# ИССЛЕДОВАНИЕ РЕАКЦИИ $np \rightarrow np\pi^+\pi^-$ ПРИ ИМПУЛЬСАХ $P_0 > 3$ ГэВ/c

# А. П. Иерусалимов<sup>\*</sup>, С. Г. Аракелян, А. В. Беляев, В. П. Ладыгин, А. Ю. Троян

Объединенный институт ядерных исследований, Дубна

Реакция  $np \to np\pi^+\pi^-$  исследовалась при импульсах налетающего нейтрона  $P_0 = 3,83$  и 5,20 ГэВ/с. Рассчитаны вклады различных диаграмм в сечение реакции при импульсах от порога до 12 ГэВ/с. Показано, что основные вклады в реакцию  $np \to np\pi^+\pi^-$  при импульсах выше  $P_0 > 3$  ГэВ/с вносят диаграммы модели реджезованного  $\pi$ -мезонного обмена (OPER). Для изучения спиновых эффектов была выделена реакция  $np \to np\Delta^{++}\Delta^-$ . Показано, что для описания матрицы спиновой плотности  $[\rho_{ij}]$  необходимо учитывать диаграмму  $\rho$ -мезонного обмена. Реакция  $np \to np\rho^0$  выделялась методом вычитания фона. Исследование показало, что рождение  $\rho^0$ -мезона описывается «подвешенными» диаграммами OPER-модели.

The reaction  $np \rightarrow np\pi^+\pi^-$  was studied at the momenta of incident neutrons  $P_0 = 3.83$  and 5.20 GeV/c. The contributions of various diagrams into the reaction cross section at the momenta from the threshold up to 12 GeV/c were calculated. It was shown that the main contributions into the reaction  $np \rightarrow np\pi^+\pi^-$  at the momenta above  $P_0 > 3$  GeV/c are provided by the diagrams of the reggeized  $\pi$  exchange model (OPER). The reaction  $np \rightarrow np\Delta^{++}\Delta^{-}$  was selected to study the spin effect for  $\Delta$ -resonance decay. It was shown that the satisfactory description of spin density matrix  $[\rho_{ij}]$  could be provided taking into account the diagram of  $\rho$ -meson exchange. The reaction  $np \rightarrow np\rho^0$  was selected using the background subtraction. The study showed that the observed  $\rho^0$  production is provided by the "hanged" diagram of the OPER model. The obtained results are in agreement with world data.

PACS: 12.40.Nn; 13.30.eg; 13.60.Le; 13.75.Cs; 14.20.Gk; 14.40.Cs

#### введение

Особенный интерес вызывает изучение возбуждения барионов и их последующий распад в *NN*-взаимодействиях при промежуточных энергиях (область резонансов):

 $-\Delta_{1232} \rightarrow N\pi, N_{1440}^* \rightarrow \Delta\pi, N_{1440}^* \rightarrow N\sigma, N_{1440}^* \rightarrow N\rho;$ 

 $-\Delta\Delta$ -рождение;

- спиновые эффекты в *π*-*N*- и *NN*-взаимодействиях.

<sup>\*</sup> E-mail: jerus@jinr.ru

Рождение дипионов в NN-взаимодействиях является одним из способов получить информацию относительно NN-,  $\pi N$ - и  $\pi \pi$ -состояний, включая:

- дибарионы;

— дипионы (узкий  $\sigma$ -мезон, состояние с I = 2);

- «пропущенные резонансы» и т.д.

Важной задачей является проверка моделей рождения пионов в NN-взаимодействиях:

— валенсийская модель [1];

— модель Хи Сао [2];

— OPER-модель [3] и др.

#### ЭКСПЕРИМЕНТ

Нейтрон-протонные взаимодействия изучались в жидководородной 1-м камере ЛВЭ ОИЯИ, облученной квазимонохроматическими ( $P_0 < 2.5\%$ ) нейтронными пучками, полученными на синхрофазотроне



Рис. 1. Импульсные спектры налетающих нейтронов

в результате стриппинга ускоренных дейтронов. Полученные уникальные по своей полноте и точности данные позволили провести детальное исследование неупругих np-взаимодействий в широком диапазоне энергий в условиях  $4\pi$ -геометрии.

Реакция  $np \rightarrow np\pi^+\pi^-$  исследовалась при четырех значениях импульсов налетающих нейтронов от  $P_0 = 1,73$  до  $P_0 = 5,20$  ГэВ/с. Спектры налетающих нейтронов показаны на рис. 1. Импульсы и углы вторичных заряженных частиц восстанавливались с точностью  $\sigma_p/p \sim 2\%$ и  $\sigma_{\Theta} \sim 10$  мрад соответственно. Разделение каналов реакций проводилось с помощью стандартной  $\chi^2$ -процедуры, использующей соответствующие уравнения связи. Подробное описание процесса обработки данных и разделения каналов приведено в [4].

## РЕАКЦИЯ $np ightarrow np \pi^+ \pi^-$

Ранее реакция  $np \rightarrow np\pi^+\pi^-$  изучалась нами при  $P_0 = 1,73$  и 2,20 ГэВ/с. Результаты исследований приведены в [5].

Реакция  $np \to np\pi^+\pi^-$  описывается следующими диаграммами однопионного (OPER) и однобарионного (OBE) обменов (рис. 2).

Величины вкладов различных диаграмм в зависимости от импульса налетающего нейтрона приведены на рис. 3. Видно, что при импульсах налетающего нейтрона  $P_0 > 3 \ \Gamma \Rightarrow B/c$  вкладами однобарионного обмена (OBE) можно пренебречь.

На рис. 4 приведены распределения по эффективным массам  $\pi N$ -,  $\pi\pi N$ - и  $\pi\pi$ -комбинаций и угловые распределения вторичных частиц. Очевидно, что OPER-модель хорошо описывает физические характеристики реакции  $np \to np\pi^+\pi^-$ .



Рис. 2. Диаграммы реакции  $np \rightarrow np\pi^+\pi^-$ 



Рис. 3. Вклады различных диаграмм в реакцию  $np \rightarrow np\pi^+\pi^-$ 

При  $P_0 = 3,83$  ГэВ/с также получается хорошеее описание характеристик реакции.

## РЕАКЦИЯ $np ightarrow np \Delta^{++} \Delta^{-}$

Реакция  $np \to np\Delta^{++}\Delta^{-}$  детально исследовалась в [6–8]. Следует отметить, что в этих работах выделение реакции  $np \to np\Delta^{++}\Delta^{-}$  проводилось методом вырезки по эффективным массам  $p\pi^{+-}$  и  $n\pi^{-}$ -комбинаций, что приводило к потерям в области малых и больших масс  $\Delta$ -резонансов.

Мы использовали другой метод выделения реакции  $np \to np\Delta^{++}\Delta^{-}$ , предложенный в [9]. При таком подходе вычислялись углы  $\Theta_{I}^{++}$  и  $\Theta_{I}^{-}$ как углы между вылетающим и налетающим протоном и, соответственно, вылетающим и налетающим нейтроном в системе Готтфрида-Джексона для  $p\pi^+$ - и, соответственно для  $n\pi^-$ -комбинаций. Тогда критерий  $\cos\Theta_{_{I}}^{++} < 0$  и  $\cos\Theta_{_{I}}^{-} < 0$  уменьшает вклад фона в отобранные таким образом события реакции  $np \rightarrow np\Delta^{++}\Delta^{-}$  до 4–5%. Очевидно, что распределения по  $\cos \Theta_1^{++}$  и  $\cos \Theta_1^{-}$  должны быть симметричны относительно 0. Таким образом, отобранные события реакции  $np \to np\Delta^{++}\Delta^{--}$ составляют 1/4 всей статистики данной реакции. На рис. 5 приведены 2-мерный плот (рис. а) и гистограмма (рис. б) распределений эффективных масс  $p\pi^+$ - и  $n\pi^-$ -комбинаций. Показано полное распределение (Total), отобранные события, умноженные на 4, и теоретическая кривая, рассчитанная для диаграммы OPER22 (см. рис. 2). Видно, что OPERмодель хорошо описывает массы  $\Delta^{++}$ - и  $\Delta^{-}$ -резонансов. Вычисленные сечения реакции  $np \to np\Delta^{++}\Delta^{-}$  оказались равными (2,50  $\pm$  0,13) мб





Рис. 5. Распределения по массам  $\Delta^{++}\Delta^{-}$ 

для  $P_0 = 5,20$  ГэВ/с и  $(2,64 \pm 0,19)$  мб для  $P_0 = 3,83$  ГэВ/с, что находится в хорошем согласии с данными из работ [6–8].

Для отобранных таким образом событий были исследованы спиновые характеристики распадов  $\Delta$ -резонансов, и с этой целью рассчитаны элементы матрицы спиновой плотности. В системе покоя  $\Delta$ -резонанса вычислялись «углы Адера» [10]  $\Theta^A$  и  $\phi^A$  (см. также [11], (6.61), (6.626) и (6.67)). На рис.6 приведены распределения по  $\cos \Theta^A$  для  $P_0 = 5,20$  ГэВ/с при различных интервалах переменной  $t' = t - t_{min}$ .

Распределение продуктов распада  $\Delta$ -резонанса имеет вид  $W_{\Delta}(\Theta, \varphi) = (3/(4\pi)) \{ \rho_{33} \sin^2 \Theta + \rho_{11} (1/3 + \cos^2 \Theta) - (2/\sqrt{3}) \operatorname{Re} \rho_{3-1} \times \sin^2 \Theta \cos 2\varphi - (2/\sqrt{3}) \operatorname{Re} \rho_{31} \sin 2\Theta \cos \varphi \}$  при  $\rho_{33} + \rho_{11} = 0,5.$ 



Рис. 6. Распределение по  $\cos \Theta^A$  для  $P_0 = 5,20$  ГэВ/c

В частности, распределение по  $\cos \Theta^A$ :

$$W(\Theta) = \frac{3}{2} \left\{ \left( \frac{1}{6} + \frac{2}{3}\rho_{33} \right) + \left( \frac{1}{2} - 2\rho_{33} \right) \cos^2 \Theta \right\}.$$

Фитируя распределения  $W(\Theta^A)$ , получаем величины  $\rho_{33}$  для различных интервалов  $t' = t - t_{\min}$ , а затем, фитируя распределения по  $\phi^A$ , получаем матрицы спиновой плотности  $\rho_{3-1}$  и  $\rho_{31}$ , которые приведены на рис. 7.

Однако в рамках ОРЕR-модели  $\rho_{33} = \rho_{3-1} = \rho_{31} = 0$  и распределение по  $\Theta^A$  имеет вид  $W(\Theta) = (1/8\pi)(1 + 3\cos^2\Theta)$ , что не согласуется с данными, показанными на рис.6. Мы предположили, что реакция  $np \to np\Delta^{++}\Delta^{-}$  обусловлена не только обменом  $\pi$ -мезоном, но и имеется некоторый вклад с обменом другим мезоном.  $\Delta$ -резонанс может рождаться не только в процессах  $\pi N \to \pi N$ , но и, в частности, в процессе  $\rho N \to \pi N$  (рис.8).







Рис. 8. Диаграммы  $\Delta^{++}\Delta^{-}$ -рождения

В последнем случае угловое распределение по  $\Theta^A$  будет иметь вид

$$W(\Theta) = \frac{1}{16\pi} (5 - 3\cos^2 \Theta).$$

Матричный элемент реакции  $np \rightarrow np\Delta^{++}\Delta^{-}$  с обменом  $\rho$ -мезоном записывался в таком же виде, как и для обмена  $\pi$ -мезоном. Вклад  $\rho$ -мезонного обмена оказался равен  $\sim 20$  %. Вычисленные теоретические кривые элементов матрицы спиновой плотности, учитывающие обе диаграммы из рис. 8, удовлетворительно согласуются с экспериментальными значениями.

В работах [7, 8] для описания элементов матрицы спиновой плотности использовалась модель  $\pi$ -мезонного обмена с поглощением. Ее недостатком, на наш взгляд, является большое количество свободных параметров.

## РЕАКЦИЯ $np \rightarrow np\rho^0$

Рождение  $\rho^0$ -мезона в np-взаимодействиях может описываться следующими диаграммами, приведенными на рис. 9.

Диаграммы a и  $\delta$  описывают рождение  $N^*$  или  $\Delta^*$  с последующим распадом по каналу  $N\rho^0$ . Возникающие при этом  $\rho$ -мезоны характеризуются сильной периферичностью (рис. 9, распределение по  $Y^*_{\pi\pi}$  в с. ц. м. реакции). Расчеты показали, что такие диаграммы сильно подавлены формфактором матричного элемента, и их вкладом можно пренебречь. Диаграмма в описывает прямое рождение  $\rho$ -мезона в центральной области  $Y^*_{\pi\pi}$ , ее вклад составляет ~ 1% (см. рис. 3, вклад OPERh).

Всладствие малости вклада диаграммы *в* не наблюдается четкого сигнала от  $\rho$ -мезона в распределениях по эффективной массе  $M_{\pi^+\pi^-}$  (см. рис. 4). Поэтому необходимо уменьшить фон в распределении по  $M_{\pi^+\pi^-}$ . Ранее, по критерию  $\cos \Theta_J^{++} < 0$  и  $\cos \Theta_J^- < 0$ , были отобраны события для исследования реакции  $np \to np\Delta^{++}\Delta^-$ . То есть был выбран только 1 квадрант из распределения по  $\cos \Theta_J$ , составляющий 1/4 статистики реакции. Поэтому для учета фона от реакции  $np \to np\Delta^{++}\Delta^-$  был сконструирован набор событий, содержащий не только реальные события реакции из выбранного квадранта, но и дополненный искусственными событиями. С этой целью для каждого реального события в системе



Рис. 9. Диаграммы рождения  $\rho^0$ -мезона

покоя  $\Delta$ -резонанса направления вылета вторичных частиц были заменены на противоположные: т.е.  $\mathbf{P}_N \to -\mathbf{P}_N$  и  $\mathbf{P}_{\pi} \to -\mathbf{P}_{\pi}$ . Это позволило смоделировать остальные 3 квадранта реакции  $np \to np\Delta^{++}\Delta^{-}$ . При последующей обработке такие фоновые события вычитались из распределений. Дополнительно были наложены следующие ограничения для выделения событий реакции  $np \to np\rho^0$ :

 $t(0 \rightarrow n) < 1,0 \ \Gamma \Im B^2/c^2,$ 

 $t(T \rightarrow p) < 1,0 \ \Gamma \Im B^2/c^2,$ 

1,50 <  $M_{N\pi\pi}$  < 2,30  $\Gamma$   $\Rightarrow$  B/ $c^2$ ,

 $2,30 < M_{np} < 2,94 \ \Gamma \Rightarrow B/c^2.$ 

На рис. 10, а показаны распределения по эффективным массам  $\pi^+\pi^-$ -комбинаций после вычета фона от реакции  $np \to np\Delta^{++}\Delta^-$  и с учетом наложенных ограничений. Кривая BG — оставшийся фон. На рис. 10,  $\delta$  показано распределение по быстроте  $Y^*$  для  $\pi^+\pi^-$ -комбинаций. Видно, что рождение  $\rho^0$ -мезона соответствует «подвешенной» диаграмме в из рис. 9. Сечение рождения  $\rho^0$ -мезона в реакции  $np \to np\rho^0$  оказалось равным  $\sigma = (61 \pm 4)$  мкб.

Реакция  $np \rightarrow np\rho^0$  ранее исследовалась только в работе [12].

#### ЗАКЛЮЧЕНИЕ

Для реакции  $np \rightarrow np\pi^+\pi^-$  при  $P_0 > 3$  ГэВ/с характерно обильное рождение  $\Delta$ -резонанса и сильная периферичность вторичных частиц. Экспериментальные распределения удовлетворительно описываются OPER-моделью [3].



Рис. 10. Распределения по массе и  $Y^*_{\pi\pi}$  для  $\rho^0$ -мезона

Вычислены сечения реакции  $np \rightarrow np\Delta^{++}\Delta^{-}$  и матрица спиновой плотности распада  $\Delta$ -резонанса. Показано, что для описания спиновых эффектов необходимо привлекать механизм обмена  $\rho$ -мезоном.

С помощью специальной процедуры вычитания фона выделена реакция  $np \to np\rho^0$  и определено ее сечение. Показано, что рождение  $\rho$ -мезона описывается «подвешенной» диаграммой  $\pi$ -мезонного обмена.

Полученные результаты находятся в хорошем согласии с мировыми данными.

#### СПИСОК ЛИТЕРАТУРЫ

1. Alvarez-Ruso L., Oset E., Hernandez E. Theoretical Study of the  $NN \rightarrow NN\pi\pi$ Reaction // Nucl. Phys. A. 1998. V.633, No.3. P.519–543.

- Xu Cao, Bing-Song Zou, Hu-Shan Xu. Phenomenological Analysis of the Double Pion Production in Nucleon–Nucleon Collisions up to 2.2 GeV // Phys. Rev. C. 2010. V. 81, No. 6. P. 065201–065236.
- Пономарев Л. А. Описание эксклюзивных процессов в модели реджезованного однопионного обмена // ЭЧАЯ. 1976. Т. 7, вып. 1. С. 186–248.
- Бешлиу К., Груя С., Иерусалимов А. П., Которобай Ф., Мороз В. И., Никитин А. В., Троян Ю. А. Сечения каналов реакций пр-взаимодействий при P<sub>0</sub> = 1-5 ГэВ/с // ЯФ. 1986. Т. 43, № 3. С. 565-568.
- 5. Jerusalimov A. P., Belyaev A. V., Ladygin V. P., Kurilkin A. K., Troyan A. Yu., Troyan Yu. A. Study of the Reaction  $np \rightarrow np\pi^+\pi^-$  at 1.0 and 1.5 GeV // Eur. Phys. J. A. 2015. V. 51, No. 7. P. 83–92.
- Cohn H. O., McCulloch R. D., Bugg W. M., Condo G. T. Inelastic pn Interactions at 3.7 GeV/c // Nucl. Phys. B. 1972. V. 21, No. 2. P. 505–514.
- Shapira A., Yecutieli G., Yaffe D., Toaff S., Ronat E. E., Lyons L., Karshon U., Haber B., Eisenberg Y. Δ<sup>++</sup>(1236)Δ(1236) Production in pn Collisions at 6.98 GeV/c // Nucl. Phys. B. 1970. V.23, No.3. P.583–595.
- Hochman D., Eisenberg Y., Karshon U., Shapira A., Ronat E. E., Yaffe D., Yecutieli G., Hammerman I., Goldberg J. Two-Pion Production in pn Collisions at 11.6 GeV/c // Nucl. Phys. B. 1974. V. 80, No. 2. P. 189–205.
- 9. Van Apeldoorn G. W., Harting D., Holthuizen D.J., Pijlgroms B.J., Rijssenbeek M. M. H. M., Warmerdam-de Leeuw L. M. Study of Diffraction Dissociation and Double Resonance Production in the Final State  $\overline{p}p\pi^+\pi^-$  at 7.2 GeV/c // Nucl. Phys. B. 1979. V. 156, No. 1. P. 111–125.
- Ader J. P., Meyers C., Bonnier B. Model-Independent Analysis of Density-Matrix Element Measurements in Multiparticle Reactions // Nucl. Phys. B. 1972. V. 47, No. 2. P. 397-421.
- 11. Фелд Б. Сохранение углового момента // Фелд Б. Модели элементарных частиц: Пер. с англ. М.: Мир, 1971. С. 85–118.
- Yecutieli G., Yaffe D., Shapira A., Ronat E. E., Lyons L., Karshon U., Eisenberg Y. ρ<sup>0</sup> Production in pn Collisions at 6.98 GeV/c // Phys. Lett. B. 1971. V. 34, No. 1. P. 101–104.