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A chiral Lagrangian containing, besides the usual meson ˇelds, their ˇrst radial excitations
is constructed. The Lagrangian is derived by bosonization of a NambuÄJona-Lasinio (NJL) type
quark model with separable nonlocal interactions. The nonlocality is described by form factors
corresponding to 3-dimensional excited state wave functions. The spontaneous breaking of chiral
symmetry is governed by the standard NJL gap equations. A simple SU(2) × SU(2) version of the
model is used to demonstrate all low-energy theorems to hold valid in the chiral limit.

A more realistic U(3) × U(3) model with 't Hooft interaction is constructed to describe the
mass spectrum of excited scalar, pseudoscalar, and vector mesons. On the basis of global chiral
symmetry, we use the same form factors for the scalar and pseudoscalar mesons. Having ˇxed the
form factor parameters by masses of pseudoscalar mesons, we predict the mass spectrum of scalar
mesons. This allows us to interpret experimentally observed scalar, pseudoscalar, and vector meson
states as members of quark-antiquark nonets. It is shown that the a0(1450), K∗

0 (1430), f0(1370),
fJ (1710) scalar meson states are the ˇrst radial excitations of the ground states: a0(980), K∗

0 (960),
f0(400− 1200), f0(980). The weak decay constants Fπ , Fπ′ , FK , FK′ and the main strong decay
widths of the scalar, pseudoscalar, and vector meson nonets are calculated.

�µ¸É·µ¥´ ±¨· ²Ó´µ° ² £· ´¦¨ ´, ¸µ¤¥·¦ Ð¨° ±·µ³¥ µ¡ÒÎ´ÒÌ ³¥§µ´´ÒÌ ¶µ²¥° ¨Ì ¶¥·¢Ò¥
· ¤¨ ²Ó´Ò¥ ¢µ§¡Ê¦¤¥´¨Ö. ‹ £· ´¦¨ ´ ¶µ²ÊÎ¥´ ¡µ§µ´¨§ Í¨¥° ±¢ ·±µ¢µ° ³µ¤¥²¨ É¨¶  � ³¡ÊÄ
ˆµ´ -‹ §¨´¨µ (�ˆ‹) ¸ ¸¥¶ · ¡¥²Ó´Ò³ ´¥²µ± ²Ó´Ò³ ¢§ ¨³µ¤¥°¸É¢¨¥³. �¥²µ± ²Ó´µ¸ÉÓ µ¶¨¸Ò-
¢ ¥É¸Ö Ëµ·³Ë ±Éµ· ³¨, ¸µµÉ¢¥É¸É¢ÊÕÐ¨³¨ É·¥Ì³¥·´Ò³ ¢µ²´µ¢Ò³ ËÊ´±Í¨Ö³ ¢µ§¡Ê¦¤¥´´ÒÌ ³¥-
§µ´µ¢. ‘¶µ´É ´´µ¥ ´ ·ÊÏ¥´¨¥ ±¨· ²Ó´µ° ¸¨³³¥É·¨¨ µ¶·¥¤¥²Ö¥É¸Ö Ê· ¢´¥´¨¥³ ´  Ð¥²Ó. � 
¶·µ¸Éµ³ ¶·¨³¥·¥ SU(2) × SU(2)-¢¥·¸¨¨ ÔÉµ° ³µ¤¥²¨ ¶·µ¤¥³µ´¸É·¨·µ¢ ´µ ¢Ò¶µ²´¥´¨¥ ¢¸¥Ì
´¨§±µÔ´¥·£¥É¨Î¥¸±¨Ì É¥µ·¥³ ¢ ±¨· ²Ó´µ³ ¶·¥¤¥²¥.

„²Ö µ¶¨¸ ´¨Ö ¸¶¥±É·  ³ ¸¸ ¢µ§¡Ê¦¤¥´´ÒÌ ¸± ²Ö·´ÒÌ, ¶¸¥¢¤µ¸± ²Ö·´ÒÌ ¨ ¢¥±Éµ·´ÒÌ ³¥§µ-
´µ¢ ¶µ¸É·µ¥´  ¡µ²¥¥ ·¥ ²¨¸É¨Î´ Ö U(3) × U(3)-³µ¤¥²Ó ¸ ¢§ ¨³µ¤¥°¸É¢¨¥³ 'É •µËÉ . ‚ ¸¨²Ê
£²µ¡ ²Ó´µ° ±¨· ²Ó´µ° ¸¨³³¥É·¨¨, ³Ò ¨¸¶µ²Ó§Ê¥³ µ¤¨´ ±µ¢Ò¥ Ëµ·³Ë ±Éµ·Ò ¤²Ö ¸± ²Ö·´ÒÌ
¨ ¶¸¥¢¤µ¸± ²Ö·´ÒÌ ³¥§µ´µ¢. ”¨±¸¨·ÊÖ ¶ · ³¥É·Ò Ëµ·³Ë ±Éµ·µ¢ ¶µ ³ ¸¸ ³ ¶¸¥¢¤µ¸± ²Ö·´ÒÌ
³¥§µ´µ¢, ³Ò ¶·¥¤¸± §Ò¢ ¥³ ¸¶¥±É· ³ ¸¸ ¸± ²Ö·´ÒÌ ³¥§µ´µ¢. �Éµ ¶µ§¢µ²Ö¥É ´ ³ ¨´É¥·¶·¥É¨-
·µ¢ ÉÓ Ô±¸¶¥·¨³¥´É ²Ó´µ ´ ¡²Õ¤ ¥³Ò¥ ¸± ²Ö·´Ò¥, ¶¸¥¢¤µ¸± ²Ö·´Ò¥ ³¥§µ´´Ò¥ ¸µ¸ÉµÖ´¨Ö ± ±
Î²¥´Ò ±¢ ·±- ´É¨±¢ ·±µ¢ÒÌ ´µ´¥Éµ¢. �µ± § ´µ, ÎÉµ ¸± ²Ö·´Ò¥ ³¥§µ´´Ò¥ ¸µ¸ÉµÖ´¨Ö a0(1450),
K∗

0 (1430), f0(1370), fJ (1710) Ö¢²ÖÕÉ¸Ö ¶¥·¢Ò³¨ · ¤¨ ²Ó´Ò³¨ ¢µ§¡Ê¦¤¥´¨Ö³¨ µ¸´µ¢´ÒÌ ¸µ¸Éµ-
Ö´¨° a0(980), K∗

0 (960), f0(400 − 1200), f0(980). ‚ÒÎ¨¸²¥´Ò ±µ´¸É ´ÉÒ ¸² ¡ÒÌ · ¸¶ ¤µ¢ Fπ ,
Fπ′ , FK , FK′ ¨ Ï¨·¨´Ò µ¸´µ¢´ÒÌ ¸¨²Ó´ÒÌ · ¸¶ ¤µ¢ ¸± ²Ö·´ÒÌ, ¶¸¥¢¤µ¸± ²Ö·´ÒÌ ¨ ¢¥±Éµ·´ÒÌ
´µ´¥Éµ¢ ³¥§µ´µ¢.
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1. INTRODUCTION

The investigation of radial excitations of the scalar, pseudoscalar, and vector
meson nonets is of great interest in the hadronic physics. So far, there are
questions connected with the experimental and theoretical description of radial
excitations of scalar and pseudoscalar mesons. For instance, the experimental
data on the excited states of kaons [1] are rare and not reliable enough. There
are also problems with interpretation of the experimental data on the scalar and
η, η′ mesons. Several years ago, attempts were undertaken to consider the state
η′(1440) as a glueball [2], however, the authors in [2] came to conclusion that
this state is rather a radial ex¸itation of η′(958).

There is an analogous problem with interpretation of the scalar states f0(1500)
and f0(1710). Moreover, the experimental status of the lightest scalar isoscalar
singlet meson remains unclear. In some papers, the resonance f0(1370) was
considered as a member of the ground nonet [3, 4], and until 1998 the resonance
f0(400− 1200) was not included into the summary tables of PDG review∗ [1].

One will ˇnd a problem of the same sort in the case ofK∗
0 . The strange meson

K∗
0 (1430) seems too heavy to be the ground state: 1 GeV is more characteristic

of the ground meson states (see [5, 6]).
Anticipating the results of our review we would like to note that some of

these problems were solved in a number of our works which resulted in the
present work. From our calculations, for example, we concluded that the states
η(1295) and η(1440) can be considered as radial excitations of the ground states
η and η′. The estimates of their strong decay widths also conˇrm our conclusion.
Let us note that these meson states are essentially mixed. Our calculations also
showed that we can interpret the scalar states f0(1370), a0(1450), f0(1710), and
K∗

0 (1430) as the ˇrst radial excitations of f0(400− 1200), a0(980), f0(980), and
K∗

0 (960).
A theoretical description of radially excited pions poses some interesting

challenges. The physics of the ground states of mesons (pions) is completely
governed by the spontaneous breaking of chiral symmetry (SBCS). A convenient
way to derive the properties of soft pions is the use of an effective Lagrangian
based on a nonlinear or linear realization of chiral symmetry [7]. When attempting
to introduce higher resonances to extend the effective Lagrangian description
to higher energies, one must ensure that the introduction of new degrees of
freedom does not spoil the low-energy theorems for pions which are universal
consequences of chiral symmetry.

Attempts to describe heavier analogs of the pion, vector mesons, and η, η′

mesons as the radial excitations of well-known ground meson states were made

∗However, in earlier editions of PDG the light σ state could still be found; it was excluded later.



578 VOLKOV M.K., YUDICHEV V.L.

by authors in [2] within the framework of the nonlocal 3P0 potential quark model.
This approach was based on nonrelativistic and relativistic quantum mechanics
where mesons are treated as bound q̄q systems.

A useful guideline in the construction of effective meson Lagrangians is the
NambuÄJona-Lasinio (NJL) model that describes SBCS at the quark level with a
four-fermion interaction [8Ä11]. The bosonization of this model and the derivative
expansion of the resulting fermion determinant reproduce the Lagrangian of the
linear sigma model that embodies the physics of soft pions as well as higherÄ
derivative terms. With appropriate couplings the model allows one to derive also
a Lagrangian for vector and axialÄvector mesons. This gives not only the correct
structure of terms of the Lagrangian as required by chiral symmetry, but also
quantitative predictions for the coefˇcients, such as Fπ , FK , gπ, gρ, etc.

One may, therefore, hope that a suitable generalization of the NJL model can
provide means for deriving an effective Lagrangian including also the
excited mesons.

When extending the NJL model to describe radial excitations of mesons, one
has to introduce nonlocal (ˇniteÄrange) four-fermion interactions. Many nonlocal
generalizations of the NJL model were proposed, by using either covariantÄ
Euclidean [12] or instantaneous (potential-type) [13, 14] effective quark inter-
actions. These models generally require bilocal meson ˇelds for bosonization,
which makes it difˇcult to perform a consistent derivative expansion leading to
an effective Lagrangian.

A simple alternative is to use separable quark interactions. There is a number
of advantages of working with that scheme. First, separable interactions can be
bosonized by introducing local meson ˇelds, just as the usual NJL model. One
can thus derive an effective meson Lagrangian directly in terms of local ˇelds and
their derivatives. Second, separable interactions allow one to introduce a limited
number of excited states and only in a given channel.

An interesting method for describing excited meson states in this approxi-
mation was proposed in [15]. The authors suggested to consider SBCS in the
vicinity of a polycritical point where either all or some of the coupling constants at
four-fermion vertices exhibit critical behavior; the critical values of the coupling
constants are given by solutions of a set of mass-gap equations. They selected
a minimal type of separable four-quark interaction which is most important for
the process of SBCS. In this model the form factors are chosen as orthogonal
functions, so there is a freedom in their choice up to an arbitrary rotation. All
calculations are made in the Euclidean space, by using the approximation of
large Nc and log Λ where Λ is the ultra-violet cut-off in the model. An interest-
ing result of this approach is that for an arbitrary choice of coupling constants
in the vicinity of polycritical point there are multiple solutions with a different
critical behavior. Therefore, a problem appears Å which of the solutions is
realized in nature.
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Another advantage of the separable interaction is that it can be deˇned in
Minkowski space in a 3-dimensional (yet covariant) way, with form factors de-
pending only on a part of the quarkÄantiquark relative momentum transverse to
the meson momentum [14, 16, 17]. This is essential for a correct description
of excited states, since it ensures the absence of spurious relativeÄtime excita-
tions [18]. Finally, as we have shown [17], the form factors deˇning the separable
interaction can be chosen so that the gap equation of the generalized NJL model
coincides with the one of the usual NJL model, whose solution is a constant
(momentumÄindependent) dynamic quark mass. Thus, in this approach it is pos-
sible to describe radially excited mesons above the usual NJL vacuum. Aside
from the technical simpliˇcation, the latter means that the separable generalization
contains all the successful quantitative results of the usual NJL model.

Our paper consists of ˇve Sections. In the second Section, we illustrate our
method on the basis of a simple SU(2)×SU(2) model. Here we prepare grounds
for the choice of the form factors to be used in a more realistic model. It will be
shown that we can choose these form factors such that the gap equation conserves
its conventional form and has a solution corresponding to a constant constituent
quark mass. The quark condensate also does not change after the inclusion of
excited states into the model, because the tadpole associated with the excited
scalar ˇeld is equal to zero (the quark loop with the one excited scalar vertex,
vertex with a form factor).

In this Section, we derive an effective chiral Lagrangian describing π and π′

mesons from a generalized NJL model with separable interactions. In Subsec-
tion 2.1, we introduce the effective quark interaction in the separable approx-
imation and describe its bosonization. We discuss the choice of form factors
necessary to describe excited states. In Subsection 2.2, we solve the gap equation
deˇning the vacuum, derive the effective Lagrangian of the 0− meson ˇelds, and
perform the diagonalization leading to the physical π and π′ states. The effective
Lagrangian describes the vanishing of the π mass (decoupling of the Goldstone
boson) in the chiral limit, while π′ remains massive. In Subsection 2.3, we derive
the axial vector current of the effective Lagrangian using the Gell-MannÄLevy
method and obtain a generalization of the PCAC formula which includes the
contribution of π′ to the axial current. The leptonic decay constants of the π and
π′ mesons, Fπ and Fπ′ , are discussed in Subsection 2.4. It is shown that Fπ′

vanishes in the chiral limit as expected. In Subsection 2.5, we ˇx the parameters
of the model and evaluate the ratio Fπ′/Fπ as a function of the π′ mass.

In the third Section, we use the method demonstrated in Section 2 for a real-
istic description of radially excited states of the scalar, pseudoscalar, and vector
meson nonets where 't Hooft interaction is included in addition to conventional
chirally symmetric four-quark vertices. This allows us to solve the so-called
UA(1) problem and describe the masses of ground and excited states of the η and
η′ mesons.
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We take account of the connections of the scalar and vector coupling con-
stants which appeared in this model and an additional renormalization of the
pseudoscalar ˇelds connected with the pseudoscalarÄaxialÄvector transitions. For
simplicity, we suppose that the masses of u and d quarks are equal to each other
and take into account only the mass difference between (u, d) and s quarks
(mu and ms). Then, we have in this model six basic parameters: mu, ms, Λ3

(3-dimensional cut-off parameter), G and GV (four-quark coupling constants for
the scalarÄpseudoscalar coupling (G) and for the vectorÄaxialÄvector coupling
(GV )) and constant K characterizing the 't Hooft interaction. To deˇne these pa-
rameters, we use the experimental values: the pion decay constant Fπ = 93 MeV,
the ρÄmeson decay constant gρ ≈ 6.14 (g2ρ/(4π) ≈ 3), the pion mass Mπ ≈
≈ 140 MeV, ρ-meson mass Mρ = 770 MeV, the kaon mass MK ≈ 495 MeV,
and the mass difference of the η and η′ mesons. Using these six parameters, we
can describe the masses of four ground meson nonets (pseudoscalar, vector, scalar,
and axialÄvector) and all the meson coupling constants of strong interactions of
mesons with each other and with quarks.

For the investigation of excited states of the mesons it is necessary to consider
nonlocal four-quark interactions. In Section 3, it is shown that for the description
of excited states of the scalar, pseudoscalar, and vector meson nonets we have
to use seven different form factors in the effective four-quark interactions. Each
form factor contains only one free (external) parameter. There are also slope
(internal) parameters which are to be ˇxed by the condition of preserving gap
equations in the standard form (see Section 2). We use the same form factors for
the scalar and pseudoscalar mesons, which is required by chiral symmetry. This
allows us to predict masses of the excited scalar mesons.

In Subsection 3.1, we introduce the effective quark interaction in the separa-
ble approximation with 't Hooft terms and describe its bosonization. We discuss
the choice of the form factors necessary to describe excited states of the scalar,
pseudoscalar, and vector meson nonets. In Subsection 3.2, we derive the effec-
tive Lagrangian for the ground and excited states of the strange and isovector
scalar and pseudoscalar mesons, and perform the diagonalization leading to the
physical ground and excited meson states. In Subsection 3.3, we diagonalize the
Lagrangian for the isoscalar, scalar and pseudoscalar (ground and excited) mesons
and take into account singlet-octet mixing. In Subsection 3.4, we consider vector
mesons. In Subsection 3.5, we ˇx the parameters of the model and evaluate the
masses of the ground and excited meson states and the weak decay constants Fπ ,
Fπ′ , FK , and FK′ .

In Section 4, we calculate strong decay widths of excited states of the scalar,
pseudoscalar, and vector mesons and compare them with experimental data. In
Subsection 4.1, we consider decays of the ˇrst radial excitations of π, ρ, and ω
meson states. Decays of strange mesons are calculated in Subsection 4.2. Then,
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in Subsection 4.3, we calculate decay widths of the scalar mesons. Finally, the de-
cay widths of excited η and η′ mesons are estimated in Subsection 4.4.

In Section 5 (Conclusion), we brie�y discuss our results, give interpretation of
the members of meson nonets, and foresee ways of further developing our model.

In Appendix A, we collected some lengthy formulae deˇning the free part
of the effective Lagrangian for isoscalar, scalar and pseudoscalar mesons. In
Appendix B, we displayed in detail some instructive calculations of strong decay
widths of mesons.

2. SU(2)× SU(2) MODEL

2.1. NambuÄJona-Lasinio Model with Separable Interactions. In this Sec-
tion, we construct an SU(2) × SU(2) NJL-like chiral quark model with quark
interaction of the separable type to describe the ground and ˇrst radially excited
states of pions and σ mesons. Although, a realistic description of the meson
physics requires consideration of a U(3) × U(3) version (which we will do in
the next Section), we ˇnd it instructive to show the basic principles of the model
with this simple case. The content of the section corresponds to Ref. 17.

In the usual NJL model, SBCS is described by a local (currentÄcurrent)
effective quark interaction. The model is deˇned by the action

S[ψ̄, ψ] =
∫

d4x ψ̄(x)
(
i∂/ −m0

)
ψ(x) + Sint, (1)

Sint =
G

2

∫
d4x [jσ(x)jσ(x) + jaπ(x)j

a
π(x)] , (2)

where jσ,π(x) denote, respectively, the scalarÄisoscalar and pseudoscalarÄisovector
currents of the quark ˇelds (SU(2) �avor),

jσ(x) = ψ̄(x)ψ(x), jaπ(x) = ψ̄(x)iγ5λaψ(x). (3)

The model can be bosonized in a standard way by representing the 4-fermion
interaction as a Gaussian functional integral over scalar and pseudoscalar meson
ˇelds [8Ä11]. Since the interaction, Eq. (2), represents a product of two local
currents, the bosonization is achieved through local meson ˇelds. The effective
meson action obtained by integration over quark ˇelds is thus expressed in terms
of local meson ˇelds. By expanding the quark determinant in derivatives of the
local meson ˇelds, one then derives the chiral meson Lagrangian.

The NJL interaction, Eq. (2), describes only groundÄstate mesons. To include
excited states, one has to introduce effective quark interactions with a ˇnite range.
In general, such interactions require bilocal meson ˇelds for bosonization [12,14].
A possibility to avoid this complication is to use a separable interaction that is still
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of currentÄcurrent form, Eq. (2), but allows for nonlocal vertices (form factors)
in the deˇnition of quark currents, Eq. (3),

S̃int =
G

2

∫
d4x

N∑
i=1

[
jσ,i(x)jσ,i(x) + jaπ,i(x)j

a
π,i(x)

]
, (4)

jσ,i(x) =
∫

d4x1

∫
d4x2 ψ̄(x1)Fσ,i(x;x1, x2)ψ(x2), (5)

jaπ,i(x) =
∫

d4x1

∫
d4x2 ψ̄(x1)F a

π,i(x;x1, x2)ψ(x2). (6)

Here, Fσ,i(x;x1, x2), F a
π,i(x;x1, x2), i = 1, . . .N , denote a set of nonlocal scalar

and pseudoscalar fermion vertices (in general, momentumÄ and spinÄdependent)
to be speciˇed below. Upon bosonization Eq. (4) leads to the action

Sbos[ψ̄, ψ;σ1, π1, . . . σN , πN ] =

=
∫

d4x1

∫
d4x2 ψ̄(x1)

[(
i∂/ x2 −m0

)
δ(x1 − x2) +

+
∫

d4x

N∑
i=1

(
σi(x)Fσ,i(x;x1, x2) + πai (x)F

a
π,i(x;x1, x2)

)]
ψ(x2)−

− 1
2G

∫
d4x

N∑
i=1

(
σ2
i (x) + πa 2

i (x)
)
. (7)

It describes a system of local meson ˇelds, σi(x), πai (x), i = 1, . . .N , which
interact with quarks through nonlocal vertices. We emphasize that these ˇelds
are not yet to be associated with physical particles (σ, σ′, . . . , π, π′, . . .); physical
ˇelds will be obtained after determining the vacuum and diagonalizing the meson
effective action.

To deˇne the vertices of Eqs. (5) and (6), we pass to the momentum repre-
sentation. Because of the translational invariance, the vertices can be represented
as

Fσ,i(x;x1, x2) =
∫

d4P

(2π)4
×

×
∫

d4k

(2π)4
exp i

[
1
2
(P + k)(x− x1) +

1
2
(P − k)(x− x2)

]
Fσ,i(k|P ), (8)

and similarly for F a
π,i(x;x1, x2). Here k and P denote, respectively, the rel-

ative and total momentum of a quarkÄantiquark pair. We take the vertices to
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depend only on the component of the relative momentum transverse to the total
momentum,

Fσ,i(k|P ) ≡ Fσ,i(k⊥|P ), etc., k⊥ ≡ k − P · k
P 2

P. (9)

Here, P is assumed to be time-like, P 2 > 0. Equation (9) is a covariant general-
ization of the condition that the quarkÄmeson interaction is instantaneuos in the
rest frame of the meson (i.e., the frame in which P = 0). Equation (9) ensures
the absence of spurious relativeÄtime excitations and thus leads to a consistent
description of excited states∗ [18]. In particular, this framework allows us to
use 3-dimensional ®excited state¯ wave functions to model the form factors for
radially excited mesons.

The simplest chirally invariant interaction describing scalar and pseudoscalar
mesons is deˇned by spinÄindependent vertices 1 and iγ5λ

a, respectively. We
want to include ground state mesons and their ˇrst radial excitation (N = 2), and
therefore take

Fσ,j(k⊥|P )
F a
π,j(k⊥|P )

}
=

{
1

iγ5λ
a

}
×Θ(Λ3 − |k⊥|) fj(k⊥), (10)

f1(k⊥) ≡ 1, f2(k⊥) = c(1 + d |k⊥|2), |k⊥| ≡
√
−k2⊥. (11)

The step function, Θ(Λ3 − |k⊥|), is nothing else than a covariant general-
ization of the usual 3-momentum cutoff of the NJL model in the meson rest
frame [14]. The form factor f(k⊥) has for d < −Λ−2

3 the form of an excited
state wave function, with a node in the interval 0 < |k⊥| < Λ3. Equations (10)
and (11) are the ˇrst two terms in a series of polynomials in k2⊥; inclusion of
higher excited states would require polynomials of higher degree. Note that the
normalization of the form factor f(k⊥), the constant c, determines the overall
strength of the coupling of the σ2 and π2 ˇelds to quarks relative to the usual
NJL coupling of π1 and σ1.

We remark that the most general vertex could also include spinÄdependent
structures, P/ and γ5P/ , which in the terminology of the NJL model correspond
to the induced vector and axial vector component of σ and π (σÄρ and πÄA1

mixing), respectively. These structures should be considered if vector mesons are
included. Furthermore, there could be structures k/⊥, P/ k/⊥ and γ5k/⊥, γ5P/ k/⊥,

∗In bilocal ˇeld theory, this requirement is usually imposed in the form of the so-called MarkovÄ
Yukawa condition of covariant instantaneity of the bound state amplitude [14]. An interaction of the
transverse form, Eq. (9), automatically leads to meson amplitudes satisfying the MarkovÄYukawa
condition.
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respectively, which describe bound states with orbital angular momentum L = 1.
We shall not consider these components here.

With the form factors deˇned by Eqs. (10) and (11), the bosonized action,
Eq. (7), in the momentum representation takes the form

Sbos[ψ̄, ψ;σ1, π1, σ2, π2] =
∫

d4k

(2π)4
ψ̄(k)

(
k/ −m0

)
ψ(k)+

+
2∑

j=1

∫
d4P

(2π)4

∫
Λ3

d4k

(2π)4
ψ̄(k+

1
2
P )
[
σj(P ) + iγ5λ

aπaj (P )
]
fj(k⊥)ψ(k−

1
2
P )−

− 1
2G

2∑
j=1

∫
d4P

(2π)4
(
σj(−P )σj(P ) + πaj (−P )πaj (P )

)
. (12)

Here it is understood that a cutoff in the 3-dimensional transverse momentum is
applied to the k integral, as deˇned by the step function of Eq. (10).

2.2. Effective Lagrangian for π and π′ Mesons. We now want to derive
the effective Lagrangian describing physical π and π′ mesons. Integrating over
the fermion ˇelds in Eq. (12), one obtains the effective action of the σ1, π1 and
σ2, π2 ˇelds,

W [σ1, π1, σ2, π2] = − 1
2G

∫
d4x

(2π)4
(σ2

1 + πa 2
1 + σ2

2 + πa 2
2 )−

− iNc Tr log


i∂/ −m0 +

2∑
j=1

(σj + iγ5λ
aπaj )fj


 .(13)

This expression is understood as a shorthand notation for expanding in the meson
ˇelds. In particular, we want to derive the free part of the effective action for the
π1 and π2 ˇelds,

W = W (0) +W (2), (14)

W (2) =
1
2

∫
d4P

(2π)4

2∑
i,j=1

πai (P )K
ab
ij (P )π

b
j(P ), (15)

where we restrict ourselves to timelike momenta, P 2 > 0. Before expanding
in the π1 and π2 ˇelds, we must determine the vacuum, i.e., the mean scalar
ˇeld that arises in the dynamic breaking of chiral symmetry. The meanÄˇeld
approximation corresponds to the leading order of the 1/Nc expansion. The
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mean ˇeld is determined by the set of equations

δW

δσ1
= −iNc tr

∫
Λ3

d4k

(2π)4
1

k/ −m0 + σ1 + σ2f(k⊥)
− σ1

G
= 0, (16)

δW

δσ2
= −iNc tr

∫
Λ3

d4k

(2π)4
f(k⊥)

k/ −m0 + σ1 + σ2f(k⊥)
− σ2

G
= 0. (17)

Due to the transverse deˇnition of the interaction, Eq. (9), the mean ˇeld inside
a meson depends in a trivial way on the direction of the meson 4-momentum,
P . In the following we consider these equations in the rest frame where P =
= 0, k⊥ = (0,k) and Λ3 is the usual 3-momentum cutoff.

In general, the solution of Eqs. (16) and (17) would have σ2 �= 0, in which
case the dynamically generated quark mass, −σ1 − σ2f(k) + m0, becomes
momentumÄdependent. However, if we choose the form factor, f(k), such that

−4mIf1 ≡ −iNc tr
∫
Λ3

d4k

(2π)4
f(k)
k/ −m

=

= i4Ncm

∫
Λ3

d4k

(2π)4
f(k)

m2 − k2
= 0, (18)

m ≡ −σ1 +m0,

then Eqs. (16) and (17) admit a solution with σ2 = 0 and thus with a constant
quark mass, m = −σ1 + m0. In this case, Eq. (16) reduces to the usual gap
equation of the NJL model,

−8mI1 ≡ −miNc

∫
Λ3

d4k

(2π)4
1

k2 −m2
=

m0 −m

G
. (19)

Obviously, the condition, Eq. (18), can be fulˇlled by choosing an appropriate
value of the parameter d deˇning the ®excited state ¯ form factor, Eq. (11), for
given values of Λ3 and m. Equation (18) expresses the invariance of the usual
NJL vacuum, σ1 = const., with respect to variations in the direction of σ2. In
the following, we shall consider the vacuum as deˇned by Eqs. (18) and (19),
i.e., we work with the usual NJL vacuum. We emphasize that this choice is
a matter of convenience, not of principle. The qualitative results below could
equivalently be obtained with a different choice of form factors; however, in this
case one should re-derive all vacuum and groundÄstate meson properties with
the momentumÄdependent quark mass. Preserving of the NJL vacuum makes
formulas below much more transparent and allows us to take the parameters ˇxed
in the old NJL model.
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Fig. 1. The quark loop contribution to the quadratic form Kij(P ), Eq. (94), of the effective
action for π1 and π2 ˇelds. Solid lines denote the NJL quark propagator. The π1 ˇeld
couples to quarks through a local vertex; the π2 ˇeld, through the form factor, f(k⊥),
marked by letter f

With the mean ˇeld determined by Eqs. (18) and (19), we now expand the
action to quadratic order in the ˇelds π1 and π2. The quadratic form Kab

ij (P ),
Eq. (15), is obtained as

Kab
ij (P ) ≡ δabKij(P ),

Kij(P ) = −iNc tr
∫
Λ3

d4k

(2π)4

[
1

k/ + 1
2P/ −m

iγ5fi
1

k/ − 1
2P/ −m

iγ5fj

]
− δij

1
G

.

(20)
A graphical representation of the loop integrals in Eq. (20) is given in Fig. 1. The
integral is evaluated by expanding in the meson ˇeld momentum, P . To order
P 2, one obtains

K11(P ) = Z1(P 2 −M2
1 ), K22(P ) = Z2(P 2 −M2

2 )

K12(P ) = K21(P ) =
√

Z1Z2 ΓP 2, (21)

where

Z1 = 4I2, Z2 = 4Iff2 , (22)

M2
1 = Z−1

1 (−8I1 +G−1) =
m0

Z1Gm
, (23)

M2
2 = Z−1

2 (−8Iff1 +G−1), (24)

Γ =
4√

Z1Z2

If2 . (25)



RADIALLY EXCITED SCALAR, PSEUDOSCALAR, AND VECTOR MESON NONETS 587

Here, In, Ifn , and Iffn denote the usual loop integrals arising in the momentum
expansion of the NJL quark determinant, but now with zero, one or two factors
f(k⊥), Eq. (11), in the numerator. We may evaluate them in the rest frame,
k⊥ = (0,k),

If..fn ≡ −iNc

∫
Λ3

d4k

(2π)4
f(k)..f(k)
(m2 − k2)n

. (26)

The evaluation of these integrals with a 3-momentum cut-off is described, e.g., in
Ref. 19. The integral over k0 is taken by contour integration, and the remaining
3-dimensional integral is regularized by the cut-off. Only the divergent parts are
kept; all ˇnite parts are dropped. We point out that the momentum expansion
of the quark loop integrals, Eq. (20), is an essential part of this approach. The
NJL model is understood here as a model only for the lowest coefˇcients of the
momentum expansion of the quark loop, but not its full momentum dependence
(singularities, etc.).

Note that a mixing between the π1 and π2 ˇelds occurs only in the kinetic
(O(P 2)) terms of Eq. (21), but not in the mass terms. This is a direct consequence
of the deˇnition of vacuum by Eqs. (18) and (19), which ensures that the quark
loop with one form factor has no P 2Äindependent part. The ®softness¯ of the
π1Äπ2 mixing causes the π1 ˇeld to decouple as P 2 → 0. This property is crucial
for the appearance of a Goldstone boson in the chiral limit.

To determine the physical π- and π′-meson states, we have to diagonalize the
quadratic part of the action, Eq. (15). If one knew the full momentum dependence
of the quadratic form, Eq. (21), the masses of physical states would be given as
zeros of the determinant of the quadratic form,

detKij(P 2) = 0, P 2 = M2
π , M2

π′ . (27)

This would be equivalent to the usual BetheÄSalpeter (on-shell) description of
bound states: the matrix Kij(P 2) is diagonalized independently of the respective
mass shells, P 2 =M2

π ,M
2
π′ [13,20,21]. In our approach, however, we know the

quadratic form, Eq. (21), only as an expansion in P 2 at P 2 = 0. It is clear that
the determination of the masses according to Eq. (27) would be incompatible with
the momentum expansion, as the determinant involves O(P 4) terms neglected
in Eq. (21). To be consistent with the P 2 expansion, we must diagonalize the
kinetic term and the mass term in Eq. (15) simultaneously, with a P 2-independent
transformation of the ˇelds. Let us write Eq. (21) in the matrix form

Kij(P 2) =

(
Z1

√
Z1Z2 Γ√

Z1Z2 Γ Z2

)
P 2 −

(
Z1M

2
1 0

0 Z2M
2
2

)
. (28)
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The transformation that diagonalizes both the matrices here separately is given by

√
Z1π

a
1 =

cosφ√
Zπ

πa +
M2

M1

sinφ√
Zπ′

π′ a,

√
Z2π

a
2 =

M1

M2

sinφ√
Zπ

πa − cosφ√
Zπ′

π′ a,

(29)

where

tan 2φ = 2Γ
M1

M2

(
1− M2

1

M2
2

)−1

, (30)

Zπ = cos2 φ+
M2

1

M2
2

sin2 φ+ 2Γ
M1

M2
cosφ sinφ, (31)

Zπ′ = cos2 φ+
M2

2

M2
1

sin2 φ− 2ΓM2

M1
cosφ sinφ. (32)

In terms of the new ˇelds, π, π′, the quadratic part of the action, Eq. (15), reads

W (2) =
1
2

∫
d4P

(2π)4
[
πa(−P )(P 2 −M2

π)π
a(P ) + π′ a(−P )(P 2 −M2

π′)π′ a(P )
]
.

(33)
Here,

M2
π =

M2
1

Zπ
, M2

π′ =
M2

2

Zπ′
. (34)

The ˇelds π and π′ can thus be associated with physical particles.
Let us now consider the chiral limit, i.e., a vanishing current quark mass,

m0 → 0. From Eqs. (22)Ä(25) we see that this is equivalent to letting M2
1 → 0.

(Here and in the following, when discussing the dependence of quantities on the
current quark mass, m0, we keep the constituent quark mass ˇxed and assume
the coupling constant, G, to be changed in accordance with m0, such that the gap
equation, Eq. (19), remains fulˇlled exactly. In this way, the loop integrals and
Eq. (18) remain unaffected by changes of the current quark mass.) Expanding
Eqs. (34) in M2

1 ∝ m0, one ˇnds

M2
π = M2

1 + O(m4
1), (35)

M2
π′ =

M2
2

1− Γ2

[
1 + Γ2M

2
1

M2
2

+ O(M4
1 )
]
. (36)

Thus, in the chiral limit the effective Lagrangian, Eq. (33), indeed describes a
massless Goldstone pion, π, and a massive particle, π′. Furthermore, in the chiral
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limit the transformation of the ˇelds, Eq. (29), becomes

√
Z1π

a
1 =

(
1− Γ2M

2
1

M2
2

)
πa +

Γ√
1− Γ2

(
1 + (1− Γ2)

M2
1

M2
2

)
π′ a,

√
Z2π

a
2 = Γ

M2
1

M2
2

πa − 1√
1− Γ2

π′ a. (37)

At M2
1 = 0 one observes that π has only a component along π1. This is

a consequence of the fact that the π1Äπ2 coupling in the original Lagrangian,
Eq. (21), is of order P 2. We remark that, although we have chosen to work with
the particular choice of excitedÄstate form factor, Eq. (18), the occurrence of a
Goldstone boson in the chiral limit in Eq. (13) is general and does not depend on
this choice. This may easily be established by using the general gap equations,
Eqs. (16) and (17), together with Eq. (20).

2.3. The Axial Current. To describe the leptonic decays of the π and π′

mesons, we need the axial current operator. Since our effective action contains,
besides the pion, a ˇeld describing an ®excited state¯ with the same quantum
numbers, it is clear that the axial current of our model is, in general, not carried
exclusively by the π ˇeld, and is thus not given by the standard PCAC formula.
Thus, we must determine the conserved axial current of our model, including the
contribution of π′, from ˇrst principles.

In general, the construction of the conserved current in a theory with nonlocal
(momentumÄdependent) interactions is a difˇcult task. This problem has been
studied extensively in the framework of the BetheÄSalpeter equation [22] and
various 3-dimensional reductions of it such as the quasipotential and the on-shell
reduction [23]. In these approaches, the derivation of the current is achieved
by ®gauging¯ all possible momentum dependences of the interaction through
minimal substitution, a rather cumbersome procedure in practice. In contrast, in
a Lagrangian ˇeld theory, a simple method exists to derive conserved currents,
the soÄcalled Gell-Mann and Levy method [24], based on the Noether theorem.
In this approach, the current is obtained as the variation of the Lagrangian with
respect to the derivative of a spaceÄtime dependent symmetry transformation of
the ˇelds. We now show that a suitable generalization of this technique can be
employed to derive the conserved axial current of our model with quarkÄmeson
form factors depending on the transverse momentum.

To derive the axial current, we start at the quark level. The isovector axial
current is the Noether current corresponding to inˇnitesimal chiral rotations of
the quark ˇelds,

ψ(x)→
(
1− iεa

1
2
λaγ5

)
ψ(x). (38)
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Following the usual procedure, we consider the parameter of this transformation
to be spaceÄtime dependent, εa ≡ εa(x). However, this dependence should not be
completely arbitrary. To describe the decays of π and π′ mesons, it is sufˇcient
to know the component of the axial current parallel to the meson 4-momentum,
P . It is easy to see that this component is obtained from chiral rotations whose
parameter depends only on the longitudinal part of the coordinate

εa(x)→ εa(x||), x|| ≡ x · P√
P 2

, (39)

since ∂µε
a(x||) ∝ Pµ. In other words, transformations of the form Eq. (39)

describe a transfer of the longitudinal momentum to the meson, but not of the
transverse momentum. This has an important consequence that the chiral trans-
formation does not change the direction of transversality of the mesonÄquark
interaction, cf. Eq. (9). When passing to the bosonized representation, Eq. (7),
the transformation of the π1, σ1 and π2, σ2 ˇelds induced by Eqs. (38) and (39)
is therefore of the form

πai (x) → πai (x) + εa(x||)σi(x),
σi(x) → σi(x) − εa(x||)πai (x).

(i = 1, 2) (40)

This follows from the fact that, for a ˇxed direction of P , the vertex, Eq. (9),
describes an instantaneous interaction in x||. Thus, the special chiral rotation,
Eq. (39), does not mix the components of meson ˇelds coupled to quarks with
different form factors.

With the transformation of the chiral ˇelds given by Eqs. (40), the construc-
tion of the axial current proceeds exactly as in the usual linear sigma model. We
write the variation of the effective action, Eq. (13), in the momentum representa-
tion,

δW =
∫

d4Q

(2π)4
εa(Q)Da(Q), (41)

where εa(Q) = ε̃a(Q||)δ(3)(Q⊥) is the Fourier transform of the transformation,
Eq. (39), and Da(Q) is a function of the ˇelds σi, πi, i = 1, . . . 2, given in the
form of a quark loop integral,

Da(Q) = −iNc tr
∫

d4k

(2π)4

[
1

k/ −m
δab+

+
1

k/ − 1
2Q/ −m

iγ5λ
a 1
k/ + 1

2Q/ −m
iγ5λ

bσ1

]
×

×(πb1(Q) + f(k⊥)πb2(Q)). (42)
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Fig. 2. The axial current of π1 and π2 ˇelds, Eq. (44), as it follows from the Noether
theorem. The cross denotes a local axial current of quark ˇelds to which π1 and π2 ˇelds
couple through quark loops. The notation is the same as in Fig. 1

Here we have used that σ2 = 0 in the vacuum, Eq. (18). Expanding now in the
momentum Q, making use of Eq. (18) and the gap equation, Eq. (19), and setting
σ1 = −m (it is sufˇcient to consider the symmetric limit, m0 = 0), we get

Da(Q) = −Q2m
[
4I2πa1 (Q) + 4I

f
2 π

a
2 (Q)

]
= −Q2m

[
Z1π

a
1 (Q) +

√
Z1Z2Γπa2 (Q)

]
. (43)

The fact that Da(Q2) is proportional to Q2 is a consequence of the chiral sym-
metry of the effective action, Eq. (13). Due to this property, Da(Q2) can be
regarded as the divergence of a conserved current,

Aa
µ(Q) = Qµm

[
Z1π

a
1 (Q) +

√
Z1Z2Γπa2 (Q)

]
. (44)

Equation (44) is the conserved axial current of our model. It is of the usual
®PCAC¯ form, but contains also a contribution of the π2 ˇeld. The above
derivation was rather formal. However, the result can be understood in simple
terms, as is shown in Fig. 2. Both the π1 and π2 ˇelds couple to the local axial
current of the quark ˇeld through quark loops; the π2 ˇeld enters the loop with
a form factor, f(k⊥). The necessity to pull out a factor of the meson ˇeld
momentum (derivative) means that only the O(P 2) parts of the loop integrals,
I2 and If2 , survive, cf. Eq. (26). Chiral symmetry ensures that the corresponding
diagrams for the divergence of the current have no P 2-independent part.

The results of this Subsection are an example for the technical simpliˇcations
of working with separable quark interactions. The fact that they can be bosonized
by local meson ˇelds makes it possible to apply methods of local ˇeld theory,
such as the Noether theorem, to the meson effective action. Furthermore, we note
that the covariant (transverse) deˇnition of the 3-dimensional quark interaction,
Eq. (9), is crucial for obtaining a consistent axial current. In particular, with this
formulation there is no ambiguity with different deˇnitions of the pion decay
constant like with noncovariant 3-dimensional interactions [13].

2.4. The Weak Decay Constants of π and π′ Mesons. We now use the axial
current derived in the previous Subsection to evaluate the weak decay constants
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of physical π and π′ mesons. They are deˇned by the matrix element of the
divergence of the axial current between meson states and vacuum,

〈0|∂µAa
µ|πb〉 = M2

πFπδ
ab, (45)

〈0|∂µAa
µ|π′ b〉 = M2

π′Fπ′δab. (46)

In terms of the physical ˇelds, π and π′, the axial current takes the form

Aa
µ = Pµm

√
Z1

(
πa + Γ

√
1− Γ2

M2
1

M2
2

π′ a
)
+ O(M4

1 ). (47)

Here, we substituted the transformation of the ˇelds, Eq. (37), into Eq. (44). The
decay constants of the physical π and π′ states are thus given by

Fπ =
√

Z1m + O(M4
1 ), (48)

Fπ′ =
√

Z1mΓ
√
1− Γ2

M2
1

M2
2

+ O(M4
1 ). (49)

The corrections to Fπ for excited states are of order M4
π . Thus, within our

accuracy, Fπ is identical with the value obtained by the usual NJL model,
√
Z1m,

which follows from the GoldbergerÄTreiman relation at the quark level [8]. On
the other hand, the π′-decay constant vanishes in the chiral limit m0 ∼ M2

1 → 0,
as expected. We stress that for this property to hold, it is essential to consider
the full axial current, Eq. (44), including the contribution of the π2 component.
As can be seen from Eqs. (37) and (44), the standard PCAC formula Aa

µ ∝ ∂µπ
a
1

would lead to a nonvanishing result for Fπ′ in the chiral limit.
The ratio of the π′- to π-decay constants can directly be expressed in terms

of the physical π and π′ masses. From Eqs. (48) and (49) one obtains, using
Eqs. (35) and (36),

Fπ′

Fπ
= Γ
√
1− Γ2

M2
1

M2
2

=
Γ√
1− Γ2

M2
π

M2
π′

. (50)

This is precisely the dependence derived from current algebra considerations in
the general ®extended PCAC¯ framework [25]. We note that the same behavior
of Fπ′ in the chiral limit is found in models describing chiral symmetry breaking
by nonlocal interactions [13,20].

The effective Lagrangian in a compact way illustrates different consequences
of axial current conservation for the pion and its excited state. Both matrix
elements of ∂µA

µ, Eq. (45) and Eq. (46), must vanish for m0 → 0. The pion
matrix element, Eq. (45), does so by M2

π → 0, with Fπ remaining ˇnite, while
for the excited pion matrix element the opposite takes place, Fπ′ → 0 with Mπ′

remaining ˇnite.
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2.5. Numerical Estimates and Conclusions. We can now numerically es-
timate the excited pion decay constant, Fπ′ , in this model. We take the value
of the constituent quark mass m = 300MeV and ˇx the 3-momentum cut-off
at Λ3 = 671MeV by ˇtting the normal pion decay constant Fπ = 93MeV
in the chiral limit, as in the usual NJL model without excited states, cf. [19].
With these parameters one obtains the standard value of the quark condensate,
〈q̄q〉 = −(253MeV)3, and G = 0.82m−2 = 9.1GeV−2, m0 = 5.1MeV. With
the constituent quark mass and cut-off ˇxed, we can determine the parameter d of
the ®excited-state¯ form factor, Eq. (11), from the condition Eq. (18). We ˇnd∗

d = −1.83Λ−2
3 = −4.06GeV−2, corresponding to a form factor f(k⊥) with a

radial node in the range 0 ≤ |k⊥| ≤ Λ3. With this value we determine the π1Äπ2

mixing coefˇcient, Γ, Eq. (25), as

Γ = 0.41. (51)

Note that Γ is independent of the normalization of the form factor f(k⊥), Eq. (11).
In fact, the parameter c enters only into the mass of the π′ meson, cf. Eqs. (24) and
(36); we should not determine its value since the result can directly be expressed
in terms of Mπ′ . Thus, Eq. (50) gives

Fπ′

Fπ
= 0.45

M2
π

M2
π′

. (52)

For the standard value of the π′ mass, Mπ′ = 1300 MeV, this comes to
Fπ′ = 0.48 MeV. The excited pion leptonic decay constant is thus very small,
which is a consequence of chiral symmetry. Note that, as opposed to the quali-
tative results discussed above, the numerical values here depend on the choice of
form factor, (see Eq. (18)), and should thus be regarded as a rough estimate.

We remark that the numerical values of the ratio Fπ′/Fπ obtained here are
comparable to those found in chirally symmetric potential models [20]. However,
models describing chiral symmetry breaking by a vector-type conˇning potential
(linear or oscillator) usually underestimate the normal pion decay constant by an
order of magnitude [13]. Such models should include a short-range interaction
(NJL-type) which is mostly responsible for chiral symmetry breaking.

The small value of Fπ′ does not imply a small width of the π′ resonance,
since it can decay hadronically, e.g., into 3π or ρπ. Such hadronic decays will
be investigated in Section 4.

In conclusion, we outlined a simple framework for including radial excita-
tions in an effective Lagrangian description of mesons. The Lagrangian obtained

∗All parameters will be different when in Section 3 we consider a realistic version of this model.
However, the ratio d/Λ3 will be near 2 (its limit as Λ → ∞) and change slightly.
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by bosonization of an NJL model with separable interactions exhibits all qual-
itative properties expected on general grounds: a Goldstone pion with a ˇnite
decay constant, and a massive ®excited state¯ with a vanishing decay constant in
the chiral limit. Our model shows in a simple way how chiral symmetry pro-
tects the pion from modiˇcations by excited states, which in turn in�uences the
excited states' contribution to the axial current. These features are general and
do not depend on a particular choice of the quarkÄmeson form factor. Further-
more, they are preserved if the derivative expansion of the quark loop is carried
to higher orders.

In the investigations described here we strictly kept to an effective Lagrangian
approach, where the coupling constants and ˇeld transformations are deˇned at
zero momentum. We have no way to check the quantitative reliability of this
approximation for radially excited states in the region of ∼ 1GeV, i.e., to estimate
the momentum dependence of the coupling constants, within the present model.
(For a general discussion of the range of applicability of effective Lagrangians,
see [26].) This question can be addressed to generalizations of the NJL model
with quark conˇnement, which in principle allow both a zeroÄmomentum and
an on-shell description of bound states. Recently, ˇrst steps were undertaken to
investigate the full momentum dependence of correlation functions in an approach
of that kind [27].

3. U(3)× U(3) MODEL

3.1. U(3)×U(3) Chiral Lagrangian with Excited Meson States and 't Hooft
Interaction. àThis Section is devoted to a realistic U(3) × U(3) version of the
NJL model with nonlocal four-quark interaction (see Refs. 28, 29, 30).

We use a nonlocal separable four-quark interaction of the currentÄcurrent
form which admits nonlocal vertices (form factors) in the quark currents and a
pure local six-quark 't Hooft interaction [31,32]:

L(q̄, q) =
∫

d4x q̄(x)(i∂/ −m0)q(x) + L(4)
int + L(6)

int , (53)

L(4)
int =

G

2

∫
d4x

9∑
a=1

N∑
i=1

[jaS,i(x)j
a
S,i(x) + jaP,i(x)j

a
P,i(x)]−

− GV

2

∫
d4x

9∑
a=1

N∑
i=1

[ja, µV,i (x)j
a
V,i, µ(x) + ja, µA,i (x)j

a
A,i, µ(x)], (54)

L(6)
int = −K [det [q̄(1 + γ5)q] + det [q̄(1− γ5)q]] , (55)

where L(4)
int is the U(3) × U(3) chirally symmetric four-quark interaction La-

grangian and L(6)
int contains the symmetry breaking 't Hooft terms. Here, m

0 is
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the current quark mass matrix m0 = diag(m0
u,m

0
d,m

0
s) (m0

u ≈ m0
d) and jaU,i with

U = (S, P, V,A) denotes the scalar, pseudoscalar, vector, and axialÄvector quark
currents

jaS(P ),i(x) =
∫

d4x1d
4x2 q̄(x1)F a

S(P ),i(x;x1, x2)q(x2), (56)

ja, µV (A),i(x) =
∫

d4x1d
4x2 q̄(x1)F

a, µ
V (A),i(x;x1, x2)q(x2), (57)

where F a
S(P ),i(x;x1, x2) are the scalar (pseudoscalar) and F a, µ

V (A),i(x;x1, x2) the
vector and axialÄvector nonlocal quark vertices. The index a = 1, . . . , 9 denotes
the basis elements τa of U(3) �avor group. Our choice is slightly different from
the Gell-Mann λ matrices

τi = λi (i = 1, ..., 7), τ8 = (
√
2λ0 + λ8)/

√
3 =


 1 0 0
0 1 0
0 0 0


 ,

τ9 = (−λ0 +
√
2λ8)/

√
3 =


 0 0 0
0 0 0
0 0 −

√
2


 , (58)

but this choice is more convenient when a singletÄoctet mixing appears due to
the 't Hooft terms.

In the original formulation of the NJL model with 't Hooft interaction, the
't Hooft terms are represented by six-fermion vertices. In this form the Lagrangian
is not ready for the bosonization procedure we should proceed to. An appropriate
way to circumvent this drawback is to come to an equivalent form of the quark
Lagrangian that contains only four-quark vertices as it was done, e.g., in Refs. 4,
31. Therein, the effective four-quark interaction is deduced by integrating out a

quark loop at each six-quark vertex. Thus, from L(6)
int the four-quark part L

(4)
int

acquires an additional contribution which in the one-loop approximation looks as
follows:

L
(4)
tH = 4K

∫
d4x

{
3∑

a=1

msI1(ms)
[
(q̄(x)iγ5τaq(x))2 − (q̄(x)τaq(x))2

]

+
7∑

a=4

muI1(mu)
[
(q̄(x)iγ5τaq(x))2 − (q̄(x)τaq(x))2

]
+msI1(ms)

[
(q̄(x)τ8q(x))2 − (q̄(x)iγ5τ8q(x))2

]
−2

√
2muI1(mu)

[
(q̄(x)τ8q(x))(q̄(x)τ9q(x))

−(q̄(x)iγ5τ8q(x))(q̄(x)iγ5τ9q(x))
]}

. (59)
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In our model the 't Hooft interaction is local with respect to its instantaneous
origin. Finally, we have ∗:

L(q̄, q) =
∫

d4x q̄(x)(i∂/ −m0)q(x) +

+
1
2

∫
d4x

9∑
a=1

9∑
b=1

[G(−)
ab jaS,1(x)j

b
S,1(x) +G

(+)
ab jaP,1(x)j

b
P,1(x)] +

+
G

2

∫
d4x

9∑
a=1

N∑
i=2

[jaS,i(x)j
a
S,i(x) + jaP,i(x)j

a
P,i(x)]−

− GV

2

∫
d4x

9∑
a=1

N∑
i=1

[ja, µV,i (x)j
a
V,i, µ(x) + ja, µA,i (x)j

a
A,i, µ(x)], (60)

where

G
(±)
11 = G

(±)
22 = G

(±)
33 = G± 4KmsI1(ms),

G
(±)
44 = G

(±)
55 = G

(±)
66 = G

(±)
77 = G± 4KmuI1(mu),

G
(±)
88 = G∓ 4KmsI1(ms), G

(±)
99 = G,

G
(±)
89 = G

(±)
98 = ±4

√
2KmuI1(mu),

Gab = 0 (a �= b, a, b = 1, . . . , 7). (61)

The model thus formulated can be bosonized in a standard way by introducing
auxiliary boson ˇelds σai (x), ϕ

a
i (x), V

µ
i (x), A

µ
i (x) with quantum numbers of the

quark currents jaS(P ),i(x) and ja, µV (A),i, and then integrating over the quark degrees
of freedom. The result is a meson effective Lagrangian which, after all, is a
functional of scalar, pseudoscalar, vector, and axialÄvector meson ˇelds. In the
case of an ordinary (local) NJL model, this procedure would give us the well-
known linear realization of the chiral Lagrangian. When original four-quark
vertices of the separable type contain form factors, the bosonization gives rise
to a meson effective Lagrangian for the ground state and a number (in general
inˇnite) of radially excited meson ˇelds. These ˇelds have the same quantum
numbers and therefore should be interpreted as ®radial¯ excitations.

The effective four-quark representation of the Lagrangian with 't Hooft in-
teraction requires careful treatment. It is not equivalent to the original form in

∗It should be noted that SBCS is already taken into account in the effective four-fermion
vertices. Therefore, the effective four-fermion Lagrangian is no longer chirally invariant. However,
in its original form the chiral invariance is present if we exclude 't Hooft terms. This fact has some
consequences which we use later, for instance, we choose the same form factors both for scalars and
pseudoscalars.
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all aspects. For example, the gap equations derived from the effective four-quark
form of the Lagrangian do not reproduce those obtained from the original form
(with six-quark vertices). A kind of double counting takes place here, which
leads to wrong gap equations (for a correct derivation of gap equations, see [31]).
But for the mass spectra and mesonÄmeson coupling constants in the one-loop
approximation, everything works well.

In the one-loop approximation, the bosonized Lagrangian has the following
form:

Lbos(q̄, q;σ, ϕ, V,A) =
∫

d4x1

∫
d4x2 q̄(x1)

[(
i∂/ x2 −m0

)
δ(x1 − x2) +

+
∫

d4x

N∑
i=1

9∑
a=1

(
σai (x)F

a
σ,i(x;x1, x2) + ϕa

i (x)F
a
ϕ,i(x;x1, x2) +

+V a
i,µ(x)F

a,µ
V,i (x;x1, x2) + Aa

i,µ(x)F
a,µ
A,i (x;x1, x2)

)]
q(x2)−

−
9∑

a=1

∫
d4x

[
1
2

((
G(−)

)−1

ab
σa1 (x)σ

b
1(x) +

(
G(+)

)−1

ab
ϕa
1(x)ϕ

b
1(x)
)

−

− 1
2GV

(
(V a,µ

1 (x))2 + (Aa,µ
1 (x))2

)]
−

−
∫

d4x

N∑
i=2

[
1
2G

(
(σai (x))

2 + (ϕa
i (x))

2
)
−

− 1
2GV

(
(V a,µ

i (x))2 + (Aa,µ
i (x))2

)]
. (62)

This Lagrangian describes a system of local meson ˇelds, σai (x), ϕa
i (x),

V a,µ
i (x), Aa,µ

i (x), i = 1, . . .N , which interact with quarks through nonlocal
vertices. These ˇelds are not yet to be associated with physical particles, to
be obtained after determining the vacuum and diagonalizing the meson effective
Lagrangian.

In general, the model admits as many excited states as one wishes. But
for a realistic description of very heavy mesons (2 GeV and more) the model
seems not reliable because it is constructed for low energies. So we intended
here to consider a minimal version of the model, restricting ourselves to N = 2,
which is necessary for the description of ground states and ˇrst radial excitations
of mesons.

To describe the ground and ˇrst radially excited states of mesons, we take
the form factors in the momentum representation as follows:

F a
S,j(k) = τafaσ,j, F a

P,j = iγ5τ
afaϕ,j, (63)
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F a, µ
V,j (k) = γµτafaV,j, F a, µ

A,j = γ5γ
µτafaA,j , (64)

faU,1 ≡ 1, faU,2 ≡ fUa (k) = cUa (1 + dak2), (65)

where U = (σ, ϕ, V,A). Here, we consider the form factors in the rest frame of
mesons (see Section 2). After bosonization in the one-loop approximation, we
get

Lbos(σ, ϕ, V,A) =

−
9∑

a,b=1

∫
d4x

[
1
2

((
G(−)

)−1

ab
σ̄a1 (x)σ̄

b
1(x) +

(
G(+)

)−1

ab
ϕa
1(x)ϕ

b
1(x)
)

−

− 1
2GV

(
(V a,µ

1 (x))2 + (Aa,µ
1 (x))2

)]
−

−
9∑

a=1

∫
d4x

[
1
2G

(
(σa2 (x))

2 + (ϕa
2(x))

2
)
−

− 1
2GV

(
(V a,µ

2 (x))2 + (Aa,µ
2 (x))2

)]
−

−iTr ln
[
1 +

1
i�∂ −m

2∑
j=1

9∑
a=1

(σaj + ϕa
j + V a,µ

j γµ +Aa,µ
j γ5γµ)faj τa

]
. (66)

At the beginning of this Section, we have already mentioned that there is a
danger of double counting when deriving gap equations. The double counting
surely takes place if one tries to obtain the gap equations by naively varying the
Lagrangian (66) over σa1 . However, correct equations for σ

a
2 can be obtained in

this way. It is due to the fact that the 't Hooft interaction is local.
The gap equations for σa1 can be deduced from the DysonÄSchwinger equa-

tion. We will not discuss the details of ˇnding its solution but refer the reader,
e.g., to paper [31]. Here we present just the result that is a slight modiˇcation of
the equations obtained in Ref. 31.

m0
u = mu[1− 8G(−)

88 (I1(mu) + Ifuu

1 (mu)f8
2 )], (67)

m0
s = ms[1− 8G(−)

99 (I1(ms) + Ifss

1 (ms)f9
2 )]. (68)

There m0
a and ma (a = u, d, s) are the current and constituent quark masses,

respectively. The difference between Eqs. (67),(68) and those given in Ref. 31 is
the presence of If1 (mu), tadpoles with form factors absent in local NJL.

The constituent quark masses appear, as usual, due to nonzero vacuum ex-
pectations of σa, according to the equations

〈σ̄8〉0 = m0
u −mu, 〈σ̄9〉0 = m0

s −ms. (69)
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We use them in the gap equations for excited meson states. The ˇelds σ̄a require
redeˇnition which consists in subtracting their vacuum expectation values:

σ8 = σ̄8 − 〈σ̄8〉0, σ9 = σ̄9 − 〈σ̄9〉0. (70)

Now we stop discussing the gap equations for the ground ˇelds and turn
our attention to those for radially excited meson states. As it was said above,
the correct gap equations for radially excited meson states can be obtained by
calculating the ˇrst derivative of Lagrangian (66) with respect to σa2 , which gives

〈 δL

δσa2
〉0 = −iNc tr

∫
Λ3

d4k

(2π)4
fa(k)

(k/ −m+ 〈σa2 〉0τafa(k))
− 〈σa2 〉0

G
= 0. (71)

This equation always admits the trivial solution 〈σa2 〉 = 0. Despite the fact that
nontrivial solutions are possible, we assume that the vacuum expectations for
radially excited meson states are equal to zero and therefore do not change the
quark condensate. Thus, we obtain the condition

−iNc tr
∫
Λ3

d4k

(2π)4
fa(k)
(k/ −m)

= 0. (72)

Equation (72) is written in the matrix form. In the isotopic symmetry, Eq. (72)
gives two conditions on the form factors fa(k) which can be written in our
notation as follows:

Ifuu

1 (mu) = 0, (73)

Ifss

1 (ms) = 0. (74)

These conditions essentially simplify the calculation of the meson mass spectra.
In particular, they provide a diagonal form for the (σai )

2 and (ϕa
i )

2 mass terms of
the meson Lagrangian, however, not for all contributions. To ensure that no terms
like σa1σ

a
2 or ϕ

a
1ϕ

a
2 for strange mesons come from the one-loop quark integrals,

we must impose, in addition to Eqs. (73) and (74), another condition

Ifus

1 (mu) + Ifus

1 (ms) = 0. (75)

Conditions (73), (74), and (75) provide orthogonality of the ground (i = 1) and
excited (i = 2) meson states in the low energy limit P 2 → 0 (see Section 2)
when ϕa

1 become Goldstone bosons.
Now let us remind how we ˇx the basic parameters in the usual NJL model

without excited states of mesons [10].
To obtain correct coefˇcients of kinetic terms of mesons in the quark-one-

loop approximation, we have to make the renormalization of the meson ˇelds

σa = gaσσ
r
a, ϕa = gaσϕ

r
a, V µ

a =
gaV
2

V µ,r
a , Aµ

a =
gaV
2

Aµ,r
a , (76)
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where

gai,j
σ = [4I2(mi,mj)]−1/2,

I2(mi,mj) = −iNc

∫
Λ3

d4k

(2π)4
1

(m2
i − k2)(m2

j − k2)
, (77)

gaV =
√
6gaσ. (78)

After taking account of the pseudoscalarÄaxialÄvector transitions (ϕa → Aa), the
additional renormalization of the pseudoscalar ˇelds

gaϕ = Z
− 1

2
a gaσ, (79)

appears, where Zπ = 1 − 6m2
u/M

2
a1

≈ 0.7 for pions. (Ma1 = 1.23 GeV is the
mass of the axialÄvector a1 meson, [1], mu = 280 MeV (see below and [10]).
We assume that Za ≈ Zπ ≈ 0.7 for any a.

After these renormalizations the part of the Lagrangian describing the ground
states of mesons takes the form

L(σ, ϕ, V,A) = −1
2
((G(−))−1

ab g
a
σg

b
σσaσb + (G

(+))−1
ab g

a
ϕg

b
ϕϕaϕb)−

− ga2V
2GV

(V 2
a +A2

a)− iNc Tr ln
[
i∂/ −m+

+
9∑

a=1

(
gaσσa + iγ5g

a
ϕϕa +

gaV
2
(γµV µ

a + γ5γµA
µ
a)
)

τa
]
, (80)

for simplicity we omitted the index r of meson ˇelds.
Lagrangian (80) in the one-loop approximation results in the following ex-

pressions for the meson masses [10]

M2
π = g2π

[
1
Gπ

− 8I1(mu)
]
=

g2π
Gπ

m0
u

mu
, g2π =

1
4ZI2(mu,mu)

, (81)

M2
K = g2K

[
1

GK
− 4(I1(mu) + I1(ms))

]
+ Z−1(ms −mu)2,

g2K =
1

4ZI2(mu,ms)
, (82)

Gπ = G
(+)
11 , GK = G

(+)
44 , (83)
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M
(+)
88 = g2ηu

(
(G(+))−1

88 − 8I1(mu)
)
,

M
(+)
99 = g2ηs

(
(G(+))−1

99 − 8I1(ms)
)
, (84)

M
(+)
89 = gηugηs

(
(G(+))−1

89

)
, (85)

M2
(η,η′) =

1
2

[
M

(+)
88 +M

(+)
99 ∓

√
(M (+)

88 −M
(+)
99 )2 + 4(M

(+)
89 )2

]
, (86)

M2
ρ =

g2ρ
4GV

=
3

8GV I2(mu,mu)
, M2

ϕ =M2
ρ

I2(mu,mu)
I2(ms,ms)

, (87)

M2
K∗ =M2

ρ

I2(mu,mu)
I2(mu,ms)

+
3
2
(ms −mu)2. (88)

Now let us ˇx our basic parameters. For that we use six experimental values
[8, 10,32]:

1) The pion decay constant Fπ = 93 MeV.
2) The ρ-meson decay constant gρ ≈ 6.14. Then from the GoldbergerÄ

Treiman identity we obtain
mu = Fπgπ (89)

and from Eqs. (78) and (79) we get

gπ =
gρ√
6Z

, mu =
Fπgρ√
6Z

, m = 280 MeV. (90)

From Eqs. (77) and (78) we can obtain (see [19])

I2(mu,mu) =
3
2g2ρ

, Λ3 = 1.03 GeV. (91)

3) Mπ = 135 MeV, the Eq. (81) gives Gπ.
4) Mρ = 770 MeV, the Eq. (82) gives GV .

5)
MK

M2
η′

≈
−
495
M2

η

MeV,
}
ˇx K and ms.

Then the masses of η, η′, K∗, ϕ, and scalar mesons can be calculated with
a satisfactory accuracy (see [32]).

We can calculate the values of FK and all the coupling constants of strong
interactions of scalar, pseudoscalar, vector, and axialÄvector mesons with each
other and with quarks, and describe the main decays of these mesons (see [10,32]).

Further, when the radial excitations are included, the parameters will be
shifted because of changing the mass formulae. However, mu and Λ3 will be the
same as they are now. Their numerical values will be calculated in Subsec. 3.5.
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3.2. The Masses of Isovector and Strange Scalar and Pseudoscalar Mesons
(Ground and Excited States). After bosonization, the part of Lagrangian (66)
describing the isovector and strange scalar and pseudoscalar mesons takes the
form

L(a0,1,K∗
0 ,1, π1,K1, a0,2,K

∗
0 ,2, π2,K2) = −

a20,1
2Ga0

− K∗
0 ,1

2

GK∗
0

− π2
1

2Gπ
− K2

1

GK
−

1
2G
(a20,2 + 2(K

∗
0 ,2)

2 + π2
2 + 2K

2
2 )−

−iNcTr ln


1 + 1

i∂/ −m

7∑
a=1

2∑
j=1

τa
[
σaj + iγ5ϕ

a
j

]
faj


 , (92)

where σaj and ϕa
j are the scalar and pseudoscalar ˇelds:

3∑
a=1

(σaj )
2 ≡ a20,j = (a

0
0,j)

2 + 2a+0,ja
−
0,j ,

7∑
a=4

(σaj )
2 ≡ 2K∗

0 ,j
2 = 2(K̄∗

0 ,j)
0(K∗

0 ,j)
0 + 2(K∗

0 ,j)
+(K∗

0 ,j)
−,

3∑
a=1

(ϕa
j )

2 ≡ π2
j = (π

0
j )

2 + 2π+
j π−

j ,

7∑
a=4

(ϕa
j )

2 ≡ 2K2
j = 2K̄

0
jK

0
j + 2K̄

+
j K−

j .

As to the coupling constants Gaa, they will be deˇned later (see Subsec. 5 and
(61)).

The free part of Lagrangian (92) has the following form

L(2)(σ, ϕ) =
1
2

2∑
i,j=1

7∑
a=1

(
σai K

a
σ,ij(P )σ

a
j + ϕa

iK
a
ϕ,ij(P )ϕ

a
j

)
, (93)

where the coefˇcients Ka
σ(ϕ),ij(P ) are given by

Ka
σ(ϕ),ij(P ) = −δij

[
δi1

G
(∓)
aa

+
δi2
G

]
−

−iNcTr
∫
Λ3

d4k

(2π)4
1

k/ + P/ /2−ma
q

rσ(ϕ)fai
1

k/ − P/ /2−ma
q′
rσ(ϕ)faj , (94)
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rσ = 1, rϕ = iγ5, (95)

ma
q = mu (a = 1, ..., 7); ma

q′ = mu (a = 1, ..., 3); ma
q′ = ms (a = 4, ..., 7),

(96)
with mu and ms being the constituent quark masses and faj being deˇned in
(65). Integral (94) is evaluated by expanding in the meson ˇeld momentum P .
To order P 2, one obtains

Ka
σ(ϕ),11(P ) = Za

σ(ϕ),1(P
2 − (ma

q ±ma
q′)

2 −M2
σa(ϕa),1),

Ka
σ(ϕ),22(P ) = Za

σ(ϕ),2(P
2 − (ma

q ±ma
q′)

2 −M2
σa(ϕa),2),

Ka
σ(ϕ),12(P ) = Ka

σ(ϕ),21(P ) = γaσ(ϕ)(P
2 − (ma

q ±ma
q′)

2), (97)

where
Za
σ,1 = 4I

a
2 , Za

σ,2 = 4I
ffa
2 , γaσ = 4I

fa
2 , (98)

Za
ϕ,1 = ZZa

σ,1, Za
ϕ,2 = Za

σ,2, γaϕ = Z1/2γaσ (99)

and

M2
σa(ϕa),1 = (Za

σ(ϕ),1)
−1

[
1

G
(∓)
aa

− 4(I1(ma
q ) + I1(ma

q′))
]
, (100)

M2
σa(ϕa),2 = (Za

σ(ϕ),2)
−1

[
1
G

− 4(Iffa1 (ma
q ) + Iffa1 (ma

q′))
]
. (101)

The factor Z here appears due to π − a1 transitions [8, 10,28] (see Subsec. 3.1),
and the integrals If..f2 contain form factors:

If..fa

2 (ma
q ,m

a
q′) =

−iNc

(2π)4

∫
Λ3

d4k
fa(k)..fa(k)

((ma
q)2 − k2)((ma

q′ )2 − k2)
. (102)

After the renormalization of the scalar ˇelds

σari =
√

Za
σ,iσ

a
i , ϕar

i =
√

Za
ϕ,iϕ

a
i (103)

the part of Lagrangian (93) that describes the scalar and pseudoscalar mesons
takes the form

L(2)
a0

=
1
2
(
P 2 − 4m2

u −M2
a0,1

)
a20,1 + Γa0

(
P 2 − 4m2

u

)
a0,1a0,2

+
1
2
(
P 2 − 4m2

u −M2
a0,2

)
a20,2, (104)

L(2)
K∗

0
=

1
2

(
P 2 − (mu +ms)2−M2

K∗
0 ,1

)
K∗

0
2
,1+

+ ΓK∗
0

(
P 2 − (mu +ms)2

)
K∗

0 ,1K
∗
0 ,2 +

+
1
2

(
P 2 − (mu +ms)2 −M2

K∗
0 ,2

)
K∗

0
2
,2, (105)
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L(2)
π =

1
2
(
P 2 −M2

π,1

)
π2
1 + ΓπP

2π1π2 +
1
2
(
P 2 −M2

π,2

)
π2
2 , (106)

L(2)
K =

1
2
(
P 2 −M2

K,1

)
K2

1+ΓKP 2K1K2 +
1
2
(
P 2 −M2

K,2

)
K2

2 , (107)

where

Γσa =
Ifa

2√
I2I

ffa

2

, Γϕa = Z−1/2Γσa . (108)

After the transformations of the meson ˇelds

σa = cos(θσ,a − θ0σ,a)σ
ar
1 − cos(θσ,a + θ0σ,a)σ

ar
2 ,

σ̂a = sin(θσ,a − θ0σ,a)σ
ar
1 − sin(θσ,a + θ0σ,a)σ

ar
2 , (109)

ϕa = cos(θϕ,a − θ0ϕ,a)ϕ
ar
1 − cos(θϕ,a + θ0ϕ,a)ϕ

ar
2 ,

ϕ̂a = sin(θϕ,a − θ0ϕ,a)ϕ
ar
1 − sin(θϕ,a + θ0ϕ,a)ϕ

ar
2 . (110)

Lagrangians (104), (105), (106), and (107) assume the diagonal form:

L(2)
a0

=
1
2
(P 2 −M2

a0
) a20 +

1
2
(P 2 −M2

â0
)â20, (111)

L
(2)
K∗

0
=

1
2
(P 2 −M2

K∗
0
) K∗

0
2 +

1
2
(P 2 −M2

K̂∗
0
)K̂∗

0
2. (112)

L(2)
π =

1
2
(P 2 −M2

π) π
2 +

1
2
(P 2 −M2

π̂)π̂
2, (113)

L
(2)
K =

1
2
(P 2 −M2

K) K
2 +

1
2
(P 2 −M2

K̂
)K̂2. (114)

Here we have

M2
(a0,â0)

=
1

2(1− Γ2
a0
)

[
M2

a0,1 +M2
a0,2±

±
√
(M2

a0,1
−M2

a0,2
)2 + (2Ma0,1Ma0,2Γa0)2

]
+ 4m2

u, (115)

M2
(K∗

0 ,K̂
∗
0 )
=

1
2(1− Γ2

K∗
0
)

[
M2

K∗
0 ,1
+M2

K∗
0 ,2

±

±
√
(M2

K∗
0 ,1

−M2
K∗

0 ,2
)2 + (2MK∗

0 ,1
MK∗

0 ,2
ΓK∗

0
)2
]
+ (mu +ms)2, (116)
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M2
(π,π̂) =

1
2(1− Γ2

π)

[
M2

π,1 +M2
π,2 ±

±
√
(M2

π,1 −M2
π,2)2 + (2Mπ,1Mπ,2Γπ)2

]
, (117)

M2
(K,K̂)

=
1

2(1− Γ2
K)

[
M2

K,1 +M2
K,2 ±

±
√
(M2

K,1 −M2
K,2)2 + (2MK,1MK,2ΓK)2

]
, (118)

and

tan 2θ̄σ(ϕ),a =

√
1

Γ2
σa(ϕa)

− 1
[
M2

σa(ϕa),1 −M2
σa(ϕa),2

M2
σa(ϕa),1 +M2

σa(ϕa),2

]
,

2θσ(ϕ),a = 2θ̄σ(ϕ),a + π, (119)

sin θ0σ(ϕ),a =

√
1 + Γσa(ϕa)

2
. (120)

The caret symbol stands for the ˇrst radial excitations of mesons. Transforma-
tions (109) and (110) express the ®physical¯ ˇelds σ, ϕ, σ̂, and ϕ̂ through the
®bare¯ ones σari , ϕ

ar
i and for calculations these equations must be inverted. For

practical use, we collect the values of coefˇcients in the inverted equations for
the scalar and pseudoscalar ˇelds in Table 1.

For the weak decay constants of pions and kaons we obtain

Fπ = 2mu

√
ZI2(mu) cos(θπ − θ0π), (121)

Fπ′ = 2mu

√
ZI2(mu) sin(θπ − θ0π), (122)

FK = (mu +ms)
√

ZI2(mu,ms) cos(θK − θ0K), (123)

FK′ = (mu +ms)
√

ZI2(mu,ms) sin(θK − θ0K). (124)

Table 1. The mixing coefˇcients for the ground and ˇrst radially excited states of scalar
and pseudoscalar isovector and strange mesons. The caret symbol marks the excited
states

a0 â0

a0,1 0.87 0.82
a0,2 0.22 −1.17

K∗
0 K̂∗

0
K∗

0 ,1 0.83 0.89
K∗

0 ,2 0.28 −1.11

π π̂
π1 1.00 0.54
π2 0.01 −1.14

K K̂
K1 0.96 0.56
K2 0.09 −1.11
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In the chiral limit we have θa = θ0a and

Fπ =
mu

gπ
, FK =

mu +ms

2gK
, (125)

Fπ′ = FK′ = 0, gπ = (Zπ
1 )

−1/2, gK = (ZK
1 )

−1/2. (126)

As one can see from these formulae, in the chiral limit we obtain the GoldbergerÄ
Treiman identities for the coupling constants gπ and gK . The matrix elements
of divergences of the axial currents between meson states and vacuum (PCAC
relations) are

〈0|∂µAa
µ|ϕ〉 =M2

ϕFϕδ
ab, (127)

〈0|∂µAa
µ|ϕ′〉 =M2

ϕ′Fϕ′δab. (128)

These axial currents are conserved in the chiral limit because their divergences
equal zero, according to low-energy theorems.

3.3. The Masses of Isoscalar Mesons (the Ground and Excited States). The
free part of the effective Lagrangian for isoscalar scalar and pseudoscalar mesons
after bosonization is as follows

Lisosc(σ, ϕ) = −1
2

9∑
a,b=8

[
σa1 (G

(−))−1
ab σ

b
1 + ϕa

1(G
(+))−1

ab ϕ
b
1

]
−

− 1
2G

9∑
a=8

[
(σa2 )

2 + (ϕa
2)

2
]
−

−i Tr ln


1 + 1

i∂/ −m

9∑
a=8

2∑
j=1

τa[σaj + iγ5ϕ
a
j ]f

a
j


 , (129)

where (G(∓))−1 is the inverse of G(∓):

(G(∓))−1
88 = G

(∓)
88 /D(∓), (G(∓))−1

89 = (G
(∓))−1

98 = −G
(∓)
89 /D(∓),

(G(∓))−1
99 = G

(∓)
99 /D(∓), D(∓) = G

(∓)
88 G

(∓)
99 − (G(∓)

89 )
2.

(130)

From (129), in the one-loop approximation, one obtains the free part of the
effective Lagrangian

L(2)(σ, ϕ) =
1
2

2∑
i,j=1

9∑
a,b=8

(
σai K

[a,b]
σ,ij (P )σ

b
j + ϕa

iK
[a,b]
ϕ,ij (P )ϕ

b
j

)
. (131)

The deˇnition of K [a,b]
σ(ϕ),i is given in Appendix A.
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Table 2. The mixing coefˇcients for isoscalar meson states
η η̂ η′ η̂′

ϕ8
1 0.71 0.62 −0.32 0.56

ϕ8
2 0.11 −0.87 −0.48 −0.54

ϕ9
1 0.62 0.19 0.56 −0.67

ϕ9
2 0.06 −0.66 0.30 0.82

σ σ̂ f0 f̂0

σ8
1 −0.98 −0.66 0.10 0.17

σ8
2 0.02 1.15 0.26 −0.17

σ9
1 0.27 −0.09 0.82 0.71

σ9
2 −0.03 −0.21 0.22 −1.08

After the renormalization of both the scalar and pseudoscalar ˇelds, analogous
to (103), we come to the Lagrangian that can be represented in the form slightly
different from that of (131). It is convenient to introduce 4-vectors of ®bare¯ ˇelds

Σ = (σ8 r
1 , σ8 r

2 , σ9 r
1 , σ9 r

2 ), Φ = (ϕ8 r
1 , ϕ8 r

2 , ϕ9 r
1 , ϕ9 r

2 ). (132)

Thus, we have

L(2)(Σ,Φ) =
1
2

4∑
i,j=1

(ΣiKΣ,ij(P )Σj +ΦiKΦ,ij(P )Φj) , (133)

where we introduced new functions KΣ(Φ),ij(P ) (see Appendix A). The index r
marks renormalized ˇelds.

Up to this moment we have four pseudoscalar and four scalar meson states
which are the octet and nonet singlets. Mesons of the same parity have the
same quantum numbers and, therefore, they are expected to be mixed. In our
model the mixing is represented by 4 × 4 matrices Rσ(ϕ) which transform the
®bare¯ ˇelds σ8 r

i , σ9 r
i , ϕ8 r

i , and ϕ9 r
i entering into the 4-vectors Σ and Φ into

the ®physical¯ ones σ, σ̂, f0, f̂0 , η, η′, η̂, and η̂′ represented as components of
the vectors Σph and Φph:

Σph = (σ, σ̂, f0, f̂0), Φph = (η, η̂, η′, η̂′). (134)

The transformation Rσ(ϕ) is linear and nonorthogonal:

Σph = RσΣ, Φph = RϕΦ. (135)

In terms of ®physical¯ ˇelds the free part of the effective Lagrangian is of the
conventional form and the coefˇcients of matrices Rσ(ϕ) give the mixing of the
ūu and s̄s components, with and without form factors.

Because of complexity of the procedure of diagonalization for the matrices
of dimensions greater than 2, there are no such simple formulae as, e.g., (109).
Hence, we do not implement it analytically but use numerical methods to obtain
matrix elements (see Table 2).
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3.4. The Effective Lagrangian for the Ground and Excited States of Vector
Mesons. The free part of the effective Lagrangian (66) describing the ground and
excited states of vector mesons has the form

L(2)(V ) = −1
2

2∑
i,j=1

9∑
a=1

V aµ
i (P )Raµν

ij (P )V aν
j (P ), (136)

where

3∑
a=1

(V aµ
i )2 = (ρ0µi )

2 + 2ρ+µi ρ−µ
i , (V 4µ

i )2 + (V 5µ
i )2 = 2K∗+µ

i K∗−µ
i ,

(V 6µ
i )2 + (V 7µ

i )2 = 2K∗0µ
i K∗0µ

i , (V 8µ
i )2 = (ωµ

i )
2, (V 9µ

i )2 = (ϕµ
i )

2 (137)

and

Raµν
ij (P ) = − δij

GV
gµν−

− i Nc tr
∫
Λ3

d4k

(2π)4

[
1

k/ + 1
2P/ −ma

q

γµfa,Vi

1
k/ − 1

2P/ −ma
q′
γνfa,Vj

]
. (138)

To order P 2, one obtains

Raµν
11 = W a

1 [P
2gµν − PµP ν − gµν(M̄a

1 )
2],

Raµν
22 = W a

2 [P
2gµν − PµP ν − gµν(M̄a

2 )
2],

Raµν
12 = Rµνa

21 = γ̄a[P 2gµν − PµP ν − 3
2
(ma

q −ma
q′)

2gµν ]. (139)

Here

W a
1 =

8
3
Ia2 , W a

2 =
8
3
Iffa2 , γ̄a =

8
3
Ifa2 , (140)

(M̄a
1 )

2 = (W a
1 GV )−1 +

3
2
(ma

q −ma
q′)

2, (141)

(M̄a
2 )

2 = (W a
2 GV )−1 +

3
2
(ma

q −ma
q′)

2. (142)

After renormalization of the meson ˇelds

V arµ
i =

√
W a

i V aµ
i (143)

we obtain the Lagrangians

L(2)
ρ = −1

2
[(
gµνP 2 − PµP ν − gµνM2

ρ1

)
ρµ1ρ

ν
1 +

+ 2Γρ
(
gµνP 2 − PµP ν

)
ρµ1ρ

ν
2 +
(
gµνP 2 − PµP ν − gµνM2

ρ2

)
ρµ2ρ

ν
2

]
, (144)
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L(2)
ϕ = −1

2
[(
gµνP 2 − PµP ν − gµνM2

ϕ1

)
ϕµ
1ϕ

ν
1 +

+ 2Γϕ
(
gµνP 2 − PµP ν

)
ϕµ
1ϕ

ν
2 +
(
gµνP 2 − PµP ν − gµνM2

ϕ2

)
ϕµ
2ϕ

ν
2

]
, (145)

L
(2)
K∗ = −1

2

[(
gµνP 2 − PµP ν − gµν

(
3
2
(ma

q −ma
q′)

2 +M2
K∗

1

))
K∗µ

1 K∗ν
1 +

+2ΓK∗

(
gµνP 2 − PµP ν − gµν

3
2
(ma

q −ma
q′)

2

)
K∗µ

1 K∗ν
2 +

+
(
gµνP 2 − PµP ν − gµν

(
3
2
(ma

q −ma
q′)

2 +M2
K∗

2

))
K∗µ

2 K∗ν
2

]
. (146)

Here

M2
ρ1
=

3
8GV I2(mu,mu)

, M2
K∗1

=
3

8GV I2(mu,ms)
,

M2
ϕ1
=

3
8GV I2(ms,ms)

, M2
ρ2
=

3

8GV Iff2 (mu,mu)
,

M2
K∗2

=
3

8GV Iff2 (mu,ms)
, M2

ϕ2
=

3

8GV Iff2 (ms,ms)
, (147)

Γai,j =
Ifa2 (mi,mj)√

Ia2 (mi,mj)I
ffa
2 (mi,mj)

. (148)

After transformations of the vector meson ˇelds, similar to Eqs. (110) for the
pseudoscalar mesons, Lagrangians (144), (145), (146) take the diagonal form

L
(2)

V a,V̄ a = −1
2
[
(gµνP 2 − PµP ν −M2

V a)V aµV aν +

+(gµνP 2 − PµP ν −M2
V̄ a)V̄ aµV̄ aν

]
, (149)

where V aµ and V̄ aµ are physical ground and excited states of vector mesons

M2
ρ,ρ̄ =

1
2(1− Γ2

ρ)

[
M2

ρ1
+M2

ρ2
∓
√
(M2

ρ1
−M2

ρ2
)2 + (2Mρ1Mρ2Γρ)2

]
= M2

ω,ω̄, (150)

M2
ϕ,ϕ̄ =

1
2(1− Γ2

ϕ)

[
M2

ϕ1
+M2

ϕ2
∓
√
(M2

ϕ1
−M2

ϕ2
)2 + (2Mϕ1Mϕ2Γϕ)2

]
,

(151)

M2
K∗,K̄∗ =

1
2(1− Γ2

K∗)

[
M2

K∗
1
+M2

K∗
2
+ 3∆2(1− Γ2

K∗) ∓

∓
√
(M2

K∗
1
−M2

K∗
2
)2 + (2MK∗

1
MK∗

2
ΓK∗)2

]
. (152)
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3.5. Numerical Estimates. In our model we have six basic parameters (see
Subsection 3.1): the masses of the constituent u(d) and s quarks, mu = md and
ms, the cut-off parameter Λ3, two four-quark coupling constants (one for the
scalar and pseudoscalar channels, G, and the other for the vector and axialÄvector
channels, GV ) and the 't Hooft coupling constant K . We ˇxed these parameters
with the help of input parameters: the pion decay constant Fπ = 93 MeV, the
ρ-meson decay constant gρ = 6.14 (decay ρ → 2π)∗, the masses of pion, kaon,
ρ-meson, and the mass difference of η and η′ mesons. Using mass formulae
given in previous subsections of this Section, we obtain numerical estimates of
these parameters:

mu = 280 MeV, ms = 405 MeV, Λ3 = 1.03 GeV,

G = 3.14 GeV−2, GV = 12 GeV−2, K = 6.1 GeV−5.
(153)

When excited meson states are introduced, a set of additional parameters related
to the form factors appears in our model: the slope parameters dqq and the
external parameters cUqq . The slope parameters dqq are ˇxed by special conditions

(see Eqs. (73), (74), (75)) from which we obtain: duu = −1.78 GeV−2, dus =
−1.76 GeV−2, dss = −1.73 GeV−2. As it was mentioned earlier, we assume
here that duu, dus, and dss do not depend on parity and spin of mesons.

The parameters c
σa(ϕa)
qq are ˇtted by masses of excited pseudoscalar and

vector mesons, cπ,a0
uu = 1.44, cη,η

′,σ,f0
uu = 1.5, cK,K∗

0
us = 1.59, cη,η

′,σ,f0
ss = 1.66,

cρuu = 1.33, cK
∗

us = 1.6, cϕss = 1.41. These parameters characterize how stronger
the quark currents with form factors attract each other than those without form
factors. We use the same parameters for the scalar and pseudoscalar mesons
(global chiral symmetry). This allows us to predict the masses of ground and
excited states of scalar mesons. The result is represented in Table 3 together with
experimental values.

We also calculate the angles θa and θ0a:

θπ = 59.48◦ θ0π = 59.12
◦, θK = 60.2◦,

θ0K = 57.13◦, θρ = 81.8◦, θ0ρ = 81.5
◦

θK∗ = 84.7◦, θ0K∗ = 59.14◦, θϕ = 68.4◦,
θ0ϕ = 57.13

◦, θa0 = 72.0◦, θ0a0
= 61.5◦,

θK∗
0
= 74.0◦ θ0K∗

0
= 60.0◦.

(154)

We consider it expedient to give the values of angles because they will be used
in the next Section when the calculation of strong decays of the ground and ˇrst
radially excited states of the π and ρ meson will be treated in detail. However,

∗Here, we used the relation gρ =
√

6gσ together with the GoldbergerÄTreiman relation gπ =
= m/Fπ = Z−1/2gσ to ˇx the parameters mu and Λ3.
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Table 3. The model masses of mesons, MeV

GR EXC GR(Exp.) [1] EXC(Exp.) [1]

Mσ 530 1330 400Ä1200 1200Ä1500
Mf0 1070 1600 980±10 1712±5
Ma0 830 1500 983.4±0.9 1474±19
MK∗

0
960 1500 905±50 [5] 1429±12

Mπ 140 1300 139.56995±0.00035 1300±100
MK 490 1300 497.672±0.031 1460(?)
Mη 520 1280 547.30±0.12 1297.8±2.8
Mη′ 910 1470 957.78±0.14 1440Ä1470
Mρ 770 1470 770.0±0.8 1465±25
Mϕ 1019 1682 1019.413±0.008 1680±20
MK∗ 887 1479 891.59±0.24 1412±12

the mixing coefˇcients for π, K , a0, and K∗
0 deˇned by these angles have

been displayed in Table 1. The mixing coefˇcients for η, η′, σ, and f0 are
given in Table 2.

Having ˇxed all parameters in our model, we can predict the masses of η, η′,
K∗

0 , and ϕ mesons and all masses of the ground and ˇrst radially excited scalar
meson states. We also calculate the weak decay constants for the pion and kaon
(both for the ground and excited states):

Fπ = 93 MeV, Fπ′ = 0.57 MeV, (155)

FK = 1.16, Fπ = 108 MeV, FK′ = 3.3 MeV. (156)

Moreover, now we are able to estimate all strong coupling constants for the
mesons considered in this paper. In the next Section we calculate some of these
constants that deˇne the strong decay processes of ground states and ˇrst radial
excitations of the scalar, pseudoscalar, and vector meson nonets.

4. STRONG DECAYS OF MESONS

4.1. Decays ρ → 2π, π′ → ρπ, π′ → σπ, ρ′ → 2π, ρ′ → ωπ and ω′ → ρπ.
In this section we calculate the widths of main decays of scalar, pseudoscalar,

and vector meson nonets (for Subsec. 4.1 see Refs. 33, for Subsec. 4.2 Ref. 34,
for Subsecs. 4.3 and 4.4 see Ref. 30) through triangle quark diagrams. When
calculating these diagrams, we keep the least possible dependence on external
momenta: squared for the anomaly-type graphs and linear for other types. We
omit the higher order momentum dependence.
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We start with the decay ρ → 2π. The amplitude describing this decay has
the form

Tρ→2π = i
gρ
2

εijk (pj − pk)ν ρiνπ
jπk, (157)

where pj,k are pion momenta and εijk is antisymmetric tensor. Using the value
αρ = g2ρ/(4π) ≈ 3 (gρ ≈ 6.1) of Refs. 8, 9, 10, 11 we obtain for the decay width

Γρ→2π =
αρ

12 M2
ρ

(M2
ρ − 4 M2

π)
3/2 ≈ 151.5 MeV. (158)

The experimental value is [1]

Γρ→2π = 150.7± 1.2 MeV. (159)

Now let us calculate this amplitude in our model with the excited states of
mesons. To this end, we rewrite the amplitude Tρ→2π in the form

Tρ→2π = i cρ→2π εijk (pj − pk)ν ρiνπ
jπk, (160)

and calculate the factor cρ→2π in the new model. Using Eqs. (103), (110) and
(143) we can ˇnd the following expressions for meson ˇelds πi and ρi from the
Lagrangian (66) expressed in terms of the physical states π, π′ and ρ, ρ′

π1 =
sin(θπ + θ0π)π − cos(θπ + θ0π)π

′
√
Z1 sin 2θ0π

,

π2 =
sin(θπ − θ0π)π − cos(θπ − θ0π)π′

√
Z2 sin 2θ0π

, (161)

ρ1 =
sin(θρ + θ0ρ)ρ− cos(θρ + θ0ρ)ρ′

sin 2θ0ρ
√
8/3 I2

,

ρ2 =
sin(θρ − θ0ρ)ρ− cos(θρ − θ0ρ)ρ′

sin 2θ0ρ
√
8/3 Iff2,ρ

, (162)

or, using the values I2 = 0.04, Iff2,ρ = 0.0244, and θπ, θ0π, θρ and θ0ρ from
Eqs. (154), we obtain∗

π1 =
0.878π + 0.48π′

0.88
√
Z1

, π2 =
0.0061π − π′

0.88
√
Z2

,

ρ1 = (0.744ρ+ 0.931ρ′) gρ/2, ρ2 = (0.48 ρ− 1.445 ρ′) gρ/2. (163)

∗Analogous formulae are obtained for the ω meson.
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Fig. 3. Triangle diagrams describing decays of a ρ meson. Each letter in a diagram
indicates the presence of a form factor at a vertex

The decay ρ → 2π is described by the quark triangle diagrams with the vertices
ρ1(π2

1+2π1π2+π2
2) and ρ2(π2

1+2π1π2+π2
2) (see Fig. 3). Using Eqs. (161), (162)

and (163), we arrive at the factor∗ cρ→2π

cρ→2π = cρ1→2π + cρ2→2π = 0.975 gρ/2, (164)

cρ1→2π =
sin(θρ + θ0ρ)

sin2 2θ0π sin 2θ0ρ
√
8/3 I2

×

×[(sin(θπ + θ0π))
2 + 2 sin(θπ + θ0π) sin(θπ − θ0π)Γπ+

+(sin(θπ − θ0π))
2 = sin2 2θ0π] =

sin(θρ + θ0ρ)

sin 2θ0ρ
√
8/3 I2

= 0.745 gρ/2,

cρ2→2π =
sin(θρ − θ0ρ)

sin2 2θ0π sin 2θ0ρ
√
8/3 Iff2,ρ

[
(sin(θπ + θ0π))

2 If2
I2
+

+

2 sin(θπ + θ0π) sin(θπ − θ0π)
Iff2√
I2 Iff2

++ (sin(θπ − θ0π))
2 I

fff
2

Iff2

]
= 0.227 gρ/2.

(165)

∗Taking account of the π → a1 transitions on external pion lines, we obtain additional factors
Z (Z̄) in the numerators of our triangle diagrams which cancel corresponding factors in Zi (see
Eqs. (22), (161) and Ref. 10). Therefore, in future we shall ignore the factors Z (Z̄) in Zi.
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Here we used the values If2 = 0.0185, Iff2 = 0.0289, Ifff2 = 0.0224 and the
equation Γπ = − cos 2θ0π ( it can easily be derived from Eq. (120)). Then the
decay width ρ → 2π is equal to

Γρ→2π ≈ 149 MeV. (166)

In the limit f = 0 (θπ = θ0π, θρ = θ0ρ) from Eqs. (165) one ˇnds

cρ→2π = cρ1→2π = gρ/2, cρ2→2π = 0. (167)

Now let us consider the decay π′ → ρπ. The amplitude of this decay is of
the form

T ν
π′→ρπ = i cπ′→ρπ εijk (pj + pk)ν ρiνπ

jπk, (168)

where
cπ′→ρπ = cπ′→ρ1π + cπ′→ρ2π. (169)

Then for cπ′→ρ1π we obtain

cπ′→ρ1π =
2

(sin 2θ0π)2
[− sin(θπ + θ0π) cos(θπ + θ0π)− sin 2θπ Γπ −

− sin(θπ − θ0π) cos(θπ − θ0π) =

= − sin 2θπ cos 2θ0π + sin 2θπ cos 2θ0π = 0]×

×
sin(θρ + θ0ρ)
sin 2θ0ρ

gρ/2 = 0, (170)

cπ′→ρ2π =
2

(sin 2θ0π)2

[
− sin(θπ + θ0π) cos(θπ + θ0π)

If2
I2

− sin 2θπ
Iff2√
I2 Iff2

−

− sin(θπ − θ0π) cos(θπ − θ0π)
Ifff2

Iff2

]
sin(θρ − θ0ρ)
sin 2θ0ρ

√
I2

Iff2

gρ/2 = −0.573 gρ/2.

(171)
For the decay width π′ → ρπ we get

Γπ′→ρπ =
c2π′→ρπ

4πM3
π′M2

ρ

Φ(Mπ′ ,Mρ,Mπ)3 ≈ 220 MeV, (172)

where

Φ(M1,M2,M3) =
√

M4
1 +M4

2 +M4
3 − 2(M2

1M
2
2 +M2

1M
2
3 +M2

2M
2
3 ).
(173)
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The decay π′ → σπ is calculated in a similar way as η̂ → a0π (see Subsec. 4.4).
Here, we need the mixing coefˇcients for the scalar meson given in Table 2. We
omit details and obtain

Γπ′→σπ ≈ 80 MeV, (174)

therefore, the total width is estimated as

Γtot
π ≈ 300 MeV. (175)

This value is in agreement with the experimental data [1]

Γtot
π′ = 200− 600 MeV. (176)

For the decay ρ′ → 2π we arrive in our model at the result

Γρ′→2π ≈ 22 MeV. (177)

Most of our results are in agreement with the results of the relativized potential
quark model with the 3P0 mechanism of meson decays [2].

To conclude this Subsection, we calculate the decay widths of processes
ρ′ → ωπ and ω′ → ρπ. These decays go through anomalous triangle quark loop
diagrams. The amplitude of the decay ρ′ → ωπ takes the form

T µν
ρ′→ωπ =

3αρcρ′→ωπ

2πFπ
εµνρσ qρpσ, (178)

where q and p are momenta of the ω and ρ′ meson, respectively. The factor
cρ′→ωπ is similar to the factors cρ→2π and cπ′→ρπ in the previous equations and
arises from the four triangle quark diagrams with vertices π1(ρ1ω1 + ρ2ω1 +
ρ1ω2 + ρ2ω2) ∗. Using the estimate

cρ′→ωπ ≈ −0.3, (179)

we obtain for the decay width

Γρ′→ωπ =
3

2πM3
ρ′

(
αρ cρ′→ωπ

8πFπ

)2

Φ(Mρ′ ,Mω,Mπ)3 ≈ 75 MeV. (180)

For the decay ω′ → ρπ we have the relation

Γω′→ρπ ≈ 3 Γρ′→ωπ (181)

∗We neglect the diagrams with vertices π2, because their contribution to the ground state of the
pion is very small (see Eq. (163)).
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leading to the estimate
Γω′→ρπ ≈ 225 MeV. (182)

The experimental values are [35]

Γexp
ρ′→ωπ = 0.21 Γ

tot
ρ′ = 65.1 ± 12.6 MeV (183)

and [1]
Γexp
ω′→ρπ = 174 ± 60 MeV. (184)

Finally, let us quote the ratio of the decay widths ρ′ → ωπ and ρ′ → 2π

Γρ′→2π

Γρ′→ωπ
≈ 0.3, (185)

which is to be compared with the experimental value 0.32 (see [35]).
Thus, we can see that all our estimates are in satisfactory agreement with

experimental data.
Our calculations have shown that the main decay of the ρ meson, ρ → 2π,

changes very little after including the excited meson states into the NJL model.
The main part of this decay (75%) comes from the ρ vertex without the form
factor, whereas the remaining 25% of the decay are due to the ρ vertex with the
form factor. As a result, the new coupling constant gρ turns out to be very close
to the former value.

For the decay π′ → ρπ we meet an opposite situation. Here the channel
connected with the ρ vertex without the form factor is closed because the states
π and π′ are orthogonal to each other, and the total decay width of π′ → ρπ is
deˇned by the channel going through the ρ vertex with the form factor. As a
result, we obtain the quoted value that satisˇes experimental data [1]. The decay
π′ → σπ gives a noticeable correction to the total decay width of π′. These results
disagree with the results obtained in the relativized version of the 3P0-potential
model [2] in the subject of the π′ → σπ decay mode.

For the decay ρ′ → 2π we obtain strong compensation of the contributions
from the two channels, related to ρ vertices with and without form factors, and
the corresponding decay width is equal to 22 MeV. This value is very close to
the result of Ref. 2.

It should be emphasized that the decays ρ′ → ωπ and ω′ → ρπ belonging to a
different class of quark loop diagrams (®anomaly diagrams¯) are also satisfactorily
described by our model.

4.2. The Decays of Strange Mesons (Vectors and Pseudoscalars). In the
framework of our model, the decay modes of excited mesons are represented
by triangle diagrams with form factors. A total set of diagrams similar to those
in Fig. 3 can be represented as one graph: a triangle with shaded angles (see
Fig. 4). Every vertex in such diagrams is momentum-dependent and includes
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Fig. 4. Diagrams describing meson decays of the 1 → 2 type

form factors deˇned in Subsection 3.1. For the strange vector and pseudoscalar
mesons being decaying, each black shaded vertex with a pseudoscalar meson is
implied to contain the following linear combination for the ground state:

f̄a =
1

sin 2θ0a

[
sin(θa + θ0a)√

Za
1

+
sin(θa − θ0a)√

Za
2

fa

]
, (186)

and for an excited state,

f̄ ′
a =

−1
sin 2θ0a

[
cos(θa + θ0a)√

Za
1

+
cos(θa − θ0a)√

Za
2

fa

]
, (187)

where θa and θ0a are the angles deˇned in Subsection 3.5 (see Eqs. (119), (120),
and (154)) and fa is one of the form factors deˇned in Subsection 3.1 (see
Eq. (65)). For vector meson vertices, we have the same linear combinations
except that Za

i are to be replaced by W a
i (140), and the related angles and form

factor parameters must be chosen.
Now we can calculate the decay widths of excited mesons. Let us start with

the process K∗′ → K∗π. The corresponding amplitude, T µν

K∗′→K∗π
, has the form

T µν

K∗′→K∗π
= gK∗′→K∗πε

µναβpαqβ, (188)

where p and q are momenta of the K∗′
and K∗ mesons, respectively, and

gK∗′→K∗π is the (dimensional) coupling constant that follows from the com-
bination of one-loop integrals

gK∗′→K∗π =
8ms

m2
u −m2

s

(
J2,0[f̄ ′

K∗ f̄K∗ f̄π]− J1,1[f̄ ′
K∗ f̄K∗ f̄π]

)
. (189)
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In Eq. (189) we introduced a functional deˇned on functions f(k) in the
momentum representation:

Jn,m[f ] = −i
Nc

(2π)4

∫
Λ3

f(k)d4k
(mu − k2)n(ms − k2)m

. (190)

This is an alternative to integrals If..f2 which we thought better to introduce for
a growing number of ®physical¯ form factors.

We omit the intermediate calculation here. For the decay constant gK∗′→K∗π

we ˇnd
gK∗′→K∗π ≈ 4GeV−1 (191)

and the decay width is as follows:

ΓK∗′→K∗π =
g2
K∗′→K∗π

32πM3
K∗′

Φ(MK∗′ ,MK∗ ,Mπ)3 ≈ 90 MeV. (192)

The lower limit for this value coming from experiment is ∼ 91± 9 MeV [1].
A similar calculation has to be performed for the rest of the K∗′

decay modes
under consideration. The coupling constant gK∗′→Kρ is derived in the same way
as in (189), with the only difference that f̄π and f̄K∗ are to be replaced by f̄ρ
and f̄K . The corresponding amplitude, T

µν
K∗′→Kρ, takes the form

T µν

K∗′→Kρ
= gK∗′→Kρε

µναβpαqβ , (193)

where p and q are momenta of K∗′
and K mesons, respectively, and

gK∗′→Kρ =
8ms

m2
u −m2

s

(
J2,0[f̄ ′

K∗ f̄K f̄ρ]− J1,1[f̄ ′
K∗ f̄K f̄ρ]

)
. (194)

The corresponding decay width is

ΓK∗′→Kρ =
g2
K∗′→Kρ

32πM3
K∗′

Φ(MK∗′ ,MK ,Mρ)3. (195)

For the parameters given in Subsection 3.5 one has

gK∗′→Kρ ≈ 3GeV−1, ΓK∗′→Kρ ≈ 20MeV. (196)

From experiment, the upper limit for this process is Γexp
K∗′→Kρ

< 16± 1.5 MeV.
The process K∗′ → Kπ is described by the amplitude

T µ

K∗′→Kπ
= i

gK∗′→Kπ

2
(q − p)µ, (197)
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where p and q are momenta of π and K . The coupling constant gK∗′→Kπ is
obtained by calculating the one-loop integral

gK∗′→Kπ = 4J1,1[f̄ ′
K∗ f̄K f̄π] ≈ 2 (198)

and the decay width is

ΓK∗′→Kπ =
g2
K∗′→Kπ

Φ(MK∗′,MK ,Mπ)3

64πM5
K∗′

≈ 20MeV. (199)

The experimental value is 15± 5 MeV [1].
The mesons with hidden strangeness (ϕ′) are treated in the same way as K∗′

.
We consider two decay modes: ϕ′ → KK∗ and ϕ′ → K̄K . Their amplitudes
are

T µν
ϕ′→KK∗ = gϕ′→KK∗εµναβpαqβ, (200)

T µ
ϕ′→K̄K

= igϕ′→K̄K(p− q)µ. (201)

Here, p and q are momenta of the K and K∗ mesons. The related coupling
constants are

gϕ′→KK∗ =
8mu

m2
s −m2

u

(
J0,2[f̄ ′

ϕf̄K∗ f̄K ]− J1,1[f̄ ′
ϕf̄K∗ f̄K ]

)
, (202)

gϕ′→K̄K = 4J0,2[f̄ ′
ϕf̄K f̄K ]. (203)

Thus, the decay widths are estimated as

Γϕ′→KK∗ ≈ 90MeV, Γϕ′→K̄K ≈ 10MeV. (204)

Unfortunately, there are no reliable experimental data on the partial decay widths
for ϕ′ → KK∗ and ϕ′ → K̄K except the total width of ϕ′ being estimated as
150± 50 MeV [1]. However, the dominance of the process ϕ′ → KK∗ observed
is in agreement with our result.

Following the scheme outlined in the previous calculations, we ˇrst estimate
the K ′ → K∗π and K ′ → Kρ decay widths. Their amplitudes are

T µ
K′→K∗π = igK′→K∗π(p+ q)µ, (205)

T µ
K′→Kρ = igK′→Kρ(p+ q)µ, (206)

here p is the momentum of K ′, q is the momentum of π (K). The coupling
constants are

gK′→K∗π = 4J1,1[f̄ ′
K f̄K∗ f̄π], gK′→Kρ = 4J1,1[f̄ ′

K f̄K f̄ρ]. (207)
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Fig. 5. Diagrams describing the decay K′ → Kππ.

By calculating the integrals in the above formulae we have gK′→K∗π ≈ −1.4 and
gK′→Kρ ≈ −1.2. The decay widths thereby are

ΓK′→K∗π ≈ 100 MeV, ΓK′→Kρ ≈ 50 MeV. (208)

These processes have been observed in experiment and the decay widths are ∗ [1]

ΓexpK′→K∗π ∼ 109 MeV, ΓexpK′→Kρ ∼ 34 MeV. (209)

The remaining decay K ′ → Kππ into three particles requires more compli-
cated calculations. In this case, one must consider a box diagram, Fig. 5,a, and
two types of diagrams, Fig. 5,b, with intermediate σ and K∗

0 resonances. The di-
agrams for resonance channels are approximated by the relativistic BreitÄWigner
function. The integration over the kinematically relevant range in the phase space
for ˇnal states gives

ΓK′→Kππ ∼ 1MeV. (210)

4.3. Strong Decays of Scalar Mesons. The ground and excited states of
scalar mesons f0, a0, and K∗

0 decay mostly into pairs of pseudoscalar mesons.

They can easily be related to Za
σ(ϕ),i introduced at the beginning of our paper.

All amplitudes that describe processes of the type σ → ϕ1ϕ2 can be divided
into two parts:

∗The accuracy of measurements carried out for the decays of K′ is not given in [1].
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Tσ→ϕ1ϕ2 = C

(
− iNc

(2π)4

)
×

×
∫
Λ3

d4k
Tr[(m+ k/ + p/1)γ5(m+ k/ )γ5(m+ k/ − p/2)]
(m2 − k2)(m2 − (k + p1)2)(m2 − (k − p2)2)

=

= 4mC

(
− iNc

(2π)4

)∫
Λ3

d4k

[
1− p1 · p2

m2 − k2

]
(m2 − (k + p1)2)(m2 − (k − p2)2)

=

= mC[I2(m, p1, p2)− p1 · p2I3(m, p1, p2)] = T (1) + T (2). (211)

Here C = 4gσgϕ1gϕ2 and p1, p2 are momenta of pseudoscalar mesons. We
rewrite the amplitude Tσ→ϕ1ϕ2 in another form

Tσ→ϕ1ϕ2 ≈ 4mZ−1/2gϕ1

[
1− p1 · p2

I3(m)
I2(m)

]
, (212)

p1 · p2 =
1
2
(M2

σ −M2
ϕ1

−M2
ϕ2
). (213)

We assumed here that the I3/I2 ratio slowly changes with the momentum in com-
parison with the factor p1 · p2, therefore, we ignore their momentum dependence
in (212). With this assumption we are going to obtain just a qualitative picture
for decays of the excited scalar mesons.

In Eqs. (211) and (212), we omitted the contributions from the diagrams
that include form factors at vertices. The whole set of diagrams consists of
those containing zero, one, two, and three form factors. To obtain the complete
amplitude, one must sum up all contributions.

After these general comments, let us consider the decays of a0(1450),
f0(1370), fJ(1710), and K∗

0 (1430). First, we estimate the decay width of the
process â0 → ηπ, taking the mixing coefˇcients from Tables 1 and 2 (see Ap-
pendix B for details). The result is

T
(1)
â0→ηπ ≈ 0.2 GeV, T

(2)
â0→ηπ ≈ 3.5 GeV, (214)

Γâ0→ηπ ≈ 160 MeV. (215)

From this calculation one can see that T (1) � T (2) and the amplitude is
dominated by its second part, T (2), that is momentumÄdependent. The ˇrst part
is small because the diagrams with different numbers of form factors cancel
each other. As a consequence, in all processes where an excited scalar meson
decays into a pair of ground pseudoscalar states, the second part of the amplitude
determines the rate of the process.
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For the decay â0 → πη′ we obtain the amplitudes

T
(1)
â0→πη′ ≈ 0.8 GeV, T

(2)
â0→πη′ ≈ 3 GeV, (216)

and the decay width
Γâ0→πη′ ≈ 36 MeV. (217)

The decay of â0 into kaons is described by the amplitudes Tâ0→K+K− and
Tâ0→K̄0K0 which, in accordance with our scheme, can again be divided into two
parts: T (1) and T (2) (see Appendix B for details):

T
(1)
â0→K+K− ≈ 0.2 GeV, T

(2)
â0→K+K− ≈ 2.1 GeV (218)

and the decay width is

Γâ0→KK = Γâ0→K+K− + Γâ0→K̄0K0 ≈ 100 MeV. (219)

Qualitatively, our results do not contradict the experimental data

Γtot
â0
= 265±13 MeV, BR(â0 → KK) : BR(â0 → πη) = 0.88±0.23. (220)

The decay widths of radial excitations of scalar isoscalar mesons are estimated in
the same way as shown above:

Γσ̂→ππ ≈
{
550 MeV(Mσ̂ = 1.3 GeV)
460 MeV(Mσ̂ = 1.25 GeV),

(221)

Γσ̂→ηη ≈
{
24 MeV(Mσ = 1.3 GeV)
15 MeV(Mσ = 1.25 GeV),

(222)

Γσ̂→σσ ≈
{
6 MeV(Mσ = 1.3 GeV)
5 MeV(Mσ = 1.25 GeV),

(223)

Γσ̂→KK ∼ 5 MeV, (224)

ΓK∗
0→Kπ ≈ 300 MeV. (225)

The heaviest scalar isoscalar meson in our model has the mass 1600 MeV
(see Table 3) to be associated with an experimentally found meson state. From
experimental data [1], we ˇnd two possible candidates for the role of a member of
the radially excited meson nonet: f0(1500) and f0(1710). The extra meson state
can be explained by possible mixing of members of the q̄q meson nonets with a
gluon bound state, the glueball. Indeed, on the mass scale, both meson states lie
in the region where the hypothetical glueball state is expected to exist. So far as
we did not include the glueball into our model (however, we are going to do this
in our further works), the picture is not complete. Nevertheless, we are free to
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make a hypothesis concerning the contents of f0(1500) and fJ(1710). We expect
that one of these states is mostly a quarkonium with just a negligible admixture
of the glueball state whereas the other is essentially mixed with the glueball. The
mass splitting that always appears when two or more states mix with each other
will ether increase or decrease the mass of a quarkonium, depending on the mass
of a ®bare¯ (unmixed) glueball state either being smaller or greater than the mass
of the quarkonium. After mixing we expect to ˇnd the q̄q bound state with the
mass 1500 MeV or 1710 MeV.

To decide which of them is the quarkonium with a small content of a glueball
state, associated with the radial excitation of f0(980), we estimate its decay widths
for two cases: ˇrst for the mass 1710 MeV quarkonium

Γf0(1710)→2π ≈ 3 MeV, Γf0(1710)→2η ≈ 40 MeV,
Γf0(1710)→ηη′ ≈ 42 MeV, Γf0(1710)→KK ≈ 24 MeV,

(226)

and then for the mass 1500 MeV quarkonium

Γf0(1500)→2π ≈ 3 MeV, Γf0(1500)→2η ≈ 20 MeV,
Γf0(1500)→ηη′ ≈ 10 MeV, Γf0(1500)→KK ≈ 20 MeV.

(227)

The decays of f0(1500) and f0(1710) into σσ are negligible, so we disregard
them. From the experimental data we have:

Γtot
σ′ = 200− 500 MeV, Γtot

f0(1710)
= 133± 14 MeV,

Γtot
f0(1500)

= 112± 10 MeV. (228)

Thus, we can see that in the case of f0(1500) being a q̄q state there is a deˇcit in
the decay widths whereas for fJ(1710) the result is close to experiment. From
this we conclude that the meson fJ(1710) better suits for the role of a member
of the q̄q nonets as a radially excited partner for f0(980) and the meson state
f0(1370) as the ˇrst radial excitation of f0(400− 1200). As to f0(1500), the q̄q
model works bad for it. This gives us the idea that f0(1500) is essentially mixed
with the glueball state which signiˇcantly contributes to its decay width. Our
interpretation of f0(1500) and f0(1710) is in agreement with other approaches
where similar conclusions were made by the K-matrix method [36] and QCD
sum rules [37].

The strong decay widths of ground states of scalar mesons were calculated in
paper [32] in the framework of the standard NJL model with 't Hooft interaction
where it was shown that a strange scalar meson state with a mass about 960 MeV
decays into Kπ with the rate

ΓK∗
0 (960)→Kπ =

3
ZπM3

K∗
0

(
mums

2Fπ

)2

Φ(MK∗
0
,MK ,Mπ) ≈ 360 MeV. (229)
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Table 4. η(1295) and η(1440) decay modes

a0π ησ ηππ KK̄π KK∗ Γtot

η(1295) 3 MeV 30 MeV 4 MeV 5 MeV − 48 MeV

η(1440) 10 MeV 3 MeV 6 MeV 26 MeV 70 keV 45 MeV

By comparing this result with the analysis of phase shifts given in [5] where
an evidence for existence of a scalar strange meson with the mass equal to
905± 50 MeV and decay width 545± 170 MeV is shown, we identify the state
K∗

0 (960) as a member of the ground scalar meson nonet. The state K∗
0 (1430) is

thereby its ˇrst radial excitation.

4.4. Strong Decays of η(1295) and η(1440). The mesons η(1295) and
η(1440) have common decay modes: a0π, ηππ, η(ππ)S−wave , KK̄π, moreover,
the heavier pseudoscalar η(1440) decays also into KK∗. For the processes with
two secondary particles, the calculations of decay widths are done in the same way
as shown in the previous Subsection, by calculating the corresponding triangle
diagrams.

Let us consider the decay η → a0π. The corresponding amplitude is of the
same form as given in (211) for decays of the type σ → ϕϕ. It can also be
divided into two parts T (1) and T (2) which in our approximation are constant
and momentumÄdependent in the sense explained in the previous Subsection (see
(212) and the text below):

T
(1)
η̂→a0π

≈ 0.3 GeV, T
(2)
η̂→a0π

≈ −1 GeV. (230)

Therefore, the decay width is

Γη̂→a0π ≈ 3 MeV. (231)

The decay η̂ → η(ππ)S−wave is nothing else than the decay η̂ → ησ →
η(ππ)S−wave where we have the σ meson in the ˇnal state decaying then into
pions in the S wave. We simply calculate η̂ → ησ, with σ as a decay product.

The calculation of decay widths for the rest of the decay modes with two
particles in the ˇnal state is similar and the result is given in Table 4.

The decay η̂′ → KK∗ differs from the other modes due to the strange vector
meson among the decay products. In this case we have

T µ
η̂′→KK∗ = 4(p1 + p2)µ

(
[gugKgK∗I2(mu,ms) + . . .]−

√
2[gsgKgK∗I2(mu,ms) + . . .]

)
, (232)
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Fig. 6. Diagrams describing the decay η̂ → ηππ. The black box stands for the sum of
®box¯ diagrams represented by one-loop quark graphs with four meson vertices. The
rest of the diagrams is a set of pole graphs with σ, f0, and a0 scalar resonances. The
diagram with a0 is to be taken into account for two channels (due to the exchange of pions
momenta). There are analogous contributions from radially excited resonances

where p1 is the momentum of η̂′; p2, the momentum of K; and dots stand for
the terms with form factors (not displayed here). These two parts are of the same
order of magnitude and differ in sign and therefore cancel each other, which
reduces the decay width up to tens of keV:

Γη̂′→KK∗ ≈ 70 keV. (233)

When there are three particles in the ˇnal state, poles appear in amplitudes,
related to intermediate scalar resonances. As is well known from ππ scattering,
these diagrams can play a crucial role in the description of such processes. So,
in addition to the ®box¯ diagram we take account of the diagrams with poles
provided by σ, f0, and a0 resonances (see Fig. 6). Here we neglect the momentum
dependence in the box diagram approximating it by a constant. The amplitude is
thereby

Tη̂→ηππ = B +
cσηη̂cσππ

M2
σ − s− iMσΓσ

+
cf0ηη̂cf0ππ

M2
f0

− s− iMf0Γf0
+

+
ca0η̂πca0ηπ

M2
a0

− t− iMa0Γa0

+
ca0η̂πca0ηπ

M2
a0

− u− iMa0Γa0

+ excited, (234)



626 VOLKOV M.K., YUDICHEV V.L.

where B is given by the ®box ¯ diagram:

B = 12
(
mu

Fπ

)2

Z−1[R11R12 + . . .] (235)

where dots stand for the contribution from diagrams with form factors, and Rij are
taken from Table 2 (for η and η̂). The coefˇcients cσϕϕ represent the amplitudes
describing decays of a scalar to a couple of pseudoscalars; the calculation of
them was discussed in the previous Subsection. In general, they are momentumÄ
dependent.

The kinematic invariants s, t, and u are Mandelstam variables: s = (pπ1 +
pπ2)

2, t = (pη + pπ1)
2, u = (pη + pπ2)

2.
The ®excited¯ terms are contributions from excited scalar resonances of a

structure similar to that for the ground states. The decay widths of processes
η̂ → ηππ and η̂′ → ηππ are thereby

Γη̂→ηππ ≈ 4 MeV, Γη̂′→ηππ ≈ 6 MeV. (236)

For the processes η̂ → KK̄π and η̂′ → KK̄π we approximate their decay
widths by neglecting the pole-diagram contribution because it turns out that the
box¯ is dominant here. The result is given in Table 4.

Unfortunately, the branching ratios for different decay modes of η(1295) and
η(1440) are not well known from experiment; so one can only ˇnd their total
decay widths

Γtot
η(1295) = 53± 6 MeV, Γtot

η(1440) = 50− 80 MeV, (237)

which is in satisfactory agreement with our results.
Strong and electromagnetic decays of the ground states of η̂ and η̂′ mesons

were investigated within the framework of the standard NJL model in [9,10] and
we do not consider them here.

5. CONCLUSION

Let us summarize and discuss main features of the nonlocal NJL model
proposed here and basic results obtained in our work.

A simple generalization of the NJL model to a nonlocal four-quark interaction
of the separable type was suggested to describe ˇrst radial excitations of the
scalar, pseudoscalar, and vector mesons. The nonlocality was introduced into
quark currents by means of simple form factors, while preserving the local form
of the ground and excited meson states. On the one hand, form factors can
be written in a relativistic invariant form. On the other hand, the form factor
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parameters can be chosen so that the gap equations keep the conventional form,
which leads to constant constituent quark masses and quark condensates. As a
result, all low energy theorems are fulˇlled in our model in the chiral limit (see
Section 2). Therefore, the introduction of excited meson states does not destroy
those attractive features which the NJL model is characteristic of.

The model contains six basic and seven additional form factor parameters.
The basic ones are deˇned like in the standard (local) NJL model. They are the
quark masses mu = md, ms, the cut-off parameter Λ3, and three quark coupling
constants G, GV , K . To determine them, we used six input quantities: Fπ, gρ,
Mπ,MK ,Mρ, and the mass differenceM2

η−M2
η′ . Then, we predicted the masses

of η, η′, K∗
0 , ϕ mesons and also the masses of the scalar and axialÄvector meson

nonets. The weak decay constant FK and all strong coupling meson constants
are calculated.

Upon the excited meson states are included, a great number of form factors
appears in the model. They are necessary to describe radial excitations of the
three meson nonets: scalar, pseudoscalar and vector. Each form factor contains
two parameters: the external parameter cUqq characterizing to what extent the
interaction of excited states is stronger than that of the ground ones and the
internal (slope) parameter dqq determining the shape of the wave function of an
excited meson state.

We give an unambiguous deˇnition of the slope parameters for scalar mesons
from the condition that the excited states do not contribute to quark condensates.
Then, we assume the slope parameters to be the same for any sort of meson
ˇelds. Moreover, in favor of the global chiral symmetry, we put the scalar meson
form factors equal to the pseudoscalar meson ones. As a result, only seven

independent parameters are left: cπuu, c
K
us, c

η,η′

uu , c
η,η′

ss , cρ,ωuu , c
K∗

0
us , cϕss. They are

ˇxed by masses of radially excited pseudoscalar and vector mesons. When this
procedure is completed, we are able to predict the masses of scalar mesons and
identify them with experimentally observed meson states.

The major results obtained in our work are:

1) A nonlocal chiral quark model with a quark interaction of the separable
type was developed to describe the ground and ˇrst radially excited states
of mesons represented by local ˇelds. In this model, the quark condensate
and gap equations are conserved in the standard form, and all low-energy
theorems are fulˇlled.

2) In a realistic U(3) × U(3) version of the model, the UA(1) problem is
solved by introducing the 't Hooft interaction. The mixing of pseudoscalar
isoscalar meson states, the ground η, η′, and the radially excited η̂, η̂′, due
to the 't Hooft interaction, was taken into account.

3) In the framework of the proposed model, a satisfactory description of the
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masses of ground and ˇrst radially excited pseudoscalar and vector meson
states was obtained.

4) The mass spectrum for scalar meson nonets (ground and ˇrst radially ex-
cited) is predicted on the basis of the proposed model and with the assump-
tion on the form factors, based on the global chiral symmetry, that the form
factors for scalar mesons are the same as for the pseudoscalars ones.

5) The members of quarkÄantiquark nonets, whose physics the proposed model
is intended to describe, are identiˇed with twenty seven physically observed
scalar, pseudoscalar, and vector meson states.

6) The weak decay constants Fπ′ , FK , and FK′ are estimated.

7) The widths of main strong decays of radially excited scalar, pseudoscalar,
and vector meson nonets are estimated. The results are in satisfactory
agreement with experimental data.
Let us make some comments on the identiˇcation of the meson nonets'

members. While it seems clear how to identify the members of pseudoscalar
and vector meson nonets, the scalar mesons require more words to say. From
our calculations we come to the following interpretation of f0(1370), fJ(1710),
a0(1470), K∗

0 (1430) mesons: we consider them as the ˇrst radial excitations of
the ground states f0(400− 1200), f0(980), a0(980), and K∗

0 (960)
∗.

In this picture, however, no place is reserved for the f0(1500) meson. To
include it, we need an additional meson state in our model that is not a bound
q̄q system (there is no vacancy in the considered multiplets) but rather it is a
bound colorless gluon state [38]. There are many reasons that the state f0(1500)
is essentially mixed with a glueball [36, 37]. However, in this paper we did not
take the glueball into account. Therefore, we cannot say how much it can affect
q̄q-meson states. However, we are going to tackle this problem in our further
work. In the present paper, we obtain a bound quarkÄantiquark state with the
mass about 1600 MeV, so we have to decide which of the observed meson states,
f0(1500) or fJ(1710), is to be associated with this member of the nonet of the
radially excited scalar mesons in our model. We have chosen fJ(1710). The
reason for this choice is based both upon the results obtained in Refs. 36, 37 and
on our estimates of the decay widths discussed in Section 4.

Concerning the ground state a0(980), in the framework of our quarkÄantiquark
model, we have a mass deˇcit for this meson, 830 MeV instead of 980 MeV.

∗The light strange scalar of a mass about 900 MeV is not included into the summary tables
of PDG [1]. However, there are evidences from the phase shift analysis [5] that a state (known as
κ(900)) with the mass 950 MeV does exist.
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We suspect that the deˇcit is caused by four-quark component in this state which
we did not take into account [39,40].

In conclusion, we would like to outline further steps to improve our model.
First of all, a glueball state can be included into the effective Lagrangian. This will
allow us to correct the description of the scalar states f0(980), f0(1370), f0(1710)
and include f0(1500) (presumed to be essentially mixed with a glueball) into the
whole picture. The mixing of all the states will play an important role in this case.
By now, we took account only of the mixing among f0(400 − 1200), f0(980),
f0(1370), f0(1710) and among η, η′, η̂, η̂′. Nevertheless, our investigation
revealed that the meson states η(1300), η(1470), f0(1370), a0(1470), f0(1710),
K∗

0 (1430) are the ˇrst radial excitations of η(590), η(950), f0(400 − 1200),
a0(980), f0(980), K∗

0 (960).
Second, the absence of quark conˇnement is still a common �aw of NJL-like

models with a local quark interaction. There are several approaches suggested to
ˇnd a solution of this problem. Among them there are various potential models,
models where the pole in the quark propagator is excluded [41], etc. We are going
to continue to work with our own approach which was suggested in Ref. 42.
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Appendix

A. COEFFICIENTS OF THE FREE PART OF THE EFFECTIVE
LAGRANGIAN FOR SCALAR ISOSCALAR MESONS

The functions K
[a,b]
σ(ϕ),ij introduced in Subsec. 3 of Sec. 4 (131) are deˇned

as follows

K
[a,a]
σ(ϕ),11(P ) = Za

σ(ϕ),1(P
2 − (ma

q ±ma
q′)

2 −M2
σa(ϕa),1),

K
[a,a]
σ(ϕ),22(P ) = Za

σ(ϕ),2(P
2 − (ma

q ±ma
q′)

2 −M2
σa(ϕa),2),

K
[a,a]
σ(ϕ),12(P ) = K

[a,a]
σ(ϕ),21(P ) = γaσ(ϕ)(P

2 − (ma
q ±ma

q′)
2), (238)

K
[8,9]
σ(ϕ),11(P ) = K

[9,8]
σ(ϕ),11(P ) =

(
G(∓)

)−1

89
,

K
[8,9]
σ(ϕ),12(P ) = K

[9,8]
σ(ϕ),12(P ) = K

[8,9]
σ(ϕ),21(P ) = 0,

K
[9,8]
σ(ϕ),21(P ) = K

[8,9]
σ(ϕ),22(P ) = K

[9,8]
σ(ϕ),22(P ) = 0,
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where the ®bare¯ meson masses are

M2
σ8(ϕ8),1 = (Z

8
σ(ϕ),1)

−1
(
(G(∓))−1

88 − 8I1(mu)
)
,

M2
σ9(ϕ9),1 = (Z

9
σ(ϕ),1)

−1
(
(G(∓))−1

99 − 8I1(ms)
)
,

M2
σ8(ϕ8),2 = (Z

8
σ(ϕ),2)

−1

(
1
G

− 8Iff1 (mu)
)

, (239)

M2
σ9(ϕ9),2 = (Z

9
σ(ϕ),2)

−1

(
1
G

− 8Iff1 (ms)
)

.

In the case of isoscalar mesons it is convenient to combine the scalar and
pseudoscalar ˇelds into 4-vectors

Φ = (ϕ8 r
1 , ϕ8 r

2 , ϕ9 r
1 , ϕ9 r

2 ), Σ = (σ8 r
1 , σ8 r

2 , σ9 r
1 , σ9 r

2 ), (240)

and introduce 4 × 4 matrix functions KΣ(Φ),ij , instead of old K
[a,b]
σ(ϕ),ij , where

indices i, j run from 1 through 4. This allows us to rewrite the free part of the
effective Lagrangian which then, with the meson ˇelds renormalized, looks as
follows

L(2)(Σ,Φ) =
1
2

4∑
i,j=1

(ΣiKΣ,ij(P )Σj +ΦiKΦ,ij(P )Φj) (241)

and the functions KΣ(Φ),ij are

KΣ(Φ),11(P ) = P 2 − (mu ±mu)2 −M2
σ8(ϕ8),1,

KΣ(Φ),22(P ) = P 2 − (mu ±mu)2 −M2
σ8(ϕ8),2,

KΣ(Φ),33(P ) = P 2 − (ms ±ms)2 −M2
σ9(ϕ9),1,

KΣ(Φ),44(P ) = P 2 − (ms ±ms)2 −M2
σ9(ϕ9),2, (242)

KΣ(Φ),12(P ) = KΣ(Φ),21(P ) = Γσu(ηu)(P
2 − (mu ±mu)2),

KΣ(Φ),34(P ) = KΣ(Φ),43(P ) = Γσs(ηs)(P
2 − (ms ±ms)2),

KΣ(Φ),13(P ) = KΣ(Φ),31(P ) = (Z8
σ(ϕ),1Z

9
σ(ϕ),2)

−1/2(G(∓))−1
89 .

Now, to transform (241) to the conventional form, one should just diagonalize a
4-dimensional matrix, which is better to do numerically.

B. THE CALCULATION OF THE AMPLITUDES FOR DECAYS
OF THE EXCITED SCALAR MESON â0

Here we collect some instructive formulae that display a part of the details
of calculations made in this work. Let us demonstrate how the amplitude of the
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decay â0 → ηπ is obtained. The mixing coefˇcients are taken from Table 1.
Moreover, the diagrams where pion vertices contain form factors are neglected
because, as one can see from Table 1, their contribution is signiˇcantly reduced:

T
(1)
â0→ηπ = 4

m2
u

Fπ

{
0.82 · 0.71Z−1/2 I2(mu)

I2(mu)
−

−
(
1.17 · 0.71Z−1/2 − 0.82 · 0.11

) If2 (mu)√
I2(mu)I

ff
2 (mu)

−

− 1.17 · 0.11I
ff
2 (mu)

Iff2 (mu)

}
≈ 0.2 GeV, (243)

T
(2)
â0→ηπ = 2

m2
u

Fπ
(M2

a0
−M2

η −M2
π)
{
0.82 · 0.71Z−1/2 I3(mu)

I2(mu)
−

−
(
1.17 · 0.71Z−1/2 − 0.82 · 0.11

) If3 (mu)√
I2(mu)I

ff
2 (mu)

−

− 1.17 · 0.11I
ff
3 (mu)

Iff2 (mu)

}
≈ 3.5 GeV. (244)

The decay width thereby is

Γâ0→ηπ =
|Tâ0→ηπ|2
16πM3

â0

×

×
√

M4
â0
+M4

η+M4
π−2(M2

â0
M2

η+M2
â0
M2

π+M2
ηM

2
π) ≈ 160 MeV. (245)

Here I2(mu) = 0.04, If2 (mu) = 0.014c, Iff2 (mu) = 0.015c2, I3(mu) =
= 0.11 GeV−2, If3 (mu) = 0.07c GeV−2,Iff3 (mu) = 0.06c2 GeV−2 and c
is the external form factor parameter factored out and cancelled in the ratios of
integrals.

For the decay into strange mesons we obtain (see Fig. 1)

Tâ0→K+K− = CK

(
− iNc

16π2

)
×

×
∫

d4k
tr[(mu + k/ + p/1)γ5(ms + k/ )γ5(mu + k/ − p/2)]
(m2

s − k2)(m2
u − (k − p1)2)(m2

u − (k − p2)2)
≈

≈ 2CK {(ms +mu)I2(mu)−∆I2(mu,ms)−

−[ms(M2
â0

− 2M2
K)− 2∆3]I3(mu,ms)

}
, (246)
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where ∆ = ms −mu and

I3(mu,ms) = −i
Nc

(2π)4

∫
Λ3

d4k

(m2
u − k2)2(m2

s − k2)
. (247)

The coefˇcient CK absorbs the Yukawa coupling constants and some structure
coefˇcients. The integral I2(mu,ms) is deˇned by (102). This is only the part
of the amplitude without form factors. The complete amplitude of this process is
a sum of contributions which contain also the integrals If..f2 and If..f3 with form
factors. Thus, the amplitude is

Tâ0→K+K− = T (1) + T (2), (248)

T (1) =
mu +ms

2FK

{
(ms +mu) · 0.13−∆ · 0.21

}
≈ 0.2 GeV, (249)

T (2) =
mu +ms

2FK

{
[ms(M2

a0
− 2M2

K)− 2∆3] · 1 GeV−2
}
≈ 2.3 GeV, (250)

FK = 1.2Fπ.

The decay width therefore is evaluated to be

Γâ0→K+K− = Γâ0→K̄0K0 ≈ 50 MeV. (251)

REFERENCES

1. Review of Particle Physics Å Eur. Phys. J. C, 1998, v. 3, p. 1.

2. Gerasimov S. B., Govorkov A. B. Å Z. Phys. C, 1985, v. 29, p. 61;
Gerasimov S. B., Govorkov A. B. Å Z. Phys. C, 1986, v. 32, p. 405;
Gerasimov S. B., Govorkov A. B. Å Z. Phys. C, 1987, v. 36, p. 435.

3. Téornqvist N. Å Phys. Rev. Lett., 1982, v. 49, p. 624;
Lanik J. Å Phys. Lett. B, 1993, v. 306, p. 139.

4. Dmitra?sinovi@c V. Å Phys. Rev. C, 1996, v. 53, p. 1383.

5. Ishida S., Ishida M., Ishida T., Takamatsu K., Tsuru T. Å Prog. Theor. Phys., 1997, v. 98,
p. 621;
Ishida M. Y., Ishida S. Å In: HADRON'97, 4th Int. Conf. on Hadr. Spectr., 1997;
hep-ph/9712231.

6. Scadron M.D. Å Phys. Rev. D, 1982, v. 26, p. 239.

7. Callan C. G., Coleman S., Wess J., Zumino B. Å Phys. Rev., 1969, v. 177, p. 2247.

8. Volkov M. K., Ebert D. Å Sov. J. Nucl. Phys., 1982, v. 36, p. 736;
Ibid. Å Z. Phys. C, 1983, v. 16, p.205.

9. Volkov M. K. Å Ann. Phys. (N.Y.), 1984, v. 157, p. 282.

10. Volkov M. K. Å Sov. J. Part. Nucl., 1986, v. 17, p. 186.

11. Ebert D., Reinhardt H. Å Nucl. Phys. B, 1986, v. 271, p. 188.

12. Roberts C. D., Cahill R. T., Praschifka J. Å Ann. Phys. (N.Y.), 1988, v. 188, p. 20.



RADIALLY EXCITED SCALAR, PSEUDOSCALAR, AND VECTOR MESON NONETS 633

13. Le Yaouanc A., Oliver L., PBene O., Raynal J.-C. Å Phys. Rev. D, 1984, v. 29, p. 1233;
Le Yaouanc A. et al. Å Phys. Rev. D, 1985, v. 31, p. 137.

14. Pervushin V. N. et al. Å Fortschr. Phys., 1990, v. 38, p. 333;
Kalinovsky Yu. L. et al. Å FewÄBody Systems, 1991, v. 10, p. 87.

15. Andrianov A. A., Andrianov V. A. Å Int. J. Mod. Phys. A, 1993, v. 8, p. 1981;
Andrianov A. A., Andrianov V. A. Å Nucl. Phys. Proc. Suppl. BC, 1995, v. 39, p. 257;
Andrianov A. A., Andrianov V. A., Yudichev V. L. Å Theor. Math. Phys., 1996, v. 108,
p. 1069.

16. Kalinovsky Yu. L, Kaschluhn L., Pervushin V. N. Å Phys. Lett. B, 1989, v. 231, p. 288.

17. Volkov M. K., Weiss C. Å Phys. Rev. D, 1997, v. 56, p. 221.

18. Feynman R. P., Kislinger M., Ravndal F. Å Phys. Rev. D, 1971, v. 3, p. 2706.

19. Ebert D., Kalinovsky Yu. L., Méunchow L., Volkov M. K. Å Int. J. Mod. Phys. A, 1993, v. 8,
p. 1295.

20. Kalinovsky Yu. L., Weiss C. Å Z. Phys. C, 1994, v. 63, p. 275.

21. Ito H., Buck W. W., Gross F. Å Phys. Rev. C, 1992, v. 45, p. 1918.

22. Gross F., Riska D. O. Å Phys. Rev. C, 1987, v. 36, p. 1928.

23. Ito H., Buck W. W., Gross F. Å Phys. Rev. C, 1991, v. 43, p. 2483.

24. GellÄMann M., Levy M. Å Nuovo Cim., 1960, v. 16, p. 53.

25. See, e.g., Dominguez C. A. Å Phys. Rev. D, 1977, v. 16, p. 2313, and references therein.

26. Jaffe R. L., Mende P. F. Å Nucl. Phys. B, 1992, v. 369, p. 189.

27. Celenza L. S. et al. Å Phys. Rev. D, 1995, v. 51, p. 3638;
Celenza, L. S. Huang B., Wang H., Shakin C. M. Å Preprint Brooklyn College, City Univ.,
New York, BCCNT:99/011/277;
Huang B., Li X.-D., Shakin C. M. Å Phys. Rev. C, 1998, v. 58, p. 3648;
Celenza L. S., Huang B., Shakin C. M. Å Phys. Rev. C, 1999, v. 59, p. 1041;
Celenza L. S., Li X.-D., Shakin C. M. Å Phys. Rev. C, 1997, v. 56, p. 3326.

28. Volkov M. K. Å Phys. At. Nucl., 1997, v. 60, p. 1920.

29. Volkov M. K., Yudichev V. L. Å Int. J. Mod. Phys. A, 1999, v.14, p.4621.

30. Volkov M. K., Yudichev V.L. Å hep-ph/9905368; Phys. At. Nucl., 2000, v.63, No.8, in press.

31. Vogl H., Weise W. Å Progr. Part. Nucl. Phys., 1991, v. 27, p. 195;
Klevansky S. P. Å Rev. Mod. Phys., 1992, v. 64, p. 649.

32. Volkov M. K., Nagy M., Yudichev V. L.Å Nuovo Cim. A,1999, v. 112, p.225; hep-ph/9804347.

33. Volkov M. K., Ebert D., Nagy M. Å Int. J. Mod. Phys. A, 1998, v. 13, p. 5443.

34. Volkov M. K., Ebert D., Yudichev V. L. Å JINR Rapid Comm., 1998,6[92]-98, p. 5;
hep-ph/9810470;
Volkov M. K., Yudichev V. L. ÅPhys. At. Nucl., 2000, v. 63, No. 2, in press.

35. Clegg A. B., Donnachie A. Å Z. Phys. C, 1994, v. 62, p. 455.

36. Anisovich V. V., Bugg D. V., Sarantsev A. V. Å Phys. Rev. D, 1998, v. 58, p. 111503.

37. Narison S. Å Nucl. Phys. B, 1998, v. 509, p. 312.

38. Kusaka K., Volkov M. K., Weise W. Å Phys. Lett. B, 1993, v. 302, p. 145;
Jaminon M., Van den Bossche B. Å Nucl. Phys. A, 1997, v. 619, p. 285.

39. Jaffe R.L. Å Phys. Rev. D, 1977, v. 15, p. 267.

40. Achasov N.N., Devyanin S.A., Shestakov G.N. Å Usp. Fiz. Nauk., 1984, v. 142, p. 361.

41. Ebert D., Feldmann T., Reinhardt H. Å Phys. Lett. B, 1996, v. 388, p. 154.

42. Blaschke D., Burau G., Volkov M. K., Yudichev V. L.Å Preprint Rostock Univ. MPG-VT-UR
178/98; hep-ph/9812503;
Volkov M. K., Yudichev V. L. Å Phys. At. Nucl., 2000, v. 63, No. 2, in press.


