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The d-p model of oxide superconductors, which includes the 3dx2−y2 orbitals of copper and
the σ − 2px/2py orbitals of oxygen, is reformulated by using the orthogonalized Wannier orbitals
centred on the copper lattice sites. Only the nearest-neighbor Cu-O and O-O hopping terms are
included together with the on-site Coulomb terms for Cu and O. We diagonalize ˇrstly the O-O
hopping term by introducing diagonalizing fermions aiσ and biσ with two local energies ea and
eb which cosiderably differ from local oxygen ion energy εp. The diagonalization is made before
the Wannier orthogonalization of the orbitals is done. In our cell representation the Hamiltonian is
the sum of different contributions which contain three orthogonalized operators: diσ , aiσ , and biσ .
The main part of it is the local one. There are also the perturbative delocalizing contributions. The
detailed investigation of the eigenvalue problem of the local Hamiltonian has been done by using the
S-matrix method, elaborated by us. The energy spectrum of the local Hamiltonian depends on such
quantum numbers as the full number N of a, b and d particles of the state, their full spin S and its z
projection. All the renormalized states with N = 0, 1, 2..., 6 have been analyzed. When N = 2 and
S = 0, there are six singlet states and the lowest from them is ZhangÄRice one. The diagonalizing
process lowers the energy of this state considerably. In the local approximation the chemical potential
dependence on the temperature and hole numbers has been also established.
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¤Ò·µ± ´  ¨µ´ Ì ±¨¸²µ·µ¤ . ‘ ÔÉµ° Í¥²ÓÕ ¨¸¶µ²Ó§ÊÕÉ¸Ö ¤¢¥ ¤¨ £µ´ ²¨§µ¢ ´´Ò¥ Ë¥·³¨µ´´Ò¥ ÖÎ¥-
¥Î´Ò¥ ³µ¤Ò ±¨¸²µ·µ¤´ÒÌ ¤Ò·µ±, ´ ·Ö¤Ê ¸ ³µ¤µ° ³¥¤´ÒÌ ¤Ò·µ±. �É¨ ¤¨ £µ´ ²¨§µ¢ ´´Ò¥ ³µ¤Ò
µ¡² ¤ ÕÉ ¸ÊÐ¥¸É¢¥´´µ · §²¨Î´Ò³¨ ²µ± ²Ó´Ò³¨ Ô´¥·£¨Ö³¨, ÎÉµ § ³¥É´µ ¸± §Ò¢ eÉ¸Ö ´  ·¥§Ê²ÓÉ -
É Ì É¥µ·¨¨. �É³¥Î¥´  ´¥±µ³³ÊÉ¨·Ê¥³µ¸ÉÓ µ¶¥· Í¨¨ ¤¨ £µ´ ²¨§ Í¨¨ ±¨¸²µ·µ¤´µ£µ £ ³¨²ÓÉµ´¨ ´ 
¨ µ·Éµ£µ´ ²¨§ Í¨¨ µ·¡¨É ²¥° ‚ ´Ó¥ ¶µ Ê§² ³ ³¥¤´µ° ·¥Ï¥É±¨. ŸÎ¥¥Î´ Ö µ·¡¨É ²Ó ±¨¸²µ·µ¤´ÒÌ
¤Ò·µ±, ¶·¨´ ¤²¥¦ Ð¨Ì ¨µ´´µ³Ê ±µ³¶²¥±¸Ê CuO4, µ± §Ò¢ ¥É¸Ö ¢ ´ Ï¥³ ¶µ¤Ìµ¤¥ ¸Ê¶¥·¶µ§¨Í¨¥°
ÔÉ¨Ì ¤¢ÊÌ ¤¨ £µ´ ²¨§µ¢ ´´ÒÌ µ·¡¨É ²¥°. �µ²ÊÎ¥´´Ò° £ ³¨²ÓÉµ´¨ ´ ¨³¥¥É ¢¨¤ ¸Ê³³Ò ¸² £ ¥³ÒÌ,
Î²¥´Ò ±µÉµ·ÒÌ ¨³¥ÕÉ · §²¨Î´µ¥ Î¨¸²µ ¨´¤¥±¸µ¢ Ê§²µ¢ ·¥Ï¥É±¨ ³¥¤¨. 
 ¨¡µ²ÓÏ¨³ Ö¢²Ö¥É¸Ö ²µ-
± ²Ó´µ¥ ¸² £ ¥³µ¥. �¶·¥¤¥²¥´Ò ¢¸¥ £² ¢´Ò¥ ¸µ¸ÉµÖ´¨Ö ±² ¸É¥·´µ£µ ¶·¥¤¸É ¢²¥´¨Ö ¨ ¤¥É ²Ó´µ
¶·µ ´ ²¨§¨·µ¢ ´ ¸¶¥±É· Ô²¥³¥´É ·´ÒÌ ¢µ§¡Ê¦¤¥´¨° ²µ± ²Ó´µ° ³µ¤¥²¨. ‚ ²µ± ²Ó´µ³ ¶·¨¡²¨¦¥-
´¨¨ µ¶·¥¤¥²¥´ Ì¨³¨Î¥¸±¨° ¶µÉ¥´Í¨ ² ¸¨¸É¥³Ò ¨ ¥£µ § ¢¨¸¨³µ¸ÉÓ µÉ Î¨¸²  ¤Ò·µ± ¨ É¥³¶¥· ÉÊ·Ò.
�µ± § ´µ, ÎÉµ ¶·µÍ¥¸c ¶¥·¥´µ·³¨·µ¢±¨ ±¨¸²µ·µ¤´ÒÌ ¤Ò·µ± ¸ÊÐ¥¸É¢¥´´µ ¢²¨Ö¥É ´  ´¨§±µÔ´¥p£¥-
É¨Î¥¸±ÊÕ Î ¸ÉÓ ¸¶¥±É·  ¸¨¸É¥³Ò ¨, ¢ Î ¸É´µ¸É¨, ´  Ô´¥·£¨Õ ¸¨´£²¥É  † ´£  ¨ � °¸, ¶·¨¢µ¤Ö ±
§´ Î¨É¥²Ó´µ³Ê ¥¥ ¶µ´¨¦¥´¨Õ.

INTRODUCTION

Since the discovery of high-Tc superconductivity, there have been made
great efforts to obtain a simple theoretical model suitable to describe the main
peculiarities of this phenomenon. We start with a tight-binding model for the
Cu-O planes of high-temperature superconductors, which includes orbitals of
both Cu and O ions. Only the nearest-neighbor Cu-O and O-O hopping terms are
included together with the on-site Coulomb terms Ud and Up for holes on Cu and
O, respectively. In addition we take the Coulomb interaction Udp into account.
With respect to orbitals we consider only 3dx2−y2 of Cu and σ-2px/2py of O.
The vacuum state corresponds to the ˇlled 3d and 2p shells (3d102p6). Therefore
there are 3 orbitals per unit cell.

This kind of model Hamiltonian for the motion of holes in the Cu-O planes
has been proposed, for example, in [1Ä3]. As mentioned above, the elementary
cell for the CuO2 plane includes only the orbitals di, x2−y2 and px,y

l , where i, l

are the site indices of Cu and O, respectively, with l = i ± a

2
x̂ and l = i ± a

2
ŷ;

x̂ and ŷ being unit vectors in x and y direction, respectively. The p-d Hamiltonian
is then of the form

H = Hd +Hp +Hd−p, (1)

where

Hd = εd
∑
i,σ

nd
iσ + Ud

∑
i

nd
i↑n

d
i↓,

Hp = εp
∑
l,σ

np
lσ + tpp

∑
〈l,l′〉,σ

p+l,σpl′,σSll′ + Up

∑
l

np
l↑n

p
l↓, (2)

Hd−p = tdp

∑
〈i,l〉,σ

(
d+i,σpl,σ +H.C.

)
Sil + Udp

∑
〈i,l〉

nd
i n

p
l .
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Here diσ (d+iσ) and plσ (p+lσ) are annihilation (creation) operators of d and p
holes of spin σ at the lattice sites i and l with corresponding hole densities
nd

i = nd
i↑ + n

d
i↓, n

p
lσ = p+lσplσ , np

l = np
l↑ + n

p
l↓; εd = εd − µ and εp = εp − µ are

the local energies of holes with respect to the chemical potential. The quantities
tppSll′ = ±tpp and tdpSil = ±tdp are the nearest neighbor O-O and Cu-O
transfer terms with corresponding phase factors Sll′ and Sil which originate from
inversion symmetry of the orbitals. Our choice for these factors agrees with that
used in Refs. 4, 6Ä14. Other choices for the orbital signs will change the phase
factors but not the physical results [15Ä19].

With this choice in mind we rewrite the d-p hybridization term in Eq. (2) in
the form of an interaction between the diσ orbital and the oxygen cluster βiσ of
holes surrounding the central Cu ion at site i,

2tdp

∑
i,σ

(
d+i,σβi,σ + β+

i,σdi,σ

)
, (3)

where the cluster or cell annihilation operator is

βi,σ =
1
2

(
px
i+ a

2 x̂,σ − py
i+ a

2 ŷ,σ − px
i− a

2 x̂,σ + py
i−a

2 ŷ,σ

)
. (4)

This rezects the local D4h symmetry of the CuO2 plane with the corresponding
b1 transformation representation of the symmetry group. This orbital was ˇrst
introduced by Zhang and Rice [4] pointing out that essential physics is connected
with the formation of singlet and triplet states between the Cu and the cluster
orbitals. As discussed below, it will actually be more convenient to transform
the orbital βiσ with the help of Wannier functions being orthogonal on site i
(when centred on neighboring sites i and j) by using the canonical fermions of
Shastry [7].

On the basis of the singlet model Zhang and Rice have shown that the
corresponding one-band model accurately describes the low-energy physics of
the d-p model. Their method resembles the derivation of the t-J model from the
one-band Hubbard Hamiltonian in the case of strong correlations [5]. The concept
of Zhang and Rice has been discussed in Refs. 6Ä14, further exploration of this
model in [15Ä32], and slightly different treatments can be found in [33Ä44].

The main stages of investigations based on the ZhangÄRice model (see papers
cited above) are the following ones. The ˇrst is to introduce cluster oxygen
orbitals centred on the Cu ions, which take into account the local symmetry of it.
The second stage is the Wannier orthogonalization of them and obtaining of the
Hamiltonian. At the last stage there is the projection of this Hamiltonian on the
low energy Hilbert subspace and the deˇnition of the dynamical properties of the
system.
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Now we come back to the Hamiltonian and discuss its part H0
p which is

connected with the oxygen holes movement

H0
p = εp

∑
l,σ

p+l,σpl,σ + tpp

∑
〈l,l′〉,σ

p+l,σpl′,σSl,l′ . (5)

The last term of this equation is the contribution of the O-O tunneling process.
By taking into account the phase factors Sll′ we obtain

tpp

∑
〈l,l′〉,σ

p+l,σpl′ ,σSl,l′ =
1
2

∑
l,σ

{
px+
i+ a

2 x̂,σ

[
−py

i+ax̂+ a
2 ŷ,σ+

+ py
i+a

2 ŷ,σ − py
i− a

2 ŷ,σ + py
i+ax̂− a

2 ŷ,σ

]
+

+ py+
i+ a

2 ŷ,σ

[
−px

i+ a
2 x̂+aŷ,σ + px

i− a
2 x̂+aŷ,σ − px

i− a
2 x̂,σ + px

i+a
2 x̂,σ

]
+

+ px+
i− a

2 x̂,σ

[
−py

i+a
2 ŷ,σ + py

i−ax̂+ a
2 ŷ,σ − py

i−ax̂− a
2 ŷ,σ + py

i− a
2 ŷ,σ

]
+

+py+
i−a

2 ŷ,σ

[
−px

i+ a
2 x̂,σ + px

i− a
2 x̂,σ − px

i−a
2 x̂−aŷ,σ + px

i+a
2 x̂−aŷ,σ

]}
. (6)

Let us introduce now the Fourier representation of the oxygen operators px

and py by using the Brillouine zone of the copper ions:

px
i± a

2 x̂,σ =
1√
N

∑
k

e−ik(Ri± a
2 x̂)px

k,σ,

py
i± a

2 ŷ,σ =
1√
N

∑
k

e−ik(Ri± a
2 ŷ)py

k,σ.

(7)

Here N is the number of copper ions; kx, ky are changing in the limits(
−π
a
,
π

a

)
. In the k representation the oxygen cluster operator βi,σ has the form

βi,σ =
i√
N

∑
k

e−ikRi

(
−px

k,σSx(k) + p
y
k,σSy(k)

)
, (8)

where Sx(k) = sin
(

kxa

2

)
and Sy(k) = sin

(
kya

2

)
. This equation suggests

the proper introduction of the two Shastry canonical fermion operators

Pk,σ =
i

S(k)

[
−Sx(k)px

k,σ + Sy(k)p
y
k,σ

]
,

Qk,σ =
iε(k)
S(k)

[
Sy(k)px

k,σ + Sx(k)p
y
k,σ

]
,

(9)
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where

S(k) =
√
S2

x(k) + S2
y(k) =

[
1− 1

2
(cos (kxa) + cos (kya))

] 1
2

,

ε(k) = sgn (SxSy) .

The sign function ε(k) was introduced in paper [23]. By using the new
canonical fermion operators we obtain:

px
k,σ =

i

S(k)
[SxPk,σ − ε(k)SyQk,σ] ,

py
k,σ =

−i
S(k)

[SyPk,σ + ε(k)SxQk,σ] .
(10)

On the basis of Eq. (9) we obtain, for the cluster operator βi,σ, the equation

βi,σ =
1√
N

∑
k

e−ikRiS(k)Pk,σ. (11)

As we can see from Eqs. (3) and (11), the copper orbital diσ interacts only
with one of two oxygen cluster orbitals, namely with Pk,σ. We shall introduce
now the orthogonalized on copper sites ®canonical operators¯

Pi,σ =
1√
N

∑
k

Pk,σ e−ikRi ,

Qi,σ =
1√
N

∑
k

Qk,σ e−ikRi .

(12)

By using such equations, we have

βi,σ =
∑

j

Pj,σλ(i− j), λ(R) =
1
N

∑
k

S(k) e−ikR, (13)

and, as the consequence, the d-p hybridization term of Hamiltonian (3) has the
form

2tdp

∑
i,j

(
d+iσPj,σλ(i− j) + H.C.

)
= 2tdpλ(0)

∑
i

(
d+iσPi,σ + P+

i,σdiσ

)
+

+ 2tdp

∑
i,j
i�=j

(
d+iσPj,σλ(i− j) + H.C.

)
. (14)
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The quantity λ(x, y) has been calculated in [16, 22]. It decreases rather
quickly with the distance

λ(0, 0) = 0.95, λ(±a, 0) = λ(0,±a) = −0.14, λ(±a,±a) = −0.02. (15)

Both the terms of kinetic energy (5) of oxygen holes in k representation have
the form

εp
∑
l,σ

p+l,σpl,σ = εp
∑
k,σ

(
px+
k,σp

x
k,σ + p

y+
k,σp

y
k,σ

)
, (16)

tpp

∑
〈l,l′〉,σ

p+l,σpl′,σSl,l′ = 4tpp

∑
k,σ

SxSy

(
px+
k,σp

y
k,σ + p

y+
k,σp

x
k,σ

)
. (17)

By using Eq. (10) we obtain the following result:

H0
p = εp

∑
k,σ

(
P+

k,σPk,σ +Q+
k,σQk,σ

)
−

− 4tpp

∑
k,σ

SxSy

[
2SxSy

(
P+

k,σPk,σ −Q+
k,σQk,σ

)
+

+ε(k)
(
S2

x − S2
y

) (
P+

k,σQk,σ +Q+
k,σPk,σ

)]
. (18)

The ˇnal representation of (18) is

H0
p = εp

∑
j,σ

(
P+

j,σPj,σ +Q+
j,σQj,σ

)
−

− 4tpp

∑
j,j′

{(
P+

j,σPj′,σ −Q+
j,σQj′,σ

) 1
N

∑
k

2S2
xS

2
y e

−ik(Rj−Rj′ )+

+
(
P+

j,σQj′,σ +Q+
j,σPj′,σ

) 1
N

∑
k

|SxSy|
(
S2

x − S2
y

)
e−ik(Rj−Rj′)

}
. (19)

To ˇnd the local contribution of this term it is necessary to put j = j′. We
observe that two quantities:

1
N

∑
k

2S2
xS

2
y e

−ikR,
1
N

∑
k

|SxSy| e−ikR(S2
x − S2

y) (20)

manifest quite different behaviour for R = 0. The ˇrst quantity of them is
nonzero, but the second is just zero. We can see that the most important local
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contribution from (19) doesn't contain the mixed Pk,σ and Qk,σ terms and there-
fore these two orbitals are not connected in between and have the independent
contributions for the oxygen holes movement. Because the hybridization contri-
bution (14) is also independent of Qk,σ orbitals, the authors of all cited above
papers devoted to the cluster representation of d-p model, drew the conclusion that
it is possible to exclude completely the Qk,σ orbital from the next investigation.
In such a way the d-p model turned out to be equivalent to the two-cluster model
of diσ , Pi,σ orbitals. Because the quantities (20) for R �= 0 decrease quickly
with the distance, and the hybridization energy of the oxygen holes is not large,
the last term of (19) has been considered as nonimportant for the dynamics of
the oxygen holes. The same conclusion was made about the Coulomb interaction
terms of (1) relevant to oxygen holes and was interpreted as a real isolation of
the Qi,σ cluster fermions in some independent subsystem, the presence of which
was neglected completely in the next analysis. So the cluster description of the
oxygen holes behavior in CuO2 plane results in the fact that three-band di,σ , px

i,σ ,
py

i,σ model of the holes on two sublattices of copper and oxygen ions has been
reduced to two-band di,σ and P x

i,σ model only on the copper sites lattice.
Our point of view on this problem is different. We consider that there are

several objections to previous approach. The ˇrst of them is connected with the
transition from the momentum representation (18) to orthogonalized Wannier rep-
resentation (19). Our approach to this problem is to do ˇrstly the diagonalization
of oxygen operator H0

p and only after that to use the orthogonalized representa-
tion. These two operations are not commutative and the results are quite different.
This diagonalization doesn't depend, as we can see below, on the values of tpp

matrix elements and it is not a small effect, as was supposed in previous papers.
In such a way, we ˇrstly make the canonical transformation of the H0

p opera-
tor and only then introduce the orthogonalized Wannier orbitals. This approach
renormalizes the energy spectrum of the oxygen bands and signiˇcantly changes
the charge-transfer energy εp − εd between oxygen and copper ions. As is well
known, in the case when εp − εd + 2Udp < Ud, the doped holes are settled on
the oxygen ions and ˇll in the lowest energy levels of their collective motion,
when their concentration is little. But if their concentration is high enough, the
knowledge (besides of the low part) also of all the energy spectrum is impor-
tant. This is our second reason to make this investigation. Our last reason is
connected with the existence of additional interaction between collective oxygen
modes, conditioned by the Coulomb repulsion of the holes situated on oxygen
ions and their interaction when they are situated on the nearest Cu and O ions.
Such additional interaction will be demonstrated below. It can be also proved
that the interaction of the holes with phonons gives the additional mechanism
of interaction between two oxygen collective modes and that the supposed, by
previous authors, separation of one of two collective oxygen modes is not real-
ized. These our considerations initiate this investigation. It takes into account
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more correctly the oxygenÄoxygen hybridization, introduces the notion of the
diagonalizing oxygen fermions and proves the existence of interaction between
them. The Wannier orthogonalization is done after the diagonalization and the
contributions to the local cell Hamiltonian and its delocalizing perturbation are
established. This program is realized in Sec. 1.

The detailed investigation of the renormalized states and their energies is
done in Sec. 2, and in Sec. 3 we discuss the obtained results.

1. THE CELL REPRESENTATION OF THE HAMILTONIAN

We take into account the contribution of O-O tunneling to the oxygen Hamil-
tonian H0

p

H0
p =

∑
k,σ

{
εp

(
px+
k,σp

x
k,σ + py+

k,σp
y
k,σ

)
−

−4tppSxSy

(
px+
k,σp

y
k,σ + p

y+
k,σp

x
k,σ

)}
, (21)

and make the canonical transformation of it by introducing two new, diagonalizing
ak,σ and bk,σ oxygen holes, operators:

px
k,σ = u(k)ak,σ + v(k)bk,σ,

(22)
py
k,σ = −v∗(k)ak,σ + u∗(k)bk,σ.

The coefˇcients of this transformation are subjected to the next conditions:

|u(k)|2 + |v(k)|2 = 1, (u∗(k))2 = (v(k))2 . (23)

The second condition (23) ensures the diagonalization of the second term of
operator (21). These coefˇcients are independent of the values of matrix elements
tpp, as we mentioned above. By using the oxygen diagonalizing operators ak,σ

and bk,σ, we obtain for (21) the next form:

H0
p =

∑
k,σ

{εp(a+k,σak,σ + b+k,σbk,σ) +

+ 4tppSxSy(u(k)v(k) + u∗(k)v∗(k))(b+k,σbk,σ − a+k,σak,σ)}. (24)

The conditions (23) determine the module of our coefˇcients: |u(k)| = |v(k)| =
1/

√
2, but not their phases. Our next restriction is (tpp > 0):

uv + u∗v∗ = sgn (SxSy). (25)
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As a result of this last condition we have

H0
p =

∑
k,σ

{
εa(k)a+k,σak,σ + εb(k)b+k,σbk,σ

}
,

(26)
εa,b(k) = εp ∓ 4tpp|Sx(k)Sy(k)|.

Thus the hybridization of the oxygen holes results in the appearance of two
subbands one of which, εa(k), is lower and the second, εb(k), is above the local
oxygen energy εp. The conditions (23) and (25) for our coefˇcients admit some
else arbitraryness of their phases. This arbitraryness will be used by us to establish
the most convenient relation between canonical Pk,σ, Qk,σ and diagonalizing
ak,σ, bk,σ fermions. The relation between two groups of fermions is the following

Pk,σ =
i

S(k)
{−ak,σ[Sx(k)u(k) + Sy(k)v∗(k)] +

+ bk,σ[Sy(k)u∗(k)− Sx(k)v(k)]},
(27)

Qk,σ =
iε(k)
S(k)

{ak,σ[Sy(k)u(k) − Sx(k)v∗(k)] +

+ bk,σ[Sx(k)u∗(k) + Sy(k)v(k)]}.

We deˇne ˇnally the coefˇcients u(k) and v(k) from the condition that the
orbitals Pk,σ and ak,σ are like as much as possible

u(k) =
i√
2
sgn (Sx(k)), v(k) = − i√

2
sgn (Sy(k)). (28)

This choice agrees with all the previous restrictions for them.
As a result, we can rewrite the equations (27) in the form

Pk,σ = ak,σ
|Sx|+ |Sy|√

2S(k)
+ bk,σ sgn (SxSy)

|Sy | − |Sx|√
2S(k)

,

Qk,σ = −ak,σ
|Sy| − |Sx|√

2S(k)
+ bk,σ sgn (SxSy)

|Sx|+ |Sy|√
2S(k)

.

(29)

According to these equations the canonical amplitudes (P,Q) are the superposi-
tions of diagonalizing amplitudes (a, b) with corresponding probabilities.

Now we shall introduce the Wannier amplitudes for diagonalizing fermions

ai,σ =
1√
N

∑
k

ak,σ e−ikRi ,

bi,σ =
1√
N

∑
k

bk,σ e−ikRi .

(30)
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We can establish the linear relations between cluster Wannier amplitudes Pi,σ ,
Qi,σ and diagonalizing Wannier amplitudes ai,σ, bi,σ with the coefˇcients of
proportionality which are less than one. Therefore all the local contributions to
the dynamical quantities expressed in terms of ai,σ amplitudes will be less than the
corresponding contributions expressed through Pi,σ amplitudes. This difference
is essential and can be demonstrated already for the case of d-p hybridization. We
want to underline that these differences are not at all connected with the value of
the matrix element tpp. The cluster amplitude βi,σ can be expressed in the form

βiσ =
1√
N

∑
k

e−ikRi

[
ak,σ

|Sx|+ |Sy|√
2

+

+ bk,σ sgn (SxSy)
|Sy| − |Sx|√

2

]
=
∑

j

[λa(i− j)aj,σ +

+ λb(i− j)bj,σ] =
∑

j

λ(i− j)Pj,σ , (31)

where

λa(R) =
1
N

∑
k

e−ikR |Sx|+ |Sy|√
2

=

=
1

2
√
2π

 δy,0

1
4
−
(x
a

)2 +
δx,0

1
4
−
(y
a

)2

 ,
λb(R) =

1
N

∑
k

e−ikR sgn (SxSy)
|Sy| − |Sx|√

2
= (32)

=
1
π2


(
1− cos π

x

a

) y
a
cos π

y

a
x

a

[(y
a

)2

− 1
4

] −

(
1− cos π

y

a

) x
a
cos π

x

a
y

a

[(x
a

)2

− 1
4

]
 ,

λ(R) =
1
N

∑
k

S(k) e−ikR.

Here R = (x, y) is the distance between the copper ions, and therefore the
quantities x/a and y/a are the positive or negative integer numbers. Equation (32)

gives us the next values λa(0) =
2
√
2
π

	 0.900, λb(0) = 0. In papers [16, 19, 20]

we can ˇnd the value λ(0) = 0.958 which is analogous to our λa(0) and exceeds
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the last one, as it was expected. On the basis of equation (31), the d-p-hybri-
dization term of the Hamiltonian can be rewritten in the form

Hdp = 2tdpλa(0)
∑

i

(
d+iσaiσ + a+iσdiσ

)
+

+ 2tdp

∑
i,j
j �=i

(
d+iσ [λa(i− j)ajσ + λb(i− j)bjσ] + H.C.

)
. (33)

The ˇrst term of the right-hand part of equation (33) is the main local approxi-
mation of the Hamiltonian. The second term determines the holes delocalization
processes. This term is not concerned only with the nearest-neighbour sites as
it was in the initial Hamiltonian (1). This enlargement of the space is rather
artiˇcial and is the result of the orthogonalization procedure. On the basis of
equations (32) (ε1, ε2 = ±1) we have

λa(x = ε1a, y = 0) = λa(x = 0, y = ε2a) = −λa(0, 0)/6,
λa(x = 2ε1a, y = 0) = λa(x = 0, y = 2ε2a) = −λa(0, 0)/30,

λb(x = ε1a, y = 0) = λb(x = 0, y = ε2a) = λb(x = ε1a, y = ε2a) = 0,

λb(x = ε1a, y = 2ε2a) = −λb(x = 2ε1a, y = ε1a) = (ε2/ε1)λa(0, 0)4
√
2/(15π),

λb(x = ε1a, y = 3ε2a)=(ε2/ε1)λa(0, 0)16
√
2/(315π)=λb(x = 3ε1a, y = ε2a).

The function λa(x, y) differs from zero both on the central and on the nearest
neighbour (n. n.) ion sites and quickly diminishes on the next n. n. (n. n. n.) sites.
The function λb(x, y) is zero on central and n. n. sites but is different from zero
and small on the n. n. n. sites. Therefore there are two channels of delocalization
of the copper holes, just by their hybridization both with ai,σ and bi,σ oxygen
orbitals.

Now the Hamiltonian (26) of the free oxygen holes can be rewritten in the
cell representation

H0
p =

∑
j,j′,σ

(
ta(j − j′)a+j,σaj′,σ + tb(j − j′)b+j,σbj′,σ

)
, (34)

where

ta,b(R) =
1
N

∑
k

e−ikRεa,b(k) = εpδR,0 ∓ 4tppτ(R),

τ(R) =
1
N

∑
k

e−ikR|SxSy| =
1

(2π)2
[
1
4
−
(x
a

)2
] [

1
4
−
(y
a

)2
] . (35)
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From this equation we obtain the following values

τ(0) =
(
2
π

)2

= 0.4045, εa,b ≡ εp ∓ 4tppτ(0).

Equation (34) can be rewritten in the form

H0
p =

∑
j,σ

(εaa+j,σaj,σ + εbb+j,σbj,σ)−

− 4tpp

∑
j �=j′,σ

(a+j,σaj′,σ − b+j,σbj′,σ)τ(j − j′). (36)

The properties of the function τ(x, y) of this equation are demonstrated here

τ(±a, 0) = τ(0,±a) = −τ(0, 0)
3

, τ(±a,±a) = τ(0, 0)
9

.

The ˇrst term of the right-hand part of (36) is the main local contribution
of the oxygen holes to the Hamiltonian while the second one is its delocalizing
perturbation. To have the possibility of carrying out the cell representation of
other terms of the initial Hamiltonian (1), we ˇrstly make such a representation
for the oxygen-holes operators

px
i±a/2x̂,σ =

∑
j

[
aj,σµ

±x
a (Ri − Rj) + bj,σµ±x

b (Ri − Rj)
]
,

py
i±a/2ŷ,σ =

∑
j

[
aj,σµ

±y
a (Ri − Rj) + bj,σµ

±y
b (Ri − Rj)

]
,

(37)

where

µ±x
a (R) =

1
N

∑
k

e−ikRu(k) e∓ikx
a
2 =

δy,0

√
2π
(
x

a
± 1

2

) ,

µ±x
b (R) =

1
N

∑
k

e−ikRv(k) e∓ikx
a
2 =

∓ cos
πx

a

(
1− cos

πy

a

)
√
2π2

(
x

a
± 1

2

)(y
a

) ,

µ±y
a (R) = − 1

N

∑
k

e−ikRv∗(k) e∓ikya/2 = − δx,0

√
2π
(
y

a
± 1

2

) ,

µ±y
b (R) =

1
N

∑
k

e−ikRu∗(k) e∓ikya/2 =
∓ cos

πy

a

(
1− cos

πx

a

)
√
2π2

(
y

a
± 1

2

)(x
a

) .

(38)
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To realize the next step of this program, we shall discuss ˇrstly the Coulomb
repulsion of the oxygen holes. This Hamiltonian has the form

Hc
p = Up

∑
i

[
p+x↑px↑p

+
x↓px↓ + p+y↑py↑p

+
y↓py↓

]
, (39)

where, for shortness, we use the notations px = pi+a/2x̂, py = pi+a/2ŷ, x̂ and ŷ
are unit vectors in the two main directions.

On the basis of equations (37) and (39) we have

Hc
p = Up

∑
i

∑
j1,j2,j3,j4

{[a+j1↑µ
x
a
∗(Ri − Rj1) + b

+
j1↑µ

x
b
∗(Ri − Rj1)]×

× [aj2↑µ
x
a(Ri − Rj2) + bj2↑µ

x
b (Ri − Rj2)]×

× [a+j3↓µ
x
a
∗(Ri − Rj3) + b

+
j3↓µ

x
b
∗(Ri − Rj3)]×

× [aj4↓µ
x
a(Ri − Rj4) + bj4↓µ

x
b (Ri − Rj4)] +

+ [a+j1↑µ
y
a
∗(Ri − Rj1) + b

+
j1↑µ

y
b
∗(Ri − Rj1)]×

× [aj2↑µ
y
a(Ri − Rj2) + bj2↑µ

y
b (Ri − Rj2)]×

× [a+j3↓µ
y
a
∗(Ri − Rj3) + b

+
j3↓µ

y
b
∗(Ri − Rj3)] +

+ [aj4↓µ
y
a(Ri − Rj4) + bj4↓µ

y
b (Ri − Rj4)]}. (40)

Now we have carried out the summing by index i of copper ion sites and after
some transformations obtained the rather complicated Coulomb contribution Hc

p ,
which contains 16 terms. We shall take into account only those of them the
coefˇcients of which are not equal to zero in the local case

Hc
p = Up

∑
j1,j2,j3,j4

{a+j1↑aj2↑a
+
j3↓aj4↓ ×

×Ψaaaa (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) +

+ b+j1↑bj2↑b
+
j3↓bj4↓Ψ

bbbb (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) +

+ a+j1↑aj2↑b
+
j3↓bj4↓Ψ

aabb (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) +

+ b+j1↑bj2↑a
+
j3↓aj4↓Ψ

bbaa (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) +

+ a+j1↑bj2↑b
+
j3↓aj4↓Ψ

abba (Rj1 − Rj4 ,Rj3 − Rj2 ,Rj4 − Rj2) +

+ b+j1↑aj2↑a
+
j3↓bj4↓Ψ

baab (Rj1 − Rj4 ,Rj3 − Rj2 ,Rj4 − Rj2)}, (41)
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where

Ψaaaa (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) =
1
N3

∑
k,k′,q

e−ik(Rj1−Rj2 ) ×

× e−ik′(Rj3−Rj4)+iq(Rj2−Rj4 )
[∗
u(k)u(k + q)

∗
u(k′)u(k′ − q) +

+ v(k)
∗
v(k+ q)v(k′)

∗
v(k′ − q)

]
,

Ψaabb (Rj1 − Rj2 ,Rj3 − Rj4 ,Rj2 − Rj4) =
1
N3

∑
k,k′,q

e−ik(Rj1−Rj2 ) ×

× e−ik′(Rj3−Rj4 )+iq(Rj2−Rj4)
[∗
u(k)u(k + q)

∗
v(k′)v(k′ − q) +

+ v(k)
∗
v(k+ q)u(k′)

∗
u(k′ − q)

]
.

(42)

The other coefˇcients of interest differ from the written ones by changing the
indices a and b and corresponding functions u(k) and v(k) between them. By
using (28) we obtain

1
N3

∑
k,k′,q

∗
u(k)u(k + q)

∗
u(k′)u(k′ − q) =

1
12
,

1
N3

∑
k,k′,q

∗
u(k)u(k + q)

∗
v(k′)v(k′ − q) =

1
16
.

(43)

Equations (42) and (43) give us the following values of the coefˇcients

Ψaaaa (0, 0, 0) = Ψbbbb (0, 0, 0) =
1
6
,

Ψaabb (0, 0, 0) = Ψbbaa (0, 0, 0) = Ψabba (0, 0, 0) = Ψbaab (0, 0, 0) =
1
8
.

(44)

As a result of these calculations we obtain the following local contribution from
the Coulomb repulsion of the oxygen holes

Hc
p 	 Ua

∑
j

na
j↑n

a
j↓ + Ub

∑
j

nb
j↑n

b
j↓ +

+ Uab

∑
j

(
na

j↑n
b
j↓ + n

b
j↑n

a
j↓ − Sa

j+S
b
j− − Sa

j−S
b
j+

)
, (45)

where the renormalized Coulomb constants of this Hamiltonian are Ua = Ub =
Up/6 and Uab = Up/8. In equation (45) the following deˇnitions were used
(c = a, b)

nc
jσ = c+jσcjσ, Sc

j+ = c+j↑cj↓, Sc
j− = c+j↓cj↑ . (46)
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The last term of (45) can be rewritten in more simple form

Uab

∑
j

(
a+j↑b

+
j↓ − a

+
j↓b

+
j↑

)
(bj↓aj↑ − bj↑aj↓) , (47)

which can be interpreted as the interaction of the (a, b) singlet pairs.
The Hamiltonian (39) and its cell local representation (45) commutes with

the spin operator S of the oxygen holes and its square S2 both in the ionic initial
and in the cell ˇnal representations. In the cell representation the operator S has
the form

Sab =
∑

j

(
Sa

j + Sb
j

)
(48)

(c = a, b),

Sc
jx =

1
2
(Sc

j+ + Sc
j−), Sc

jy =
1
2i
(Sc

j+ − Sc
j−), Sc

jz =
1
2
(nc

j↑ − nc
j↓). (49)

The renormalized Coulomb repulsions Ua and Uab of the diagonalizing fermions
are essentially less than the initial repulsion of the holes on oxygen ions. The
decrease of the constant Ua in our case is more considerable than the value
0.211Up obtained in previous papers (see for example [22]).

In the next part of the paper we shall use the following standard set of the
theory parameters

tdp =1.3 eV,
εp − εd
tdp

= 2.7,
tpp

tdp
= 0.5,

Ud

tdp
= 7,

Up

tdp
= 3,

Udp

tdp
= 1.

(50)

Because in this set of parameters Ua = tpp and Uab =
3
4
tpp, both the effects of

O-O tunneling and Coulomb repulsion of the holes on the oxygen ions have to
be discussed together. The Hamiltonian (41), besides the local part (45), contains
also the intercell transitions of the Wannier fermions. These last terms have the
nonequal site indices and are several times less than local ones. In the next part
of the paper these nonlocal contributions will be omitted. We shall omit also the
nonlocal part of the kinetic energy of the oxygen holes (36).

Now we shall discuss the cell transformation of the Coulomb repulsion term
Hc

dp of our initial Hamiltonian (1). It has the form

Hc
dp = Udp

∑
i,σ,σ′

d+i,σdi,σ(p+x,σ′px,σ′ + p+−x,σ′p−x,σ′ +

+ p+y,σ′py,σ′ + p+−y,σ′p−y,σ′). (51)
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Here, as in equation (39), we use our previous notations for px,σ and py,σ. On the
basis of (37) and (51) we obtain the new equations which contain only Wannier
orbitals centred on the copper lattice sites of the form

Hc
dp = Udp

∑
i,j,j′

∑
σ,σ′

nd
iσ[φ

aa (Ri − Rj;Ri − Rj′) a+jσ′aj′σ′ +

+ φab (Ri − Rj;Ri − Rj′) a+jσ′bj′σ′ + φba (Ri − Rj ;Ri − Rj′) b+jσ′aj′σ′ +

+ φbb(Ri − Rj;Ri − Rj′)b+jσ′bj′σ′ ]. (52)

The coefˇcients of this equation are equal to

φaa(Ri − Rj;Ri − Rj′) =
1
N2

∑
k,k′

exp (ik(Ri − Rj)− ik′(Ri − Rj′))×

×
[
2 cos

(kx − k′x)a
2

∗
u(k)u(k′) + 2 cos

(ky − k′y)a
2

v(k)
∗
v(k′)

]
,

φab(Ri − Rj ;Ri − Rj′) =
1
N2

∑
k,k′

exp (ik(Ri − Rj)− ik′(Ri − Rj′)) ×

×
[
2 cos

(kx − k′x)a
2

∗
u(k)v(k′)− 2 cos

(ky − k′y)a
2

v(k)
∗
u(k′)

]
, (53)

φbb(Ri − Rj ;Ri − Rj′) =
1
N2

∑
k,k′

exp (ik(Ri − Rj)− ik′(Ri − Rj′))×

×
[
2 cos

(kx − k′x)a
2

∗
v(k)v(k′) + 2 cos

(ky − k′y)a
2

u(k)
∗
u(k′)

]
,

φba(Ri − Rj;Ri − Rj′) = (φab(Ri − Rj′ ;Ri − Rj))∗.

In the local case, when i = j = j′ among the four coefˇcients (53) only the ˇrst
is different from zero and has the value

φaa = φaa (0, 0) =
8
π2

	 0.811. (54)

Therefore in the local limit only Coulomb interaction between ai,σ localizing
fermions and di,σ holes is manifested:

Hc
ad = Uad

∑
i

nd
in

a
i ,

Uad = Udpφ
aa =

8Udp

π2
, nα

i =
∑

σ

nα
iσ, α = a, d.

(55)
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The effective repulsion constant which was obtained in paper [22] is 0.918Udp in
comparision with our value 0.812Udp. The coefˇcients of equation (53) are equal
to

ϕaa(R,R′) =
1
π2


δx,0δx′,0

(
y

a

y′

a
+

1
4

)
[(y
a

)2

− 1
4

][(
y′

a

)2

− 1
4

] +
(
x→ y
x′ → y′

) ,

ϕab(R,R′)=
−1
2π3


δx,0

[
1− cos

(
πx′

a

)]
cos
(
πy′

a

)(
y

a
+
y′

a

)
(
x′

a

)[(
y

a

)2

− 1
4

] [(
y′

a

)2

− 1
4

] −
(
x→ y
x′ → y′

) ,
(56)

ϕbb(R,R′) =
1
π4


[
1− cos

(
πx′

a

)][
1− cos

(
πx

a

)]
cos
(
πy

a

)
cos
(
πy′

a

)
(
x

a

)(
x′

a

)[(
y

a

)2

− 1
4

][(
y′

a

)2

− 1
4

] ×

×
(
y

a

y′

a
+

1
4

)
−
(
x→ y
x′ → y′

) .
Here x(x′) and y(y′) are the projections of the vectors R(R′) which are the

integer multiples of lattice constant a. In such a way, this Coulomb interaction
was not changed considerably, in comparison with its initial value, after the cell
transformation. The operator (52) can be presented as the sum of the main local
and its perturbation contributions

Hc
dp = H

c
ad +H

′
dp, (57)

where H ′
dp is obtained from (52) by omitting all the local terms.

Thus we have ˇnished the transformation to the cell representation of all the
terms of Hamiltonian (1), which contain clusters of oxygen holes. We have se-
parated the local one-cell part from the intercell contributions. The ˇrst of them
H0 is the main contribution of the orthogonalized Wannier fermions and the
second H ′ is considered as a perturbation. In the ˇnal form our Hamiltonian is

H = H0 +H ′ , H0 =
∑

i

H0
i , (58)
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where the one-cell local contribution is the following

H0 = εd
∑

σ

nd
σ + Udn

d
↑n

d
↓ + εa

∑
σ

na
σ + Uan

a
↑n

a
↓ + εb

∑
σ

nb
σ + Ubn

b
↑n

b
↓ +

+ tad

∑
σ

(
d+σ aσ + a+σ dσ

)
+ Uadn

dna +

+ Uab

(
na
↑n

b
↓ + n

a
↓n

b
↑ − Sa

+S
b
− − Sa

−S
b
+

)
. (59)

Here, for simlicity, we have omitted the index i of the copper site and supposed the
equalities Ub = Ua, Uab = 3/4Ua and used the deˇnitions εa,b = εp ∓ 4tppτ(0).
The perturbative term has rather complicated form, because it contains a lot
of intercell contributions from diσ , aiσ and biσ orthogonalized fermions. We
consider that the most important perturbations are the following

H ′ = 2tdp

∑
j �=i

[
d+iσ (λa(Ri − Rj)ajσ + λb(Ri − Rj)bjσ) + H.C.

]
+

+ Udp

∑
i,j,j′

′∑
σ

nd
i [φ

aa(Ri − Rj,Ri − Rj′)a+jσaj′σ +

+ φab(Ri − Rj,Ri − Rj′)a+jσbbj′σ + φba(Ri − Rj,Ri − Rj′)b+jσaj′σ +

+ φbb(Ri − Rj ,Ri − Rj′ )b+jσbbj′σ]. (60)

Here the sum index with prime means the absence of contributions with the equal-
ity i = j = j′ of copper site indices. In (60) we have omitted the contributions
proportional to tpp and Up in conformity with the previous explanation.

2. THE DIAGONALIZATION OF THE CELL HAMILTONIAN

As we can see from equation (59), in every cell centred on Cu site, there
are three kinds of strongly correlated fermions. Namely there are di,σ holes on
the copper ions and two diagonalizing fermions ai,σ and bi,σ which describe the
movement of the oxygen holes in CuO2 plane. Every one of these three kinds
of particles, if they are considered as independent, has four quantum states |0〉,
| ↑〉, | ↓〉, | ↑↓〉, with the energies Eα

0 = 0, Eα
σ = εα, Eα

2 = 2εα +Uα α = a, b, d.
Therefore the full number of the states for one cell is equal to 43 = 64. The
matrix of the local Hamiltonian (59) calculated on the basis of the cell functions
ψA is a rather complicated one being of 64×64 rank. Really this matrix is quasi-
diagonal containing the submatrices with maximal rank equal to four. The index
A of the cell quantum functions contains the Na, Nb, and Nd numbers of our
particles and also their spin quantum numbers. But the renormalized quantum
states |Eλ〉 of this Hamiltonian don't conserve the individual numbers of our
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Table 1. The distribution of states number Ns by quantum numbers

N S Sz Ns N S Sz Ns N S Sz Ns

0 0 0 1 3 1/2 +1/2 8 4 0 0 6

1 1/2 +1/2 3 -1/2 8 1 1 3

-1/2 3 3/2 +3/2 1 0 3

2 0 0 6 +1/2 1 -1 3

1 -1 3 -1/2 1 5 1/2 +1/2 3

0 3 -3/2 1 -1/2 3

1 3 6 0 0 1

fermions and therefore we use as the real quantum numbers the full numbers of
particles N = Na + Nb + Nd (this number has not to be confused with N Å
the number of copper ion sites, which was used in previous part of the paper),
the full spin S and its projection Sz. Some additional inner quantum numbers
will be used also. The renormalized functions |Eλ〉 are the linear superpositions
of the cell functions ψA and the coefˇcients of proportionality are determined by
the elements of the S matrix which realizes the transformation from the initial
cell representation to the ˇnal renormalized one.

The S-matrix method has been ˇrstly elaborated by us [44Ä47] for discussing
the properties of atomic limit of the periodic Anderson model. Ns is the number
of the renormalized quantum states which depends of the main three quantum
numbers N , S, and Sz. The full number of these states is 64. The distribution
of Ns is demonstrated in Table 1.

To have some notion about our S-matrix method we present here a brief
information about it. This method is based on the existence of a full system of
orthonormalized functions Φn(Eλ) which are determined from the matrix equation

(
Ĥ 0 − EλÎ

) Φ1(Eλ)
:

Φn(Eλ)

 = 0, (61)

with the following conditions of orthonormalization∑
λ

Φ∗
n(Eλ)Φm(Eλ) = δnm,

∑
n

Φ∗
n(Eλ)Φn(Eλ′ ) = δλλ′ .

(62)

Ĥ 0 is the matrix of the Hamiltonian, calculated on the basis of the initial particle
functions ψA, and Î is the unit matrix. The knowledge of the new functions
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Φn(Eλ) permits us to construct the S matrix

Ŝ =

 Φ1(E1)...Φ1(En)
: :

Φn(E1)...Φn(En)

 . (63)

The relation between initial Ψn and ˇnal renormalized |Eλ〉 functions is

Ψn =
∑

λ

Φn(Eλ)|Eλ〉, |Eλ〉 =
∑

n

Φ∗
n(Eλ)Ψn. (64)

Let us begin now the detailed analysis of eigenvalues and eigenfunctions
renormalization of the local Hamiltonian (59). It is obvious that the vacuum
state with N = 0 remains unrenormalized. The ˇrst nontrivial case is that with
N = 1. The full number of states is Ns = 6. The spin of these states is S = 1/2.
Three of them have the value Sz equal to 1/2; and others to 1/2. The initial
nonrenormalized functions with Sz = 1/2 are

Ψ1 = d+↑ |0〉, Ψ2 = a+↑ |0〉, Ψ3 = b+↑ |0〉. (65)

It is easy to ˇnd the following equations

H0Ψ1 = εdΨ1 + VΨ2, H0Ψ2 = εaΨ2 + VΨ1, H0Ψ3 = εbΨ3. (66)

Here V = tad . The corresponding submatrix of the second rank constructed in
the subspace of the functions Ψ1 and Ψ2 has the form(

εd − E V
V εa − E

)
. (67)

Here and below the matrix Ĥ0 − EÎ is used. From the condition that the
determinant of this matrix is zero, we obtain two renormalized energy values,
which belong to doublet states

E1,2 (N = 1, S = 1/2) = E1,2 =
1
2

[
εa + εd ∓

√
(εa − εd)2 + 4V 2

]
. (68)

On the basis of (67) we determine two orthonormalized functions Φ1(Eλ) and
Φ2(Eλ) in the form

Φ2(Eλ) =
Eλ − εd
V

Φ1(Eλ),

Φ1(E1,2) =
1√
2

1∓ εa − εd√
(εa − εd)2 + 4V 2

1/2

.
(69)
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By using these results, we obtain

|E1〉 = Φ1(E1)
[
Ψ1 +

E1 − εd
V

Ψ2

]
,

|E2〉 = Φ1(E2)
[
Ψ1 +

E2 − εd
V

Ψ2

]
.

(70)

Here and below, for shortness, we omit the values of quantum numbers and
consider the Φ functions to be real. The third function Ψ3 is the eigenfunction
of our Hamiltonian and consequently E3 = εb, |E3〉 = Ψ3, and Φ3(E3) = 1.
Other three functions Ψ4,Ψ5, and Ψ6 differ from the previous three only by the
direction of spin, and the renormalization of them is the same as for the ˇrst
group. We have E4,5 = E1,2, E6 = E3, Φ4,5 = Φ1,2, and Φ6 = Φ3. More
interesting case is that of two particles N = 2 with two possible values of full
spin S = 0 and S = 1. For S = 0 there are six initial singlet states ψA. They
are enumerated below

Ψ1 =
1√
2

(
d+↑ a

+
↓ − d+↓ a

+
↑

)
|0〉, Ψ2 = a+↑ a

+
↓ |0〉,

Ψ3 = d+↑ d
+
↓ |0〉, Ψ4 =

1√
2

(
d+↑ b

+
↓ − d+↓ b

+
↑

)
|0〉, (71)

Ψ5 =
1√
2

(
a+↑ b

+
↓ − a+↓ b

+
↑

)
|0〉, Ψ6 = b+↑ b

+
↓ |0〉.

The action of Hamiltonian (59) on them results in

H0Ψ1 = (εa + εd +G) Ψ1 +
√
2VΨ2 +

√
2VΨ3,

H0Ψ2 = (2εa + Ua) Ψ2 +
√
2VΨ1,

(72)
H0Ψ3 = (2εd + Ud)Ψ3 +

√
2VΨ1 , H0Ψ4 = (εd + εb)Ψ4 + VΨ5,

H0Ψ5 = (εa + εb + 2Uab)Ψ5 + VΨ4 , H0Ψ6 = (2εb + Ub)Ψ6.

The ˇrst three functions form a trio of (a, d) singlets with the following submatrixεa + εd +G− E
√
2V

√
2V

√
2V 2εa + Ua − E 0

√
2V 0 2εd + Ud − E

 . (73)

Here the quantity G means G = Uad. The renormalized energies of this trio of
states are determined from the equation of the third degree:

(2εa + Ua − E) (2εd + Ud − E) (εa + εd +G− E)−
− 2V 2 (2εa + Ua + 2εd + Ud − 2E) = 0. (74)
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The state with the lowest energy, from this trio, is the ZhangÄRice singlet. To
obtain the approximate values of these eigenenergies E1, E2, E3 we use the series

expansions by
1
Ud

. In this case we have

E1,2(2, 0) 	 2εa +
1
2

εd − εa +G+ Ua ∓
√
(εd − εa +G− Ua)

2 + 8V 2×

×

1± 2V 2

Ud

√
(εd − εa +G− Ua)

2 + 8V 2

 , (75)

E3(2, 0) 	 2εd + Ud +
2V 2

Ud
.

In this equation the index 1(2) refers to the up(down) sign of the right-hand part
of it. The functions Φn(Eλ) are equal to

Φ2(Eλ) = −
√
2VΦ1(Eλ)

2εa + Ua − Eλ
, Φ3(Eλ) = −

√
2V Φ1(Eλ)

2εd + Ud − Eλ
,

Φ1(Eλ) =

(
1 +

2V 2

(2εa + Ua − Eλ)
2 +

2V 2

(2εd + Ud − Eλ)
2

)1/2

,

(76)

and as a result we obtain the following renormalized eigenfunctions (λ = 1, 2, 3)

|Eλ〉 =
Φ1(Eλ)√

2
×

×
[
d+↑ a

+
↓ − d+↓ a

+
↑ −

2V a+↑ a
+
↓

2εa + Ua − Eλ
−

2V d+↑ d
+
↓

2εd + Ud − Eλ

]
|0〉. (77)

The two functions Ψ4 and Ψ5 form a doublet of singlet states with corresponding
submatrix (

εd + εb − E V
V εa + εb + 2Uab − E

)
. (78)

Two values for renormalized energies of (d, b) and (a, b) singlets are

E4,5(2, 0) = εb +
1
2

[
εa + εd + 2Uab ∓

√
(εd − εa − 2Uab)

2 + 4V 2

]
. (79)
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These values correspond to the energies of the (a, d) doublet (68) in the presence
of additional b fermion. This presence changes the value of energy εa to εa+2Uab.
The functions Φn(Eλ) with n = 4, 5 are the following:

Φ5(Eλ) =
(Eλ − εd − εb)

V
Φ4(Eλ),

(80)

Φ4(E4,5) =
1
2

1± εa + 2Uab − εd√
(εa + 2Uab − εd)2 + 4V 2

1/2

.

As a result we have

|E4,5〉 = Φ4(E4,5)
[
Ψ4 +

E4,5 − εd − εb
V

Ψ5

]
. (81)

The last singlet state Ψ6 from this group is a doublon of b fermions. It remains
unrenormalized with the energy value E6 = 2εb + Ub and unrenormalized eigen-
function |E6〉 = Ψ6. Now we shall examine the triplet (N = 2, S = 1) subspace
of states. For each projection of spin Sz = 1, 0, there are three degenerate states.
They are

Ψ7 =
1√
2

(
d+↑ a

+
↓ + d+↓ a

+
↑

)
|0〉, Ψ8 =

1√
2

(
d+↑ b

+
↓ + d+↓ b

+
↑

)
|0〉,

Ψ9 =
1√
2

(
a+↑ b

+
↓ + a+↓ b

+
↑

)
|0〉, Ψ10 = d+↑ a

+
↑ |0〉, Ψ11 = d+↑ b

+
↑ |0〉, (82)

Ψ12 = a+↑ b
+
↑ |0〉, Ψ13 = d+↓ a

+
↓ |0〉, Ψ14 = d+↓ b

+
↓ |0〉, Ψ15 = a+↓ b

+
↓ |0〉.

The action of the Hamiltonian (59) on them gives the results:

H0Ψ7 = (εa + εd +G)Ψ7, H0Ψ8 = (εd + εb)Ψ8 + VΨ9,

H0Ψ9 = (εa + εb)Ψ9 + VΨ8, H0Ψ10 = (εa + εd +G) Ψ10, (83)

H0Ψ11 = (εd+ εb)Ψ11 + VΨ12, H0Ψ12 = (εa + εb)Ψ12 + VΨ11.

The equations for other three functions Ψ13, Ψ14, and Ψ15 are similar to those for
Ψ10, Ψ11, and Ψ12 correspondingly. The triplet states Ψ7, Ψ10, and Ψ13 remain
unrenormalized with the energy value E7 = E10 = E13 = εa + εd + G. Their
eigenfunctions also remain unrenormalized (λ = 7, 10, 13) : |Eλ〉 = Ψλ. Then,
we have a doublet of states Ψ8 and Ψ9 with a submatrix(

εd + εb − E V
V εa + εb − E

)
. (84)
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From it we obtain two values of renormalized energies

E8,9 = εb +
1
2

[
εa + εd ∓

√
(εa − εd)2 + 4V 2

]
. (85)

These values correspond to those of the (a, d) doublet in the presence of b fermion.
The functions Φ8 and Φ9 are equal to

Φ9(Eλ) =
Eλ − εd − εb
εd + εb

Φ8 (Eλ) , λ = 8, 9,

Φ8(E8,9) =

1± εa − εd√
(εa − εd)2 + 4V 2

1/2

,

(86)

and, as a result, we obtain the renormalized eigenfunctions

|E8〉 = Φ8(E8)
[
Ψ8 +

E8 − εd − εb
V

Ψ9

]
,

|E9〉 = Φ8(E9)
[
Ψ8 +

E9 − εd − εb
V

Ψ9

]
.

(87)

It is easy to see that for two other doublets (Ψ11,Ψ12) and (Ψ14,Ψ15) composed of
our triplet states we shall obtain the same results. Thus we have E8 = E11 = E14

and E9 = E12 = E15.
Now we shall discuss the situation when the number of particles is three

(N = 3), and there are two spin values S = 1/2 and S = 3/2. First of all, it is
necessary to analyse the spin structure of our initial cell functions. In order to do
that, we shall examine the next three functions

χ1 = d+↑ a
+
↓ b

+
↑ |0〉, χ2 = d+↓ a

+
↑ b

+
↑ |0〉, χ3 = d+↑ a

+
↑ b

+
↓ |0〉, (88)

and will act on them with the operator S2, where S is the spin operator of three
particles

S = Sa + Sb + Sd,

(S)2 = 3
[
(Sa

z )
2 + (Sb

z)
2 + (Sd

z )
2
]
+ 2
[
Sa

zS
b
z + S

a
zS

d
z + S

b
zS

d
z

]
+ (89)

+Sa
−S

b
+ + Sa

+S
b
− + Sa

−S
d
+ + Sa

+S
d
− + Sb

−S
d
+ + Sb

+S
d
−,

where

Sc
z =

1
2
(
nc
↑ − nc

↓
)
, Sc

+ = c+↑ c↓, Sc
− = c+↓ c↑, c = a, b, d.
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As a result, we have

(S)2χ1 =
7
4
χ1 + χ2+χ3, (S)2χ2 = χ1 +

7
4
χ2 + χ3,

(S)2χ3 = χ1 + χ2 +
7
4
χ3.

(90)

These results suggest the necessity of introducing the new orthonormalized cell
functions which are the eigenfunctions of the operator (89). We shall form two
new linear superpositions Ψ1 and Ψ2 from initial three functions (88) and add to
them two other functions Ψ3 and Ψ4 which are listed below

Ψ1 =
1√
2
(χ1 − χ2) , Ψ2 =

1√
6
(χ1 + χ2 − 2χ3) ,

(91)
Ψ3 = a+↑ a

+
↓ b

+
↑ |0〉, Ψ4 = d+↑ d

+
↓ b

+
↑ |0〉.

These four functions are the components of one quartet with the spin S = 1/2
and its projection equal to 1/2. The third linear combination χ1 + χ2 +χ3 of the
functions (88) has the spin S = 3/2 and will be discussed below together with
other functions with such spin value. The quartet functions fulˇll the following
system of equations

H0Ψ1 =
(
εa + εb + εd +G+

Uab

2

)
Ψ1 +

√
3
2
UabΨ2 +

√
2V (Ψ3 +Ψ4) ,

H0Ψ2 =
(
εa + εb + εd +G+

3Uab

2

)
Ψ2 +

√
3
2
UabΨ1,

(92)
H0Ψ3 = (2εa + Ua + εb + Uab)Ψ3 +

√
2VΨ1,

H0Ψ4 = (2εd + Ud + εb)Ψ4 +
√
2VΨ1,

with the submatrix of the form

εa + εb + εd+

+G+
Uab

2
− E

√
3
2
Uab

√
2V

√
2V

√
3
2
Uab

εa + εb + εd+

+G+
3Uab

2
− E

0 0

√
2V 0

2εa + Ua + εb+
+Uab − E

0

√
2V 0 0

2εd + Ud+
+εb − E


. (93)
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The renormalized energy values are the solutions of the following equation of the
fourth order:(

εa + εd +G− E′)2 (2εa + Ua − E′) (2εd + Ud − E′)−

− 2V 2

(
εa + εd +G+

Uab

2
− E′

)(
2εd + Ud + 2εa + Ua − 2E′)−

− U2
ab

(
2εa + Ua − E′) (2εd + Ud − E′) = 0, (94)

where

E′ = E − εb, G = G+ Uab, Ua = Ua + Uab.

Four solutions of this equations E′
n, n = 1, 2, 3, 4 must be subjected to the

condition:

4 (εa + εb + εd) + 2G+ 3Uab + Ua + Ud =
∑

n

E′
n.

For the large values of Coulomb repulsion Ud one of the energy values is

E 	 Ud + 2εd + εb +
2V 2

Ud
, (95)

the other three solutions can be presented in the approximate form

E 	 E′
0 + εb + E

′
1, (96)

where the quantity E′
0 is the solution of the following equation of the third order

(
εa + εd +G− E′

0

)2
(2εa + Ua − E′

0)−

− 2V 2

(
εa + εd +G+

Uab

2
− E′

0

)
− U2

ab

(
2εa + Ua − E′

0

)
= 0. (97)

The energy correction E′
1, which is proportional to the small value U−1

d is deter-
mined by the equation:

E′
1 =

1
Ud

{
2V 2

(
εa + εd +G+

Uab

2
− E′

0

)(
2εa + Ua + 2εd − 2E′

0

)
−

−(2εd − E′
0)
(
2εa + Ua − E′

0

) [(
εa + εd +G− E′

0

)2 − U2
ab

]}
×

×
{
U2

ab + 2V 2 −
(
εa + εd +G− E′

0

) (
5εa + εd +G+ 2Ua − 3E′

0

)}−1
. (98)
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To obtain the renormalized functions |Eλ〉, we shall use the following values of
the Φ1, Φ2, Φ3 and Φ4 eigenfunctions of the matrix (93):

Φ2 (Eλ) = −
√
3
2

UabΦ1 (Eλ)(
εa + εd +G+

Uab

2
− E′

λ

) ,
Φ3 (Eλ) = −

√
2V Φ1 (Eλ)(

2εa + Ua − E′
λ

) , Φ4 (Eλ) = −
√
2V Φ1 (Eλ)

(2εd + Ud − E′
λ)
,

Φ1 (Eλ) =

1 +
3
4

U2
ab(

εa + εd +G+
Uab

2
− E′

λ

)2 +

+
2V 2(

2εa + Ua − E′
λ

)2 +
2V 2

(2εd + Ud − E′
λ)

2


−1/2

.

(99)

Consequently the four renormalized eigenfunctions |Eλ〉 have the form (λ =
1, 2, 3, 4)

|Eλ〉 = Φ1 (Eλ)

Ψ1 −
√
3
2

UabΨ2(
εa + εd +G+

Uab

2
− E′

λ

) −

−
√
2VΨ3(

2εa + Ua − E′
λ

) − √
2VΨ4

(2εd + Ud − E′
λ)

 . (100)

Let us now discuss the next four states Ψ5, ...,Ψ8 with S = 1/2 and Sz = 1/2:

Ψ5 = b+↑ b
+
↓ d

+
↑ |0〉, Ψ6 = b+↑ b

+
↓ a

+
↑ |0〉,

(101)
Ψ7 = a+↑ a

+
↓ d

+
↑ |0〉, Ψ8 = d+↑ d

+
↓ a

+
↑ |0〉.

We can form from them two doublet groups (Ψ5,Ψ6) and (Ψ7,Ψ8). For the ˇrst
doublet we have the equations

H0Ψ5 = (2εb + Ub + εd)Ψ5 + VΨ6,
(102)

H0Ψ6 = (2εb + Ub + εa + Uab)Ψ6 + VΨ5.
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In this subspace of functions, we have the following submatrix(
2εb + Ub + εd − E V

V 2εb + Ub + εa + Uab − E

)
. (103)

By using this matrix, we obtain two branches of energy spectrum

E5,6 = 2εb + Ub + E′
5,6,

(104)

E′
5,6 =

1
2

[
εa + εd + Uab ∓

√
(εa − εd + Uab)

2 + 4V 2

]
.

These values correspond to ones of the doublet state with N = 1 in the presence
of b-particles doublon. Here the repulsion Uab between a and b fermions is taken
into account. The eigenfunctions of the submatrix (103) have the values:

Φ6(Eλ) = − (εd − E′
λ)

V
Φ5(Eλ), λ = 5, 6,

(105)

Φ5(E5,6) =
1√
2

1± εa − εd + Uab√
(εa − εd + Uab)

2 + 4V 2

1/2

.

The knowledge of them permits us to obtain the corresponding renormalized
functions |Eλ〉, (λ = 5, 6):

|Eλ〉 = Φ5(Eλ)
[
Ψ5 −

(εd − E′
λ)

V
Ψ6

]
. (106)

Let us now discuss the properties of the second doublet of states (Ψ7,Ψ8). The
following system of equations exists for them:

H0Ψ7 = (2εa + Ub + εd + 2G)Ψ7 − VΨ8,

H0Ψ8 = (2εd + Ud + εa + 2G)Ψ8 − VΨ7,
(107)

with corresponding submatrix(
2εa + Ua + εd + 2G− E −V

−V 2εd + Ud + εa + 2G− E

)
, (108)

which permits us to obtain the two branches of the energy spectrum

E7,8 = εa + εd + 2G+ E′
7,8,

(109)

E′
7,8 =

1
2

[
εa + Ua + εd + Ud ∓

√
(εa + Ua − εd − Ud)

2 + 4V 2

]
.
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The functions Φ7 and Φ8 have the values:

Φ8(Eλ) = − (εa + Ua − E′
λ)

V
Φ7(Eλ),

(110)

Φ7(E7,8) =
1√
2

1∓ εa + Ua − εd − Ud√
(εa + Ua − εd − Ud)

2 + 4V 2

1/2

.

The renormalized eigenfunctions have the form

|E7,8〉 = Φ7(E7,8)

[
Ψ7 +

(
εa + Ua − E′

7,8

)
V

Ψ8

]
. (111)

Besides these eight states with the spin projection Sz = 1/2 there are other eight
states Ψ9,...,Ψ16 with opposite spin projection. These last functions are analogous
to eight functions of the ˇrst group and their renormalization is the same. Thus
we have eight double degenerate renormalized states. These 16 functions exhaust
the group of states with the spin equal to 1/2. Besides them there are four states
with the spin equal to 3/2 and spin projection values Sz = ±3/2,±1/2. Now
we shall take into account the linear combination χ1 + χ2 + χ3 which was not
used untill now. The four orthonormalized functions with this value of spin are
equal to

Ψ17 = d+↑ a
+
↑ b

+
↑ |0〉, Ψ18 =

1√
3
(χ1 + χ2 + χ3) =

=
1√
3

(
d+↑ a

+
↓ b

+
↑ + d+↓ a

+
↑ b

+
↑ + d+↑ a

+
↑ b

+
↓

)
|0〉, (112)

Ψ19 =
1√
3

(
d+↑ a

+
↓ b

+
↓ + d+↓ a

+
↑ b

+
↓ + d+↓ a

+
↓ b

+
↑

)
|0〉, Ψ20 = d+↓ a

+
↓ b

+
↓ |0〉.

It is easy to see that all of them are the eigenfunctions of the local Hamiltonian
(59) with the energy value

Eλ = εa + εb + εd +G, λ = 17, ..., 20. (113)

Let us now discuss the process of renormalization of the states with four particles
(N = 4) and two possible values of spin S = 0 and S = 1. The full number of
states is 15 and among them 6 are singlet and 9 are triplet states.
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Firstly we shall consider a group of three singlet states

Ψ1 =

(
d+↑ a

+
↓ − d+↓ a

+
↑

)
√
2

b+↑ b
+
↓ |0〉,

Ψ2 = a+↑ a
+
↓ b

+
↑ b

+
↓ |0〉, (114)

Ψ3 = d+↑ d
+
↓ b

+
↑ b

+
↓ |0〉.

The action of the local Hamiltonian on them gives the equations

H0Ψ1 = (εa + 2εb + εd + Ub +G+ Uab)Ψ1 +
√
2VΨ2 +

√
2VΨ3,

H0Ψ2 = (2εa + 2εb + Ua + Ub)Ψ2 +
√
2VΨ1, (115)

H0Ψ3 = (2εd + 2εb + Ud + Ub)Ψ3 +
√
2VΨ1.

The submatrix of the third rank in this subspace of states has the form
εa + 2εb + εd+

+Ub +G+ Uab − E
√
2V

√
2V

√
2V

2εa + 2εb + Ua+
+Ub − E

0

√
2V 0 2εd + 2εb + Ud+

+Ub − E

 . (116)

The energy spectrum of this trio of singlets is determined from the equation of
the third degree formulated for the energy E′

λ which differs from the enegy Eλ

by the energy of b doublon E′
λ = Eλ − (2εb + Ub):

(εa + εd + Uab +G− E′) (2εa + Ua − E′) (2εd + Ud − E′)−
− 2V 2 (2εa + 2εd + Ua + Ud − 2E′) = 0. (117)

This equation is analogous to that for two-particle singlets with the difference that
here the repulsion between a and b fermions is additionally taken into account.
The investigation of this equation can be done in the same way as in the case of
two particles (N = 2). The submatrix (116) determines three functions Φn(Eλ)
with n = 1, 2, 3:

Φ2(E) = −
√
2VΦ1(E)

2εa + Ua − E′ , Φ3(E) = −
√
2V Φ1(E)

2εd + Ud − E′ ,

Φ1(E) =

[
1 +

2V 2

(2εa + Ua − E′)2
+

2V 2

(2εd + Ud − E′)2

]−1/2

.

(118)
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By using these results, we obtain the following renormalized functions

|Eλ〉 = Φ1(Eλ)

[
Ψ1 −

√
2V

2εa + Ua − E′Ψ2 −
√
2V

2εd + Ud − E′Ψ3

]
. (119)

There are three else singlet four-particle states of the form:

Ψ4 = d+↑ d
+
↓ a

+
↑ a

+
↓ |0〉,

Ψ5 =

(
d+↑ b

+
↓ − d+↓ b

+
↑

)
√
2

a+↑ a
+
↓ |0〉. (120)

Ψ6 =

(
a+↑ b

+
↓ − a+↓ b

+
↑

)
√
2

d+↑ d
+
↓ |0〉.

The function Ψ4 is the eigenfunction of the local Hamiltonian with the eigenvalue

E4 = 2εd + Ud + 2εa + Ua + 4G, (121)

and as the consequence Φ4 = 1 and |E4〉 = Ψ4. The functions Ψ5 and Ψ6 form
one doublet of states with the following system of equations

H0Ψ5 = (2εa + Ua + εd + εb + 2G+ Uab)Ψ5 − VΨ6,

H0Ψ6 = (2εd + Ud + εa + εb + 2G+ 2Uab)Ψ6 − VΨ5.
(122)

These equations determine the submatrix
2εa + Ua + εd + εb+
+2G+ Uab − E

−V

−V 2εd + Ud + εa + εb+
+2G+ 2Uab − E

 . (123)

By using it we obtain the following two branches of the renormalized energy
spectrum

E5,6 = εa + εb + εd + 2G+ 2Uab + E′
5,6,

E′
5,6 =

1√
2

[
εa + Ua + εd + Ud + Uab ∓ (124)

∓
√
(εa + Ua − εd − Ud − Uab)2 + 4V 2

]
,



THE CELL REPRESENTATION OF THE THREE-BAND 995

and also the values of two functions Φ5 and Φ6

Φ6(E5,6) =

(
εa + Ua − E′

5,6

)
V

Φ5(E5,6) ,
(125)

Φ5(E5,6) =
1√
2

1∓ εa + Ua − εd − Ud − Uab√
(εa + Ua − εd − Ud − Uab)

2 + 4V 2

 .
The renormalized quantum states |Eλ〉 with λ = 5, 6 have the form

|E5,6〉 = Φ5(E5,6)
(
Ψ5 +

εa + Ua − E′
5,6

V
Ψ6

)
. (126)

Now we shall investigate the properties of nine states with the full spin S = 1
and with three values of its projection Sz. Three functions Ψ7,Ψ8, and Ψ9 with
Sz = 1 are

Ψ7 = d+↑ b
+
↑ a

+
↑ a

+
↓ |0〉, Ψ8 = a+↑ b

+
↑ d

+
↑ d

+
↓ |0〉, Ψ9 = d+↑ a

+
↑ b

+
↑ b

+
↓ |0〉. (127)

The action of the local Hamiltonian on them gives the system of equations

H0Ψ7 = (2εa + Ua + εb + εd + 2G+ Uab)Ψ7 − VΨ8,
(128)

H0Ψ8 = (2εd + Ud + εa + εb + 2G)Ψ8 − VΨ7,

and the corresponding submatrix has the form
2εa + Ua + εb + εd+
+2G+ Uab − E

−V

−V 2εd + Ud + εa + εb+
+2G− E

 . (129)

Two branches of renormalized energy spectrum for this doublet of states are:

E7,8 = εa + εb + εd + 2G+ E′
7,8,

E′
7,8 =

1
2

[
εa + Ua + Uab + εd + Ud ∓ (130)

∓
√
(εa + Ua − εd − Ud + Uab)

2 + 4V 2

]
.

The functions Φ7 and Φ8 have the values

Φ8(E) =
(εa + Ua + Uab − E′)

V
Φ7(E),

(131)

Φ7(E7,8) =
1√
2

1∓ εa + Ua − εd − Ud + Uab√
(εa + Ua − εd − Ud + Uab)

2 + 4V 2

1/2

.
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By using these results we obtain the renormalized eigenfunctions |E7,8〉

|E7,8〉 = Φ7(E7,8)

[
ψ7 +

(
εa + Ua + Uab − E′

7,8

)
V

Ψ8

]
. (132)

The function Ψ9 is the eigenfunction of the local Hamiltonian with the energy
eigenvalue

E9 = 2εb + Ub + εa + εd +G+ Uab. (133)

Now we shall discuss three triplet states with projection Sz = 0:

Ψ10 =

(
d+↑ a

+
↓ + d+↓ a

+
↑

)
√
2

b+↑ b
+
↓ |0〉,

Ψ11 =

(
d+↑ b

+
↓ + d+↓ b

+
↑

)
√
2

a+↑ a
+
↓ |0〉, (134)

Ψ12 =

(
a+↑ b

+
↓ + a+↓ b

+
↑

)
√
2

d+↑ d
+
↓ |0〉.

The state Ψ10 is the eigenfunction of the cell Hamiltonian with the value of
energy E10 = E9. We have also |E10〉 = Ψ10. The functions Ψ11 and Ψ12 form
a doublet with the system of equations

H0Ψ11 = (2εa + Ua + εd + εb + 2G+ Uab) Ψ11 − VΨ12,
(135)

H0Ψ12 = (2εd + Ud + εa + εb + 2G)Ψ12 − VΨ11.

This system coincides with the corresponding system for the doublet of functions
(Ψ7,Ψ8) and we can use the previous results:

E11,12 = E7,8; Φ11 = Φ7, Φ12 = Φ8,
(136)

|E11,12〉 = Φ11(E11,12)
[
Ψ11 +

εa + Ua + Uab − E′
11,12

V
Ψ12

]
.

At last, there are three states with spin projection Sz = −1:
Ψ13 = d+↓ b

+
↓ a

+
↑ a

+
↓ |0〉, Ψ14 = a+↓ b

+
↓ d

+
↑ d

+
↓ |0〉, Ψ15 = d+↓ a

+
↓ b

+
↑ b

+
↓ |0〉. (137)

The functions Ψ13 and Ψ14 repeat the properties of the functions Ψ7 and Ψ8; and
the function Ψ15, that of Ψ9. On the basis of previous results, we have

E13,14 = E7,8, E15 = E9, Φ13,14 = Φ7,8, Φ15 = 1,
(138)

|E13,14〉 = Φ13(E11,12)
[
Ψ13 +

εa + Ua + Uab − E′
13,14

V
Ψ14

]
, |E15〉 = Ψ15.
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Let us now discuss the properties of the local Hamiltonian states with N = 5,
S = 1/2, and Sz = ±1/2. The full number of states is six and one half of them
have spin up and others spin down. There are only three energy levels two-fold
times degenerate. Three states with spin up are:

Ψ1 = a+↑ a
+
↓ b

+
↑ b

+
↓ d

+
↑ |0〉, Ψ2 = b+↑ b

+
↓ d

+
↑ d

+
↓ a

+
↑ |0〉,

(139)
Ψ3 = a+↑ a

+
↓ d

+
↑ d

+
↓ b

+
↑ |0〉,

and they undergo the following equations of motion

H0Ψ1 = (2εa + Ua + 2εb + Ub + εd + 2G+ 2Uab)Ψ1 − VΨ2,

H0Ψ2 = (2εb + Ub + 2εd + Ud + εa + 2G+ Uab)Ψ2 − VΨ1, (140)

H0Ψ3 = (2εa + Ua + 2εd + Ud + εb + 4G+ Uab)Ψ3.

Two ˇrst states (139) form a doublet and the corresponding submatrix has a form
2εa + Ua + 2εb + Ub + εd+

+2G+ 2Uab − E
−V

−V 2εb + Ub + 2εd + Ud + εa+
+2G+ Uab − E

 . (141)

Two renormalized values of energy are

E1,2 = 2εb + Ub + εa + εd + 2G+ Uab + E′
1,2,

E′
1,2 =

1
2

[
εa + Ua + εd + Ud + Uab ∓ (142)

∓
√
( εa + Ua − εd − Ud + Uab)

2 + 4V 2

]
.

The eigenfunctions of this matrix have the values

Φ2(E1,2) =
1
V

(
εa + Ua + Uab − E′

1,2

)
Φ1(E1,2),

(143)

Φ1(E1,2) =
1√
2

1∓ εa + Ua − εd − Ud + Uab√
(εa + Ua − εd − Ud + Uab)

2 + 4V 2

1/2

.

The renormalized eigenfunctions |E1,2〉 have the form

|E1,2〉 = Φ1(E1,2)
[
Ψ1 +

εa + Ua + Uab − E′
1,2

V
Ψ2

]
. (144)
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The function Ψ3 is the eigenfunction of the local Hamiltonian with the self-energy

E3 = εb + 2εa + Ua + 2εd + Ud + 4G+ Uab. (145)

The other three states

Ψ4 = a+↑ a
+
↓ b

+
↑ b

+
↓ d

+
↓ |0〉, Ψ5 = b+↑ b

+
↓ d

+
↑ d

+
↓ a

+
↓ |0〉,

(146)
Ψ6 = a+↑ a

+
↓ d

+
↑ d

+
↓ b

+
↓ |0〉,

have the spin down and their properties repeat those with spin up. Thus we have:

E4,5 = E1,2, E6 = E3, Φ4 = Φ1,2, Φ6 = 1,
(147)

|E4,5〉 = Φ4(E4,5)
[
Ψ4 +

εa + Ua + Uab − E′
4,5

V
Ψ5

]
, |E6〉 = Ψ6.

Finally, there is one unrenormalized state with six particles and spin equal to
zero. It is the state composed of a, b, and d doublons

Ψ = a+↑ a
+
↓ b

+
↑ b

+
↓ d

+
↑ d

+
↓ |0〉 (148)

with the energy

E = 2εa + Ua + 2εb + Ub + 2εd + Ud + 4G+ 2Uab. (149)

3. DISCUSSION

The cell representation for the copper oxide Hamiltonian has been established
in this paper. The new element of our investigation is the conception of diago-
nalizing ak,σ and bk,σ fermions for which the relations with canonical fermions
Pk,σ and Qk,σ have been formulated. This conception has permitted us to precise
the value of charge transfer energy and to take into account correctly both the
kinetic energy and the Coulomb interaction of the oxygen holes. On such a basis
we have proved the new form of the local part of the cell Hamiltonian with three
kinds of Wannier fermions and have selected the main delocalizing processes.
The detailed analysis of the renormalization of the energy spectrum and of the
wave functions of the elementary excitations has been done. These results can be
demonstrated by using the standard system of parameters (50).

For example, in the case when N = 1 the lowest energy level E1 (68)
contains the energy gain

E1 = εd − 1.088tdp = εd − 1.414 eV. (150)
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The second energy level of this doublet has considerably higher energy:

E2 = εd + 2.978tdp = εd + 3.871 eV. (151)

These values can be compared with the energy of one b fermion

E3 = εd + 3.510tdp = εd + 4.563 eV. (152)

This energy is higher than doublet energies. The energy of one a fermion
εa = εd + 1.890tdp = εd + 2.457 eV is considerably lower than that for b
diagonalizing fermion.

For the case N = 2 three singlet states composed of a and d fermions have
the energies determined by equation (74). In our system of parameters (50),
equation (74) and his three solutions have the form

En = 2εd + entdp,

(7− e)(4.280− e)(2.701− e)− 6.48(11.280− 2e) = 0,
e1 = 0.174 , e2 = 5.294 , e3 = 8.513,
E1 = 2εd + 0.174tdp = 2εd + 0.226 eV,
E2 = 2εd + 5.294tdp = 2εd + 6.882 eV,
E3 = 2εd + 8.513tdp = 2εd + 11.067 eV.

(153)

The lowest of them is ZhangÄRice singlet.
Besides these singlets, there are also two other singlets (79) of (d, b) and

(a, b) kind and one additional (b, b) singlet with the energy

E6 = 2εd + 2(εb − εd) + Ub .

The numerical values of them are:

E4 = 2εd + 2.598tdp = 2εd + 3.377 eV,
E5 = 2εd + 7.062tdp = 2εd + 9.181 eV,
E6 = 2εd + 7.520tdp = 2εd + 9.776 eV.

(154)

The triplet energy levels are three-fold degenerate. Their numerical values are
the following:

E7 = 2εd + 2.701tdp = 2εd + 3.511 eV,
E8 = 2εd + 2.422tdp = 2εd + 3.149 eV,
E9 = 2εd + 6.488tdp = 2εd + 8.434 eV.

(155)

These triplets are composed of (a, d), (d, b) and (a, b) fermions correspondingly.
Thus among 15 states with two particles, one, just ZhangÄRice singlet, has the
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lowest energy E1. Three levels E4, E7, and E8 have the moderate values, and
the group of levels E2, E3, E5, E6, E9 has high values.

Among 20 states with N = 3 we shall distinguish a quartet of states with
S = 1/2 and Sz = 1/2, the energy spectrum of which is determined ˇrstly by
the equation (94). For our system of parameters this equation and his solutions
are (tdp = 1.3 eV)

En = 3εd + (εb − εd) + entdp,

(7− e)(4.655− e)(3.076− e)2 − 6.48(3.263− e)×
×(11.655− 2e)− 0.141(4.655− e)(7− e) = 0,

e1 = 0.365, e2 = 3.279, e3 = 5.563, e4 = 8.600,
(156)

E1 = 3εd + (εb − εd) + 0.365tdp = 3εd + 3.875tdp,

E2 = 3εd + (εb − εd) + 3.279tdp = 3εd + 6.789tdp,

E3 = 3εd + (εb − εd) + 5.563tdp = 3εd + 9.073tdp,

E4 = 3εd + (εb − εd) + 8.600tdp = 3εd + 12.110tdp.

Besides them, there are two energies E5,6 (104) which belong to the (a, d)
doublet in the presence of the b doublon:

E5,6 = 3εd + [2 (εb − εd) + Ub] +

+
1
2

[
εa + Uab − εd ∓

√
(εa + Uab − εd)2 + 4V 2

]
, (157)

E5 = 3εd + 6.526tdp, E6 = 3εd + 10.779tdp.

In the case when this doublet exists in the presence of the doublons a or d the
energy levels are determined by the equation (109):

E7,8 = 3εd + (εa − εd) + 2G+

+
1
2

[
εa + Ua − εd + Ud ∓

√
(εa + Ua − εd − Ud)

2 + 4V 2

]
, (158)

E7 = 3εd + 5.282tdp, E8 = 3εd + 11.131tdp.

All the energy values, listed above, are independent of the spin projection value,
therefore the energy levels for other 8 states with opposite spin direction are the
same. When the spin value is S = 3/2, one four-fold degenerate energy level
exists with the value:

E17 = 3εd + (εa − εd) + (εb − εd) +G = 3εd + 6.211tdp. (159)

Our analysis of the properties of three-particle renormalized cell states reveals the
peculiarities connected with the presence of the b fermion, its inzuence on the
spin structure of the states and its interaction with other two particles.
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For completeness, we shall enumerate here the numerical values of renor-
malized energy levels of the states with N = 4, 5, 6. The energy values, as we
have demonstrated above for the case N = 1, 2, 3, can be presented in the general
form E(N,S, n) = Nεd + Fn(N,S). We shall enumerate below only these Fn

values, omitting also, for simplicity, the main quantum numbers.
For example, for N = 4 and S = 0, six singlet states exist. The ˇrst three

values have been obtained from equation (117). In our system of parameters (50)
this equation and its solutions have the form

En = 4εd + 2(εb − εd) + Ua + entdp,

(7− e)(4.280− e)(3.076− e)− 12.96(5.640− e) = 0,
e1 = 0.415 , e2 = 5.334 , e3 = 8.607,

F1 = 7.935tdp, F2 = 12.854tdp, F3 = 16.127tdp.

(160)

There are three else singlet solutions

F4 = 14.524tdp, F5 = 9.580tdp, F6 = 15.729tdp.

The ˇrst of them is obtained from equation (121); and the last two, from (124).
There are also three triplet levels (see equations (130) and (133)) with energy
values:

F7 = 9.125tdp, F8 = 14.683tdp, F9 = 10.596tdp. (161)

In the case N = 5 and S = 1/2, there are three energy levels

F1 = 13.510tdp, F2 = 19.068tdp, F3 = 18.409tdp. (162)

Finally, for N = 6, we have:

F = 22.794tdp. (163)

The comparison between the renormalized energy spectrum in the presence and
the absence of diagonalizing fermions can help us to understand the necessity of
their using. We shall make this comparison for the simplest states with N = 1 and
N = 2. In the absence of the diagonalizing fermions instead of two local energies
εa and εb we must use the initial local oxygen ion value εp = εd+2.700tdp. Such
parameters, of our theory, as V = 1.800tdp, G = 0.811tdp, and Ua = 0.500tdp

have to be changed. Their new values will be V̄ = 1.916tdp, Ḡ = 0.918tdp, and
Ūa = 0.633tdp. Now we shall introduce in our previous equations (150)Ä(152)
the new values of the parameters and obtain the following results (N = 1)

Ē1 = εd − 0.994tdp = εd − 1.292 eV,
Ē2 = εd + 3.694tdp = εd + 4.802 eV,
Ē3 = εd + 2.700tdp = εd + 3.510 eV.

(164)
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Thus, in the absence of diagonalizing process, the lowest level of doublet Ē1 is
found to be situated higher at 0.122 eV than the value E1 (150), obtained by
us in the presence of the diagonalizing fermions. Now we shall discuss the case
N = 2 and S = 0. The energy levels of singlet states (153) have been obtained
in the presence of diagonalizing fermions. Now, if we use the unrenormalized
parameters εp, V̄ , Ḡ, and Ūa we obtain the new equation for three values of singlet
energy, instead of (153):

(7 − ē)(3.618− ē)(6.033− ē)− 7.342(13.033− 2ē) = 0. (165)

This last equation gives us the following results Ēn = 2εd + ēntdp:

Ē1 = 2εd + 0.957tdp = 2εd + 1.244 eV,
Ē2 = 2εd + 6.471tdp = 2εd + 8.412 eV,
Ē3 = 2εd + 9.223tdp = 2εd + 11.990 eV.

(166)

The comparison of these results with the values (153) demonstrates that the
diagonalizing process lowers the energy levels of all three singlet states. The
energy level of the singlet ZhangÄRice is lower in our case by 1.018 eV.

The numerical analysis of the energy spectrum of the cell Hamiltonian, given
above, permits us to consider that, for every value of the particle number N ,
only one lowest energy level exists and that the distance ∆E between it and
all other higher levels is not less than 1.5 eV. Because the temperature T of
interest is about Tc Å the critical temperature of oxides superconductors Å we
can consider that the quantity β∆E is higher than 100, where β = (kBT )−1.
Therefore we can take into account only the lowest level (for every N ) in our
thermodynamical investigation. On the basis of such arguments, we obtain the
following approximate equation for mean number of holes nh with both directions
of the spin, attributed to one copper site:

nh = 2
[
e−β(εd+F1) + e−β(2εd+F2) + 3 e−β(3εd+F3) +

+2 e−β(4εd+F4) + 5 e−β(5εd+F5) + 3 e−β(6εd+F6)
]
×

×
[
1 + 2 e−β(εd+F1) + e−β(2εd+F2) + 2 e−β(3εd+F3) + e−β(4εd+F4)+

+ 2 e−β(5εd+F5) + e−β(6εd+F6)
]−1

. (167)

Here the contribution FN corresponds to the lowest energy value, with ˇxed N .
For example, F1 is the second contribution of the right-hand part of (150), F2

can be found in the fourth line of (153); F3, in (156) and so on. The chemical
potential µ is contained only in the energy εd = ε̄d−µ. The quantity εd is positive
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and has a large value when the number of holes is very small. But this quantity
becomes negative when the hole number increases. The number of holes can
change from zero to six. The corresponding changing of µ will be from minus
to plus inˇnity. We propose a simple equation, which describes the dependence
of the chemical potential, or εd, on the number of holes 0 < nh < 1:

εd = −F1 + y, βy = lnm, y � |F1|,

nh =
2

2 +m
+

2(m+ 1)
(2 +m)2

e−β(F2−F1).
(168)

As we can see from this equation, the number nh is equal to 2/3 when m is equal
to one and is more(less) than 2/3 when m is less(more) than one.

In this investigation we didn't take into account the delocalization processes,
which can change radically the physics of this problem. This question needs a
special investigation.
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