the structure of the standard axial anomaly equation for the
Dirac operator Hy + io. Thus, when we take x — y limit we need to discuss
two cases:

First, if the space dimension D is odd the second term on the right-hand side
of (177) vanishes, since there are no axial anomaly in this case, and the only
contribution to fermion number gives the first term (boundary term).

Second, if the space dimension D is even, the second term on the right-hand
side of (177) gives the axial anomaly, and taking in mind (173) we get for fermion
number

1 (o)

N=—-— deQ (ZTD + /dSi tr(z|il"T*
+w

2
21 0 m

1

m@)) ,  (178)

here Tp is the Pontryagin index of the background gauge fields that arises from
the space integral of anomaly term. There is also boundary term, which vanishes
for a trivial gauge background.

Let us consider 2-dimensional case, for the Hamiltonian

Lo d
Hy = —io?— + o' é(x). (179)
dx
Since this Hamiltonian can be interpreted as a one-dimensional Dirac oper-
ator, and since there are no anomalies in one dimension, the fermion number is
given by

I e q 1
N=—— de/ dz-L tr(z]iT T |z) =
27 J, m2+w? J_  dx Hy + io
1 [ m ;1
= — — |t _ —
27 J u)m2—|—u;2[ r{oclo H0+Z'J|OO>
1
— tr(— [ } 180
r{—oo|o Ho—i—z'J' o) [,  (180)

where we have used the representation I'' = ¢® and T'* = ¢® of the Dirac algebra.
We assume that the soliton field ¢(x) has the asymptotes ¢(£oo) = ¢+. Taking
in mind that

tr(+oo|o? | £

Hy +io OO>:
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1
= tr(* + =
r< Ool—a?’a—d)(x)—i0203\/m2—|—w2| )
o(x
2 t1"<j:oo|82 — ¢2(x)(—)m2 —w2| + oc0) =
N oo dk 1
= —2@[/ 5 5 ; (181)
—o0 27Tk2+¢i+m2+w2

we find for fermion number

N = —i [arctan [¢—+] — arctan [(ﬁ—_H . (182)
2w m m

This result [4,31] is obtained without the use of any specific soliton profile.
However, at the presence of nonzero density (u), fermion number depends not
only on asymptotic properties of soliton profile, but also it depends on the local
properties of the soliton profile such as the width of the soliton [32].

The result for fermion number at the presence of density and temperature can
be found in [32]. There was studied the Hamiltonian [33]

d
Hy = de— +oto(x) + o’e (183)
x
This Hamiltonian has the following positive- and negative-energy continuum so-
lutions and a bound state solution (assuming a soliton profile which has only one
bound state)

" _ [ [(aE + €)/2aE])" 2y, }
Y7 | 2aE(aE 4 €)]Y%(0s + d)us |
ws = N |: gxp[_f d(E,gf)((E,)] :| , (184)

where Ny is a normalization factor, « = +1 distinguishes positive and negative
energy solutions. In the ground state the soliton charge is defined as

Q= /jo dz Y [pf () — pd ()], (185)

where pf(z) and p?(x) are the fermion number density at a point z in the presence
and absence of the soliton, due to occupied state i.

The generalization of (185) to finite pz and T is straightforward since we have
a noninteracting sea of fermions

Q1) = [ arY (o) - o0)] nles - ), (186)

— 00
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where n(e— p) = [exp[B(e — p)] + 1] " is the Fermi distribution function. Thus,
substitution of p yields

Q= / dx Z/ I g2 — [l (e — p)

a==%1

(O |uj]? + 2|ur )71
* Z / [ daE(aF +€)

a==%1

n(aE — p) +nle—p). (187)

The square bracket in the second term of the above expression can be simplified
further using (9 |uf|? + 2|ux|?¢)|2=F%° = 2. For T'= 0 and p = 0 the first term
is easily evaluated using the completeness properties of uy. But for finite p we
have to choose a soliton profile. So, we take ¢(z) = ¢g th(¢pox), for which the

eigenfunctions wj (x) are known exactly [33] to be

h — (ik
ug(z) = — exp(ikz) [ ‘ f(f(z'k(/quo/)%)] i (188)
Substitution of the uy in (187) yields
dk n(aE — p)
SIS o L
az;1 o k2 + 3
> dk E

+260 Y / 2w722EaaE f)e) + (e — p). (189)

a==%1

In particular, this integrals can be evaluated exactly for zero temperature and
finite p to get [32]

Q(p,0) = — sgn(u)Qole) — O(u)G(kp,€) + 0(—pn)G(kp, —e) (190)

for |pu| > m, where
Qole) = —%tan_l [%}
1 ¢0tan[%tan_1(kp/m)]}

m 4+ €

G(kp,e) = %tan* )

kp = (MQ . m2)1/2 ., m= (Qb(Q) +62)1/2.

As we have seen above, the boundary term is dependent on soliton profile at
finite density. Thus, the generalization of the trace identities on finite density and
temperature is hardly possible because of nontopological part of it.

At finite temperature and zero density trace identity still holds and one has
for fermion number [2,4]
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1 X m
Nyg=—y — "
(Vs 25 Z m? + w2
= ,

1
dx(anomaly) + /dm@i tr{z|il;I¢ . 191
(/ (sanomaly) (o Hmmo (191)

Now we’ll prove that chiral anomaly doesn’t depend on temperature at any
even dimension. The second term at left-hand side of (191) is a surface term,
which doesn’t contribute to topological part of the trace identity [2,4]. So, we
won’t consider nontopological part of the trace identity, i.e., nontopological part
of fermion density and surface term. Thus for topological part trace identity takes
the form

“+oo
ica 1 m
<N>tﬁopologc 1_ 35 Z o S (/ dx(anomaly)) . (192)

The result for left-hand side of Eq. (192) we know in arbitrary odd dimension.
Really, from (106) we have

C.S
<N>CS _ <N>topological _ 6Ieff ) (193)

B B g0 Ao

By using the fact that
+oo

1 m 1 sh(pm)
— = - 194
23 n:z—:oo w2 +m?2 41+ ch(Bm)’ (194

one can see that the only possibility to reconcile left and right sides of Eq. (192) is
to put temperature independence of anomaly. Thus, we proof that axial anomaly
doesn’t depend on temperature in any even-dimensional theory.

Moreover, now we can generalize trace identity on arbitrary finite density.
Really, taking in mind (106) and (193) one can see

1
1+ ch(Bp)/ ch(Bm

<N)gsu = —i th(Bm) ] /dx (anomaly) , (195)

where (N >gsu — odd part of fermion number in D-dimensional theory at finite
density and temperature, (anomaly) — axial anomaly in (D — 1)-dimensional
theory. On the other hand, as we have seen above, the anomaly doesn’t depend
on x4 in 2- and 4-dimensions and doesn’t depend on 7' in any even-dimensional
theory. Our comprehension of the problem allows us to generalize these on arbi-
trary even dimension. Indeed, anomaly is the result of ultraviolet regularization,
while p and T' don’t effect on ultraviolet behavior of a theory. Taking in mind
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(195) and that at finite density

1 1
25 Z w2 +m? +m2 = 1 WM TG e

n=-—oo

(196)

we can identify (N >tﬁ‘fﬂ°1°gical and (N)G5. So, we get generalized on finite

density trace identity

“+oo
ica 1 m
()5, = Ve = - oS s ([ detemomaty) ). a9)

Let us take, for example, 3-dimensions. We know that chiral anomaly in
2-dimensions has the form

2. € ij
/d $4—71_26]Fij, (198)

substituting this in (197) we’ll get for fermion number

s _ ¢ 1 2cii
IS5 = o O ey | o 09

Covariantizing fermion number we get for the Chern—-Simons term in action

1 92
1+ ch(Bu)/ ch(Bm) 167

Ieff = th(Bm) /e’“’a tr (A Fua). (200)

Really, we’ve seen that only zero modes contribute to P-odd part in contrast
to P-even part which is contributed by all modes. Therefore, index theorem and
trace identities hold only for parity odd part of fermion number. Thus, the main
result of this section is Eq. (197) which connects the Chern—Simons term and
chiral anomaly in arbitrary-dimensional theory at finite density and temperature.

10. CONCLUSIONS

Thus, there is obtained finite temperature and density influence on the Chern—
Simons term generation in any odd-dimensional theory both for Abelian, and for
non-Abelian case. It is very interesting that u? = m? is the crucial point for
Chern—Simons at zero temperature. Indeed, it is clearly seen from (106) that
when p2 < m?, u influence disappears and we get the usual Chern—Simons term
I ecfsf = 7W/[A]. On the other hand, when y? > m?2, the Chern-Simons term

disappears because of nonzero density of background fermions. The coefficient
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at the Chern—Simons term is the same in any odd dimension. It must be stressed
that at m = 0 even negligible density or temperature, which always take place in
any physical processes, lead to vanishing of the parity anomaly.

It is shown that the chiral anomaly is not influenced by medium effects such
as chemical potential and temperature in any even-dimensional theory. Moreover,
even if we introduce conservation of chiral charge on quantum level, the chiral
anomaly arises and isn’t affected.

The appearance of the Chern—Simons number in even-dimensional theories
is discussed under two types of constraints. So, it is shown both for conserved
charge, i.e., finite density of the background fermions, and for conserved ax-
ial charge what corresponds to conservation of the left(right)-handed fermions
asymmetry in the background.

The topological part of the trace identity is generalized on finite density.
Thus, the connection between the Chern—Simons term and chiral anomaly at
finite density and temperature is obtained in arbitrary dimensional theory.

In conclusion we would like to touch the problem, which has attracted re-
cently a wide interest [34,35]. This is gauge invariance of the effective action
under large gauge transformations. Really, the Chern—Simons term coefficient
has to be "topologically quantized” for gauge invariance of the effective action
under large gauge transformations. But as we have seen above (56), (57), (58),
even in nonperturbative calculations of Chern—Simons in even dimensions (due
to existence of the chiral anomaly), it gets chemical potential (temperature) as
a coefficient, which is not an integer function. This fact is hardly understand-
able. One can treat these that density or temperature just break invariance under
large gauge transformations, leaving action invariant under local ones. On the
other hand, one can hope that the whole effective action will be gauge invari-
ant [34,35]. But, for example, essentially nonperturbative and simple calculations
in one dimension [34] do not give understandable contradiction between fermion
number and effective action. That is the fermion number here is not a functional
derivative of the effective action, what is very strange.

The amazing fact is that at zero temperature and finite density the Chern—
Simons term coefficient does not break gauge invariance. Indeed, theta function
gives us 0 or 1 as the coefficient, and we have two topological domains y? > m?
and p? < m? connected by large gauge transformations.

Thus, this area is yet an open field for research.
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