ÍÅÉÒÐÎÍÍÀß ÔÈÇÈÊÀ ÍÀ ÏÎÐÎÃÅ XXI ÂÅÊÀ Â. Ë. Àêñåíîâ Îáúåäèíåííûé èíñòèòóò ÿäåðíûõ èññëåäîâàíèé, Äóáía Ïðåäìåòîì ñîâðåìåííîé íåéòðîííîé ôèçèêè ÿâëÿåòñÿ èññëåäîâàíèå ñ ïîìîùüþ íåéòðîíîâ â øèðîêîì äèàïàçîíå ýíåðãèé ôóíäàìåíòàëüíûõ âçàèìîäåéñòâèé è ñèììåòðèé, âûñîêîâîçáóæäåííûõ ñîñòîÿíèé àòîìíûõ ÿäåð, êðèñòàëëè÷åñêèõ è ìàãíèòíûõ ñòðóêòóð, äèíàìè÷åñêèõ âîçáóæäåíèé â òâåðäûõ òåëàõ è æèäêîñòÿõ.  îáçîðå ïðîâåäåí àíàëèç ñîñòîÿíèÿ è ïåðñïåêòèâ ðåøåíèÿ íàèáîëåå àêòóàëüíûõ è ïðèíöèïèàëüíûõ ïðîáëåì íåéòðîííîé ôèçèêè. Îñíîâíîé âûâîä: íåéòðîííàÿ ôèçèêà äàåò ìíîãî èíôîðìàöèè äëÿ ôèçèêè ÷àñòèö, àòîìíîãî ÿäðà, êîíäåíñèðîâàííîãî ñîñòîÿíèÿ âåùåñòâà, õèìèè, áèîëîãèè, ìàòåðèàëîâåäåíèÿ, íàóê î Çåìëå, îäíàêî â ñëåäóþùåì ñòîëåòèè íåîáõîäèìî ñîçäàòü íîâûå âûñîêîïîòî÷íûå èñòî÷íèêè íåéòðîíîâ. Ïîñëå 2010 ãîäà â ìèðå ÷èñëî ÿäåðíûõ ðåàêòîðîâ, èñïîëüçóåìûõ äëÿ ôèçè÷åñêèõ èññëåäîâàíèé, óìåíüøèòñÿ äî 10--15. Äàí àíàëèç òåíäåíöèé â ðàçâèòèè èñòî÷íèêîâ íåéòðîíîâ. Ðàññìîòðåíû âîçìîæíîñòè íàèáîëåå ðàçâèòûõ íåéòðîííûõ öåíòðîâ â ìèðå. Îáñóæäàþòñÿ íàèáîëåå ïåðñïåêòèâíûå ïðîåêòû íîâûõ èñòî÷íèêîâ íåéòðîíîâ. The objectives of present-day neutron physics are neutron-aided investigations of fundamental interactions and symmetries, high excited states of nuclei, crystalline and magnetic structures, dynamic excitations in solids and liquids over a wide range of energies. The state-of-art and perspectives of the solution of most topical and principal problems of neutron physics are analyzed. The main conclusion is that neutron physics provides rich information for nuclear particle physics, physics of nucleus, condensed matter physics, chemistry, biology, materials science, and earth sciences. In the next century, however, new higher flux neutron sources must be created. By the year 2010 the number of nuclear reactors used for physical research will reduce to 10--15 reactors over the world. Trends in the development of neutron sources are analyzed. The possibilities of leading neutron research centers in the world are considered and most promising projects of neutron sources are discussed. ÔÎÐÌÈÐÎÂÀÍÈÅ ÃÈÃÀÍÒÑÊÈÕ ÐÅÇÎÍÀÍÑΠ ËÅÃÊÈÕ ßÄÐÀÕ Á. Ñ. Èøõàíîâ, È. Ì. Êàïèòîíîâ, Â. Ã. Íåóäà÷èí, Í. Ï. Þäèí Íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ÿäåðíîé ôèçèêè èì. Ä. Â. Ñêîáåëüöûíà ÌÃÓ èì. Ì. Â. Ëîìîíîñîâà, Ìîñêâà Íà îáùåì ôîíå ïðåäñòàâëåíèé î ïðèðîäå ãèãàíòñêèõ ðåçîíàíñîâ (ÃÐ) â àòîìíûõ ÿäðàõ äàåòñÿ îáçîð ñîâðåìåííîãî ñîñòîÿíèÿ ìåõàíèçìîâ ôîðìèðîâàíèÿ ÃÐ è èõ ñâîéñòâ â ëåãêèõ ÿäðàõ $(Z<28)$. Ñâîåîáðàçèå ôèçèêè ÃÐ â ýòèõ ÿäðàõ ïîçâîëÿåò ñ÷èòàòü, ÷òî â íèõ ðåàëèçóåòñÿ íîâàÿ ôîðìà ÃÐ, ñóùåñòâåííî îòëè÷íàÿ îò ÃÐ â ñðåäíèõ è òÿæåëûõ ÿäðàõ. In close relation with understanding of nature of Giant Resonances (GR) in atomic nuclei it's given the review of modern state of formation mechanisms of GR and their properties in light nuclei $(Z<28)$. The peculiarities of physics of GR in these nuclei give us the rights to consider that new form of GR different strongly from GR in medium and heavy nuclei is realised in them. ÀÑÒÐÎÔÈÇÈ×ÅÑÊÈÅ ÀÑÏÅÊÒÛ ÍÅÉÒÐÎÍÍÎÉ ÔÈÇÈÊÈ Ì. Â. Êàçàðíîâñêèé Èíñòèòóò ÿäåðíûõ èññëåäîâàíèé ÐÀÍ, Ìîñêâà Êðàòêî èçëàãàþòñÿ ñîâðåìåííûå ïðåäñòàâëåíèÿ îá ýâîëþöèè ðàííåé Âñåëåííîé è îïèñûâàþòñÿ ñöåíàðèè îáðàçîâàíèÿ è ýâîëþöèè çâåçä, à òàêæå ÿäåðíûå ðåàêöèè, îïðåäåëÿþùèå ïðîèñõîäÿùèå â çâåçäàõ ïðîöåññû, â ÷àñòíîñòè, íóêëåîñèíòåç. Îñîáîå âíèìàíèå óäeëÿåòñÿ îáðàçîâàíèþ ýëåìåíòîâ òÿæåëåå æåëåçà ïóòåì ïîñëåäîâàòåëüíîãî çàõâàòà íåéòðîíîâ ($s$- è $r$-ïðîöåññû). Äëÿ ðàñ÷åòà ýòèõ ïðîöåññîâ òðåáóþòñÿ äåòàëüíûå äàííûå î ñå÷åíèÿõ ðåàêöèé ($n,\gamma$), óñðåäíåííûõ ïî ìàêñâåëëîâñêèì ñïåêòðàì íåéòðîíîâ ïðè òåìïåðàòóðàõ ïîðÿäêà $10\div 100$ êýÂ, ïðè÷åì âåñüìà âàæíûìè ÿâëÿþòñÿ ðåàêöèè ñ ìàëûìè ñå÷åíèÿìè è/èëè ñ âîçáóæäåííûìè è íåñòàáèëüíûìè ÿäðàìè. Îïèñûâàþòñÿ äåéñòâóþùèå è ñîçäàâàåìûå â ÈßÈ ÐÀÍ è ËÍÔ ÎÈßÈ ýêñïåðèìåíòàëüíûå óñòàíîâêè, íà êîòîðûõ ïëàíèðóåòñÿ èçìåðÿòü òàêèå ñå÷åíèÿ. The scenario of the star formation and evolution and the nuclear reactions determining nucleosynthesis in the stars are described after short presentation of the modern idea about the early Universe evolution. Particular emphasis has been placed on the formation of the elements heavier than iron by means of succession neutrons capture ($s$- and $r$-processes). For these reactions calculation it is need the detailed data on the ($n,\gamma$) reaction cross section, averaged on the Maxwellian neutron spectra at the temperatures from 10 to 100 keV. The very important reactions are reactions with small cross sections and reactions with the excited or unstable nuclei. The existing experimental setups for measurements of such reactions and those being developed in INR RAS and FLNP JINR are described. ÓÏÐÓÃÎÅ È ÍÅÓÏÐÓÃÎÅ ÐÀÑÑÅßÍÈÅ ÀÄÐÎÍΠÍÀ ËÅÃÊÈÕ ßÄÐÀÕ Â ÄÈÔÐÀÊÖÈÎÍÍÎÉ ÒÅÎÐÈÈ Ì. À. Æóñóïîâ, Å. Ò. Èáðàåâà Êàçàõñêèé ãîñóäàðñòâåííûé íàöèîíàëüíûé óíèâåðñèòåò èì.Àëü--Ôàðàáè Íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ýêñïåðèìåíòàëüíîé è òåîðåòè÷åñêîé ôèçèêè, Àëìà-Àòà 480012, Òîëå-áè 96À Íà îñíîâå äèôðàêöèîííîé òåîðèè Ãëàóáåðà---Ñèòåíêî ïðîâåäåí àíàëèç óïðóãîãî è íåóïðóãîãî ðàññåÿíèÿ àäðîíîâ (ïðîòîíîâ, àíòèïðîòîíîâ è $\pi$-ìåçîíîâ) íà ÿäðàõ $^{6,7}$Li è $^9$Be.  ðàñ÷åòàõ èñïîëüçîâàëèñü íåñêîëüêî âåðñèé êëàñòåðíûõ âîëíîâûõ ôóíêöèé ÿäåð, íàéäåííûõ â ðàìêàõ äâóõ- è òðåõ÷àñòè÷íûõ ìóëüòèêëàñòåðíûõ äèíàìè÷åñêèõ ìîäåëåé. Ïîêàçàíî, ÷òî ïðèìåíåíèå ýòèõ âîëíîâûõ ôóíêöèé â ìîäåëè Ãëàóáåðà---Ñèòåíêî ïîçâîëÿåò íåïëîõî îïèñàòü ýêñïåðèìåíòàëüíûå äèôôåðåíöèàëüíûå ïîïåðå÷íûå ñå÷åíèÿ è àíàëèçèðóþùèå ñïîñîáíîñòè â ðàññåÿíèè àäðîíîâ ïðè ýíåðãèè îò ñîòåí Ìý äî 1 ÃýÂ. Îáñóæäàåòñÿ âêëàä â ñå÷åíèå ðàçëè÷íûõ êîìïîíåíò âîëíîâûõ ôóíêöèé, ðàçíûõ êðàòíîñòåé ðàññåÿíèÿ íà êëàñòåðàõ è íóêëîíàõ ÿäðà-ìèøåíè, äåéñòâèòåëüíîé è ìíèìîé ÷àñòåé ýëåìåíòàðíûõ àìïëèòóä. Èçó÷åíà çàâèñèìîñòü ïîâåäåíèÿ ñå÷åíèÿ îò ïàðàìåòðîâ ýëåìåíòàðíûõ àäðîí-íóêëîííûõ è $A\alpha$-àìïëèòóä ($A\equiv p$, $\bar p$, $\pi$). Ïîêàçàíî, ÷òî ÷àñòè÷íîå çàïîëíåíèå äèôðàêöèîííîãî ìèíèìóìà â äèôôåðåíöèàëüíîì ïîïåðå÷íîì ñå÷åíèè ïðè ðàññåÿíèè íà ÿäðå $^6$Li îáóñëîâëåíî âêëàäîì $D$-âîëíû, à â $^9$Be --- âêëàäîì â ñå÷åíèå íåóïðóãîãî êàíàëà ðàññåÿíèÿ (íà óðîâåíü $1/2^+$), íå ðàçðåøåííîãî â ýêñïåðèìåíòå. Within the diffraction theory of Glauber---Sitenko, elastic and inelastic hadrons (protons, antiprotons, and $\pi$-mesons) scattering by light nuclei $^{6,7}$Li, $^9$Be is analyzed. Several versions of cluster wave functions (WF) used in calculations are determined on the basis of the two- and three-body multicluster dynamic model. It is shown that this model satisfactorily describes the experimental differential cross sections (DCS) and analyzing powers ($A_y$) hadrons at energies ranging from hundred MeV to 1 GeV. The contributions to scattering cross sections of various components of WF, different multiples of scattering by clusters and nucleons of target-nucleus and of the real and imaginary parts of the elementary amplitudes are analyzed. There has been investigated sensitivity of the obtained results to the parameters of the $AN$- and $A\alpha$-amplitudes ($A\equiv p$, $\bar p$, $\pi$). It is shown that the partial filling of the diffraction minimum in the DCS by $^6$Li is due to $D$ wave contribution to elastic scattering, by $^9$Be --- is the contribution from the inelastic scattering channel that results in a transition to a $1/2^+$ level, but which is not identified experimentally because of low excitation energy. ÑÒÐÓÊÒÓÐÀ ×ÅÒÍÛÕ ÈÇÎÒÎÏΠÝÐÁÈß Å. Ï. Ãðèãîðüåâ ÍÈÈ ôèçèêè Ñ.-Ïåòåðáóðãñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà, Ñàíêò-Ïåòåðáóðã Ðàññìîòðåíà ñîâîêóïíîñòü äàííûõ î ðîòàöèîííûõ ïîëîñàõ êîëëåêòèâíûõ è äâóõêâàçè÷àñòè÷íûõ ñîñòîÿíèé â ãðóïïàõ ÷åòíî-÷åòíûõ èçîòîíîâ ñ $N=88\div104$. Çàâèñèìîñòü èíåðöèîííûõ ïàðàìåòðîâ, îáðàòíûõ ìîìåíòàì èíåðöèè, îò ñïèíîâ â ïîëîñàõ ïîêàçûâàåò êàê çàêîíîìåðíîñòè, îáùèå äëÿ ñîâîêóïíîñòè ÿäåð ñ îäèíàêîâûìè $Z$ èëè $N$ è îäèíàêîâûì êâàíòîâûì ÷èñëîì $K$, òàê è îñîáåííîñòè êàæäîãî èíäèâèäóàëüíîãî ÿäðà, ãäå ïðîÿâëÿåòñÿ óíèêàëüíîå ñîîòíîøåíèå óðîâíåé. Ðåçóëüòàòû ïðèâåëè ê ïîäòâåðæäåíèþ ïðèìåíèìîñòè êâàçè÷àñòè÷íî-âèáðàöèîííîé ìîäåëè. Îíè ïîçâîëèëè ïðîâåñòè èëè óòî÷íèòü èäåíòèôèêàöèþ ìíîãèõ äëèííûõ ïîëîñ. All available data on rotational bands build on collective and two-quasiparticle levels in even-even isotones with $N=88\div 104$ are considered. Dependence of inertial parameters on spin values in these nuclei is deduced, and regularities common for bands in nuclei with the same $Z$ or $N$ are demonstrated. Also peculiarities concerned with anomalous relative position of some levels are discovered. As a whole, results of analysis of structure of nuclei considered confirm the validity of quasiparticle-vibrational model and make it possible to identify many long rotational bands.