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A chiral Lagrangian containing, besides the usual meson fields, their first radial excitations
is constructed. The Lagrangian is derived by bosonization of a Nambu—Jona-Lasinio (NJL) type
quark model with separable nonlocal interactions. The nonlocality is described by form factors
corresponding to 3-dimensional excited state wave functions. The spontaneous breaking of chiral
symmetry is governed by the standard NJL gap equations. A simple SU(2) x SU(2) version of the
model is used to demonstrate all low-energy theorems to hold valid in the chiral limit.

A more realistic U(3) x U(3) model with 't Hooft interaction is constructed to describe the
mass spectrum of excited scalar, pseudoscalar, and vector mesons. On the basis of global chiral
symmetry, we use the same form factors for the scalar and pseudoscalar mesons. Having fixed the
form factor parameters by masses of pseudoscalar mesons, we predict the mass spectrum of scalar
mesons. This allows us to interpret experimentally observed scalar, pseudoscalar, and vector meson
states as members of quark-antiquark nonets. It is shown that the ag(1450), K (1430), fo(1370),
f7(1710) scalar meson states are the first radial excitations of the ground states: ao(980), K (960),
f0(400 — 1200), fo(980). The weak decay constants Fr, F,./, F, F and the main strong decay
widths of the scalar, pseudoscalar, and vector meson nonets are calculated.

IocTpoeH KUp JIBHOM J1 TP HXHU H, COAEPX M KpoMme OOBIYHBIX ME30HHBIX MOJICH UX IepBble
p au nbHble BO30yxneHus. JI rp HXH H monmydeH GO30HH3 LHMel KB pKoBoil Momenu tum H mOy—
Hon -JI 3unno (HWUJI) ¢ cenm p GenbHBIM HENOK JBbHBIM B3 UMopeiicTBHeM. Hellok JIBHOCTb OIHCHI-
B ercst (opM( KTOp MH, COOTBETCTBYIOILIMMH TPEXMEPHBIM BOTHOBBIM (DYHKIIMSIM BO30YKICHHBIX Me-
30HOB. CHOHT HHOE H pYyLIEHME KHUP JIbHOH CHMMETpUM OIlpefendeTcs yp BHEHWeM H wenb. H
npocrom npumepe SU(2) x SU(2)-Bepcun 9TOH MOIEIN HPOJEMOHCTPHPOB HO BBIIIONIHEHHE BCEX
HHU3KO3HEPTeTHYECKUX TEOPEM B KUP JIbHOM IIpesieNe.

JUIst OMNC HHUS CHEKTP M CC BO3GYXICHHBIX CK JISIPHBIX, IICEBIOCK JIIPHBIX M BEKTOPHBIX ME30-
HOB 1octpoeH Gosee pe quctiad 1 U(3) x U(3)-monens ¢ B3 umoneiicteuem 't Xodr . B cuy
D100 JIBHOM KHp JIBHOH CHMMETPHH, MBI WCIIONIb3yeM OIMH KOBble (opMcp KTOpbI IS CK JISIPHBIX
M TICEBNOCK JIIPHBIX Me30HOB. (PUKCHPYs I p MeTpsl opMd KTOPOB IO M CC M IICEBIOCK JIIPHBIX
ME30HOB, MBI IIPEICK 3bIB €M CIEKTP M CC CK JISIPHBIX ME30HOB. DTO MO3BONSET H M HHTEpIpPETH-
POB Tb BKCIIEPHMEHT JIBHO H ONIION eMble CK JIPHBIC, IICEBIOCK JIIPHBIC ME3OHHBIC COCTOSHHS K K
qIeHbl KB PK- HTHKB PKOBBIX HOHETOB. IIOK 3 HO, YTO CK JISIpHBIE Me30HHBIe coctosiHusi ap(1450),
K (1430), fo(1370), f7(1710) SBasioTcs NepBBIMU P X4 JIHBIME BO30YXICHHAIMH OCHOBHBIX COCTO-
sunit ag (980), K (960), fo(400 — 1200), fo(980). BbraucineHs KOHCT HTHI ¢/ ObIX p cif 0B Fr,
F./, Fr, Fy/ ¥ MUPUHBI OCHOBHBIX CWIBHBIX P CII OB CK JIAPHBIX, [ICEBIOCK JISPHBIX M BEKTOPHBIX
HOHETOB ME30HOB.
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1. INTRODUCTION

The investigation of radial excitations of the scalar, pseudoscalar, and vector
meson nonets is of great interest in the hadronic physics. So far, there are
questions connected with the experimental and theoretical description of radial
excitations of scalar and pseudoscalar mesons. For instance, the experimental
data on the excited states of kaons [1] are rare and not reliable enough. There
are also problems with interpretation of the experimental data on the scalar and
1, 7’ mesons. Several years ago, attempts were undertaken to consider the state
7’ (1440) as a glueball [2], however, the authors in [2] came to conclusion that
this state is rather a radial excitation of 7'(958).

There is an analogous problem with interpretation of the scalar states f,(1500)
and fo(1710). Moreover, the experimental status of the lightest scalar isoscalar
singlet meson remains unclear. In some papers, the resonance f,(1370) was
considered as a member of the ground nonet [3,4], and until 1998 the resonance
f0(400 — 1200) was not included into the summary tables of PDG review™ [1].

One will find a problem of the same sort in the case of K5. The strange meson
K (1430) seems too heavy to be the ground state: 1 GeV is more characteristic
of the ground meson states (see [35,6]).

Anticipating the results of our review we would like to note that some of
these problems were solved in a number of our works which resulted in the
present work. From our calculations, for example, we concluded that the states
1(1295) and n(1440) can be considered as radial excitations of the ground states
n and 1. The estimates of their strong decay widths also confirm our conclusion.
Let us note that these meson states are essentially mixed. Our calculations also
showed that we can interpret the scalar states fo(1370), ag(1450), fo(1710), and
K} (1430) as the first radial excitations of f,(400 — 1200), a¢(980), fo(980), and
K(}(960).

A theoretical description of radially excited pions poses some interesting
challenges. The physics of the ground states of mesons (pions) is completely
governed by the spontaneous breaking of chiral symmetry (SBCS). A convenient
way to derive the properties of soft pions is the use of an effective Lagrangian
based on a nonlinear or linear realization of chiral symmetry [7]. When attempting
to introduce higher resonances to extend the effective Lagrangian description
to higher energies, one must ensure that the introduction of new degrees of
freedom does not spoil the low-energy theorems for pions which are universal
consequences of chiral symmetry.

Attempts to describe heavier analogs of the pion, vector mesons, and 7, 7’
mesons as the radial excitations of well-known ground meson states were made

*However, in earlier editions of PDG the light o state could still be found; it was excluded later.
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by authors in [2] within the framework of the nonlocal 3 P, potential quark model.
This approach was based on nonrelativistic and relativistic quantum mechanics
where mesons are treated as bound gg systems.

A useful guideline in the construction of effective meson Lagrangians is the
Nambu—Jona-Lasinio (NJL) model that describes SBCS at the quark level with a
four-fermion interaction [8—11]. The bosonization of this model and the derivative
expansion of the resulting fermion determinant reproduce the Lagrangian of the
linear sigma model that embodies the physics of soft pions as well as higher—
derivative terms. With appropriate couplings the model allows one to derive also
a Lagrangian for vector and axial-vector mesons. This gives not only the correct
structure of terms of the Lagrangian as required by chiral symmetry, but also
quantitative predictions for the coefficients, such as Fy, Fik, gx, g,, etc.

One may, therefore, hope that a suitable generalization of the NJL model can
provide means for deriving an effective Lagrangian including also the
excited mesons.

When extending the NJL model to describe radial excitations of mesons, one
has to introduce nonlocal (finite-range) four-fermion interactions. Many nonlocal
generalizations of the NJL model were proposed, by using either covariant—
Euclidean [12] or instantaneous (potential-type) [13, 14] effective quark inter-
actions. These models generally require bilocal meson fields for bosonization,
which makes it difficult to perform a consistent derivative expansion leading to
an effective Lagrangian.

A simple alternative is to use separable quark interactions. There is a number
of advantages of working with that scheme. First, separable interactions can be
bosonized by introducing local meson fields, just as the usual NJL model. One
can thus derive an effective meson Lagrangian directly in terms of local fields and
their derivatives. Second, separable interactions allow one to introduce a limited
number of excited states and only in a given channel.

An interesting method for describing excited meson states in this approxi-
mation was proposed in [15]. The authors suggested to consider SBCS in the
vicinity of a polycritical point where either all or some of the coupling constants at
four-fermion vertices exhibit critical behavior; the critical values of the coupling
constants are given by solutions of a set of mass-gap equations. They selected
a minimal type of separable four-quark interaction which is most important for
the process of SBCS. In this model the form factors are chosen as orthogonal
functions, so there is a freedom in their choice up to an arbitrary rotation. All
calculations are made in the Euclidean space, by using the approximation of
large N, and log A where A is the ultra-violet cut-off in the model. An interest-
ing result of this approach is that for an arbitrary choice of coupling constants
in the vicinity of polycritical point there are multiple solutions with a different
critical behavior. Therefore, a problem appears — which of the solutions is
realized in nature.
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Another advantage of the separable interaction is that it can be defined in
Minkowski space in a 3-dimensional (yet covariant) way, with form factors de-
pending only on a part of the quark—antiquark relative momentum transverse to
the meson momentum [14, 16, 17]. This is essential for a correct description
of excited states, since it ensures the absence of spurious relative—time excita-
tions [18]. Finally, as we have shown [17], the form factors defining the separable
interaction can be chosen so that the gap equation of the generalized NJL model
coincides with the one of the usual NJL model, whose solution is a constant
(momentum—independent) dynamic quark mass. Thus, in this approach it is pos-
sible to describe radially excited mesons above the usual NJL vacuum. Aside
from the technical simplification, the latter means that the separable generalization
contains all the successful quantitative results of the usual NJL model.

Our paper consists of five Sections. In the second Section, we illustrate our
method on the basis of a simple SU(2) x SU(2) model. Here we prepare grounds
for the choice of the form factors to be used in a more realistic model. It will be
shown that we can choose these form factors such that the gap equation conserves
its conventional form and has a solution corresponding to a constant constituent
quark mass. The quark condensate also does not change after the inclusion of
excited states into the model, because the tadpole associated with the excited
scalar field is equal to zero (the quark loop with the one excited scalar vertex,
vertex with a form factor).

In this Section, we derive an effective chiral Lagrangian describing 7 and =/
mesons from a generalized NJL model with separable interactions. In Subsec-
tion 2.1, we introduce the effective quark interaction in the separable approx-
imation and describe its bosonization. We discuss the choice of form factors
necessary to describe excited states. In Subsection 2.2, we solve the gap equation
defining the vacuum, derive the effective Lagrangian of the 0~ meson fields, and
perform the diagonalization leading to the physical 7 and 7’ states. The effective
Lagrangian describes the vanishing of the 7 mass (decoupling of the Goldstone
boson) in the chiral limit, while 7’ remains massive. In Subsection 2.3, we derive
the axial vector current of the effective Lagrangian using the Gell-Mann—Levy
method and obtain a generalization of the PCAC formula which includes the
contribution of 7’ to the axial current. The leptonic decay constants of the m and
«' mesons, I, and F,., are discussed in Subsection 2.4. It is shown that I},
vanishes in the chiral limit as expected. In Subsection 2.5, we fix the parameters
of the model and evaluate the ratio F,//F, as a function of the 7’ mass.

In the third Section, we use the method demonstrated in Section 2 for a real-
istic description of radially excited states of the scalar, pseudoscalar, and vector
meson nonets where ’t Hooft interaction is included in addition to conventional
chirally symmetric four-quark vertices. This allows us to solve the so-called
U4 (1) problem and describe the masses of ground and excited states of the 7 and
7’ mesons.
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We take account of the connections of the scalar and vector coupling con-
stants which appeared in this model and an additional renormalization of the
pseudoscalar fields connected with the pseudoscalar—axial-vector transitions. For
simplicity, we suppose that the masses of u and d quarks are equal to each other
and take into account only the mass difference between (u, d) and s quarks
(m,, and mg). Then, we have in this model six basic parameters: m,, ms, A3
(3-dimensional cut-off parameter), G and Gy (four-quark coupling constants for
the scalar—pseudoscalar coupling (G) and for the vector—axial-vector coupling
(Gv)) and constant K characterizing the ’t Hooft interaction. To define these pa-
rameters, we use the experimental values: the pion decay constant F; = 93 MeV,
the p-meson decay constant g, ~ 6.14 (gg/(47r) ~ 3), the pion mass M, =~
~ 140 MeV, p-meson mass M, = 770 MeV, the kaon mass My ~ 495 MeV,
and the mass difference of the 1 and 7’ mesons. Using these six parameters, we
can describe the masses of four ground meson nonets (pseudoscalar, vector, scalar,
and axial-vector) and all the meson coupling constants of strong interactions of
mesons with each other and with quarks.

For the investigation of excited states of the mesons it is necessary to consider
nonlocal four-quark interactions. In Section 3, it is shown that for the description
of excited states of the scalar, pseudoscalar, and vector meson nonets we have
to use seven different form factors in the effective four-quark interactions. Each
form factor contains only one free (external) parameter. There are also slope
(internal) parameters which are to be fixed by the condition of preserving gap
equations in the standard form (see Section 2). We use the same form factors for
the scalar and pseudoscalar mesons, which is required by chiral symmetry. This
allows us to predict masses of the excited scalar mesons.

In Subsection 3.1, we introduce the effective quark interaction in the separa-
ble approximation with 't Hooft terms and describe its bosonization. We discuss
the choice of the form factors necessary to describe excited states of the scalar,
pseudoscalar, and vector meson nonets. In Subsection 3.2, we derive the effec-
tive Lagrangian for the ground and excited states of the strange and isovector
scalar and pseudoscalar mesons, and perform the diagonalization leading to the
physical ground and excited meson states. In Subsection 3.3, we diagonalize the
Lagrangian for the isoscalar, scalar and pseudoscalar (ground and excited) mesons
and take into account singlet-octet mixing. In Subsection 3.4, we consider vector
mesons. In Subsection 3.5, we fix the parameters of the model and evaluate the
masses of the ground and excited meson states and the weak decay constants Fi,
F,., Fg, and Fk.

In Section 4, we calculate strong decay widths of excited states of the scalar,
pseudoscalar, and vector mesons and compare them with experimental data. In
Subsection 4.1, we consider decays of the first radial excitations of 7, p, and w
meson states. Decays of strange mesons are calculated in Subsection 4.2. Then,
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in Subsection 4.3, we calculate decay widths of the scalar mesons. Finally, the de-
cay widths of excited 1 and 7’ mesons are estimated in Subsection 4.4.

In Section 5 (Conclusion), we briefly discuss our results, give interpretation of
the members of meson nonets, and foresee ways of further developing our model.

In Appendix A, we collected some lengthy formulae defining the free part
of the effective Lagrangian for isoscalar, scalar and pseudoscalar mesons. In
Appendix B, we displayed in detail some instructive calculations of strong decay
widths of mesons.

2. SU(2) x SU(2) MODEL

2.1. Nambu-Jona-Lasinio Model with Separable Interactions. In this Sec-
tion, we construct an SU(2) x SU(2) NJL-like chiral quark model with quark
interaction of the separable type to describe the ground and first radially excited
states of pions and o mesons. Although, a realistic description of the meson
physics requires consideration of a U(3) x U(3) version (which we will do in
the next Section), we find it instructive to show the basic principles of the model
with this simple case. The content of the section corresponds to Ref. 17.

In the usual NJL model, SBCS is described by a local (current—current)
effective quark interaction. The model is defined by the action

S0 = [ dtei@) (19 - m0) vie) + S 1)
Sue = 5 [ dtelia(e)ia(@) + 2@ ). @

where j, »(x) denote, respectively, the scalar—isoscalar and pseudoscalar—isovector
currents of the quark fields (SU(2) flavor),

Jo(z) = P (2)(2), Ja () = Y(x)irs A"P(z). (&)

The model can be bosonized in a standard way by representing the 4-fermion
interaction as a Gaussian functional integral over scalar and pseudoscalar meson
fields [8-11]. Since the interaction, Eq.(2), represents a product of two local
currents, the bosonization is achieved through local meson fields. The effective
meson action obtained by integration over quark fields is thus expressed in terms
of local meson fields. By expanding the quark determinant in derivatives of the
local meson fields, one then derives the chiral meson Lagrangian.

The NJL interaction, Eq. (2), describes only ground—state mesons. To include
excited states, one has to introduce effective quark interactions with a finite range.
In general, such interactions require bilocal meson fields for bosonization [12,14].
A possibility to avoid this complication is to use a separable interaction that is still
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of current—current form, Eq. (2), but allows for nonlocal vertices (form factors)
in the definition of quark currents, Eq. (3),

N G N
Smo= 5 / 'z ) [joi(@)jos@) +jri@)iza (@], @
=1
Joi(z) = /d4x1/d4x2 V(1) Fy i(m; 21, 22)1h(72), (5)
joe) = / d'a, / By Plar)F2 (20, 22)b(x2). ©)

Here, Fy i(v;21,%2), Fif j(z;21,72), i = 1,... N, denote a set of nonlocal scalar
and pseudoscalar fermion vertices (in general, momentum— and spin—dependent)
to be specified below. Upon bosonization Eq. (4) leads to the action

Sbosw wao—lvﬂ_lw UN77TN]

/d4x1/d4x2 () [ 1@ 0y — ) d(z1 —x2) +

/d4xz J'L az CL’ CL’1,£C2) +7T?(£L’)F7?’i($;$1,(l:2)) 7/1@2) -

/d4 )+ 783 (2)). (7

It describes a system of local meson fields, o;(z),n%(x), i = 1,...N, which
interact with quarks through nonlocal vertices. We emphasize that these fields
are not yet to be associated with physical particles (o,0”’,...,m, 7, ...); physical
fields will be obtained after determining the vacuum and diagonalizing the meson
effective action.

To define the vertices of Egs.(5) and (6), we pass to the momentum repre-
sentation. Because of the translational invariance, the vertices can be represented

as
d*P
Foi(z;x1,22) = /W X

X /% expi {%(P +k)(x—x)+ %(P —k)(z — xQ)] Foi(K[P), ()

and similarly for F,(z;z1,72). Here k and P denote, respectively, the rel-
ative and total momentum of a quark—antiquark pair. We take the vertices to
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depend only on the component of the relative momentum transverse to the total
momentum,
P-k

Fa7¢(l€|P) EFg7i(kl|P), etc., kL, = k- ?P )
Here, P is assumed to be time-like, P2 > 0. Equation (9) is a covariant general-
ization of the condition that the quark—meson interaction is instantaneuos in the
rest frame of the meson (i.e., the frame in which P = 0). Equation (9) ensures
the absence of spurious relative—time excitations and thus leads to a consistent
description of excited states® [18]. In particular, this framework allows us to
use 3-dimensional «excited state» wave functions to model the form factors for
radially excited mesons.

The simplest chirally invariant interaction describing scalar and pseudoscalar
mesons is defined by spin—independent vertices 1 and i¢y5\%, respectively. We
want to include ground state mesons and their first radial excitation (N = 2), and
therefore take

Foj(ku|P) | 1 |
Fei(kiP) [ 7] i x O(Ag —[ko]) f;(k1), (10)

Ak) =1, folk) = c(L+dlkif), k] = /=K. (D

The step function, ©(As — |k, |), is nothing else than a covariant general-
ization of the usual 3-momentum cutoff of the NJL model in the meson rest
frame [14]. The form factor f(k,) has for d < —Aj? the form of an excited
state wave function, with a node in the interval 0 < |k, | < As. Equations (10)
and (11) are the first two terms in a series of polynomials in k% ; inclusion of
higher excited states would require polynomials of higher degree. Note that the
normalization of the form factor f(k,), the constant ¢, determines the overall
strength of the coupling of the oo and 7y fields to quarks relative to the usual
NIL coupling of m; and o;.

We remark that the most general vertex could also include spin—dependent
structures, P and +5/, which in the terminology of the NJL model correspond
to the induced vector and axial vector component of o and 7 (o—p and 7™A;
mixing), respectively. These structures should be considered if vector mesons are
included. Furthermore, there could be structures ¥ , PK 1 and vsk 1, v P¥ 1,

*In bilocal field theory, this requirement is usually imposed in the form of the so-called Markov—
Yukawa condition of covariant instantaneity of the bound state amplitude [14]. An interaction of the
transverse form, Eq.(9), automatically leads to meson amplitudes satisfying the Markov—Yukawa
condition.
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respectively, which describe bound states with orbital angular momentum L = 1.
We shall not consider these components here.

With the form factors defined by Egs.(10) and (11), the bosonized action,
Eq. (7), in the momentum representation takes the form

dk -

Shos [, Y3 01,1, 02, 2] = /Ww(k) (F —m°) p(k)+

+3 [t | itk 5P [s(P) + e X wi (PY] £k (k= 5P)=

J=1

2

_% z:/(;lTI)D4 (05 (=P)o; (P) + 75 (= P)r5(P)) 12

Here it is understood that a cutoff in the 3-dimensional transverse momentum is
applied to the k integral, as defined by the step function of Eq. (10).

2.2. Effective Lagrangian for = and 7’ Mesons. We now want to derive
the effective Lagrangian describing physical m and 7’ mesons. Integrating over
the fermion fields in Eq.(12), one obtains the effective action of the oy, 7 and
g9, T2 ﬁelds,

1 d*x

56 Gyt (o + et b od 4w

W[Ula 1, 0277T2]

2
iNe Tr log i) —m® 4> (0 +ivsA\"7) f; | -(13)

Jj=1

This expression is understood as a shorthand notation for expanding in the meson
fields. In particular, we want to derive the free part of the effective action for the
71 and 7o fields,

W o= wO Lw®, (14)
1 [ d'P K, .
we = / 7 2 T PEPPITP), (15)
i,5=1

where we restrict ourselves to timelike momenta, P? > 0. Before expanding
in the m; and w5 fields, we must determine the vacuum, i.e., the mean scalar
field that arises in the dynamic breaking of chiral symmetry. The mean—field
approximation corresponds to the leading order of the 1/N. expansion. The
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mean field is determined by the set of equations

ow d*k 1 o1
_ = — 'NC t - - 07 16
doy ‘ r/A3 Q2m)tk —mO+o1+o02f(kr) G (16)
ow ) d*k flky) 02
_ = — Nc t — — = 0. 17
doo ‘ r/A3 @Cm)tk —mO+o1+o2f(kL) G 0. 7

Due to the transverse definition of the interaction, Eq. (9), the mean field inside
a meson depends in a trivial way on the direction of the meson 4-momentum,
P. In the following we consider these equations in the rest frame where P =
=0,k = (0,k) and Aj is the usual 3-momentum cutoff.

In general, the solution of Egs.(16) and (17) would have o2 # 0, in which
case the dynamically generated quark mass, —o; — oof(k) + m®, becomes
momentum—dependent. However, if we choose the form factor, f(k), such that

4
k
_4mI1f = —z'thr/ dk4¥:
As (2m)E —m
: d'k f(k)
= 24Ncm/A3 (27T)4m = 0, (18)
m = —01 +m0,

then Egs. (16) and (17) admit a solution with oo = 0 and thus with a constant
quark mass, m = —o; +mP. In this case, Eq.(16) reduces to the usual gap
equation of the NJL model,

d*k 1 md —m
—8ml; = —miN, = . 19
= TR | et R —m2 G (19)

Obviously, the condition, Eq.(18), can be fulfilled by choosing an appropriate
value of the parameter d defining the «excited state » form factor, Eq. (11), for
given values of A3 and m. Equation (18) expresses the invariance of the usual
NJL vacuum, o; = const., with respect to variations in the direction of oo. In
the following, we shall consider the vacuum as defined by Egs.(18) and (19),
i.e., we work with the usual NJL vacuum. We emphasize that this choice is
a matter of convenience, not of principle. The qualitative results below could
equivalently be obtained with a different choice of form factors; however, in this
case one should re-derive all vacuum and ground-state meson properties with
the momentum—dependent quark mass. Preserving of the NJL vacuum makes
formulas below much more transparent and allows us to take the parameters fixed
in the old NJL model.
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Fig. 1. The quark loop contribution to the quadratic form K;;(P), Eq.(94), of the effective
action for 71 and w2 fields. Solid lines denote the NJL quark propagator. The 7 field
couples to quarks through a local vertex; the w2 field, through the form factor, f(k.),
marked by letter f

With the mean field determined by Egs. (18) and (19), we now expand the
action to quadratic order in the fields 71 and mo. The quadratic form Kfjb(P),
Eq. (15), is obtained as

KX (P)= 6" K;;(P),

KH(P)__.Nt/ dk [ PP BN RS
ij = —UNc I A3(27T)4 k_’_%P_mZ’}% z%_%P_mZ')% J ENeh
(20)

A graphical representation of the loop integrals in Eq. (20) is given in Fig. 1. The
integral is evaluated by expanding in the meson field momentum, P. To order
P2, one obtains

Ku(P) = Zy(P?— M), Kop(P) = Zy(P? — M3)
Ki3(P) = Ku(P) = /Z,Z,TP? 1)
where
Zy = AL,  Zy = AL, (22)
2 1 1 m°
M2 = Z7Y(-8I -1 = 23
1 L (8L +G7) Z.Gm’ (23)
M2 = zy'(-8Hf+G, (24)
r - 4. p 25)

NoAV
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Here, I,,, I}, and I}/ denote the usual loop integrals arising in the momentum
expansion of the NJL quark determinant, but now with zero, one or two factors
f(k1), Eq.(11), in the numerator. We may evaluate them in the rest frame,
k1 = (0,k),

d*k f(k)..f(k)

I/ = N, )
" e s, @O (M2 — k)

(26)

The evaluation of these integrals with a 3-momentum cut-off is described, e.g., in
Ref. 19. The integral over kg is taken by contour integration, and the remaining
3-dimensional integral is regularized by the cut-off. Only the divergent parts are
kept; all finite parts are dropped. We point out that the momentum expansion
of the quark loop integrals, Eq.(20), is an essential part of this approach. The
NJL model is understood here as a model only for the lowest coefficients of the
momentum expansion of the quark loop, but not its full momentum dependence
(singularities, etc.).

Note that a mixing between the 7, and mo fields occurs only in the kinetic
((’)(PQ)) terms of Eq. (21), but not in the mass terms. This is a direct consequence
of the definition of vacuum by Egs. (18) and (19), which ensures that the quark
loop with one form factor has no P?—independent part. The «softness» of the
71— mixing causes the 7y field to decouple as P2 — 0. This property is crucial
for the appearance of a Goldstone boson in the chiral limit.

To determine the physical - and 7’-meson states, we have to diagonalize the
quadratic part of the action, Eq. (15). If one knew the full momentum dependence
of the quadratic form, Eq. (21), the masses of physical states would be given as
zeros of the determinant of the quadratic form,

det K;;(P?) =0, P2 = M2 M?2. (27)

This would be equivalent to the usual Bethe—Salpeter (on-shell) description of
bound states: the matrix K;;(P?) is diagonalized independently of the respective
mass shells, P2 = Mﬁ, Mﬁ, [13,20,21]. In our approach, however, we know the
quadratic form, Eq.(21), only as an expansion in P2 at P? = 0. It is clear that
the determination of the masses according to Eq. (27) would be incompatible with
the momentum expansion, as the determinant involves O(P?) terms neglected
in Eq.(21). To be consistent with the P? expansion, we must diagonalize the
kinetic term and the mass term in Eq. (15) simultaneously, with a P?-independent
transformation of the fields. Let us write Eq.(21) in the matrix form

) 7 NZZT )\ ZiME 0
Ky(P) = VZiZ;0 7 P oz ) ¥
142 2 2 2
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The transformation that diagonalizes both the matrices here separately is given by

cos ¢ Ms sing
/Z a — a a
" " VR (29)
N Mysing |, coso .,
Fis — ¢ - e,
2 M2 \/Z7r Z7r/
where
M M2\
tan2¢ = 2Pﬁ; <1_ﬁ12> , (30)
2
M? M,
Z. = cos®¢p+ —Lsin? o+ 20— cos ¢ sin , (31)
6+ 3z o+ 2L cospsing
M2 Moy
Zp = cos® ¢+ —=sin? ¢ — 20 —= cos psin ¢. (32)
6+ 33’ 6 = 23 cospsing

In terms of the new fields, w, ', the quadratic part of the action, Eq. (15), reads

W = 5 [ G [r (- P)(P? = M2 (P) + 7' (=P)(P* = ME)*(P)]
(33)

Here,

MQ:%% M22

= . 34
= M= 3 (34)

The fields 7 and 7’ can thus be associated with physical particles.

Let us now consider the chiral limit, i.e., a vanishing current quark mass,
m® — 0. From Egs. (22)—(25) we see that this is equivalent to letting M? — 0.
(Here and in the following, when discussing the dependence of quantities on the
current quark mass, m®, we keep the constituent quark mass fixed and assume
the coupling constant, G, to be changed in accordance with m°, such that the gap
equation, Eq. (19), remains fulfilled exactly. In this way, the loop integrals and
Eq. (18) remain unaffected by changes of the current quark mass.) Expanding
Egs. (34) in M? o< m", one finds

M2 = M} + O(mj), (35)
M2 M?2
M2 = 21 4+ 2L MY . 36

Thus, in the chiral limit the effective Lagrangian, Eq.(33), indeed describes a
massless Goldstone pion, 7, and a massive particle, 7’. Furthermore, in the chiral
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limit the transformation of the fields, Eq. (29), becomes

M? I M?
Vam = (1) e e (10T )

Z a I\M12 a 1 la (37)
e = — T — —T7 .

22 M2 Vi_12

At M? = 0 one observes that 7w has only a component along 7;. This is

a consequence of the fact that the m;—my coupling in the original Lagrangian,
Eq. (21), is of order P2. We remark that, although we have chosen to work with
the particular choice of excited—state form factor, Eq. (18), the occurrence of a
Goldstone boson in the chiral limit in Eq. (13) is general and does not depend on
this choice. This may easily be established by using the general gap equations,
Egs. (16) and (17), together with Eq. (20).

2.3. The Axial Current. To describe the leptonic decays of the 7 and =’
mesons, we need the axial current operator. Since our effective action contains,
besides the pion, a field describing an «excited state» with the same quantum
numbers, it is clear that the axial current of our model is, in general, not carried
exclusively by the 7 field, and is thus not given by the standard PCAC formula.
Thus, we must determine the conserved axial current of our model, including the
contribution of 7/, from first principles.

In general, the construction of the conserved current in a theory with nonlocal
(momentum—dependent) interactions is a difficult task. This problem has been
studied extensively in the framework of the Bethe—Salpeter equation [22] and
various 3-dimensional reductions of it such as the quasipotential and the on-shell
reduction [23]. In these approaches, the derivation of the current is achieved
by «gauging» all possible momentum dependences of the interaction through
minimal substitution, a rather cumbersome procedure in practice. In contrast, in
a Lagrangian field theory, a simple method exists to derive conserved currents,
the so—called Gell-Mann and Levy method [24], based on the Noether theorem.
In this approach, the current is obtained as the variation of the Lagrangian with
respect to the derivative of a space—time dependent symmetry transformation of
the fields. We now show that a suitable generalization of this technique can be
employed to derive the conserved axial current of our model with quark—meson
form factors depending on the transverse momentum.

To derive the axial current, we start at the quark level. The isovector axial
current is the Noether current corresponding to infinitesimal chiral rotations of
the quark fields,

P(x) — <1 — z’e“%)\“'ys) P(z). (38)
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Following the usual procedure, we consider the parameter of this transformation
to be space-time dependent, ¢ = £%(x). However, this dependence should not be
completely arbitrary. To describe the decays of m and 7’ mesons, it is sufficient
to know the component of the axial current parallel to the meson 4-momentum,
P. Tt is easy to see that this component is obtained from chiral rotations whose
parameter depends only on the longitudinal part of the coordinate

z-P
VP

since 9,e%(z)|) o< P,. In other words, transformations of the form Eq.(39)
describe a transfer of the longitudinal momentum to the meson, but not of the
transverse momentum. This has an important consequence that the chiral trans-
formation does not change the direction of transversality of the meson—quark
interaction, cf. Eq.(9). When passing to the bosonized representation, Eq. (7),
the transformation of the 71,01 and 7, o9 fields induced by Egs. (38) and (39)
is therefore of the form

€a($) - €a($H), || 39)

ni() - mi@) +

oi(x) — oi(x) —

“
“

This follows from the fact that, for a fixed direction of P, the vertex, Eq.(9),
describes an instantaneous interaction in xy|. Thus, the special chiral rotation,
Eq.(39), does not mix the components of meson fields coupled to quarks with
different form factors.

With the transformation of the chiral fields given by Egs. (40), the construc-
tion of the axial current proceeds exactly as in the usual linear sigma model. We
write the variation of the effective action, Eq. (13), in the momentum representa-
tion,

£z (i=1,2) (40)
e \x

5W—/%%ﬂ@m@x 1)

where £(Q) = £%(Q))6®®(Q_.) is the Fourier transform of the transformation,
Eq. (39), and D%(Q) is a function of the fields o;,7;,i = 1,...2, given in the
form of a quark loop integral,

d*k 1
D = —iN, ab
Q) 1 tr/(2ﬂ)4 [% _m5 +
1 1
+7i'y5/\“7i75)\b01] X
F=3@-m 7 F+3@—m

x(m3(Q) + f(kL)m5(Q)). (42)
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nlxau——— +7'cl><8u -

Fig. 2. The axial current of m; and w2 fields, Eq.(44), as it follows from the Noether
theorem. The cross denotes a local axial current of quark fields to which 71 and 72 fields
couple through quark loops. The notation is the same as in Fig. 1

Here we have used that o5 = 0 in the vacuum, Eq. (18). Expanding now in the
momentum (), making use of Eq. (18) and the gap equation, Eq. (19), and setting

o1 = —m (it is sufficient to consider the symmetric limit, m® = 0), we get
DYQ) = —Q*m[1hmi(Q)+4{n3(Q)]
= —Q'm |2 (Q +VAZIT(Q)]. “3)

The fact that D*(Q?) is proportional to Q? is a consequence of the chiral sym-
metry of the effective action, Eq.(13). Due to this property, D*(Q?) can be
regarded as the divergence of a conserved current,

45(Q) = Qum | Z1m(Q) + Vi 25 (Q)] (44)

Equation (44) is the conserved axial current of our model. It is of the usual
«PCAC» form, but contains also a contribution of the 7 field. The above
derivation was rather formal. However, the result can be understood in simple
terms, as is shown in Fig.2. Both the 7 and 79 fields couple to the local axial
current of the quark field through quark loops; the 7o field enters the loop with
a form factor, f(k,). The necessity to pull out a factor of the meson field
momentum (derivative) means that only the O(P?) parts of the loop integrals,
I, and I{, survive, cf. Eq. (26). Chiral symmetry ensures that the corresponding
diagrams for the divergence of the current have no P2-independent part.

The results of this Subsection are an example for the technical simplifications
of working with separable quark interactions. The fact that they can be bosonized
by local meson fields makes it possible to apply methods of local field theory,
such as the Noether theorem, to the meson effective action. Furthermore, we note
that the covariant (transverse) definition of the 3-dimensional quark interaction,
Eq. (9), is crucial for obtaining a consistent axial current. In particular, with this
formulation there is no ambiguity with different definitions of the pion decay
constant like with noncovariant 3-dimensional interactions [13].

2.4. The Weak Decay Constants of = and 7' Mesons. We now use the axial
current derived in the previous Subsection to evaluate the weak decay constants
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of physical m and n’ mesons. They are defined by the matrix element of the
divergence of the axial current between meson states and vacuum,

0lo*A%|x®) = MZ2F.s*, (45)
00" A%|n"") = MZ Frd®™. (46)

In terms of the physical fields, 7 and 7/, the axial current takes the form
M2
AZ = P,mv Z; (77“ + I'v1-12 M;Qw’“) + (’)(Mf). 47)

Here, we substituted the transformation of the fields, Eq. (37), into Eq. (44). The
decay constants of the physical 7 and 7’ states are thus given by

F. = VZim + O(M}), (48)
M2

F. = +/ZymT 1—F2M12 + O(M}). (49)
2

The corrections to F; for excited states are of order Mﬁ. Thus, within our
accuracy, F); is identical with the value obtained by the usual NJL model, VZim,
which follows from the Goldberger—Treiman relation at the quark level [8]. On
the other hand, the 7’-decay constant vanishes in the chiral limit m® ~ M 12 — 0,
as expected. We stress that for this property to hold, it is essential to consider
the full axial current, Eq. (44), including the contribution of the w9 component.
As can be seen from Eqgs. (37) and (44), the standard PCAC formula Aﬁ, x Ot
would lead to a nonvanishing result for F, in the chiral limit.

The ratio of the 7'~ to w-decay constants can directly be expressed in terms
of the physical 7 and 7’ masses. From Egs.(48) and (49) one obtains, using
Egs. (35) and (36),

2 2
v _p 1—r2%12 _ L M
Fy M3 V1—=T2 M2
This is precisely the dependence derived from current algebra considerations in
the general «extended PCAC» framework [25]. We note that the same behavior
of F/ in the chiral limit is found in models describing chiral symmetry breaking
by nonlocal interactions [13,20].

The effective Lagrangian in a compact way illustrates different consequences
of axial current conservation for the pion and its excited state. Both matrix
elements of J,A*, Eq.(45) and Eq.(46), must vanish for mY — 0. The pion
matrix element, Eq. (45), does so by Mﬁ — 0, with F}; remaining finite, while
for the excited pion matrix element the opposite takes place, Fr — 0 with M,
remaining finite.

(50)
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2.5. Numerical Estimates and Conclusions. We can now numerically es-
timate the excited pion decay constant, Fy/, in this model. We take the value
of the constituent quark mass m = 300 MeV and fix the 3-momentum cut-off
at A3 = 671 MeV by fitting the normal pion decay constant F; = 93 MeV
in the chiral limit, as in the usual NJL model without excited states, cf. [19].
With these parameters one obtains the standard value of the quark condensate,
(Gq) = —(253MeV)?, and G = 0.82m~2 = 9.1 GeV 2, m® = 5.1 MeV. With
the constituent quark mass and cut-off fixed, we can determine the parameter d of
the «excited-state» form factor, Eq.(11), from the condition Eq.(18). We find*
d = —183A;% = —4.06 GeV 2, corresponding to a form factor f(k,) with a
radial node in the range 0 < |k | < As. With this value we determine the ;-2
mixing coefficient, I', Eq. (25), as

I =0.41. (51

Note that I" is independent of the normalization of the form factor f(k ), Eq. (11).
In fact, the parameter c enters only into the mass of the 7’ meson, cf. Egs. (24) and
(36); we should not determine its value since the result can directly be expressed
in terms of M. Thus, Eq. (50) gives

F M2
= 0.45—L-. 52
Fw i} (52)
For the standard value of the 7’ mass, M, = 1300 MeV, this comes to

Fr = 0.48 MeV. The excited pion leptonic decay constant is thus very small,
which is a consequence of chiral symmetry. Note that, as opposed to the quali-
tative results discussed above, the numerical values here depend on the choice of
form factor, (see Eq. (18)), and should thus be regarded as a rough estimate.

We remark that the numerical values of the ratio F,//F, obtained here are
comparable to those found in chirally symmetric potential models [20]. However,
models describing chiral symmetry breaking by a vector-type confining potential
(linear or oscillator) usually underestimate the normal pion decay constant by an
order of magnitude [13]. Such models should include a short-range interaction
(NJL-type) which is mostly responsible for chiral symmetry breaking.

The small value of F}, does not imply a small width of the ' resonance,
since it can decay hadronically, e.g., into 37 or pm. Such hadronic decays will
be investigated in Section 4.

In conclusion, we outlined a simple framework for including radial excita-
tions in an effective Lagrangian description of mesons. The Lagrangian obtained

*All parameters will be different when in Section 3 we consider a realistic version of this model.
However, the ratio d/A3 will be near 2 (its limit as A — oo) and change slightly.
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by bosonization of an NJL model with separable interactions exhibits all qual-
itative properties expected on general grounds: a Goldstone pion with a finite
decay constant, and a massive «excited state» with a vanishing decay constant in
the chiral limit. Our model shows in a simple way how chiral symmetry pro-
tects the pion from modifications by excited states, which in turn influences the
excited states’ contribution to the axial current. These features are general and
do not depend on a particular choice of the quark—-meson form factor. Further-
more, they are preserved if the derivative expansion of the quark loop is carried
to higher orders.

In the investigations described here we strictly kept to an effective Lagrangian
approach, where the coupling constants and field transformations are defined at
zero momentum. We have no way to check the quantitative reliability of this
approximation for radially excited states in the region of ~ 1 GeV, i.e., to estimate
the momentum dependence of the coupling constants, within the present model.
(For a general discussion of the range of applicability of effective Lagrangians,
see [26].) This question can be addressed to generalizations of the NJL model
with quark confinement, which in principle allow both a zero—-momentum and
an on-shell description of bound states. Recently, first steps were undertaken to
investigate the full momentum dependence of correlation functions in an approach
of that kind [27].

3. U(3) x U(3) MODEL

3.1.U(3) xU(3) Chiral Lagrangian with Excited Meson States and ’t Hooft
Interaction. This Section is devoted to a realistic U(3) x U(3) version of the
NJL model with nonlocal four-quark interaction (see Refs. 28, 29, 30).

We use a nonlocal separable four-quark interaction of the current—current
form which admits nonlocal vertices (form factors) in the quark currents and a
pure local six-quark °t Hooft interaction [31,32]:

L@q) = / d'z ()i —m®)q(z) + LD 1 £, (53)

9 N
£ = Z [ 30 Sl @) + i) )] -

G 9 N . ‘ . ‘
— o [Nl @i w(@) + R (@5 (@), (54)
a=11i=1
£ = —K[det[q(1+7s)q + det [g(1 —s)q]], (55)

where Ei(:ft) is the U(3) x U(3) chirally symmetric four-quark interaction La-
grangian and £1(23 contains the symmetry breaking ’t Hooft terms. Here, m0 is
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the current quark mass matrix m° = diag(my, mg, m?) (m, ~ mQ) and j¢;; with
U = (S, P,V, A) denotes the scalar, pseudoscalar, vector, and axial-vector quark

currents

JSpyi(x) = /d4$1d4$2 q(21)F§ p) (w321, 22)q(22), (56)
Iy (@) = /d4$1d4$2 (1) Fy ) (5 21, 22)q(22), (57)

where F§p) ;(x;21,22) are the scalar (pseudoscalar) and F{;’(Z)’i(x; x1,x2) the
vector and axial-vector nonlocal quark vertices. The index a = 1,...,9 denotes
the basis elements 7 of U(3) flavor group. Our choice is slightly different from
the Gell-Mann )\ matrices

1 00
T = N (izl,...,7), 7'8:(\/5)\0"‘/\8)/\/5: 0 1 0 R
0 0 0
00 O
To=(=do+V2)/V3=| 0 0 0 |, (58)
0 0 —V2

but this choice is more convenient when a singlet—octet mixing appears due to
the ’t Hooft terms.

In the original formulation of the NJL model with 't Hooft interaction, the
"t Hooft terms are represented by six-fermion vertices. In this form the Lagrangian
is not ready for the bosonization procedure we should proceed to. An appropriate
way to circumvent this drawback is to come to an equivalent form of the quark
Lagrangian that contains only four-quark vertices as it was done, e.g., in Refs. 4,
31. Therein, the effective four-quark interaction is deduced by integrating out a
quark loop at each six-quark vertex. Thus, from £1(23 the four-quark part £i(§3
acquires an additional contribution which in the one-loop approximation looks as
follows:

3
LY = 4K / d4x{2msh(ms) [(@(z)irsmq(2))? — (q(x)"q(x))?]

7
+> mali(my) [(@(2)ivsmq(2))* = (q(z) " q(2))?]
a=4

+msly(ms) [(@(2)m%q(2))? = (G(2)ins T q(x))?]
=2v2m, 1 (m) [(a(2)7°¢(2)) (q(2)7"g(2))

—(q(@)ivsq(2))(@(2)irsm q(2))] } (59
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In our model the 't Hooft interaction is local with respect to its instantaneous
origin. Finally, we have *

Lg.q) = /d4w<x><z'a—m0>q<x>+

1 2
g [d0 3 36508 @i ) + G b (@) ()] +
a=1b=1
I 9 N
+ 5 A Y Y )5 (@) + ()5 ()] -
a=1i=2
GV 9 N
= G [ S @ ) + T @ (), 60
a=1i=1

where

¢ =6 =6 =G +aKkm.L(my),

G =6 =cH =6\ =G+ 4Km I (m.),

G =G FaKkm.L(m,), G =a,

G =G = £4v2Km, 1, (m.),

Gupy=0 (a#b, a,b=1,...,7). (61)

The model thus formulated can be bosonized in a standard way by introducing
auxiliary boson fields o (z), (), V' (x), AY () with quantum numbers of the
quark currents jg( P)’i(x) and j$(i)7i, and then integrating over the quark degrees
of freedom. The result is a meson effective Lagrangian which, after all, is a
functional of scalar, pseudoscalar, vector, and axial-vector meson fields. In the
case of an ordinary (local) NJL model, this procedure would give us the well-
known linear realization of the chiral Lagrangian. When original four-quark
vertices of the separable type contain form factors, the bosonization gives rise
to a meson effective Lagrangian for the ground state and a number (in general
infinite) of radially excited meson fields. These fields have the same quantum
numbers and therefore should be interpreted as «radial» excitations.

The effective four-quark representation of the Lagrangian with 't Hooft in-
teraction requires careful treatment. It is not equivalent to the original form in

*It should be noted that SBCS is already taken into account in the effective four-fermion
vertices. Therefore, the effective four-fermion Lagrangian is no longer chirally invariant. However,
in its original form the chiral invariance is present if we exclude 't Hooft terms. This fact has some
consequences which we use later, for instance, we choose the same form factors both for scalars and
pseudoscalars.
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all aspects. For example, the gap equations derived from the effective four-quark
form of the Lagrangian do not reproduce those obtained from the original form
(with six-quark vertices). A kind of double counting takes place here, which
leads to wrong gap equations (for a correct derivation of gap equations, see [31]).
But for the mass spectra and meson—meson coupling constants in the one-loop
approximation, everything works well.

In the one-loop approximation, the bosonized Lagrangian has the following
form:

Lbos(@v q;0,9, ‘/7 A) = /d4$1 /d4$2 Q(xl) |:(Za12 - mo) 5(1’1 - 252) +

/d4$ZZ( VEg (w521, 22) + 0 () By i (w5201, 22) +

=1 a=1

V(@R 3 .2) 4 AL (OF5 (1, 22)) o) -

—Z/d4 { ( G< >)a: ot (z)o} (z) + (G”));b1 @%(x)so’i(x)) -

~sgo (@) + (ae@)?). (©2)

This Lagrangian describes a system of local meson fields, o (x), ¢%(x),
VoH(x), AP*(z), i = 1,...N, which interact with quarks through nonlocal
vertices. These fields are not yet to be associated with physical particles, to
be obtained after determining the vacuum and diagonalizing the meson effective
Lagrangian.

In general, the model admits as many excited states as one wishes. But
for a realistic description of very heavy mesons (2 GeV and more) the model
seems not reliable because it is constructed for low energies. So we intended
here to consider a minimal version of the model, restricting ourselves to N = 2,
which is necessary for the description of ground states and first radial excitations
of mesons.

To describe the ground and first radially excited states of mesons, we take
the form factors in the momentum representation as follows:

Fg;(k)=71fg;  Fp;=ivm"fg;, (63)
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a, [ _ a, b __
FVJ' (k) = 'YHTaf&ja FAJ' = 75'7”7@](2}]', (64)

f1=1, foa=fU(k) =l (14 dak?), (65)

where U = (o, ¢, V, A). Here, we consider the form factors in the rest frame of
mesons (see Section 2). After bosonization in the one-loop approximation, we
get

LbOS(Jv 90; Va A) =

¥ Jate|5((60) sttt + (¢9) vttt -

el
s (7 + (a3 -

—g [t 56 (@3 + (@) -

5o (0@ + (ag@)*) | -

iTeln [1 - iﬁ;(o; 4 VO A g,) o7, | (66)

At the beginning of this Section, we have already mentioned that there is a
danger of double counting when deriving gap equations. The double counting
surely takes place if one tries to obtain the gap equations by naively varying the
Lagrangian (66) over of. However, correct equations for ¢§ can be obtained in
this way. It is due to the fact that the ’t Hooft interaction is local.

The gap equations for of can be deduced from the Dyson—Schwinger equa-
tion. We will not discuss the details of finding its solution but refer the reader,
e.g., to paper [31]. Here we present just the result that is a slight modification of
the equations obtained in Ref. 31.

m = my[1 = 8GY (I (my) + If** (my) £3)), (67)

ml = my[l—8Ghy (1h(m) + 1 (ms) ). (68)

There m? and m,, (a = u, d, s) are the current and constituent quark masses,

respectively. The difference between Egs. (67),(68) and those given in Ref. 31 is
the presence of I{ (my,), tadpoles with form factors absent in local NJL.

The constituent quark masses appear, as usual, due to nonzero vacuum ex-
pectations of o, according to the equations

<68)0 = mg — My, <69)0 = mg — M. (69)
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We use them in the gap equations for excited meson states. The fields 6% require
redefinition which consists in subtracting their vacuum expectation values:

o® =% — (5%, 0¥ =5 —(5%). (70)

Now we stop discussing the gap equations for the ground fields and turn
our attention to those for radially excited meson states. As it was said above,
the correct gap equations for radially excited meson states can be obtained by
calculating the first derivative of Lagrangian (66) with respect to o5, which gives

oL _ . d4k fa(k) - <O'g>0 _
<(5g¢21 >0 = Nt /A\3 (271')4 (% —m4+ <O"27’>0Tafa(k)) a 0. (71)

This equation always admits the trivial solution (¢§) = 0. Despite the fact that
nontrivial solutions are possible, we assume that the vacuum expectations for
radially excited meson states are equal to zero and therefore do not change the
quark condensate. Thus, we obtain the condition

v [ AR
Neto || G T~ 7

Equation (72) is written in the matrix form. In the isotopic symmetry, Eq. (72)
gives two conditions on the form factors f%(k) which can be written in our
notation as follows:

o (my) = 0, (73)
If=(my) = o (74)

These conditions essentially simplify the calculation of the meson mass spectra.
In particular, they provide a diagonal form for the (o¢)? and (¢%)? mass terms of
the meson Lagrangian, however, not for all contributions. To ensure that no terms
like ofoS or {4 for strange mesons come from the one-loop quark integrals,
we must impose, in addition to Eqgs. (73) and (74), another condition

1 (ma) + 1 (m.) = 0. ()

Conditions (73), (74), and (75) provide orthogonality of the ground (¢ = 1) and
excited (¢ = 2) meson states in the low energy limit P2 — 0 (see Section 2)
when ¢f become Goldstone bosons.

Now let us remind how we fix the basic parameters in the usual NJL model
without excited states of mesons [10].

To obtain correct coefficients of kinetic terms of mesons in the quark-one-
loop approximation, we have to make the renormalization of the meson fields

9V 1 ru, 9V A
Oq = 9?027 Pa = gg%a Vau = 7‘/‘/(1}“"; Ag = 7\/145,7"’ (76)
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where
ggw = [4[2(mi7mj)]_1/2’
d*k 1
I 79 i) = _'NC | !
i 1) = =N || o (i — ) (o — 1) "
gg’/ = \/égg' (78)

After taking account of the pseudoscalar—axial-vector transitions (¢, — A,), the
additional renormalization of the pseudoscalar fields

1

9o = Za > gg, (79)

appears, where Z, = 1 — Gmi/M(f1 ~ 0.7 for pions. (M,, = 1.23 GeV is the
mass of the axial-vector a; meson, [1], m, = 280 MeV (see below and [10]).
We assume that Z, ~ Z, ~ 0.7 for any a.

After these renormalizations the part of the Lagrangian describing the ground

states of mesons takes the form

1 ) _
L(o,p. V. A) = =5 (G )5 93950000 + ()5 g0l pattn)

a2
—QL(VG2 + A2) —iN, Tr In |i —m+
2Gy
9 a
+> (ggoa + 59500 + %vaa” + mAg)) T“} : (80)
a=1

for simplicity we omitted the index r of meson fields.
Lagrangian (80) in the one-loop approximation results in the following ex-
pressions for the meson masses [10]

1 g2 mY 1
M?=g% | — —8I =7t 2= - 81
™ 9r |:G7r 1(mu):| G7r mu7 9r 4ZIg(mu,mu)’ ( )
1 _
ME = g% |:G_K —4(I(my) + Il(ms))] + Z7 Y (mg —my)?,
1
i = (82)

A7 I (my, ms)’

G.=G\,  Grk=G, (83)
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M = g, (6D - 8h(m.)).
Mg = g2 (6D —8L(my)). (84)
M = gy (GG, (85)
1 + + + + +
M(Qn,n/) =3 [Més) + Még) ¥ \/(Ms(s) - Még ))2 + 4(Ms(9 ))2 ) (86)
2
I Uy u
M2=Jo ; M2 = g2 20me ) g

4Gy N SGVIQ(mu; mu)’ L IQ(ms; ms) ’

Iy(my,my) 3
M2, =M s — My 2, 88
K pIQ(mu;ms) * 2(m " ) &8)

Now let us fix our basic parameters. For that we use six experimental values
[8,10,32]:
1) The pion decay constant F; = 93 MeV.
2) The p-meson decay constant g, ~ 6.14. Then from the Goldberger—
Treiman identity we obtain
My = Frgr (89)

and from Egs. (78) and (79) we get

G = 9p m :ngp
s /627 u /6Z’

From Egs. (77) and (78) we can obtain (see [19])

m =280 MeV. (90)

3

22’

Iy (my,my,) = A3 =1.03 GeV. 91)

3) M, =135 MeV, the Eq.(81) gives G .
4) M, =770 MeV, the Eq. (82) gives Gy.
Mg =495 MeV,
Mg, — M,%

Then the masses of 7, i, K*, ¢, and scalar mesons can be calculated with
a satisfactory accuracy (see [32]).

We can calculate the values of Fx and all the coupling constants of strong
interactions of scalar, pseudoscalar, vector, and axial-vector mesons with each
other and with quarks, and describe the main decays of these mesons (see [10,32]).

Further, when the radial excitations are included, the parameters will be
shifted because of changing the mass formulae. However, m,, and Az will be the
same as they are now. Their numerical values will be calculated in Subsec.3.5.

5) fix K and mg.
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3.2. The Masses of Isovector and Strange Scalar and Pseudoscalar Mesons
(Ground and Excited States). After bosonization, the part of Lagrangian (66)
describing the isovector and strange scalar and pseudoscalar mesons takes the
form

2 * 2 2 2
a’O,l K 1 ™ K
L:(a(),l;Kg,l;W17K15a0,27K5,277T27K2) - _2Ga0 - GOKS - 267},” - G—[l(_

1
s (ag o +2(Kg 2)? + 75 + 2K3)—
2G
1 7
—iN,Trln 1+i@_m;;m [0F + s3] £7 | (92)

where o and ¢} are the scalar and pseudoscalar fields:

3
Z(U?)QEG(Q),j—(aO ) +2a0]a0ja
a=1
7
a _ x 2
D (o) =2K5 ;7 = 2(K )0 (K5 ) + 2(K5 )T (K )™
a=4
3
Z(w?)szr?:( )+ 2m
a=1
7 — —
D (9})? =2K; =2K)K? + 2K/ K.
a=4

As to the coupling constants G,,, they will be defined later (see Subsec. 5 and

(61)).
The free part of Lagrangian (92) has the following form

2 7
1 a a a
£ (0, ) =3 3> (08K (P)of + 9f K 5(P)e]) (93)
i,j=1a=1

where the coefficients K¢

o(p),i; (P) are given by

. di1 di2
K3 (o), (P) = —6i; {@ + 5} -

d*k 1 1
—iN,Tr / ro@fpe__—_pole) e (94)
As QT K+ P/2—mg Kk =P/2-mg !
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ro = 1, rf = if}/57 95)

g =mu (a=1,..,3); mgy =ms (a=4,..,7),

(96)
with m, and m, being the constituent quark masses and f' being defined in
(65). Integral (94) is evaluated by expanding in the meson field momentum P.
To order P2, one obtains

mg=my (a=1,..,7); m

Kg(w),ll(P) = Zg(w),l(P - (mq + me)2 - Mg"'(@"')d)v
Koy 22(P) = Zg(p) o(P? = (mg mg)* = Mia () ),
Kgo)12(P) = Kgpym(P) = ’Yg(@)(PQ — (mg +my)?), 97
where
70 =4I 7%, =41’ @ —41f" (98)
o,1 2> 0,2 2 ’ Yo 2
Zg,l = ZZg,lv Zg,z = Zg,Qa 5= 21/272 (99)
and
a - 1 a a
MZpoyy = (Z8y0) " [W — 4(I1(m2) +11(mq,))} . (100)
1|1 a a
Miips = (Zo2) ™ |G~ A0 ) + 17| aon

The factor Z here apjpears due to ™ — a; transitions [8,10,28] (see Subsec. 3.1),
and the integrals I contain form factors:

Ffafp oy = — e [ fa()fa(k)
Lt tmami) = Gyt [, T F e — (e w192

g Mg
After the renormalization of the scalar fields

Z(L

7 o, za P

o?

Zg %0 (103)

the part of Lagrangian (93) that describes the scalar and pseudoscalar mesons
takes the form

1
Ez(z%) ) (P2 - 4m3 - M30,1) 0(2),1 + Ty, (P2 - 4m3) a0,100,2
1
+ 3 (P* —4m, — M7 ,) af o, (104)
2 1
;Cg(% = 5(]32 _ (mu + ms)2—MI2(6‘,1) KO s

]-—‘KS‘ (P2 - (mu + ms)Q) KS,IKO,Q +

+ o+

1
5 <P2 — (my +my)? — M ) K33, (105)
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1 1
£® = 3 (P* = M2 )7} + Do PPmimy + 3 (P? = M2,)m3, (106)
1 1
z:§§> = 5(P? —M?ﬂ) K24 T P*K K, +5 (P? - M,?m) K2, (107)
where

Iga,

/1,14

After the transformations of the meson fields

Lo = Tpo = Z V2T ,a.

0 = cos(0,a — by,)08" — cos(05.a + 03 )05,
6% = sin(byq — 927(1)0‘1" —sin(fy,q + 927(;)0‘2",

@a = COS(Q%O« - gg,a)sﬁ(lw - COS(QQOJZ + eg,a)wgrv
¢ = sin(fyq — Ogﬂ)go‘l" —sin(fy.q + eg,a)wgr.

Lagrangians (104), (105), (106), and (107) assume the diagonal form:

1 1 .

L) = (PP = MZ) af+ 5 (P* = Mg )ag,
L2 = LML) K+ 1(P? - M2 )RS
Ks 2 Kg/ =0 2 Kg/tho -

1 1

L® = 5(P2 - M2?) 7% + 5(P2 — M2)#2,

2 1 1 :
L = (PP =Mg) K*+ 5(P* - MR)K*.

Here we have

1
2 _ 2 2
M(ao,flo) - 2(1 — 1—‘20) |:Ma0,1 + Mao,QZl:

i\/(Mzgo,l - M30,2)2 + (2M0«0,1Mao721—‘ao)2:| + 4m121,7

9 1

M e
K* Kz _ 12
(K5.Ks)  2(1 FKS‘)

{M;S,l T ME,

j:\/(Ml%(g’1 - MIQ(S,Q)2 + (QMKS,IMKS,QFKS)Q} + (my +ms)?,

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)
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1

M2 =——

(m,7) 2(1 — Fgr)

[Mz,1 M2,

+ \/(Mﬁ,l - M:,)? + (2M7r,1M7r,21“7r)2}, (117)
1
2 _ 2 2
M(K,R')2(1_F2)|:MK71+MK2:E
K
+ \/(MIQ(,l - M7 )%+ (2MK,1MK,2FK)2], (118)
and , ,
tan 29 (p),a = # 1 |\Mga(‘pa):1 B MUG’(W“’);Q]

o\e)s 2 2 2 )

FU"’(W“’) MO’“’(Lp"'),l + Mo""(kp“’)’Q

205(0).0 = 205(0).a + T, (119)

, T+ oo
sin6,) o = \/%. (120)

The caret symbol stands for the first radial excitations of mesons. Transforma-
tions (109) and (110) express the «physical» fields o, ¢, &, and ¢ through the
«bare» ones 0", 7" and for calculations these equations must be inverted. For
practical use, we collect the values of coefficients in the inverted equations for
the scalar and pseudoscalar fields in Table 1.

For the weak decay constants of pions and kaons we obtain

Er = 2myu\/ZIs(m,)cos(0, —62), (121)
Fo = 2my\/ZIy(m,)sin(0, — 62), (122)
Fr = (mu+mg)y/ZIo(my,my) cos(0r — 0% ), (123)
Frr = (my +mo)\/ZI(my, ms)sin(0x — 0%). (124)

Table 1. The mixing coefficients for the ground and first radially excited states of scalar
and pseudoscalar isovector and strange mesons. The caret symbol marks the excited
states

ag ao Ka‘ Kg
ap,1 | 0.87 | 0.82 Kg1| 083 | 0.89
ao2 | 0.22 | —1.17 5.2 1028 | —1.11
T T K K
w1 | 1.00 | 0.54 K; | 0.96 | 0.56
mo | 0.01 | —1.14 Ko | 0.09 | —1.11
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In the chiral limit we have 6, = 6 and

FW:%7 FK:mu+mS7 (125)
gr 29K

Fo=Fgr =0, gr=(Z7)7"2 gx=(Z7"2 (126

As one can see from these formulae, in the chiral limit we obtain the Goldberger—
Treiman identities for the coupling constants g, and gx. The matrix elements
of divergences of the axial currents between meson states and vacuum (PCAC
relations) are

(0|0 A%t o) = MZF 0, (127)

(00" A%|¢") = M2 F 6. (128)

These axial currents are conserved in the chiral limit because their divergences
equal zero, according to low-energy theorems.

3.3. The Masses of Isoscalar Mesons (the Ground and Excited States). The
free part of the effective Lagrangian for isoscalar scalar and pseudoscalar mesons
after bosonization is as follows

9
1
ﬁisosc(o-v 90) = _5 E [ (G( )) ab U + 1 (G(+))ab #1
a,b=8

1 o a2 a2
—ﬁazs[(m +(¢2>}—

—i Trln 1+_ ZZT (0% + s3] 2 ¢ s (129)

a=8 j=1
where (G(F))~1 is the inverse of G(F):
(@R = GD/DD, (@) =@ = e,
(GFgg = God’/DF, DF =G asd) — (@)™

From (129), in the one-loop approximation, one obtains the free part of the
effective Lagrangian

2 9
1 apelab b
LAoe) =35> ( KN(P)ot +¢1KL“Z]](P)¢§’-). (131)
i,j=1 a,b=8

The definition of K [[,w]) ; is given in Appendix A.
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Table 2. The mixing coefficients for isoscalar meson states
= 7 7

n i n 7
©§ 1071 062 | —0.32 | 0.56

5 | 0.11 | —0.87 | —0.48 | —0.54
7 | 0.62 | 0.19 0.56 | —0.67
5 | 0.06 | —0.66 | 0.30 | 0.82

o G fo fo
—0.98 | —0.66 | 0.10 | 0.17
0.02 | 1.15 | 0.26 | —0.17

5
2

oy | 027 | —0.09 | 0.82 | 0.71
5 ] —0.03 | —0.21 | 0.22 | —1.08

After the renormalization of both the scalar and pseudoscalar fields, analogous
to (103), we come to the Lagrangian that can be represented in the form slightly
different from that of (131). It is convenient to introduce 4-vectors of «bare» fields

S=(of"05",00".037), @ =(o1", 68" 00", e0"). (132)

Thus, we have

l\'))—‘

4
LA(2,®) == Z (2iKs.ij(P)Yj + ®Kaij(P)®;), (133)

where we introduced new functions Ks;¢),;;(P) (see Appendix A). The index r
marks renormalized fields.

Up to this moment we have four pseudoscalar and four scalar meson states
which are the octet and nonet singlets. Mesons of the same parity have the
same quantum numbers and, therefore, they are expected to be mixed. In our
model the mixing is represented by 4 x 4 matrices R’(¥) which transform the
«bare» fields 087, a?7, ©87, and )" entering into the 4-vectors ¥ and @ into
the «physical» ones o, &, fo, fo , 1,1, 7, and )’ represented as components of
the vectors X5, and Ppp:

Spn = (0,6, fo, fo)y  Ppn = (n s Y). (134)
The transformation R(¥) is linear and nonorthogonal:
Son= R°S, @, = R7O. (135)

In terms of «physical» fields the free part of the effective Lagrangian is of the
conventional form and the coefficients of matrices R°(¥) give the mixing of the
uu and 5s components, with and without form factors.

Because of complexity of the procedure of diagonalization for the matrices
of dimensions greater than 2, there are no such simple formulae as, e.g., (109).
Hence, we do not implement it analytically but use numerical methods to obtain
matrix elements (see Table 2).
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3.4. The Effective Lagrangian for the Ground and Excited States of Vector
Mesons. The free part of the effective Lagrangian (66) describing the ground and
excited states of vector mesons has the form

L(Q)( Z Z Vau Ra/w )ijau(P), (136)
i,j=1a=1
where
3
DV = (0 200, (V)P 4 (V)R = 2T,
a=1

(V)2 + (VT2 = 2B K0 (V)P = ()2, (V)P = (9)° (137)

(2

and 5
Ry Py = - 2
d*k 1 1
RN e e e B
To order P2, one obtains
R = WEP - PRPY - g (Y,
RgL" = Wi [P?g" — P*P” — g"(M3)?],
R = REY* =5°P*g" — P'PY — g(mg —m%)?g"™]. (139
Here 8 8 8
Wi =I5, Wi = gfgf“, 30 = gzga, (140)
(Mp)* = (WiGy) '+ g(m‘; —mg)?, (141)
(M3)* = (W5Gv)™'+ g(m‘; —mg)?. (142)
After renormalization of the meson fields
Vi = W v (143)

we obtain the Lagrangians

1
L = =5 (0P = PYPY — g M) pliofl +

2T, (P2 — PP gl + (g P2~ PAPY — g M2) pfes] . (144)
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1 v 1% N 1%
LY = =5 (9P = PP — g MZ,) ol +
+ 20, (9" P? — P*PY) @l oh + (9" P? — P*PY — g"" M2,) @hoh] , (145)
2 1 v v v 3 a a * *UV
L' = -3 [(g“ P%— prpY — gk <§(mq —m&)? + M?q>) KPR +
LV L 14 1/3 * [ *UV
+2T g« (g‘ P? — PrpPY — gt a(mg—mg,)Q) K"KV +

+ (gWP2 — PHPY — g (g(mg —my)? + Mi)) K;“K;"} . (146)

Here
3 3
M:=— = M. =—
P 8Gy Ix (M, my)’ K 8Gy Iz (M, ms)’
7 8GvL(ms,ms) T 8Gy I (my,my)
3 3
Mz. = , M2 = , (147)
K 8Gy I (may, my) 2 8Gy I (my,my)
1% (mi, my
Fai,j 2 (m 7m]) (148)

\/Ig(mi, my) I (ms,m;)
After transformations of the vector meson fields, similar to Egs.(110) for the

pseudoscalar mesons, Lagrangians (144), (145), (146) take the diagonal form

1
Ly gu = =5 [(g"P? = PP = MJ VOV +
+(g"'P* — PFPY — M2 )V*#V™] (149)

where V% and V are physical ground and excited states of vector mesons

1

2 2 2

Myp = m[%ﬁMm F 02— M2)2+ (2M,,M,,T, 2|
P

M — ]- M2 M2 M2 M2 2 M M F 5

w—m[ o+ W:F\/( 2~ M2,)%+ (2M,,, M,, q))y

(151)
1
2 _ 2 2 9 9
M e = gy [Mhs + Mi +38%0 - T5)

x\/(ng — M%.)?+ (2M; MKSFK*PJ . (152)
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3.5. Numerical Estimates. In our model we have six basic parameters (see
Subsection 3.1): the masses of the constituent u(d) and s quarks, m, = m,4 and
ms, the cut-off parameter Az, two four-quark coupling constants (one for the
scalar and pseudoscalar channels, G, and the other for the vector and axial-vector
channels, Gy ) and the "t Hooft coupling constant K. We fixed these parameters
with the help of input parameters: the pion decay constant F; = 93 MeV, the
p-meson decay constant g, = 6.14 (decay p — 2m)*, the masses of pion, kaon,
p-meson, and the mass difference of 1 and 7’ mesons. Using mass formulae
given in previous subsections of this Section, we obtain numerical estimates of
these parameters:

my, = 280 MeV, mg =405 MeV, A3z3=1.03 GeV,

G=314 GeV2 Gy =12 GeV 2 K =61 GeV > (153)

When excited meson states are introduced, a set of additional parameters related
to the form factors appears in our model: the slope parameters d,, and the
external parameters cgq. The slope parameters d, are fixed by special conditions
(see Egs.(73), (74), (75)) from which we obtain: d,, = —1.78 GeV72, d,, =
—1.76 GerQ, dss = —1.73 GeV~2. As it was mentioned earlier, we assume
here that d,,, dys, and dss do not depend on parity and spin of mesons.

The parameters cZ;(“Oa) are fitted by masses of excited pseudoscalar and
vector mesons, c;° = 1.44, cﬂg’"”’fo = 1.5, qufs,KJ = 1.59, cggi'@fo = 1.66,
el =1.33, ¢ = 1.6, ¢¥, = 1.41. These parameters characterize how stronger
the quark currents with form factors attract each other than those without form
factors. We use the same parameters for the scalar and pseudoscalar mesons
(global chiral symmetry). This allows us to predict the masses of ground and
excited states of scalar mesons. The result is represented in Table 3 together with
experimental values.

We also calculate the angles 6, and 6°:

0, =59.48° 0% =59.12°, Ok = 60.2°,

09 =57.13°, 6, =81.8°, 09 = 81.5°

Or~ = 84.7°, 0%. =59.14°, 0, = 68.4°, (154)
00 =57.13°, 0, =72.0°, 09 =61.5°

Or; = T4.0° 6. =60.0°.

We consider it expedient to give the values of angles because they will be used
in the next Section when the calculation of strong decays of the ground and first
radially excited states of the m and p meson will be treated in detail. However,

*Here, we used the relation g, = V6go together with the Goldberger-Treiman relation g, =
=m/Fr = Z*l/Qgg to fix the parameters m, and As.
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Table 3. The model masses of mesons, MeV

GR | EXC GR(Exp.) [1] EXC(Exp.) [1]

M, | 530 | 1330 400-1200 1200-1500
My, | 1070 | 1600 980410 171245

Ma,, | 830 | 1500 983.4-£0.9 147419
My | 960 | 1500 905450 [5] 1429412
M, 140 | 1300 | 139.56995--0.00035 1300100
My | 490 | 1300 | 497.672+0.031 1460(?)

M, 520 | 1280 547.3040.12 1297.842.8
M, | 910 | 1470 957.780.14 1440-1470
M, 770 | 1470 770.00.8 1465425

M, | 1019 | 1682 | 1019.41340.008 168020
My~ | 887 | 1479 891.59-0.24 1412412

the mixing coefficients for m, K, ag, and K defined by these angles have
been displayed in Table 1. The mixing coefficients for 7, 7', o, and fy are
given in Table 2.

Having fixed all parameters in our model, we can predict the masses of 7, 7/,
K¢, and ¢ mesons and all masses of the ground and first radially excited scalar
meson states. We also calculate the weak decay constants for the pion and kaon
(both for the ground and excited states):

F, =93 MeV, F,. =057 MeV, (155)

Fie =1.16, F, =108 MeV, Fg =3.3 MeV. (156)

Moreover, now we are able to estimate all strong coupling constants for the
mesons considered in this paper. In the next Section we calculate some of these
constants that define the strong decay processes of ground states and first radial
excitations of the scalar, pseudoscalar, and vector meson nonets.

4. STRONG DECAYS OF MESONS

4.1. Decays p — 2w, 7 — pm, 7w’ — om,p' — 2w, p — wr and W — pm.

In this section we calculate the widths of main decays of scalar, pseudoscalar,

and vector meson nonets (for Subsec. 4.1 see Refs. 33, for Subsec. 4.2 Ref. 34,

for Subsecs. 4.3 and 4.4 see Ref.30) through triangle quark diagrams. When

calculating these diagrams, we keep the least possible dependence on external

momenta: squared for the anomaly-type graphs and linear for other types. We
omit the higher order momentum dependence.
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We start with the decay p — 27. The amplitude describing this decay has

the form g o
Tposom =1 5 €ijk (05— P)" pl ik, (157)

where p; . are pion momenta and €;;;, is antisymmetric tensor. Using the value
o, = g2/(4m) = 3 (g, =~ 6.1) of Refs. 8,9, 10, 11 we obtain for the decay width

« )
Ppor = 13 ;43 (M2 — 4 M2)*? ~ 151.5 MeV. (158)
The experimental value is [1]
I'por =150.7 £ 1.2 MeV. (159)

Now let us calculate this amplitude in our model with the excited states of
mesons. To this end, we rewrite the amplitude 7,2, in the form

Tpoon =1 Cpmon €ijk (Pj — Pr)” pf,wjﬂk, (160)

and calculate the factor c,_2, in the new model. Using Eqs. (103), (110) and
(143) we can find the following expressions for meson fields m; and p; from the
Lagrangian (66) expressed in terms of the physical states 7, 7" and p, p’

sin(f, + 09)m — cos(0, + 62)7’

1 =

V7 sin 269 ’
. 0\ — 69!

Ty = sin(0, — 07)7 .COS(HW 977)71'7 (161)

v/ Z sin 269

_sin(f, 4 6))p — cos(6, + 6))p’
pro= sin 209./8/3 I 7
in(6, — 69)p — cos(6, — 09)p'

by — sin(0, — 0))p — cos(0, — 0))p (162)

sin 2091 /8/3 {7

or, using the values Iy = 0.04,[2{]; = 0.0244, and 0, 69, 6, and 65 from
Egs. (154), we obtain*

__ 0878740487 0.00617 7
YT 088V T 088V T,

p1 = (0.744p +0.9310) g,/2, pa = (048 p—1.445p') g,/2.  (163)

*Analogous formulae are obtained for the w meson.
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Fig. 3. Triangle diagrams describing decays of a p meson. Each letter in a diagram

indicates the presence of a form factor at a vertex

The decay p — 27 is described by the quark triangle diagrams with the vertices
p1 (72 +2my 7o +73) and pa (7} +2mme+73) (see Fig. 3). Using Egs. (161), (162)
and (163), we arrive at the factor” c,_ox

Cpo2m = Cpy—2r + Cpp—ar = 0.975 g,,/2, (164)
sin(6, + 69)
Cormom = sin? 2600 sin 209 \/8/3—]2X
x[(sin(0x + 62))% + 2sin(0, + 0°) sin(0, — 62T+
sin(6, + 69)

Sin292 V8/3 I
1

[(sin(ew +69))* 2+

+(sin(f — 62))? = sin? 20°] = =0.745 g,/2,

sin(f, — 67)

Cpy—2m =
sin? 269 Sin292 1\/8/3 Ifo;

1 Ieili
2sin(0; 4 02) sin(0, — 0°) —=2— + + (sin(f, — 02))* 2 =0.227 g, /2.

i
Vs 117 I

I

+

(165)

7* Taking account of the @ — a transitions on external pion lines, we obtain additional factors
Z (Z) in the numerators of our triangle diagrams which cancel corresponding factors in Z; (see
Eqgs. (22), (161) and Ref. 10). Therefore, in future we shall ignore the factors Z (Z) in Z;.
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Here we used the values IJ = 0.0185, IJ7 = 0.0289, IJ/7 = 0.0224 and the
equation I';, = — cos 26‘9r (it can easily be derived from Eq. (120)). Then the
decay width p — 27 is equal to

T)or ~ 149 MeV. (166)
In the limit f = 0 (0 = 69,6, = 09) from Egs. (165) one finds
Cp—2n = Cp; =21 = gp/2; Cpy—2m = 0. (167)

Now let us consider the decay ©’ — pm. The amplitude of this decay is of

the form

Y pm =1 Cxrpm €ij (D + pr)” Pl T, (168)

where
Crn'—pr = Cn'—pi7 + Cr!—par- (169)

Then for ¢/, ~ We obtain

2
Crn'—pym = S 200)? [—sin(fr + 62) cos(0, + 0°) — sin 20, T —

— sin(f; — 0%) cos(f, —6°) =
= —sin26, cos26° + sin 26, cos20° = 0] x

sin(6, + 69)

2= 170
% sin 298 90/ 0, 70
2 1! 1f
por = o | —sin(Ox + 07) cos(0r + 69) 2 — sin 20, —2———
Cr'—sps (5in 2002 [ sin(0, + 0,,) cos(0 + 6,) A sin Wil

1777 sin(9, — 69) I
—sin(f; — 62) cos(, — 6°) =2 P 2 g,/2=—0.573 g,/2.
(0= = 08)cosltn — 00) Lo | =™ [ 00/ 90/
(171)
For the decay width 7’ — pm we get
CRrp 3
Fﬂ—/_,pﬂ— = m@(Mﬂ—l, Mp, Mﬂ—) ~ 220 MeV, (172)

where

(My, My, My) = \/ M + M + M7 — 2(MZMF + MEMZ + MZM3).
(173)



RADIALLY EXCITED SCALAR, PSEUDOSCALAR, AND VECTOR MESON NONETS 615

The decay ©' — o is calculated in a similar way as 7} — aom (see Subsec. 4.4).
Here, we need the mixing coefficients for the scalar meson given in Table 2. We
omit details and obtain

Iz on = 80 MeV, (174)

therefore, the total width is estimated as
I ~ 300 MeV. (175)
This value is in agreement with the experimental data [1]
IS = 200 — 600 MeV. (176)
For the decay p’ — 27 we arrive in our model at the result
I'p—or =22 MeV. (177)

Most of our results are in agreement with the results of the relativized potential
quark model with the 3P, mechanism of meson decays [2].
To conclude this Subsection, we calculate the decay widths of processes
p — wrm and W’ — pm. These decays go through anomalous triangle quark loop
diagrams. The amplitude of the decay p’ — wm takes the form
_3QpCp —wn

Qv vpo
Tplﬁwr = W "7 qupo, (178)

where ¢ and p are momenta of the w and p’ meson, respectively. The factor
Cp'—wr 18 similar to the factors ¢,_2r and cz/_ ,r in the previous equations and
arises from the four triangle quark diagrams with vertices m(p1w1 + powi +
p1ws + pawe) *. Using the estimate

Cpsom ~ —0.3, (179)

we obtain for the decay width

3 oy Cy 2 .
F/_, = p bp—wm O(M., M. M 3% M . 1
2V ( 87 F ) (M, My, Mr)" % 75 MeV. (180)

For the decay w’ — pm we have the relation

Fw/ﬂpﬂ ~ 3 Fp’~>w7r (181)

*We neglect the diagrams with vertices 72, because their contribution to the ground state of the
pion is very small (see Eq. (163)).
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leading to the estimate

Turpr ~ 225 MeV. (182)
The experimental values are [35]
TP . =021 T = 65.1 £ 12.6 MeV (183)
and [1]
TP, . =174 = 60 MeV. (184)
Finally, let us quote the ratio of the decay widths p’ — wm and p’ — 27
% ~ 0.3, (185)

which is to be compared with the experimental value 0.32 (see [35]).

Thus, we can see that all our estimates are in satisfactory agreement with
experimental data.

Our calculations have shown that the main decay of the p meson, p — 2,
changes very little after including the excited meson states into the NJL model.
The main part of this decay (75%) comes from the p vertex without the form
factor, whereas the remaining 25% of the decay are due to the p vertex with the
form factor. As a result, the new coupling constant g, turns out to be very close
to the former value.

For the decay 7 — pm we meet an opposite situation. Here the channel
connected with the p vertex without the form factor is closed because the states
7 and 7w’ are orthogonal to each other, and the total decay width of " — pm is
defined by the channel going through the p vertex with the form factor. As a
result, we obtain the quoted value that satisfies experimental data [1]. The decay
7w’ — o gives a noticeable correction to the total decay width of 7’. These results
disagree with the results obtained in the relativized version of the 3F-potential
model [2] in the subject of the 7' — om decay mode.

For the decay p’ — 27 we obtain strong compensation of the contributions
from the two channels, related to p vertices with and without form factors, and
the corresponding decay width is equal to 22 MeV. This value is very close to
the result of Ref. 2.

It should be emphasized that the decays p’ — wm and w’ — pm belonging to a
different class of quark loop diagrams («anomaly diagrams») are also satisfactorily
described by our model.

4.2. The Decays of Strange Mesons (Vectors and Pseudoscalars). In the
framework of our model, the decay modes of excited mesons are represented
by triangle diagrams with form factors. A total set of diagrams similar to those
in Fig.3 can be represented as one graph: a triangle with shaded angles (see
Fig.4). Every vertex in such diagrams is momentum-dependent and includes
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77777 Secondary
particle 1
Decaying
particle
q
77777 Secondary
particle 2

Fig. 4. Diagrams describing meson decays of the 1 — 2 type

form factors defined in Subsection 3.1. For the strange vector and pseudoscalar
mesons being decaying, each black shaded vertex with a pseudoscalar meson is
implied to contain the following linear combination for the ground state:

— 1 sin(f, +6°%)  sin(f, — 6°)
_ 186
sin 269 [ NIA * z8 o (186)
and for an excited state,
- —1 | cos(fs+6%)  cos(f, —6°)
_ 187
a sin 292 Zf' + \/Z_g fa ) ( )

where 6, and 0° are the angles defined in Subsection 3.5 (see Egs. (119), (120),
and (154)) and f, is one of the form factors defined in Subsection 3.1 (see
Eq. (65)). For vector meson vertices, we have the same linear combinations
except that Z¢ are to be replaced by W, (140), and the related angles and form
factor parameters must be chosen.

Now we can calculate the decay widths of excited mesons. Let us start with
the process K * s K*r. The corresponding amplitude, 7" has the form

’
—K*m’

TR, eor = Irc i n € Datlp, (188)
where p and ¢ are momenta of the K* and K* mesons, respectively, and
Jp+ _ g+r 15 the (dimensional) coupling constant that follows from the com-
bination of one-loop integrals

= (ool Fic Fo — Tl T Fl) - (189)

9K+ —K*x 2
m2 —
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In Eq. (189) we introduced a functional defined on functions f(k) in the
momentum representation:

4
Tnmlf] = —i Ne /Ag( fl)d 'k (190)

_2(277)4 My — k:Q)”(ms _ kQ)m,'

This is an alternative to integrals IQf /" which we thought better to introduce for
a growing number of «physical» form factors.
We omit the intermediate calculation here. For the decay constant gy ./, peu.
we find
Gpe' o jgen 4 GeVT! (191)

and the decay width is as follows:

2
Grewr . .

Drowpon = B2 BTG (Npewr, Mpce, My)3 & MeV. 192

K=K = 3orars, (Mgcwr, Mg, Mr)” = 90 MeV (192)

The lower limit for this value coming from experiment is ~ 91 9 MeV [1].

A similar calculation has to be performed for the rest of the K + decay modes
under consideration. The coupling constant gx+_f, is derived in the same way
as in (189), with the only difference that f. and fx- are to be replaced by f,
and fx. The corresponding amplitude, 7%, K p» takes the form

Ty e, = Iic s Datlp, (193)

where p and ¢ are momenta of K *" and K mesons, respectively, and
8m

I+ —Kp = m (Foolfic-Frfol = Tialfi-frfol) - (194)

S

The corresponding decay width is

2

Ix~' S Kp 3

Ui L, = m@(MK*,,MK,MP) . (195)
For the parameters given in Subsection 3.5 one has

9k i, 3GV T o, ~20MeV. (196)

From experiment, the upper limit for this process is I'’5,

The process K * — K is described by the amplitude

) <16 £1.5 MeV.

1 _ 'gK*/—>K7'r
Tho gy = = (g = ), (197)



RADIALLY EXCITED SCALAR, PSEUDOSCALAR, AND VECTOR MESON NONETS 619

where p and ¢ are momenta of m and K. The coupling constant gp-.._, . is
obtained by calculating the one-loop integral

I —ren = AT [Fic- i f] = 2 (198)
and the decay width is

2 3
gi-. @(MK*/,MK,MW)
Ly = K oKn ~ 20 MeV. 1

The experimental value is 15 &5 MeV [1].

The mesons with hidden strangeness (¢’) are treated in the same way as K* .
We consider two decay modes: ¢’ — KK* and ¢ — KK. Their amplitudes
are

Th ke = Go—kK-€"*"pags, (200)
TL"Z’HKK = Zg(p/—>]_(K(p - q)ﬂ. (201)

Here, p and ¢ are momenta of the K and K* mesons. The related coupling
constants are

8y, S o
9o —ki = ——— (Jo2lfofr-fr]— TalfLfx-fx]), (202)
mg —my,
9o—rrx = 4Joalf,fK K] (203)
Thus, the decay widths are estimated as
Fymkr- =90MeV, T, gr =~ 10MeV. (204)

Unfortunately, there are no reliable experimental data on the partial decay widths
for ¢/ — KK* and ¢/ — KK except the total width of ¢’ being estimated as
150+ 50 MeV [1]. However, the dominance of the process ¢’ — K K* observed
is in agreement with our result.

Following the scheme outlined in the previous calculations, we first estimate
the K’ — K*m and K’ — Kp decay widths. Their amplitudes are

Tir gen = igx—x-=(p+q)", (205)
Tir .k, = i9x—rp(P+q", (206)

here p is the momentum of K’, ¢ is the momentum of 7 (K). The coupling
constants are

g —rcn = AT frc i Frls gxr—rcp = 4T01 Frc Fc £l (207)
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Fig. 5. Diagrams describing the decay K’ — K.

By calculating the integrals in the above formulae we have g/ g+, =~ —1.4 and
9K’ —Kp ~ —1.2. The decay widths thereby are

g~ k+r =100 MeV, T'g/_g,~50 MeV. (208)

These processes have been observed in experiment and the decay widths are * [1]

D527 jeen ~ 109 MeV, TS5 . ~34 MeV. (209)

The remaining decay K’ — K into three particles requires more compli-
cated calculations. In this case, one must consider a box diagram, Fig.5,a, and
two types of diagrams, Fig. 5,b, with intermediate o and K resonances. The di-
agrams for resonance channels are approximated by the relativistic Breit—-Wigner
function. The integration over the kinematically relevant range in the phase space
for final states gives

'k~ knr ~ 1MeV. (210)

4.3. Strong Decays of Scalar Mesons. The ground and excited states of
scalar mesons fy, ag, and K decay mostly into pairs of pseudoscalar mesons.

They can easily be related to Zg( o) introduced at the beginning of our paper.

All amplitudes that describe processes of the type 0 — @12 can be divided
into two parts:

*The accuracy of measurements carried out for the decays of K’ is not given in [1].
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1N,
Tomnes = (~57)

y d% Tr[(m + K+ py)ys(m + K)ys(m + K — py)] _
A (M2 =K% (m? — (k +p1)?)(m? — (k — p2)?)

1 P1 - P2
T m2 — k2

iN,
=4mC | — < d*k =
() | e e
= mC[Iy(m,p1,p2) — p1 - palz(m,p1,p2)] = TH + T, (211)

Here C = 4¢,9,,9,, and p;, ps are momenta of pseudoscalar mesons. We
rewrite the amplitude 7T, _.,,,, in another form

o).

1
prepy = 5 (M7 = M7, = MZ,). (213)

Tospron = AmZ " 2g,, {1 —p1po (212)

We assumed here that the I3 /15 ratio slowly changes with the momentum in com-
parison with the factor p; - po, therefore, we ignore their momentum dependence
in (212). With this assumption we are going to obtain just a qualitative picture
for decays of the excited scalar mesons.

In Egs.(211) and (212), we omitted the contributions from the diagrams
that include form factors at vertices. The whole set of diagrams consists of
those containing zero, one, two, and three form factors. To obtain the complete
amplitude, one must sum up all contributions.

After these general comments, let us consider the decays of ag(1450),
fo(1370), f;(1710), and K;j(1430). First, we estimate the decay width of the
process ag — nm, taking the mixing coefficients from Tables 1 and 2 (see Ap-
pendix B for details). The result is

M @
T, ~02 GeV, T2 ~35 GeV, (214)
Tag—pr ~ 160 MeV. (215)

From this calculation one can see that 71 <« T2 and the amplitude is
dominated by its second part, 7(?), that is momentum—dependent. The first part
is small because the diagrams with different numbers of form factors cancel
each other. As a consequence, in all processes where an excited scalar meson
decays into a pair of ground pseudoscalar states, the second part of the amplitude
determines the rate of the process.
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For the decay ag — 7’ we obtain the amplitudes

1) ~ (2) ~
Tyy—my = 0.8 GeV, T30 ~3 GeV, (216)
and the decay width
Fag—my =36 MeV. (217)

The decay of dg into kaons is described by the amplitudes T}, _ x+x- and

T, goro which, in accordance with our scheme, can again be divided into two
parts: T and T(® (see Appendix B for details):
1) ~ (2) ~
T grg- =02 GeV, To0 i p =21 GeV (218)
and the decay width is
ng—»KK = F&0—>K+K* + FaoﬁkoKo ~ 100 MeV. 219)

Qualitatively, our results do not contradict the experimental data
It =265+13 MeV, BR(ag — KK): BR(ag — mn) = 0.88+0.23. (220)

The decay widths of radial excitations of scalar isoscalar mesons are estimated in
the same way as shown above:

Formn { 460 MeV (M5 = 1.25 GeV), ey
[ 24 MeV(M, =1.3 GeV)

Foom = { 15 MeV(M, =1.25 GeV), =
_f 6 MeV(M, = 1.3 GeV)

| AP { 5 MGV(MJ =1.25 GeV), 229

Ts i ~5 MeV, (224)

xs—xr =~ 300 MeV. (22

The heaviest scalar isoscalar meson in our model has the mass 1600 MeV
(see Table 3) to be associated with an experimentally found meson state. From
experimental data [1], we find two possible candidates for the role of a member of
the radially excited meson nonet: f,(1500) and fo(1710). The extra meson state
can be explained by possible mixing of members of the gg meson nonets with a
gluon bound state, the glueball. Indeed, on the mass scale, both meson states lie
in the region where the hypothetical glueball state is expected to exist. So far as
we did not include the glueball into our model (however, we are going to do this
in our further works), the picture is not complete. Nevertheless, we are free to
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make a hypothesis concerning the contents of f,(1500) and f;(1710). We expect
that one of these states is mostly a quarkonium with just a negligible admixture
of the glueball state whereas the other is essentially mixed with the glueball. The
mass splitting that always appears when two or more states mix with each other
will ether increase or decrease the mass of a quarkonium, depending on the mass
of a «bare» (unmixed) glueball state either being smaller or greater than the mass
of the quarkonium. After mixing we expect to find the gg bound state with the
mass 1500 MeV or 1710 MeV.

To decide which of them is the quarkonium with a small content of a glueball
state, associated with the radial excitation of f;(980), we estimate its decay widths
for two cases: first for the mass 1710 MeV quarkonium

Tyari0)—or 3 MeV, Ttar10)—29 40 MeV,

~ ~ 226
Ff0(1710)*>7]7]’ ~ 42 MeV, Ff0(1710)~>KK ~ 24 MGV, ( )
and then for the mass 1500 MeV quarkonium
Tyas00)—2r = 3 MeV, Ltas00—2n =~ 20 MeV, (227)
Ff0(1500)‘>7]7]l ~ 10 MeV, Ff0(1500)~>KK ~ 20 MeV.

The decays of fy(1500) and fo(1710) into oo are negligible, so we disregard
them. From the experimental data we have:

[yt =200 — 500 MeV, T, =133+ 14 MeV,

I'Plis00) = 112+ 10 MeV. (228)

Thus, we can see that in the case of fy(1500) being a gq state there is a deficit in
the decay widths whereas for f;(1710) the result is close to experiment. From
this we conclude that the meson f;(1710) better suits for the role of a member
of the @g nonets as a radially excited partner for f;(980) and the meson state
f0(1370) as the first radial excitation of f,(400 — 1200). As to f,(1500), the Gg
model works bad for it. This gives us the idea that f;(1500) is essentially mixed
with the glueball state which significantly contributes to its decay width. Our
interpretation of fy(1500) and fo(1710) is in agreement with other approaches
where similar conclusions were made by the K-matrix method [36] and QCD
sum rules [37].

The strong decay widths of ground states of scalar mesons were calculated in
paper [32] in the framework of the standard NJL model with ’t Hooft interaction
where it was shown that a strange scalar meson state with a mass about 960 MeV
decays into K7 with the rate

3 (mums

2
| = O(Mp», My, M) =~ MeV. (22
K (960)— K ZWM;’(S 2 ) ( Ky MK, )~ 360 MeV. (229)
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Table 4. 7(1295) and 7(1440) decay modes

aom no nrmw KKn KK* reet
n(1295) | 3 MeV | 30 MeV | 4 MeV | 5 MeV - 48 MeV
n(1440) | 10 MeV | 3 MeV | 6 MeV | 26 MeV | 70 keV | 45 MeV

By comparing this result with the analysis of phase shifts given in [5] where
an evidence for existence of a scalar strange meson with the mass equal to
905+ 50 MeV and decay width 545 £ 170 MeV is shown, we identify the state
K} (960) as a member of the ground scalar meson nonet. The state K5(1430) is
thereby its first radial excitation.

4.4. Strong Decays of 1(1295) and 7(1440). The mesons 7(1295) and
17(1440) have common decay modes: aom, N7, 7(77T)s— wave, K K7, moreover,
the heavier pseudoscalar 1(1440) decays also into K K*. For the processes with
two secondary particles, the calculations of decay widths are done in the same way
as shown in the previous Subsection, by calculating the corresponding triangle
diagrams.

Let us consider the decay 7 — agm. The corresponding amplitude is of the
same form as given in (211) for decays of the type ¢ — ¢y. It can also be
divided into two parts 1) and T® which in our approximation are constant
and momentum—dependent in the sense explained in the previous Subsection (see
(212) and the text below):

7 ~03 Gev, TP, ~—1 GeV. (230)

n—agqm n—agqm

Therefore, the decay width is
Ijsaor =3 MeV. (231)

The decay 7} — 7(77)s—wave is nothing else than the decay 7 — no —
N(77)s—wave Where we have the o meson in the final state decaying then into
pions in the S wave. We simply calculate 7 — no, with o as a decay product.

The calculation of decay widths for the rest of the decay modes with two
particles in the final state is similar and the result is given in Table 4.

The decay 7/ — K K* differs from the other modes due to the strange vector
meson among the decay products. In this case we have

Th re = 4(p1+p2)”([gugKgK*Iz(mu,ms)+---]—

\/i[gnggK* IQ(mu; ms) + .. ]) ) (232)
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Fig. 6. Diagrams describing the decay ) — nmw. The black box stands for the sum of
«box» diagrams represented by one-loop quark graphs with four meson vertices. The
rest of the diagrams is a set of pole graphs with o, fo, and ao scalar resonances. The
diagram with ag is to be taken into account for two channels (due to the exchange of pions
momenta). There are analogous contributions from radially excited resonances

where p; is the momentum of #’; po, the momentum of K; and dots stand for
the terms with form factors (not displayed here). These two parts are of the same
order of magnitude and differ in sign and therefore cancel each other, which
reduces the decay width up to tens of keV:

When there are three particles in the final state, poles appear in amplitudes,
related to intermediate scalar resonances. As is well known from 77 scattering,
these diagrams can play a crucial role in the description of such processes. So,
in addition to the «box» diagram we take account of the diagrams with poles
provided by o, fo, and ag resonances (see Fig. 6). Here we neglect the momentum
dependence in the box diagram approximating it by a constant. The amplitude is
thereby

CfonnCfomm

M]%o — 8§ — iMfOPfO

ConnConm

M2 =5 —iM,T, *

Tﬁ—»nﬂ'w =B+

+

CagfimCaonm

+ : +
M2 —t — iMg, Ly,

CapfmCagnm .
ted, (234
MZ —u— iMg Ty | e (234)

a
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where B is given by the «box » diagram:

2
B=12 <%) Z7YRi1Ria + .. ] (235)

™

where dots stand for the contribution from diagrams with form factors, and R;; are
taken from Table 2 (for 1 and 7). The coefficients ¢, represent the amplitudes
describing decays of a scalar to a couple of pseudoscalars; the calculation of
them was discussed in the previous Subsection. In general, they are momentum-—
dependent.

The kinematic invariants s, ¢, and u are Mandelstam variables: s = (p,, +
Pra)’s t = (Py + i) u = (g + Pry)*.

The «excited» terms are contributions from excited scalar resonances of a
structure similar to that for the ground states. The decay widths of processes
7} — nrw and 7' — nmw are thereby

F’f]*’nﬂ'ﬂ' ~ 4 MeV, Fﬁ/*’nﬂ'ﬂ' ~6 MeV. (236)

For the processes 7 — K K7 and )/ — KK we approximate their decay
widths by neglecting the pole-diagram contribution because it turns out that the
box» is dominant here. The result is given in Table 4.

Unfortunately, the branching ratios for different decay modes of 7(1295) and
1(1440) are not well known from experiment; so one can only find their total
decay widths

[i005) = 53416 MeV, T} ,,0) =50 — 80 MeV, (237)

which is in satisfactory agreement with our results.

Strong and electromagnetic decays of the ground states of 7 and 7' mesons
were investigated within the framework of the standard NJL model in [9,10] and
we do not consider them here.

5. CONCLUSION

Let us summarize and discuss main features of the nonlocal NJL model
proposed here and basic results obtained in our work.

A simple generalization of the NJL model to a nonlocal four-quark interaction
of the separable type was suggested to describe first radial excitations of the
scalar, pseudoscalar, and vector mesons. The nonlocality was introduced into
quark currents by means of simple form factors, while preserving the local form
of the ground and excited meson states. On the one hand, form factors can
be written in a relativistic invariant form. On the other hand, the form factor
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parameters can be chosen so that the gap equations keep the conventional form,
which leads to constant constituent quark masses and quark condensates. As a
result, all low energy theorems are fulfilled in our model in the chiral limit (see
Section 2). Therefore, the introduction of excited meson states does not destroy
those attractive features which the NJL model is characteristic of.

The model contains six basic and seven additional form factor parameters.
The basic ones are defined like in the standard (local) NJL model. They are the
quark masses m,, = mg, ms, the cut-off parameter A3, and three quark coupling
constants G, Gy, K. To determine them, we used six input quantities: Fr, g,,
My, Mg, M,, and the mass difference M7 —Mﬁ/. Then, we predicted the masses
of n, ', K}, ¢ mesons and also the masses of the scalar and axial-vector meson
nonets. The weak decay constant Fx and all strong coupling meson constants
are calculated.

Upon the excited meson states are included, a great number of form factors
appears in the model. They are necessary to describe radial excitations of the
three meson nonets: scalar, pseudoscalar and vector. Each form factor contains
two parameters: the external parameter c(({q characterizing to what extent the
interaction of excited states is stronger than that of the ground ones and the
internal (slope) parameter d,, determining the shape of the wave function of an
excited meson state.

We give an unambiguous definition of the slope parameters for scalar mesons
from the condition that the excited states do not contribute to quark condensates.
Then, we assume the slope parameters to be the same for any sort of meson
fields. Moreover, in favor of the global chiral symmetry, we put the scalar meson

form factors equal to the pseudoscalar meson ones. As a result, only seven

independent parameters are left: cT,, cX CZ’J’/, cZ;"l, e, cnd, c?.. They are
fixed by masses of radially excited pseudoscalar and vector mesons. When this
procedure is completed, we are able to predict the masses of scalar mesons and
identify them with experimentally observed meson states.

The major results obtained in our work are:

1) A nonlocal chiral quark model with a quark interaction of the separable
type was developed to describe the ground and first radially excited states
of mesons represented by local fields. In this model, the quark condensate
and gap equations are conserved in the standard form, and all low-energy
theorems are fulfilled.

2) In a realistic U(3) x U(3) version of the model, the U4 (1) problem is
solved by introducing the ’t Hooft interaction. The mixing of pseudoscalar
isoscalar meson states, the ground 7, 7/, and the radially excited 7, 7}/, due
to the 't Hooft interaction, was taken into account.

3) In the framework of the proposed model, a satisfactory description of the
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masses of ground and first radially excited pseudoscalar and vector meson
states was obtained.

4) The mass spectrum for scalar meson nonets (ground and first radially ex-
cited) is predicted on the basis of the proposed model and with the assump-
tion on the form factors, based on the global chiral symmetry, that the form
factors for scalar mesons are the same as for the pseudoscalars ones.

5) The members of quark—antiquark nonets, whose physics the proposed model
is intended to describe, are identified with twenty seven physically observed
scalar, pseudoscalar, and vector meson states.

6) The weak decay constants F./, F, and F/ are estimated.

7) The widths of main strong decays of radially excited scalar, pseudoscalar,
and vector meson nonets are estimated. The results are in satisfactory
agreement with experimental data.

Let us make some comments on the identification of the meson nonets’
members. While it seems clear how to identify the members of pseudoscalar
and vector meson nonets, the scalar mesons require more words to say. From
our calculations we come to the following interpretation of f,(1370), f;(1710),
ap(1470), K;(1430) mesons: we consider them as the first radial excitations of
the ground states fp(400 — 1200), f5(980), ap(980), and K;5(960) *.

In this picture, however, no place is reserved for the f;(1500) meson. To
include it, we need an additional meson state in our model that is not a bound
qq system (there is no vacancy in the considered multiplets) but rather it is a
bound colorless gluon state [38]. There are many reasons that the state fo(1500)
is essentially mixed with a glueball [36,37]. However, in this paper we did not
take the glueball into account. Therefore, we cannot say how much it can affect
gq-meson states. However, we are going to tackle this problem in our further
work. In the present paper, we obtain a bound quark—antiquark state with the
mass about 1600 MeV, so we have to decide which of the observed meson states,
fo(1500) or f;(1710), is to be associated with this member of the nonet of the
radially excited scalar mesons in our model. We have chosen f;(1710). The
reason for this choice is based both upon the results obtained in Refs.36, 37 and
on our estimates of the decay widths discussed in Section 4.

Concerning the ground state a((980), in the framework of our quark—antiquark
model, we have a mass deficit for this meson, 830 MeV instead of 980 MeV.

*The light strange scalar of a mass about 900 MeV is not included into the summary tables
of PDG [1]. However, there are evidences from the phase shift analysis [5] that a state (known as
/(900)) with the mass 950 MeV does exist.
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We suspect that the deficit is caused by four-quark component in this state which
we did not take into account [39,40].

In conclusion, we would like to outline further steps to improve our model.
First of all, a glueball state can be included into the effective Lagrangian. This will
allow us to correct the description of the scalar states f,(980), fo(1370), fo(1710)
and include f(1500) (presumed to be essentially mixed with a glueball) into the
whole picture. The mixing of all the states will play an important role in this case.
By now, we took account only of the mixing among f,(400 — 1200), fo(980),
fo(1370), fo(1710) and among 7, 7', 7, 7. Nevertheless, our investigation
revealed that the meson states 7(1300), n(1470), fo(1370), ag(1470), fo(1710),
K} (1430) are the first radial excitations of 7(590), 7(950), fo(400 — 1200),
ao(980), fo(980), K (960).

Second, the absence of quark confinement is still a common flaw of NJL-like
models with a local quark interaction. There are several approaches suggested to
find a solution of this problem. Among them there are various potential models,
models where the pole in the quark propagator is excluded [41], etc. We are going
to continue to work with our own approach which was suggested in Ref. 42.
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Appendix

A. COEFFICIENTS OF THE FREE PART OF THE EFFECTIVE
LAGRANGIAN FOR SCALAR ISOSCALAR MESONS

The functions K([Ta(ﬁ]) i introduced in Subsec. 3 of Sec. 4 (131) are defined
as follows
K59 (P = Z8, 1 (P = (mi £ m)? = M2 gay 1),
Ky@oa(P) = i) alP? = (mf £ mi )P = M) ).
KES L(P) = KS9,0(P) = 48, (P — (ml £ml)?),  (238)
-1
[8,9] _ [9,8] _ (F)
Kolppn(P) = K n(P)= (G )89 )
8,9 9,8 8,9
Kfr(w%,lz(P) - Kr[rw]mz(P) - KL(w%,zl(P) =0,
9,8] _ 8,9] _ 98] _
KU(@)BI(P) - Ka(tp),22(P) - KU(@),QQ(‘P) =0,
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where the «bare» meson masses are

MQ( )1* ZB 1<G(¢) 88 _8Il(mu))v
M§9(¢9)71 a((p) 1 ! ( (:F) 99 - 8Il(m5))
MZs(psy2 = (Z50).2) ( —81{/( mu)> : (239)

_ 1
M2s(0)0 = (Z9(0)2) " (5 - 8I{f(ms)> :

In the case of isoscalar mesons it is convenient to combine the scalar and
pseudoscalar fields into 4-vectors

¢ = (4101 aSOQTasol 74102 )7 ¥ = (U§T7U§T7U?Taagr)a (240)

and introduce 4 x 4 matrix functions Ky (4) ;. instead of old K([Ta(ﬁ]) i

indices ¢, 7 run from 1 through 4. This allows us to rewrite the free part of the
effective Lagrangian which then, with the meson fields renormalized, looks as
follows

where

4
Z (ZiKs,i5(P)E; + ®:Ka,ij(P)®;) (241)

LO(2, ®)

wl»—l

and the functions Ky (g ;; are

Ks@)a1(P) = P?—(my,+my)? — MZss) 4,

Ks@)22(P) = P?—=(my,+tmy)? — MZss) o,

Ks@)33(P) = P?—(ms+my)® = MZ 0 1,

Ks@)aa(P) = P?—(ms+my)* — M2 (o) 9, (242)
Ks@),12(P) = Ks@)21(P) =Tg, ) (P? = (my £my)?),
ICE(<I>),34(P) = ICE(<I>),43(P) = Fas(nb)(P — (ms * m‘?)Q)a
Ks@)13(P) = Ks@)s1(P) = (Zg(@mZg(@),z)_l/Q(G(i))§91

Now, to transform (241) to the conventional form, one should just diagonalize a
4-dimensional matrix, which is better to do numerically.

B. THE CALCULATION OF THE AMPLITUDES FOR DECAYS
OF THE EXCITED SCALAR MESON ag

Here we collect some instructive formulae that display a part of the details
of calculations made in this work. Let us demonstrate how the amplitude of the
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decay a9 — nm is obtained. The mixing coefficients are taken from Table 1.
Moreover, the diagrams where pion vertices contain form factors are neglected
because, as one can see from Table 1, their contribution is significantly reduced:

. Ir(m.,)
) = 4Puloge. 717122 )
aonm F7r IQ(mu)
%
_ (1.17 071212 Z0.82. 0.11) 3 (m) -
Ié(ﬂlu)lgf(ﬂqu)
Iff u
— 1.17-0.11%} ~0.2 GeV, (243)
Iy 7 (my
. I3(m.,)
7@ — oMuip2 _ a2 - m2)lo0.82. 0712 1/223 )
aog—nNm Fﬂ— ( ao n 71") IQ(mu)
I (m.,
- (1.17 0712712 —0.82. 0.11) 3 (M) —
]é(”1u)L{f(”1u)
1
- 1.17-0.11%} ~3.5 GeV. (244)
I (M
The decay width thereby is
|T&0ﬁnﬂ|2
Ty oy = dozuml
TS VA

><\/Mgo+M;;+M;&—2(M30M3+M§0M3+M3Mg) ~ 160 MeV.  (245)

Here I(m,) = 0.04, I;(mu) = 0.014c, szf(mu) = 0.015¢%, I3(m,) =
= 0.11 GeV ™2, I?{(mu) = 0.07c GeV_Q,I?{f(mu) = 0.06¢> GeV™? and ¢
is the external form factor parameter factored out and cancelled in the ratios of
integrals.

For the decay into strange mesons we obtain (see Fig. 1)

. N,
Toy—r+k- =Ck (— e ) X

1672

el ko pnstn, Kt =)
(m2 — k2)(m3 — (k —p1)?)(m3 — (k — p2)?)
~ 2CK {(ms + my)I2(my) — ALy (my, ms)—
—[ms (M3, = 2M3) = 20°|I3(mu, ms) } (246)
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where A = mg, — m,, and

. N. d*k
Is(masms) = =i / (2 R2R(m2 — k) (247)

The coefficient Cx absorbs the Yukawa coupling constants and some structure
coefficients. The integral I5(m,,ms) is defined by (102). This is only the part
of the amplitude without form factors. The complete amplitude of this process is
a sum of contributions which contain also the integrals IQf I and I?{ =/ with form
factors. Thus, the amplitude is

Toorrx- =T + 7@, (248)
T — %{(ms +my)-0.13—A-0.21} ~ 0.2 GeV, (249)
K
7@ = Tut e o (M2 - 2M2) —2A%] -1 GeV2} ~ 23 GeV, (250)

2Fk
Fx =1.2F;.

The decay width therefore is evaluated to be

FaO*)K-FK— = F&O*,RUKU ~ 50 MeV. (251)
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