ДИФФЕРЕНЦИАЛЬНЫЕ ИНТЕНСИВНОСТИ $2\nu 2\beta$ -ПЕРЕХОДА В 100 Мо

С. В. Семенов *

Национальный исследовательский центр «Курчатовский институт», Москва

С учетом вклада возбужденных 1⁺-состояний промежуточного ядра ¹⁰⁰Tc рассчитаны распределение по энергии одного электрона и параметр угловой корреляции двух электронов в двухнейтринном двойном бета-распаде ¹⁰⁰Mo. Рассмотрены два варианта для знаков вкладов определенных возбужденных состояний в амплитуду $2\nu 2\beta$ -перехода. При расчетах использованы данные эксперимента по исследованию реакции перезарядки ¹⁰⁰Mo(³He, t)¹⁰⁰Tc.

Energy distribution of one electron and angular correlation parameter of two electrons in two-neutrino double beta-decay of ¹⁰⁰Mo have been calculated with the account for contribution of excited 1⁺-states of intermediate nucleus ¹⁰⁰Tc. Two variants of signs of individual excited states contributions to $2\nu 2\beta$ -amplitude are considered. In the process of calculations the data of experiment on exchange reaction ¹⁰⁰Mo(³He, t)¹⁰⁰Tc are used.

PACS: 23.40.BW

К настоящему времени двухнейтринный двойной бета-распад является наиболее редким экспериментально наблюдаемым явлением с $T_{1/2} = 10^{18} - 10^{21}$ лет [1,2]. Два-бета-минус-процессы обнаружены для 10 стабильных изотопов. Недавно в Баксанской нейтринной обсерватории впервые были зарегистрированы $2\beta^+$ -переходы в ⁷⁸Kr с $T_{1/2} \sim 10^{22}$ лет [3]. Исследование двухнейтринного канала позволяет получать информацию о ядерной структуре перехода, что весьма важно для построения теоретических моделей ядра. При этом $2\nu 2\beta$ -процессы задают неустранимый фон в экспериментах по поиску безнейтринного двойного бета-распада, так что знание дифференциальных интенсивностей двухнейтринного 2β -распада необходимо для определения чувствительности этих экспериментов.

Чтобы найти полную и дифференциальные интенсивности $2\nu 2\beta$ -переходов, нужно провести суммирование по всем 1⁺-состояниям промежуточного

^{*}E-mail: Semenov_SV@nrcki.ru

ядра, что приводит к необходимости теоретического расчета соответствующего набора ядерных матричных элементов [4, 5]:

$$\begin{bmatrix} T_{1/2}^{2\nu 2\beta} \left(0^+ \to 0_f^+ \right) \end{bmatrix}^{-1} = \frac{G_{\beta}^4 g_A^4}{32\pi^7 \ln 2} \int_{m_e}^{T+m_e} d\varepsilon_1 \int_{m_e}^{T+2m_e-\varepsilon_1} d\varepsilon_2 \times \\ \times \int_{0}^{T+2m_e-\varepsilon_1-\varepsilon_2} d\omega_1 F(Z_f,\varepsilon_1) F(Z_f,\varepsilon_2) p_1 \varepsilon_1 p_2 \varepsilon_2 \omega_1^2 \omega_2^2 A_{0_f^+}.$$
 (1)

Распределение по энергии одного электрона имеет вид

$$\frac{G_{\beta}^{4}g_{A}^{4}}{32\pi^{7}\ln 2}p_{1}\varepsilon_{1}F(Z_{f},\varepsilon_{1})\int_{m_{e}}^{T+2m_{e}-\varepsilon_{1}}p_{2}\varepsilon_{2}F(Z_{f},\varepsilon_{2})d\varepsilon_{2}\times \times \int_{0}^{T+2m_{e}-\varepsilon_{1}-\varepsilon_{2}}d\omega_{1}\omega_{1}^{2}\omega_{1}^{2}A_{0_{f}^{+}}.$$
(2)

Фактор $A_{0^+_f}$ зависит от матричных элементов оператора \hat{eta}^- [6]:

$$4A_{0_{f}^{+}} = \left| \sum_{N} \left\langle 0_{f}^{+} \| \hat{\beta}^{-} \| 1_{N}^{+} \right\rangle \left\langle 1_{N}^{+} \| \hat{\beta}^{-} \| 0_{i}^{+} \right\rangle (K_{N} + L_{N}) \right|^{2} + \frac{1}{3} \left| \sum_{N} \left\langle 0_{f}^{+} \| \hat{\beta}^{-} \| 1_{N}^{+} \right\rangle \left\langle 1_{N}^{+} \| \hat{\beta}^{-} \| 0_{i}^{+} \right\rangle (K_{N} - L_{N}) \right|^{2}.$$
 (3)

Здесь p_1 , p_2 и ε_1 , ε_2 — соответственно импульсы и энергии электронов; ω_1 , ω_2 — энергии антинейтрино; $\omega_2 = T + 2m_e - \varepsilon_1 - \varepsilon_2 - \omega_1$, $T = E_i - E_f - 2m_e = Q_{\beta\beta}$ — полная кинетическая энергия лептонов в конечном состоянии и $E_i(E_f)$ — масса родительского (дочернего) ядра, $F(Z_f, \varepsilon)$ кулоновский фактор, учитывающий влияние электростатического поля ядра на вылетающие электроны. Факторы K_N и L_N содержат энергетические знаменатели второго порядка теории возмущений:

$$K_N = \frac{1}{\mu_N + (\varepsilon_1 + \omega_1 - \varepsilon_2 - \omega_2)/2} + \frac{1}{\mu_N - (\varepsilon_1 + \omega_1 - \varepsilon_2 - \omega_2)/2},$$
$$L_N = \frac{1}{\mu_N + (\varepsilon_1 + \omega_2 - \varepsilon_2 - \omega_1)/2} + \frac{1}{\mu_N - (\varepsilon_1 + \omega_2 - \varepsilon_2 - \omega_1)/2},$$

где $\mu_N = E_N - (E_i + E_f)/2$, E_N — энергия N-го 1⁺-состояния промежуточного ядра. Ядерные матричные элементы, отвечающие основному состоянию промежуточного ядра, $M_1^I = \langle 1_{\rm gs}^+ \| \hat{\beta}^- \| 0_i^+ \rangle$ и $M_1^F = \langle 0_f^+ \| \hat{\beta}^- \| 1_{\rm gs}^+ \rangle$ можно найти из значений ft для соответствующих процессов электронного захвата и однократного бета-распада:

$$M_1^I = \frac{1}{g_A} \sqrt{\frac{3D}{ft_{\rm EC}}}, \quad M_1^F = \frac{1}{g_A} \sqrt{\frac{3D}{ft_{\beta^-}}}, \quad \text{rge} \quad D = \frac{2\pi^3 \ln 2}{G_\beta^2 m_e^5} = 6288,564 \text{ c}.$$

Установка NEMO-3 [7] и проектируемая установка SuperNEMO [8] дают возможность определять траектории электронов, возникающих при двойном бета-распаде, и, следовательно, находить не только полную, но и дифференциальные интенсивности переходов. Наибольший массив данных по двухнейтринным процессам в NEMO-3 получен для изотопа ¹⁰⁰Mo, его масса составляет ~ 7 кг [9]. Представляет интерес сравнить экспериментальные распределения для ¹⁰⁰Mo с результатами вычислений с целью выяснения ядерного механизма двухнейтринных переходов.

В работе [10] показано, что измерения скорости электронного захвата в 100 Tc, $\log ft_{\rm EC} = 4,29^{+0,08}_{-0,07}$, выполненные в [11], приводят к необходимости учета в выражении для $2\nu 2\beta$ -амплитуды 100 Mo вклада возбужденных 1⁺-состояний 100 Tc. Отметим, что значение $\log ft_{\beta^-}$ хорошо известно из опытов по бета-распаду 100 Tc и равно 4,59.

При этом наибольший вклад в интенсивности (1), (2) вносит основное состояние промежуточного ядра, что отвечает SSD-механизму (Single State Dominance) двухнейтринного 2β -распада [12, 13]. Распределение по энергии одного электрона ($P\varepsilon$) = $dI/Id\varepsilon$, полученное в SSD-подходе [14] при учете зависимости *K*- и *L*-факторов от энергий лептонов [15], хорошо согласуется с экспериментальными данными [9, 16]. При учете возбужденных состояний ¹⁰⁰Tc уточняются расчеты этого распределения. Модули ядерных матричных элементов, отвечающих возбужденным состояниям, можно определить из экспериментов по реакциям перезарядки [17].

Полный вклад возбужденных состояний в интенсивность $2\nu 2\beta$ -распада ¹⁰⁰Мо должен быть отрицательным [10, 18]. Это обусловлено тем, что при учете только основного состояния промежуточного ядра расчеты с использованием выражений для K и L, свободных от приближений, приводят к $T_{1/2}^{2\nu 2\beta} = 4,6(7) \cdot 10^{18}$ лет [10, 11], в то время как $T_{1/2}^{2\nu 2\beta}$ (эксп.) = 7,1(4) $\cdot 10^{18}$ лет [1].

В работе [19] распределение силы гамов-теллеровских переходов определялось в эксперименте, в котором изучалась реакция перезарядки ¹⁰⁰Мо в пучке ядер ³He, ¹⁰⁰Mo(³He, t)¹⁰⁰Tc. Энергия ³He составляла 420 МэВ, а разрешение по энергии для конечных состояний — 33 кэВ. Были обнаружены 11 дискретных 1⁺-состояний ¹⁰⁰Tc с энергией возбуждения E_x

до 3 МэВ и широкая бесструктурная область гамов-теллеровского резонанса $E_x = 3-4$ МэВ. Суммарная ГТ-сила для переходов в возбужденные состояния ¹⁰⁰Тс в исследуемом диапазоне E_x равна 0,62.

Для решения вопроса о фазах матричных элементов, в простейшем случае — о знаке вкладов в суммы (2) возбужденных состояний промежуточного ядра, полезную информацию может дать измерение дифференциальных интенсивностей двухнейтринных переходов. Можно рассмотреть два простых варианта: 1) все возбужденные состояния ¹⁰⁰Tc вносят отрицательный вклад; 2) отрицательный вклад вносят только состояния с $E_x = 3-4$ МэВ, принадлежащие широкому ГТ-резонансу. Соответствующие распределения по энергии одного электрона построены на рисунке (вариант 1 — кривая *1*, вариант 2 — кривая *2*). Сравнение этих распределений с наблюдаемым в эксперименте позволит определить, какой из двух вариантов более реалистичный. Так как реакция ¹⁰⁰Ru(d, ²He)¹⁰⁰Tc, которая могла бы дать информацию о матричных элементах, связывающих ¹⁰⁰Tc и ¹⁰⁰Ru, до сих пор не исследована, соответствующие модули ядерных матричных элементов заменяются некоторым средним значением, которое определялось из сравнения теоретического периода полураспада с экспериментальным.

Распределение по энергии одного электрона для двух вариантов вклада возбужденных состояний промежуточного ядра в $2\nu 2\beta$ -амплитуду

Распределение по углу между вылетающими электронами в двухнейтринном процессе имеет вид

$$\frac{dI}{d\cos\theta} = \frac{1}{2}I(1+\kappa\cos\theta).$$

Значения параметра κ следующие. Если в $2\nu 2\beta$ -амплитуде и, соответственно, в суммах (3) учитывается только основное состояние ¹⁰⁰ Tc, то $\kappa = -0.628$.

Если учитывается вклад возбужденных состояний, то, в зависимости от выбранного варианта для знаков этих вкладов, $\kappa = -0,625$ (1); $\kappa = -0,621$ (2). В том случае, когда учитывается только основное состояние промежуточного ядра и при этом для K- и L-факторов используется приближенное выражение $K \approx L \approx 2/\mu_1$, что соответствует доминантности высоколежащего возбужденного состояния, $\kappa = -0,645$ [15]. Безусловно, интересно сравнить полученные теоретические значения параметра угловой корреляции κ с данными эксперимента NEMO-3.

СПИСОК ЛИТЕРАТУРЫ

- 1. Barabash A. S. // Nucl. Phys. A. 2015. V. 935. P. 52.
- 2. Tretyak V., Zdesenko Y. // At. Data Nucl. Data Tables. 2002. V. 80. P. 83.
- 3. Gavrilyuk Yu. M., Gangapshev A. M., Kazalov V. V., Kuzminov V. V., Panasenko S. I., Ratkevich S. S. // Phys. Rev. C. 2013. V. 87. P. 035501.
- 4. Doi M., Kotani T., Takasugi E. // Prog. Theor. Phys. Suppl. 1985. V. 83. P. 1.
- 5. Faessler A., Šimkovic F. // J. Phys. G. 1998. V. 24. P. 2139.
- 6. Tomoda T. // Rep. Prog. Phys. 1991. V. 54. P. 53.
- Arnold R., Augier C., Bakalyarov A. M., Baker J., Barabash A., Bernaudin Ph., Bouchel M., Brudanin V., Caffrey A. J., Cailleret J., Campagne J. E., Dasé D., Egorov V., Errahmane K., Etienvre A. I. et al. // Nucl. Instr. Meth. A. 2005. V. 536. P. 79.
- Arnold R., Augier C., Baker J., Barabash A. S., Basharina-Freshville A., Bongrand M., Brudanin V., Caffrey A. J., Cebrián C., Chapon A., Chauveau E., Dafni Th., Doppisch F. F., Diaz H., Durand D. et al. // Eur. Phys. J. C. 2010. V.70. P.927.
- Arnold R., Augier C., Baker J., Barabash A., Broudin G., Brudanin V., Caffrey A. J., Caurier V., Egorov V., Errahmane K., Etienvre A. I., Guyonnet J. L., Hubert F., Jollet C., Jullian S. et al. // Phys. Rev. Lett. 2005. V.95. P. 182302.
- 10. Семенов С. В. // ЭЧАЯ. 2017. Т. 48, вып. 6. С. 1005-1010.
- Sjue S. K. L., Melconian D., Garcia A., Ahmad I., Algora A., Äystö J., Elomaa V.-V., Eronen T., Hakala J., Hoedl S., Kankainen A., Kessler T., Moore I.D., Naab F., Pentilä H. et al. // Phys. Rev. C. 2008. V.70. P.064317.
- 12. Abad J., Morales A., Nunez-Lagos R., Pacheco A. F. // An. Fiz. A. 1984. V. 80. P. 15.
- 13. Civatarese O., Suhonen J. // Phys. Rev. C. 1998. V. 58. P. 1535.
- Šimkovic F., Domin P., Semenov S. V. // J. Phys. 2001. V. 27. P. 2233; Domin P., Kovalenko S., Šimkovic F., Semenov S. V. // Nucl. Phys. 2005. V. 753. P. 337.
- 15. Semenov S. V., Šimkovic F., Khruschev V. V., Domin P. // ЯФ. 2000. Т. 63. С. 1271.
- 16. Shitov Yu. A. // Phys. At. Nucl. 2006. V. 69. P. 2090.

- Watson J. W., Pairsuwan W., Anderson B. D., Baldwin A. R., Flanders B. S., Madey R., McCarthy R. J., Braun B. A., Wildenthal B. H., Foster C. C. // Phys. Rev. Lett. 1985. V. 55. P. 1369.
- Semenov S. V. // AIP Conf. Proc. 2007. V. 942. P. 67; Семенов С. В. // ЭЧАЯ. 2017. Т. 48, вып. 6. С. 1008; Balysh A. Ya., Khruschov V. V., Labozin V. P., Semenov S. V., Tsvetkov G. O. // Proc. of the 3rd Intern. Conf. "Current Problems in Nuclear Physics and Atomic Energy", Kyiv, June 7–10, 2010. P. 414.
- Thies J. H., Adachi T., Dozono M., Ejiri H., Frekers D., Fujita H., Fujita Y., Fujivara M., Grewe E.-W., Hatanaka K., Heinrichs P., Ishikawa D., Khai N. T., Lennarz A., Matzubara H. et al. // Phys. Rev. C. 2012. V. 86. P. 044309.