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Neutrinos can play an important role in the evolution of the Universe, modifying some of the
cosmological observables. We describe how the precision of present cosmological data can be used
to learn about neutrino properties, in particular, their mass. We show how the analysis of current
cosmological observations provides an upper bound on the sum of neutrino masses, with improved
sensitivity from future cosmological measurements.

PACS: 14.60.Pq; 95.85.Ry

INTRODUCTION

In this contribution I summarize the topics discussed in my two lectures at
the School on Neutrino Cosmology, one of the best examples of the very close
ties that have developed between nuclear physics, particle physics, astrophysics
and cosmology. I tried to present the most interesting aspects, but many others
that were left out can be found in the reviews [1Ä3] and, in particular, in [4].
A more general review on the connection between particle physics and cosmology
can be found in [5].

We begin with a description of the properties and evolution of the background
of relic neutrinos that ˇlls the Universe. Then we review the in�uence of neutrinos
on Primordial Nucleosynthesis. The largest part of this contribution is devoted
to the impact of massive neutrinos on cosmological observables, that can be used
to extract bounds on neutrino masses from present data. Finally we discuss the
sensitivities on neutrino masses from future cosmological experiments.

Massive neutrinos could also play a role in the generation of the baryon
asymmetry of the Universe from a previously created lepton asymmetry. In these
leptogenesis scenarios, one can also obtain quite restrictive bounds on light neu-
trino masses, which are however model-dependent. We do not discuss this subject
here, as it was covered by other lecturer at the School [6].

1. THE COSMIC NEUTRINO BACKGROUND

The existence of a relic sea of neutrinos is a generic feature of the standard hot
Big Bang model, in number only slightly below that of relic photons that constitute
the cosmic microwave background (CMB). This cosmic neutrino background
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(CNB) has not been detected yet, but its presence is indirectly established by the
accurate agreement between the calculated and observed primordial abundances
of light elements, as well as from the analysis of the power spectrum of CMB
anisotropies. In this section we will summarize the evolution and main properties
of the CNB.

1.1. Relic Neutrino Production and Decoupling. Produced at large temper-
atures by frequent weak interactions, cosmic neutrinos of any �avour (νe, νμ, ντ )
were kept in equilibrium until these processes became ineffective in the course
of the expansion of the early Universe. While coupled to the rest of the primeval
plasma (relativistic particles such as electrons, positrons, and photons), neutrinos
had a momentum spectrum with an equilibrium FermiÄDirac distribution with
temperature T ,

feq(p, T ) =
[
exp

(
p − μν

T

)
+ 1

]−1

, (1)

which is just one example of the general case of particles in equilibrium (fermions
or bosons, relativistic or nonrelativistic), as shown, e.g., in [7]. In the previous
equation we have included a neutrino chemical potential μν that would exist in
the presence of a neutrinoÄantineutrino asymmetry.

As the Universe cools, the weak interaction rate Γν falls below the expansion
rate and neutrinos decouple from the rest of the plasma. An estimate of the de-
coupling temperature Tdec can be found by equating the thermally averaged value
of the weak interaction rate, Γν = 〈σν nν〉, where σν ∝ G2

F is the cross section
of the electronÄneutrino processes, with GF Å the Fermi constant, and nν is the
neutrino number density, with the expansion rate given by the Hubble parameter
H , H2 = 8πρ/3M2

P , where ρ ∝ T 4 is the total energy density, dominated by
relativistic particles, and MP = 1/G1/2 is the Planck mass. If we approximate
the numerical factors to unity, with Γν ≈ G2

F T 5 and H ≈ T 2/MP , we obtain the
rough estimate Tdec ≈ 1 MeV. More accurate calculations give slightly higher
values of Tdec which are �avour-dependent since electron neutrinos and antineu-
trinos are in closer contact with electrons and positrons, as shown, e.g., in [1].

Although neutrino decoupling is not described by a unique Tdec, it can be
approximated as an instantaneous process. The standard picture of instantaneous
neutrino decoupling is very simple (see, e.g., [7] or [8]) and reasonably accurate.
In this approximation, the spectrum in Eq. (1) is preserved after decoupling, since
both neutrino momenta and temperature redshift identically with the expansion
of the Universe. In other words, the number density of noninteracting neutrinos
remains constant in a comoving volume since the decoupling epoch. We will see
later that active neutrinos cannot possess masses much larger than 1 eV, so they
were ultra-relativistic at decoupling. This is the reason why the momentum distri-
bution in Eq. (1) does not depend on the neutrino masses, even after decoupling,
i.e., there is no neutrino energy in the exponential of feq(p).
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When calculating quantities related to relic neutrinos, one must consider the
various possible degrees of freedom per �avour. If neutrinos are massless or
Majorana particles, there are two degrees of freedom for each �avour, one for
neutrinos (one negative helicity state) and one for antineutrinos (one positive
helicity state). Instead, for Dirac neutrinos there are in principle twice more
degrees of freedom, corresponding to the two helicity states. However, the
extra degrees of freedom should be included in the computation only if they are
populated and brought into equilibrium before the time of neutrino decoupling.
In practice, the Dirac neutrinos with the ®wrong-helicity¯ states do not interact
with the plasma at temperatures of the MeV order and have a vanishingly small
density with respect to the usual left-handed neutrinos (unless neutrinos have
masses close to the keV range, as explained in Sec. 6.4 of [1], but such a large
mass is excluded for active neutrinos). Thus, the relic density of active neutrinos
does not depend on their nature, either Dirac or Majorana particles.

Shortly after neutrino decoupling the temperature drops below the electron
mass, favouring e± annihilations that heat the photons. If one assumes that this
entropy transfer did not affect the neutrinos because they were already completely
decoupled, it is easy to calculate the change in the photon temperature before
any e± annihilation and after the electronÄpositron pairs disappear by assuming
entropy conservation of the electromagnetic plasma. The result is

T after
γ

T before
γ

=
(

11
4

)1/3

� 1.40102, (2)

which is also the ratio between the temperatures of relic photons and neutrinos
Tγ/Tν = (11/4)1/3. The evolution of this ratio during the process of e± annihila-
tions is shown in Fig. 1, a, while one can see in the other plot how in this epoch the
photon temperature decreases with the expansion less than the inverse of the scale
factor a. Instead, the temperature of the decoupled neutrinos always falls as 1/a.

It turns out that the standard picture of neutrino decoupling described above
is slightly modiˇed: the processes of neutrino decoupling and e± annihilations are
sufˇciently close in time so that some relic interactions between e± and neutrinos
exist. These relic processes are more efˇcient for larger neutrino energies, leading
to nonthermal distortions in the neutrino spectra at the per cent level and a slightly
smaller increase of the comoving photon temperature, as noted in a series of works
(see the full list given in the review by [1]). A proper calculation of the process of
noninstantaneous neutrino decoupling demands solving the momentum-dependent
Boltzmann equations for the neutrino spectra, a set of integro-differential kinetic
equations that are difˇcult to solve numerically. The most recent analysis [9] of
this problem included the effect of �avour neutrino oscillations on the neutrino
decoupling process. One ˇnds an increase in the neutrino energy densities with
respect to the instantaneous decoupling approximation (0.73 and 0.52% for νes
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Fig. 1. Photon and neutrino temperatures during the process of e± annihilations: evolution
of their ratio (a) and their decrease with the expansion of the Universe (b)

and νμ,τ s, respectively) and a value of the comoving photon temperature after e±

annihilations which is a factor of 1.3978 larger, instead of 1.40102. These changes
modify the contribution of relativistic relic neutrinos to the total energy density
which is taken into account using Neff � 3.046, as deˇned later in Eq. (11).
In practice, the distortions calculated in [9] only have small consequences on
the evolution of cosmological perturbations, and for many purposes they can be
safely neglected.

Any quantity related to relic neutrinos can be calculated after decoupling with
the spectrum in Eq. (1) and Tν . For instance, the number density per �avour is
ˇxed by the temperature,

nν =
3
11

nγ =
6ζ(3)
11π2

T 3
γ , (3)

which leads to a present value of 113 neutrinos and antineutrinos of each �avour
per cm3. Instead, the energy density for massive neutrinos should, in principle,
be calculated numerically, with two well-deˇned analytical limits,

ρν(mν � Tν) =
7π2

120

(
4
11

)4/3

T 4
γ , (4)

ρν(mν � Tν) = mνnν . (5)
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1.2. Background Evolution. Let us discuss the evolution of the CNB after
decoupling in the expanding Universe, which is described by the FriedmannÄ
RobertsonÄWalker metric [8]

ds2 = dt2 − a(t)2 δij dxi dxj , (6)

where we assumed negligible spatial curvature. Here a(t) is the scale factor
usually normalized to unity now (a(t0) = 1) and related to the redshift z as
a = 1/(1 + z). General relativity tells us the relation between the metric and the
matter and energy in the Universe via the Einstein equations, whose timeÄtime
component is the Friedmann equation(

ȧ

a

)2

= H2 =
8πG

3
ρ = H2

0

ρ

ρ0
c

, (7)

that gives the Hubble rate in terms of the total energy density ρ. At any time, the
critical density ρc is deˇned as ρc = 3H2/8πG, and the current value H0 of the
Hubble parameter gives the critical density today

ρ0
c = 1.8788 · 10−29 h2 g · cm−3, (8)

where h ≡ H0/(100 km · s−1·Mpc−1).
The different contributions to the total energy density are

ρ = ργ + ρcdm + ρb + ρν + ρΛ, (9)

and the evolution of each component is given by the energy conservation law
in an expanding Universe ρ̇ = −3H(ρ + p), where p is the pressure. Thus the
homogeneous density of photons ργ scales like a−4, that of nonrelativistic matter
(ρcdm for cold dark matter and ρb for baryons) like a−3, and the cosmological
constant density ρΛ is of course time-independent. Instead, the energy density of
neutrinos contributes to the radiation density at early times but behaves as matter
after the nonrelativistic transition.

The evolution of all densities is shown in Fig. 2, a, starting at MeV tempera-
tures until now. We also display the characteristic times for the end of Primordial
Nucleosynthesis and for photon decoupling or recombination. The evolution of
the density fractions Ωi ≡ ρi/ρc is shown on the right panel, where it is easier
to see which of the Universe components is dominant, ˇxing its expansion rate:
ˇrst radiation in the form of photons and neutrinos (Radiation Domination or
RD), then matter which can be CDM, baryons and massive neutrinos at late times
(Matter Domination or MD) and ˇnally the cosmological constant density takes
over at low redshift (typically z < 0.5).

Massive neutrinos are the only particles that present a transition from radiation
to matter, when their density is clearly enhanced (upper solid lines in Fig. 2).
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Fig. 2. Evolution of the background energy densities (a) and density fractions Ωi (b) from
the time when Tν = 1 MeV until now, for each component of a �at ΛMDM model
with h = 0.7 and current density fractions ΩΛ = 0.70, Ωb = 0.05, Ων = 0.0013, and
Ωcdm = 1−ΩΛ −Ωb −Ων . The three neutrino masses are m1 = 0, m2 = 0.009 eV, and
m3 = 0.05 eV

Obviously the contribution of massive neutrinos to the energy density in the
nonrelativistic limit is a function of the mass (or the sum of all masses for
which mi � Tν), and the present value Ων could be of order unity for eV
masses (see Sec. 4).

2. NEUTRINOS AND PRIMORDIAL NUCLEOSYNTHESIS

In the course of its expansion, when the early Universe was only less than
a second old, the conditions of temperature and density of its nucleon compo-
nent were such that light nuclei could be created via nuclear reactions (for a
recent review, see [10]). During this epoch, known as Primordial or Big Bang
Nucleosynthesis (BBN), the primordial abundances of light elements were pro-
duced: mostly 4He but also smaller quantities of less stable nuclei such as
D, 3He, and 7Li. Heavier elements could not be produced because of the
rapid evolution of the Universe and its small nucleon content, related to the
small value of the baryon asymmetry which normalized to the photon density,
ηb ≡ (nb − nb̄)/nγ , is about a few times 10−10. Measuring these primordial
abundances today is a very difˇcult task, because stellar process may have al-
tered the chemical compositions. Still, data on the primordial abundances of
4He, D, and 7Li exist and can be compared with the theoretical predictions



1212 PASTOR S.

to learn about the conditions of the Universe at such an early period. Thus
BBN can be used as a cosmological test of any nonstandard physics or cosmol-
ogy [11].

The physics of BBN is well understood, since in principle only involves the
Standard Model of particle physics and the time evolution of the expansion rate as
given by the Friedmann equation. In the ˇrst phase of BBN, the weak processes
that keep the neutrons and protons in equilibrium,

n + νe ↔ p + e−, n + e+ ↔ p + ν̄e (10)

freeze and the neutron-to-proton ratio becomes a constant (later diminished due
to neutron decays, n → p + e− + ν̄e). This ratio largely ˇxes the produced
4He abundance. Later, all the primordial abundances of light elements are pro-
duced and their value depends on the competition between the nuclear reac-
tion rates and the expansion rate. These values can be quite precisely calcu-
lated with a BBN numerical code (see, e.g., [12]). At present there exists a
nice agreement with the observed abundance of D for a value of the baryon
asymmetry η = (5.7 ± 0.6) · 10−10 [10], which also agrees with the region
determined by CMB [13] and large-scale structure data (LSS). Instead, the pre-
dicted primordial abundance of 4He tends to be a bit smaller than the observed
value [14, 15]. However, it is difˇcult to consider this as a serious discrep-
ancy, because the accuracy of the observations of 4He is limited by systematic
uncertainties.

There are two main effects of relic neutrinos at BBN. The ˇrst one is that
they contribute to the relativistic energy density of the Universe (if mν � Tν),
thus ˇxing the expansion rate. This is why BBN gave the ˇrst allowed range
of the number of neutrino species before accelerators (see the next section).
On the other hand, BBN is the last period of the Universe sensitive to neu-
trino �avour, since electron neutrinos and antineutrinos play a direct role in the
processes in Eq. (10).

3. EXTRA RADIATION
AND THE EFFECTIVE NUMBER OF NEUTRINOS

Together with photons, in the standard case neutrinos ˇx the expansion rate
during the cosmological era when the Universe is dominated by radiation. Their
contribution to the total radiation content can be parametrized in terms of the
effective number of neutrinos Neff , through the relation

ρr = ργ + ρν =

[
1 +

7
8

(
4
11

)4/3

Neff

]
ργ , (11)
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where we have normalized to the photon energy density because its value today
is known from the measurement of the CMB temperature. This equation is valid
when neutrino decoupling is complete and holds as long as all neutrinos are
relativistic.

We know that the number of light neutrinos sensitive to weak interac-
tions (�avour or active neutrinos) equals three from the analysis of the invisible
Z-boson width at LEP, Nν = 2.984±0.008 [16], and we saw in the previous sec-
tion from the analysis of neutrino decoupling that they contribute as Neff � 3.046.
Any departure of Neff from this last value would be due to nonstandard neutrino
features or to the contribution of other relativistic relics. For instance, the energy
density of a hypothetical scalar particle φ in equilibrium with the same tempera-
ture as neutrinos would be ρφ = (π/30)T 4

ν , leading to a departure of Neff from
the standard value of 4/7. For detailed discussion of cosmological scenarios,
where Neff is not ˇxed to 3, see, e.g., [1, 11].

In the previous section, we saw that the expansion rate during BBN ˇxes
the produced abundances of light elements, and in particular that of 4He. Thus,
the value of Neff can be constrained at the BBN epoch from the comparison
of theoretical predictions and experimental data on the primordial abundances of
light elements. In addition, a value of Neff different from the standard one would
modify the transition epoch from a radiation-dominated to a matter-dominated
Universe, which has some consequences on some cosmological observables such
as the power spectrum of CMB anisotropies, leading to independent bounds on the
radiation content. These are two complementary ways of constraining Neff at very
different epochs. Interestingly, recent data on the anisotropies of the CMB from
WMAP [13] and the primordial 4He abundance [14,15] seem to favor a value of
Neff > 3, although with large errorbars. The upcoming CMB measurements by
the PLANCK satellite will soon pin down the radiation content of the Universe.

4. MASSIVE NEUTRINOS AS DARK MATTER

Nowadays the existence of Dark Matter (DM), the dominant nonbaryonic
component of the matter density in the Universe, is well established. A priori,
massive neutrinos are excellent DM candidates, in particular because we are cer-
tain that they exist, in contrast with other candidate particles. Together with CMB
photons, relic neutrinos can be found anywhere in the Universe with a number
density given by the present value of Eq. (3) of 339 neutrinos and antineutrinos
per cm3, and their energy density in units of the critical value of the energy
density (see Eq. (8)) is

Ων =
ρν

ρ0
c

=

∑
i

mi

93.14 h2 eV
. (12)
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Here
∑
i

mi includes all masses of the neutrino states which are nonrelativistic

today. It is also useful to deˇne the neutrino density fraction fν with respect to
the total matter density fν ≡ ρν/(ρcdm + ρb + ρν) = Ων/Ωm.

In order to check whether relic neutrinos can have a contribution of order
unity to the present values of Ων or fν , we should consider which neutrino
masses are allowed by noncosmological data. Oscillation experiments measure the
differences of squared neutrino masses Δm2

21 = m2
2−m2

1 and Δm2
31 = m2

3−m2
1,

the relevant ones for solar and atmospheric neutrinos, respectively, [17,18]. As a
reference, we take the following values of mixing parameters (3σ ranges or upper
bounds) from an update of [19]:

Δm2
21 = (7.59+0.68

−0.56) · 10−5 eV2, |Δm2
31| = (2.40+0.35

−0.33) · 10−3 eV2,

s2
12 = 0.32+0.06

−0.05, s2
23 = 0.50+0.17

−0.14, s2
13 � 0.053.

(13)

Here sij = sin θij , where θij (ij = 12, 23 or 13) are the three mixing angles.
Unfortunately, oscillation experiments are insensitive to the absolute scale of
neutrino masses, since the knowledge of Δm2

21 > 0 and |Δm2
31| leads to the

two possible schemes shown in Fig. 1 of [4], but leaves one neutrino mass un-
constrained. These two schemes are known as normal (NH) and inverted (IH)
hierarchies, characterized by the sign of Δm2

31, positive and negative, respec-
tively. For small values of the lightest neutrino mass m0, i.e., m1 (m3) for NH
(IH), the mass states follow a hierarchical scenario, while for masses much larger
than the differences all neutrinos share in practice the same mass and then we say
that they are degenerate. In general, the relation between the individual masses
and the total neutrino mass can be found numerically, as shown in Fig. 3.

There are two types of laboratory experiments searching for the absolute
scale of neutrino masses, a crucial piece of information for constructing models
of neutrino masses and mixings. The neutrinoless double-beta decay (Z, A) →
(Z + 2, A) + 2e− (in short 0ν2β) is a rare nuclear process where lepton num-
ber is violated and whose observation would mean that neutrinos are Majorana
particles. If the 0ν2β process is mediated by a light neutrino, the results from
neutrinoless double-beta decay experiments are converted into an upper bound or
a measurement of the effective mass mββ

mββ = |c2
12c

2
13 m1 + s2

12c
2
13 m2 eiφ2 + s2

13 m3 eiφ3 | (14)

where φ1,2 are the two Majorana phases that appear in lepton-number-violating
processes. See [20,21] for more details and the current experimental results.

Beta-decay experiments, which involve only the kinematics of electrons, are
in principle the best strategy for measuring directly the neutrino mass [22]. The
current limits from tritium beta decay apply only to the range of degenerate
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Fig. 3. Expected values of neutrino masses according to the values in Eq. (13). a) Individual
neutrino masses as a function of the total mass for the best-ˇt values of the Δm2. b) Ranges
of total neutrino mass as a function of the lightest state within the 3σ regions (thick lines)
and for a future determination at the 5% level (thin lines)

neutrino masses, so that mβ � m0, where

mβ = (c2
12c

2
13 m2

1 + s2
12c

2
13 m2

2 + s2
13 m2

3)
1/2 (15)

is the relevant parameter for beta decay experiments. The bound at 95% CL is
m0 < 2.05−2.3 eV from the Troitsk and the Mainz experiments, respectively.
This value is expected to be improved by the KATRI project to reach a discovery
potential for 0.3Ä0.35 eV masses (or a sensitivity of 0.2 eV at 90% CL). Taking
into account the present upper bound and the minimal values of the total neutrino
mass in the normal (inverted) hierarchy, the sum of neutrino masses is restricted
to the approximate range

0.06 (0.1) eV �
∑

i

mi � 6 eV. (16)

As we discuss in the next sections, cosmology is at ˇrst order sensitive to the
total neutrino mass

∑
i

mi if all states have the same number density, providing

information on m0 but blind to neutrino mixing angles or possible CP -violating
phases. Thus cosmological results are complementary to terrestrial experiments.
The interested reader can ˇnd the allowed regions in the parameter space deˇned
by any pair of parameters (

∑
i

mi, mββ, mβ) in [23].
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Now we can ˇnd the possible present values of Ων in agreement with the
three neutrino masses shown in Fig. 3 and the approximate bounds of Eq. (16).
Note that even if the three neutrinos are nondegenerate in mass, Eq. (12) can be
safely applied, because we know from neutrino oscillation data that at least two
of the neutrino states are nonrelativistic today, since both (Δm2

31)
1/2 � 0.05 eV

and (Δm2
21)

1/2 � 0.009 eV are larger than the temperature Tν � 1.96 K
� 1.7 · 10−4 eV. If the third neutrino state is very light and still relativistic,
its relative contribution to Ων is negligible and Eq. (12) remains an excellent
approximation of the total density. One ˇnds that Ων is restricted to the approx-
imate range

0.0013 (0.0022) � Ων � 0.13, (17)

where we already included that h ≈ 0.7. This applies only to the standard
case of three light active neutrinos, while in general a cosmological upper
bound on Ων has been used since the 1970s to constrain the possible val-
ues of neutrino masses. For instance, if we demand that neutrinos should
not be heavy enough to overclose the Universe (Ων < 1), we obtain an up-
per bound

∑
i

mi � 45 eV (again ˇxing h = 0.7). Moreover, since from the

present analyses of cosmological data we know that the approximate contribution
of matter is Ωm � 0.3, the neutrino masses should obey the stronger bound∑
i

mi � 15 eV. We see that with this simple argument one obtains a bound

which is roughly only a factor of 2 worse than the bound from tritium beta
decay, but of course with the caveats that apply to any cosmological analy-
sis. In the three-neutrino case, these bounds should be understood in terms of
m0 =

∑
i

mi/3.

Dark matter particles with a large velocity dispersion such as that of neutri-
nos are called hot dark matter (HDM). The role of neutrinos as HDM particles
has been widely discussed since the 1970s, and the reader can ˇnd a historical
review in [24]. It was realized in the mid-1980s that HDM affects the evo-
lution of cosmological perturbations in a particular way: it erases the density
contrasts on wavelengths smaller than a mass-dependent free-streaming scale. In
a Universe dominated by HDM, this suppression is in contradiction with various
observations. For instance, large objects such as superclusters of galaxies form
ˇrst, while smaller structures like clusters and galaxies form via a fragmenta-
tion process. This top-down scenario is at odds with the fact that galaxies seem
older than clusters.

Given the failure of HDM-dominated scenarios, the attention then turned
to cold dark matter (CDM) candidates, i.e., particles which were nonrelativis-
tic at the epoch when the Universe became matter-dominated, which provided
a better agreement with observations. Still in the mid-1990s it appeared that
a small mixture of HDM in the Universe dominated by CDM ˇtted better the
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observational data on density �uctuations at small scales than a pure CDM
model. However, within the presently favoured ΛCDM model dominated at
late times by a cosmological constant (or some form of dark energy) there
is no need for a signiˇcant contribution of HDM. Instead, one can use the
available cosmological data to ˇnd how large the neutrino contribution can
be, as we will see later.

Do neutrino oscillations have an effect on any cosmological epoch? In the
standard picture, all �avour neutrinos were produced with the same energy spec-
trum, so no effect is expected from oscillations among these three states (up
to small spectral distortions, see [9]). But there are two cases where neutrino
oscillations could have cosmological consequences: �avour oscillations with non-
zero relic neutrino asymmetries and active-sterile neutrino oscillations (for more
details, see, e.g., Sec. 5 in [25]).

5. EFFECTS OF NEUTRINO MASSES ON COSMOLOGY

In this section we will brie�y describe the main cosmological observables
and the effects that neutrino masses cause on them. A more detailed discussion
of the effects of massive neutrinos on the evolution of cosmological perturbations
can be found in Subsecs. 4.5 and 4.6 of [4].

5.1. Brief Description of Cosmological Observables. Although there exist
many different types of cosmological measurements, here we will restrict the
discussion to those that are more important for obtaining an upper bound or
eventually a measurement of neutrino masses.

First of all, we have the CMB temperature anisotropy power spectrum,
deˇned as the angular two-point correlation function of CMB maps δT/T̄ (n̂)
(n̂ being a direction in the sky). This function is usually expanded in Legendre
multipoles 〈

δT

T̄
(n̂)

δT

T̄
(n̂′)

〉
=

∞∑
l=0

(2l + 1)
4π

Cl Pl(n̂ · n̂′), (18)

where Pl(x) are the Legendre polynomials. For Gaussian �uctuations, all the
information is encoded in the multipoles Cl which probe correlations on angu-
lar scales θ = π/l. We have seen that each neutrino family can only have
a mass of the order of 1 eV, so that the transition of relic neutrinos to the
nonrelativistic regime is expected to take place after the time of recombination
between electrons and nucleons, i.e., after photon decoupling. Since the shape
of the CMB spectrum is related mainly to the physical evolution before recom-
bination, it will be only marginally affected by the neutrino mass, except for
an indirect effect through the modiˇed background evolution. There exists in-
teresting complementary information to the temperature power spectrum if the
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Fig. 4. CMB temperature anisotropy spectrum CT
l and matter power spectrum P (k) for

three models: the neutrinoless ΛCDM model, a more realistic ΛCDM model with three
massless neutrinos (fν � 0), and ˇnally a ΛMDM model with three massive degener-
ate neutrinos and a total density fraction fν = 0.1. In all models, the values of the
cosmological parameters (ωb = Ωbh

2, ωm = Ωmh2, ΩΛ, As, n, τ ) have been kept ˇxed

CMB polarization is measured, and currently we have some less precise data on
the temperature × E-polarization (TE) correlation function and the E-polarization
self-correlation spectrum (EE).

The current Large Scale Structure (LSS) of the Universe is probed by the
matter power spectrum, observed with various techniques described in the next
section (directly or indirectly, today or in the near past at redshift z). It is de-
ˇned as the two-point correlation function of nonrelativistic matter �uctuations
in Fourier space, P (k, z) = 〈|δm(k, z)|2〉, where δm = δρm/ρ̄m. Usually P (k)
refers to the matter power spectrum evaluated today (at z = 0). In the case of
several �uids (e.g., CDM, baryons and nonrelativistic neutrinos), the total matter
perturbation can be expanded as δm =

∑
i

ρ̄iδi/
∑
i

ρ̄i. Since the energy density is

related to the mass density of nonrelativistic matter through E = mc2, δm repre-
sents indifferently the energy or mass power spectrum. The shape of the matter
power spectrum is affected by the free-streaming caused by small neutrino masses
of O(eV) and thus it is the key observable for constraining mν with cosmological
methods.

We will show later in Fig. 4 the typical shape of both the CMB temperature
anisotropy spectrum Cl and the matter power spectrum P (k).

5.2. Neutrino Free-Streaming. After thermal decoupling, relic neutrinos
constitute a collisionless �uid, where the individual particles free-stream with a
characteristic velocity that, in average, is the thermal velocity vth. It is possible
to deˇne a horizon as the typical distance on which particles travel between time
ti and t. When the Universe was dominated by radiation or matter t � ti, this
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horizon is, as usual, asymptotically equal to vth/H , up to a numerical factor of
order one. Similar to the deˇnition of the Jeans length (see Subsec. 4.4 in [4]),
we can deˇne the neutrino free-streaming wavenumber and length as

kFS(t) =
(

4πGρ̄(t)a2(t)
v2
th(t)

)1/2

, λFS(t) = 2π
a(t)

kFS(t)
= 2π

√
2
3

vth(t)
H(t)

. (19)

As long as neutrinos are relativistic, they travel at the speed of light and their
free-streaming length is simply equal to the Hubble radius. When they become
nonrelativistic, their thermal velocity decays like

vth ≡ 〈p〉
m

� 3Tν

m
=

3T 0
ν

m

(a0

a

)
� 150 (1 + z)

(
1 eV
m

)
km · s−1, (20)

where we used for the present neutrino temperature T 0
ν � (4/11)1/3T 0

γ and
T 0

γ � 2.726 K. This gives for the free-streaming wavelength and wavenumber
during matter or Λ domination

λFS(t) = 7.7
1 + z√

ΩΛ + Ωm(1 + z)3

(
1 eV
m

)
h−1 Mpc, (21)

kFS(t) = 0.82

√
ΩΛ + Ωm(1 + z)3

(1 + z)2
( m

1 eV

)
h Mpc−1, (22)

where ΩΛ and Ωm are the cosmological constant and matter density fractions,
respectively, evaluated today. So, after the nonrelativistic transition and during
matter domination, the free-streaming length continues to increase, but only like
(aH)−1 ∝ t1/3, i.e., more slowly than the scale factor a ∝ t2/3. Therefore,
the comoving free-streaming length λFS/a actually decreases like (a2H)−1 ∝
t−1/3. As a consequence, for neutrinos becoming nonrelativistic during matter
domination, the comoving free-streaming wavenumber passes through a minimum
knr at the time of the transition, i.e., when m = 〈p〉 = 3Tν and a0/a = (1+ z) =
2.0 · 103(m/1 eV). This minimum value is found to be

knr � 0.018 Ω1/2
m

( m

1 eV

)1/2

h Mpc−1. (23)

The physical effect of free-streaming is to damp small-scale neutrino density
�uctuations: neutrinos cannot be conˇned into (or kept outside of) regions smaller
than the free-streaming length, for obvious kinematic reasons. There exists a
gravitational back-reaction effect that also damps the metric perturbations on those
scales. Instead, on scales much larger than the free-streaming scale the neutrino
velocity can be effectively considered as vanishing and after the nonrelativistic
transition the neutrino perturbations behave like CDM perturbations. In particular,
modes with k < knr are never affected by free-streaming and evolve like in a
pure ΛCDM model.
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5.3. Impact of mν on the Matter Power Spectrum. The small initial
cosmological perturbations in the early Universe evolve under the linear regime
at any scale at early times and on the largest scales more recently, and produce
the structures we see today. We cannot review here all the details (see [4] and
references therein), but we will emphasize the main effects caused by massive
neutrinos in the framework of the standard cosmological scenario: a Λ Mixed
Dark Matter (ΛMDM) model, where Mixed refers to the inclusion of some HDM
component.

First, let us describe the changes in the background evolution of the Universe.
We have seen that massless neutrinos are always part of the radiation content, so
in this case the present value of the matter contribution Ω0

m is equal to the con-
tribution of CDM and baryons. Instead, massive neutrinos contribute to radiation
at early times but to matter after becoming nonrelativistic. Thus, with respect
to the massless neutrino case, massive neutrinos also contribute to Ω0

m, reducing
the values of Ω0

CDM and Ω0
b . As a result, if these massive neutrinos have not

yet become nonrelativistic at the time of radiation/matter equality (the epoch of
the Universe when its starts to be dominated by matter and the contribution of
radiation becomes subdominant), then this transition is delayed. The consequence
of a late equality for the LSS matter power spectrum is the following: since on
sub-Hubble scales the matter density contrast δm grows more efˇciently during
MD than during RD, the matter power spectrum is suppressed on small scales
relatively to large scales.

At the perturbation level, we also saw that free-streaming damps small-scale
neutrino density �uctuations. This produces a direct effect on the matter power
spectrum (see Subsec. 4.5 of [4]), that depends on the value k with respect to
knr in Eq. (23),

P (k) =

〈(
δρcdm + δ ρb + δ ρν

ρcdm + ρb + ρν

)2
〉

=

=

〈(
Ωcdm δcdm + Ωbδb + Ων δν

Ωcdm + Ωb + Ων

)2
〉

=

=
{

〈δ2
cdm〉 for k < knr,

[1 − Ων/Ωm]2 〈δ2
cdm〉 for k � knr,

(24)

with Ωm ≡ Ωcdm + Ωb + Ων . Thus, the role of the neutrino masses would be
simply to cut the power spectrum by a factor [1−Ων/Ωm]2 for k � knr. However,
it turns out that the presence of neutrinos actually modiˇes the evolution of the
CDM and baryon density contrasts in such a way that the suppression factor is
greatly enhanced, more or less by a factor four.

In conclusion, the combined effect of the shift in the time of equality and
of the reduced CDM �uctuation growth during matter domination produces an
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attenuation of small-scale perturbations for k > knr. It can be shown that for
small values of fν this effect can be approximated in the large k limit by the well-
known linear expression P (k)fν /P (k)fν=0 � 1 − 8 fν [26]. For the comparison
with the data, one could use instead some better analytical approximations to
the full MDM or ΛMDM matter power spectrum, valid for arbitrary scales and
redshifts, as listed in [4]. However, nowadays the analyses are performed using
the matter power spectra calculated by Boltzmann codes such as CMBFAST [27] or
CAMB [28], that solve numerically the evolution of the cosmological perturbations.

An example of P (k) with and without massive neutrinos is shown in Fig. 4,
where the effect of mν at large ks can be clearly visible. Such a suppression is
probably better seen in Fig. 5, where we plot the ratio of the matter power spec-
trum for ΛMDM over that of ΛCDM, for different values of fν and three degener-
ate massive neutrinos, but for ˇxed parameters (ωm, ΩΛ). For large ks, the linear
approximation is a reasonable ˇrst-order approximation for 0 < fν < 0.07.

Is it possible to mimic the effect of massive neutrinos on the matter power
spectrum with some combination of other cosmological parameters? If so, one
would say that a parameter degeneracy exists, reducing the sensitivity to neutrino
masses. This possibility depends on the interval [kmin, kmax] in which the P (k)
can be accurately measured. Ideally, if we could have kmin � 10−2h Mpc−1

and kmax � 1h Mpc−1, the effect of the neutrino mass would be nondegenerate,
because of its very characteristic step-like effect. In contrast, other cosmological
parameters like the scalar tilt or the tilt running change the spectrum slope on
all scales. The problem is that usually the matter power spectrum can only be

Fig. 5. Ratio of the matter power spectrum including three degenerate massive neutrinos
with density fraction fν to that with three massless neutrinos. The parameters (ωm, ΩΛ) =
(0.147, 0.70) are kept ˇxed, and from top to bottom the curves correspond to fν =
0.01, 0.02, 0.03, . . . , 0.10. The individual masses mν range from 0.046 to 0.46 eV; and the
scale knr, from 2.1 ·10−3h Mpc−1 to 6.7 ·10−3h Mpc−1 as shown on the top of the ˇgure
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accurately measured in the intermediate region where the mass effect is neither
null nor maximal: in other words, many experiments only have access to the
transition region in the step-like transfer function. In this region, the neutrino
mass affects the slope of the matter power spectrum in a way which can be easily
confused with the effect of other cosmological parameters. Because of these
parameter degeneracies, the LSS data alone cannot provide signiˇcant constraints
on the neutrino mass, and it is necessary to combine them with other cosmological
data, in particular, the CMB anisotropy spectrum, which could lift most of the
degeneracies. Still, for exotic models with, e.g., extra relativistic degrees of
freedom, a constant equation-of-state parameter of the dark energy different from
−1 or a nonpower-law primordial spectrum, the neutrino mass bound can become
signiˇcantly weaker (a factor 2 or more).

5.4. Impact of mν on the CMB Anisotropy Spectrum. For neutrino masses
of the order of 1 eV (about fν � 0.1) the three-neutrino species are still relativistic
at the time of photon decoupling, and the direct effect of free-streaming neutrinos
on the evolution of the baryonÄphoton acoustic oscillations is the same in the
ΛCDM and ΛMDM cases. Therefore, the effect of the mass is indirect, appearing
only at the level of the background evolution: the fact that the neutrinos account
today for a fraction Ων of the critical density implies some change either in the
present value of the spatial curvature, or in the relative density of other species.
If neutrinos were heavier than a few eV, they would already be nonrelativistic at
decoupling. This case would have more complicated consequences for the CMB,
as described in [29]. However, we will see later that this situation is disfavoured
by current upper bounds on the neutrino mass.

Let us describe one example: we choose to maintain a �at Universe (the sum
of all Ωi is one) with ˇxed (ωb = Ωbh

2, ωm = Ωmh2, ΩΛ). Thus, while Ωb and
ΩΛ are constant, Ωcdm is constrained to decrease as Ων increases. The main effect
on the CMB anisotropy spectrum results from a change in the time of equality.
Since neutrinos are still relativistic at decoupling, they should be counted as
radiation instead of matter around the time of equality, which is found by solving
ρb + ρcdm = ργ + ρν . This gives aeq = Ωr/(Ωb + Ωcdm), where Ωr stands for
the radiation density extrapolated until today assuming that all neutrinos would
remain massless, given by Eq. (11) with Neff � 3.04. So, when fν increases, aeq

increases proportionally to [1 − fν ]−1: equality is postponed. This produces an
enhancement of small-scale perturbations, especially near the ˇrst acoustic peak.
Also, postponing the time of equality increases slightly the size of the sound
horizon at recombination. These two features explain why in Fig. 4 the acoustic
peaks are slightly enhanced and shifted to the left in the ΛMDM case.

Since the effect of the neutrino mass on CMB �uctuations is indirect and
appears only at the background level, one could think that by changing the
value of other cosmological parameters it would be possible to cancel exactly
this effect (i.e., a parameter degeneracy). It can be actually shown that in the
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simplest ΛMDM model, with only seven cosmological parameters, one cannot
vary the neutrino mass while keeping ˇxed aeq and all other quantities governing
the CMB spectrum. Therefore, it is possible to constrain the neutrino mass
using CMB experiments alone [4, 30], although neutrinos are still relativistic at
decoupling. This conclusion can be altered in more complicated models with
extra cosmological parameters; for instance, allowing for an open Universe or
varying the number of relativistic degrees of freedom. In such extended models
the CMB alone is not sufˇcient for constraining the mass, but fortunately the LSS
power spectrum can lift the degeneracy.

6. CURRENT BOUNDS ON NEUTRINO MASSES

Here we review how the available cosmological data is used to get infor-
mation on the absolute scale of neutrino masses, complementary to laboratory
experiments. Note that the bounds in the next subsections are all based on the
Bayesian inference method, and the upper bounds on the sum of neutrino masses
are given at 95% CL after marginalization over all free cosmological parameters.
We refer the reader to [3,4] for a detailed discussion. Here it is assumed that the
total neutrino mass is the only additional parameter with respect to a �at ΛCDM
cosmological model characterized by 6 parameters, unless speciˇed otherwise.

6.1. CMB Anisotropies. The experimental situation of the measurement of
the CMB anisotropies is dominated by the seven-year release of WMAP data [13],
which improved the already precise TT and TE angular power spectra of the
previous releases, and included a detection of the E-polarization self-correlation
spectrum (EE). On similar or smaller angular scales than WMAP, we have results
from experiments that are either ground-based (ACBAR, VSA, CBI, DASI, . . . )
or balloon-borne (ARCHEOPS, BOOMERANG, MAXIMA, . . . ).

We saw in the previous section that the signature on the CMB spectrum
of a neutrino mass smaller than 0.5 eV is small but does not vanish due to a
background effect, proportional to Ων , which changes some characteristic times
and scales in the evolution of the Universe, and affects mainly the amplitude of the
ˇrst acoustic peak as well as the location of all the peaks. Therefore, it is possible
to constrain neutrino masses using CMB experiments only. In this framework,
many analyses support the conclusion that a sensible bound on neutrino masses
exists using CMB data only, of order of 2 eV for the total mass Mν ≡

∑
i

mi.

This is an important result, since it does not depend on the uncertainties from
LSS data discussed next.

6.2. Galaxy Redshift Surveys. We have seen that free-streaming of massive
neutrinos produces a direct effect on the formation of cosmological structures.
Actually, it is well known that the presence of neutrino masses leads to an
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attenuation of the linear matter power spectrum on small scales. In a seminal
paper [26] it was shown that an efˇcient way to probe neutrino masses of order
eV was to use data from large redshift surveys, which measure the distance to a
large number of galaxies, giving us a three-dimensional picture of the Universe.
At present, we have data from two large projects: the 2 degree Field (2dF) galaxy
redshift survey and the Sloan Digital Sky Survey (SDSS).

One of the main goals of galaxy redshift surveys is to reconstruct the power
spectrum of matter �uctuations on very large scales, whose cosmological evo-
lution is described entirely by linear perturbation theory. However, the linear
power spectrum must be reconstructed from individual galaxies which underwent
a strongly nonlinear evolution. A simple analytic model of structure formation
suggests that on large scales, the galaxyÄgalaxy correlation function should be,
not equal, but proportional to the linear matter density power spectrum, up to a
constant factor that is called the light-to-mass bias (b). This parameter can be
obtained from independent methods, which tend to conˇrm that the linear biasing
assumption is correct, at least in ˇrst approximation.

A conservative way to use the measurements of galaxyÄgalaxy correlations
in an analysis of cosmological data is to take the bias as a free parameter, i.e.,
to consider only the shape of the matter power spectrum at the corresponding
scales and not its amplitude (denoted as galaxy clustering data). An upper limit
on Mν between 0.8 and 1.7 eV is found from the analysis of galaxy clustering
data (SDSS and/or 2dF, leaving the bias as a free parameter) added to CMB data.
These values improve those found with CMB data only. The bounds on neutrino
masses are more stringent when the amplitude of the matter power spectrum is
ˇxed with a measurement of the bias, instead of leaving it as a free parameter.
The upper limits on Mν are reduced to values of order 0.5Ä0.9 eV although some
analyses also add Lyman-α data (see the next subsection).

Finally, a galaxy redshift survey performed in a large volume can also be
sensitive to the imprint created by the baryon acoustic oscillations (BAO) at
large scales on the power spectrum of nonrelativistic matter. Since baryons are
only a subdominant component of the nonrelativistic matter, the BAO feature is
manifested as a small single peak in the galaxy correlation function in real space
that was recently detected from the analysis of the SDSS luminous red galaxy
(LRG) sample. The observed position of this baryon oscillation peak provides a
way to measure the angular diameter distance out to the typical LRG redshift of
z = 0.35, which in turn can be used to constrain the parameters of the underlying
cosmological model.

6.3. Lyman-α Forest. The matter power spectrum on small scales can also
be inferred from data on the so-called Lyman-α forest. This corresponds to the
Lyman-α absorption of photons traveling from distant quasars (z ∼ 2−3) by
the neutral hydrogen in the intergalactic medium. As an effect of the Universe
expansion, photons are continuously red-shifted along the line of sight, and can
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be absorbed when they reach a wavelength of 1216 	A in the rest-frame of the
intervening medium. Therefore, the quasar spectrum contains a series of absorp-
tion lines, whose amplitude as a function of wavelength traces back the density
and temperature �uctuations of neutral hydrogen along the line of sight. It is then
possible to infer the matter density �uctuations in the linear or quasi-linear regime.

In order to use the Lyman-α forest data, one needs to recover the matter
power spectrum from the spectrum of the transmitted �ux, a difˇcult task that re-
quires the use of hydrodynamical simulations for the corresponding cosmological
model. Given the various systematics involved in the analysis, the robustness of
Lyman-α forest data is still a subject of intense discussion between experts. In any
case, the recovered matter power spectrum is again sensitive to the suppression
of growth of mass �uctuations caused by massive neutrinos.

For a free bias, one ˇnds that Lyman-α data help to reduce the upper bounds
on the total neutrino mass to the level Mν < 0.5−0.7 eV. But those analyses that
include Lyman-α data and a measurement of the bias do not always lead to a
lower limit, ranging from 0.4 to 0.7 eV.

6.4. Summary and Discussion of Current Bounds. The upper bounds on
Mν from the previous subsections are representative of an important fact: a single
cosmological bound on neutrino masses does not exist. Depending on the included
set of data, the approximate ranges for the upper bounds are: 2Ä3 eV for CMB
only, 0.9Ä1.7 eV for CMB and 2dF/SDSS-gal or 0.2Ä0.9 eV with the inclusion
of a measurement of the bias and/or Lyman-α forest data and/or BAO data. For
a discussion on the bounds on neutrino masses from different combinations of
cosmological data, we refer the reader to [23], where they are compared with
those coming from tritium beta decay and neutrinoless double-beta decay. In any
case, current cosmological data probe the region of neutrino masses where the
three neutrino states are degenerate, with a mass Mν/3.

7. FUTURE SENSITIVITIES ON mν FROM COSMOLOGY

In the near future we will have more precise data on cosmological observables
from various experimental techniques and experiments. If the characteristics of
these future experiments are known with some precision, it is possible to assume a
®ˇducial model¯, i.e., a cosmological model that would yield the best ˇt to future
data, and to estimate the error bar on a particular parameter that will be obtained
after marginalizing the hypothetical likelihood distribution over all the other free
parameters. Technically, the simplest way to forecast this error is to compute
a Fisher matrix, a technique has been widely used in the literature, for many
different models and hypothetical datasets, now complemented by Monte Carlo
methods. Here we will focus on the results for σ(Mν), the forecast 68% CL error
on the total neutrino mass, assuming various combinations of future observations:
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CMB anisotropies measured with ground-based experiments or satellites such as
PLANCK, galaxy redshift surveys, galaxy cluster surveys,. . . In particular, it has
been emphasized the potentiality for measuring small neutrino masses of weak
lensing experiments, which will look for the lensing effect caused by the large
scale structure of the neighboring universe, either on the CMB signal [31] or on
the apparent shape of galaxies (measured by cosmic shear surveys, see, e.g., [32]).
We refer the reader to Sec. 6 of [4] for further details.

We give a graphical summary of the forecast sensitivities to neutrino masses
of different cosmological data in Fig. 6, compared to the allowed values of neu-
trino masses in the two possible three-neutrino schemes. One can see from this
ˇgure that there are very good prospects for testing neutrino masses in the de-
generate and quasi-degenerate mass regions above 0.2 eV or so. A detection at
a signiˇcant level of the minimal value of the total neutrino mass in the inverted
hierarchy scheme will demand the combination of future data from CMB lensing
and cosmic shear surveys, whose more ambitious projects will provide a 2σ sen-
sitivity to the minimal value in the case of normal hierarchy (of order 0.05 eV).
The combination of CMB observations with future galaxy cluster surveys [33]
or the measurement of the redshifted 21 cm signal from the epoch of reioniza-
tion using low-frequency radio observations [34], should yield similar or even
better sensitivities.

Fig. 6. Forecast 2σ sensitivities to the total neutrino mass from future cosmological ex-
periments compared to the values in agreement with neutrino oscillation data (assuming
a future determination at the 5% level). a) Sensitivities expected for future CMB experi-
ments (without lensing extraction), alone and combined with the completed SDSS galaxy
redshift survey. b) Sensitivities expected for future CMB experiments including lensing
information, alone and combined with future cosmic shear surveys. Here CMBpol refers
to a hypothetical CMB experiment roughly corresponding to the In�ation Probe mission
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CONCLUSIONS

Neutrinos, despite the weakness of their interactions and their small masses,
can play an important role in cosmology that we have reviewed in this contribu-
tion. In addition, cosmological data can be used to constrain neutrino properties,
providing information on these elusive particles that complements the efforts of
laboratory experiments. In particular, the data on cosmological observables have
been used to bound the effective number of neutrinos (including a potential extra
contribution from other relativistic particles).

But probably the most important contribution of cosmology to our knowledge
of neutrino properties is the information it can provide on the absolute scale of
neutrino masses. We have seen that the analysis of cosmological data can lead
to either a bound or a measurement of the sum of neutrino masses, an important
result complementary to terrestrial experiments such as tritium beta decay and
neutrinoless double-beta decay experiments. In the next future, thanks to the
data from new cosmological experiments, we could even hope to test the minimal
values of neutrino masses guaranteed by the present evidences for �avour neutrino
oscillations. For this and many other reasons, we expect that neutrino cosmology
will remain an active research ˇeld in the next years.
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