ПОИСК ФРАКТАЛЬНЫХ СТРУКТУР В МОНТЕ-КАРЛО AuAu-СОБЫТИЯХ ПРИ ЭНЕРГИИ 200 ГэВ SePaC-МЕТОДОМ

Т. Г. Дедович *, М.В. Токарев **

Объединенный институт ядерных исследований, Дубна Государственный университет «Дубна», Дубна, Россия

Проведен анализ фракталов, случайных и AMPT AuAu-событий с использованием SePaC-метода. Изучаются поперечные импульсы p_t отрицательно заряженных частиц в пяти классах центральности. Показано, что фрактальные AuAu-события с независимым делением имеют несколько узких пиков в спектре фрактальных размерностей D_F , выделенную группу лидирующих частиц по поперечному импульсу p_t для всех событий и удовлетворяют критериям, описывающим статистические свойства. Оставшиеся события обнаруживают экспоненциальное поведение p_t -спектра. Фрактальные AuAu-события с зависимым делением имеют широкий пик в D_F -спектре и подавляются критериями.

Fractals, random and AMPT AuAu events are analyzed by the SePaC method. The transverse momenta p_t of negative charged particles in five centrality classes are studied. It is shown that fractal AuAu events with independent partition have several narrow peaks in the spectrum of fractal dimensions D_F , a selected group of leading particles by p_t for all events and satisfy the criteria describing statistical properties. The remaining events exhibit exponential behavior of the p_t spectrum. Fractal AuAu events with dependent partion have a broad peak in the D_F spectrum and are suppressed by the criteria.

PACS: 05.45.Df; 13.75.Cs

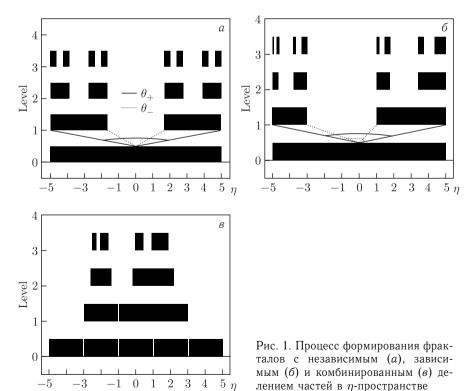
ВВЕДЕНИЕ

Поиск критических явлений, связанных с изменением состояния вещества, является одной из приоритетных задач современной физики высоких энергий. Основная цель программы энергетического сканирования на релятивистском коллайдере тяжелых ионов (RHIC) — установить структуру фазовой диаграммы (положение критической точки, границы фаз) ядерной материи. Указания на существование критической точки в виде немонотонной зависимости радиусов Хэнбери-Брауна-Твисса,

* E-mail: tdedovich@jinr.ru ** E-mail: tokarev@jinr.ru коэффициентов выхода легких ядер и коэффициента масштабирования перемежаемости ν от энергии обсуждаются в работе [1]. Авторами исследовалось степенное поведение факториальных моментов F_q порядка q=3-6 от F_2 -момента второго порядка ($F_q\propto F_2^{\beta_q}$). Установлен степенной закон поведения $\beta_q\propto (q-1)^{\nu}$, и показано, что величина ν как функция энергии имеет минимум для центральных столкновений при энергии $\sqrt{s_{NN}}=27$ ГэВ. Предполагается, что наличие минимума имеет отношение к существованию критической точки, так как вблизи границ фазовых переходов системы демонстрируют фрактальное поведение, одним из проявлений которого является перемежаемость.

В работе [2] Дж. Бьеркен обратил внимание на новое направление изучения КХД на коллайдерах — поиск фрактальности партонных каскадов. Отметим, что разработка различных способов обнаружения фрактальности является актуальной задачей современной физики высоких энергий. В работе [3] предложен SePaC-метод фрактального анализа, позволяющий разделить события на два класса — фрактальные и нефрактальные. Для каждого фрактального события вычисляется размерность D_F , а для набора данных — спектр размерностей. Наличие узких пиков в распределении по D_F указывает на существование в наборе данных фракталов с различной структурой. Мы предполагаем, что проявлением нового состояния вещества, образующегося в столкновениях адронов и ядер высоких энергий, могут быть некоторые закономерности, установленные в рамках SePaC-метода. К ним относятся: немонотонное поведение зависимости доли фрактальных событий от энергии столкновения и центральности события, появление новых пиков или изменение их положения в спектре фрактальных размерностей.

В работе показана связь партонных ливней и фракталов, описаны этапы развития SePaC-метода и приведены результаты поиска фрактальных структур в Монте-Карло AuAu-событиях при энергии 200 ГэВ.


ФРАКТАЛЫ КАК ПАРТОННЫЕ ЛИВНИ

Для анализа взаимодействия адронов и ядер широко используются различные Монте-Карло генераторы событий. Рассмотрим некоторые особенности механизма развития партонного ливня в конечном состоянии в генераторе АМРТ [4]. На каждом шаге развития ливня партон a излучает два дочерних -b и c. Кинематика процесса излучения описывается величиной доли энергии z, передаваемой дочерним партонам: $E_b = zE_a, E_c = (1-z)E_a$. Кинематический диапазон изменения величины z (z z z z) определяет диапазон угла излучения партона Θ (угла раскрытия) $\Theta_- < \Theta < \Theta_+$. При этом углы раскрытия дочерних партонов упорядочены: $\Theta_b, \Theta_c < \Theta_a$.

Опишем сценарий развития партонного ливня, приводящий к фракталу с независимым делением частей. На первом шаге партон a излучает два партона — b и c. Диапазон возможных углов излучения (Θ_+, Θ_-)

определяет допустимые части для дочерних партонов в псевдобыстротном пространстве ($\eta=-0.5\ln{(\mathrm{tg}\,(\Theta/2))}$). На рис. 1, a показан процесс формирования фрактала с независимым делением частей. Пространство, допустимое для родительского партона, условно делится на три части (основание образования фрактала P=3). Для каждого партона допустимый диапазон состоит из одной части (первой и третьей соответственно). На каждом последующем шаге развития ливня процесс излучения повторяется. Таким образом, каждый из допустимых диапазонов в процессе деления сохраняет свою структуру и рассматривается как независимый объект. Формирование такого фрактала предполагает равную ширину допустимых диапазонов.

Ширина допустимых диапазонов в процессе развития ливня может быть различной, например, для разных типов кварков и глюонов. Этому соответствует образование фракталов с зависимым и комбинированным делением. На рис. $1, \delta$ показан процесс формирования фрактала с зависимым делением. Пространство, допустимое для родительского партона, разделено на пять частей (P=5). Для дочерних партонов допустимые диапазоны псевдобыстрот состоят из одной (первой) и двух частей

(четвертой, пятой). На каждом последующем шаге процесс излучения повторяется, сохраняя структуру заполнения η -пространства. Диапазон, состоящий из двух зависимых частей, рассматривается как единый объект. На рис. $1, \mathfrak{s}$ показан процесс формирования фрактала с комбинированным делением. Область η -пространства, допустимая для родительского партона, делится на пять частей (P=5). Для первого партона допустимый диапазон состоит из одной (второй) части, а для второго — из двух (третьей, четвертой) частей. Отметим, что в процессе развития ливня образуется единый диапазон, дальнейшее деление которого будет комбинированным. Третья и четвертая части (второй диапазон) делятся зависимо, а первая — независимо.

ОПИСАНИЕ И ЭТАПЫ РАЗВИТИЯ SePaC-МЕТОДА

В SePaC-методе фрактальная размерность D_F определяется путем анализа меры Хаусдорфа [5] $M_\delta = \liminf_{\varepsilon \to 0} \inf_K \sum_{i=1}^N l_i^\delta$. Исследуемое множество точек покрывается N пробниками размером $l_i \leqslant \varepsilon$. Оператор inf означает минимальное значение меры, полученное по всем возможным покрытиям K. Размерность D_F определяется как значение δ , при котором мера Хаусдорфа имеет конечное значение. Величина ε^{-1} называется разрешением. Для вычисления фрактальной размерности рассматриваются различные наборы распределений исследуемой величины. В каждом наборе количество бинов N_i в распределениях меняется по степенному закону $N_i = (P_{\text{cov}})^i$, где P_{cov} — основание покрытия, i — номер распределения, определяющий уровень фрактала \hat{N}_{lev} . Для каждого распределения подсчитывается количество ненулевых бинов и определяется $l_{i,i}$ — длина j-го элемента фрактала на i-м уровне. Далее строятся уравнения $\sum\limits_{i=1}^{N_i}(l_{ji})^{d_{F,i}}=1$, где N_i — количество элементов фрактала на i-м уровне. Значение $d_{F,i}$ находится численным методом «деления отрезка пополам». Рассматривая различные покрытия с $P_{
m cov}$ от 3 до $P_{\rm max}$ (параметр метода) и типы фракталов (с независимым или зависимым делением), находим минимальное покрытие K, удовлетворяющее ограничению $|d_{F,i}-\overline{d}_F|/\overline{d}_F<\mathrm{Dev},$ где $\mathrm{Dev}-$ параметр метода, а \overline{d}_F среднее значение $\{d_{F,i}\}$. В этом случае событие считается фракталом с размерностью $D_F = \overline{d}_F$.

В работах [6–8] показано, что эффективность восстановления характеристик фракталов (D_F , $N_{\rm lev}$ и P) составляет 99, 91 и 84% для фракталов с независимым, зависимым и комбинированным делением частей соответственно.

В работе [9] предложена двухступенчатая процедура для увеличения эффективности восстановления характеристик фракталов. Для анализа фракталов с независимым и зависимым делением учитывается степенной

закон между количеством элементов фрактала и количеством бинов в распределениях набора. Для фракталов с комбинированным делением степенная зависимость не учитывается (модифицированный метод).

В работе [10] для выделения фракталов из набора, содержащего в том числе фоновые события, применялся модифицированный SePaC-метод. Показано, что фракталы реконструируются при $P_{\rm max}\geqslant 3$ и ${\rm Dev}\leqslant 0,18$. Установлено, что доля реконструированных фракталов зависит от параметров метода и не зависит от множественности событий. Случайные события не восстанавливаются как фракталы при $P_{\rm max}=3-10$, а при $P_{\rm max}>10$ доля событий, реконструируемых как фракталы, зависит от множественности. Установленные различия используются как критерии для выделения фракталов.

В работе [11] анализировались неполные фракталы с независимым делением, полные фракталы с зависимым и комбинированным делением и случайные события. Неполные фракталы возникают в процессе развития ливня партонов в конечном состоянии из-за существования порога излучения по виртуальности. В этом случае партоны прекращают распадаться на различных уровнях и образуют неполную фрактальную структуру. Кроме того, фрактальный характер партонных ливней могут исказить вторичные взаимодействия и процесс адронизации. Показано, что процедура выбора параметров метода совпадает для полных и неполных фракталов.

В работе [12] фрактальный анализ проведен для различных фоновых событий, спектры которых описывались функцией Гаусса, экспоненциальной и степенной зависимостями. Установлены значения Dev и P_{\max} , при которых восстанавливается максимальное количество фракталов, а доля фоновых событий минимальна. Отмечается наличие узких пиков для фракталов и широких для всех фоновых событий в D_F -спектре. В работе введены три критерия для подавления фона, которые характеризуют статистическую повторяемость структур. Критерий $\operatorname{Cr}_K:|\overline{\delta}_K|\leqslant K_{\lim}$ ограничивает среднее относительное отклонение $\overline{\delta}_K$ показателя K от значения i-го уровня в степенной зависимости $N_i=(N_1)^K$. Здесь N_1 и N_i — количество элементов на первом и i-м уровнях. Критерий $\operatorname{Cr}_D:|\overline{\delta}_D|\leqslant D_{\lim}$ ограничивает среднее относительное отклонение $\overline{\delta}_D$ количества делений элементов фрактала от количества делений базового элемента. Критерий $\operatorname{Cr}_P:P_{1,1}\leqslant P_{\lim}$ ограничивает долю неделящихся элементов с одной заполненной частью $P_{1,1}$. При точной реконструкции фрактала значения $\overline{\delta}_K, \overline{\delta}_D$ и $P_{1,1}$ равны нулю.

ДАННЫЕ ДЛЯ АНАЛИЗА

В данной работе изучаются Монте-Карло AuAu-события при энергии $\sqrt{s_{NN}}=200~\Gamma$ эВ, полученные с помощью генератора AMPT [4]. Анализируется поперечный импульс p_t отрицательно заряженных частиц, регистрируемых в интервале $|\eta|\leqslant 0,5$, для пяти классов центральности:

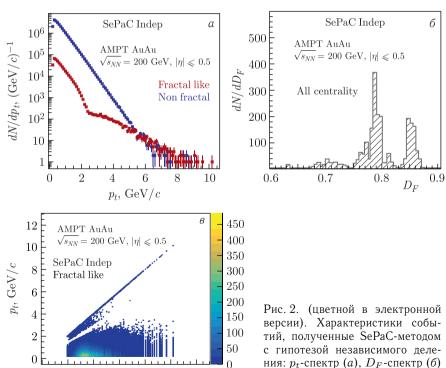
0-5, 5-10, 10-20, 20-30 и 30-40 %. Для сравнения используются наборы случайных событий и Монте-Карло фракталы.

В генераторе АМРТ множественное рождение частиц в ядро-ядерных взаимодействиях рассматривается в предположении универсальности партонных плотностей, эволюция которых происходит в соответствии с уравнением DGLAP. Жесткие и полужесткие процессы рассчитываются в рамках pQCD. Мягкие взаимодействия описываются феноменологической моделью множественного рождения струн. Взаимодействия партонов между собой и со средой включают неупругие взаимодействия, а также ливни в начальном и конечном состояниях. При отсутствии термализации ядерной материи неравновесная динамика многочастичной системы может быть описана в рамках мультифазной транспортной модели (АМРТ). Она включает начальные партонные, конечные адронные взаимодействия и переход между этими фазами. В данной работе использовался сценарий с плавлением струн. В начальном состоянии энергия столкновения распределена между мягкими возбужденными струнами, мини-струями партонов и нуклонами-спектаторами. Далее происходит процесс плавления струн, в рамках которого мягкие струны фрагментируют (модель Лунда) в адроны с последующим переходом в партоны в соответствии с ароматом и спином их валентных кварков. Партоны, полученные в результате плавления мягких струн, и партоны из министруй участвуют в неупругом ZPC (Zhang's Parton Cascade) каскаде. Механизм коалесценции используется для объединения партонов в адроны. Получившиеся адроны участвуют во взаимодействии в конечном состоянии, описываемом релятивистской транспортной моделью ART [4].

РЕЗУЛЬТАТЫ ФРАКТАЛЬНОГО АНАЛИЗА

Получены зависимости доли Prtn случайных и AuAu-событий, реконструированных как фракталы, от параметра $P_{\rm max}$ при Dev = 0,05 [12]. Зависимость для AuAu-событий имеет несколько режимов поведения: быстрый рост ($P_{\rm max}=3-10$), первое плато ($P_{\rm max}=6-11$), монотонное возрастание ($P_{\rm max}=12-95$) с выходом на второе плато (Prtn = 0,63 при $P_{\rm max}>95$). Первое плато соответствует гипотезе независимого деления, а область дальнейшего роста — гипотезе зависимого деления. Установлено, что при $P_{\rm max}<15$ случайные события не восстанавливаются как фракталы в отличие от AuAu-событий. Это указывает на то, что некоторые AuAu-события имеют фрактальную структуру.

Использование гипотезы независимого деления при $\mathrm{Dev}=0.05$ и $P_{\mathrm{max}}=100$ позволяет разделить AuAu-события на фрактальные и нефрактальные. Показано, что спектр поперечных импульсов p_t для фрактальных событий имеет несколько режимов поведения, а для нефрактальных — экспоненциальный вид. Для всех классов центральности p_t -спектры аппроксимировались экспонентой в диапазоне $1.2-6.2~\Gamma$ эВ/c. Изучалась зависимость χ^2/N аппроксимации от параметра Dev при


4 6

 $p_{t \max}, \, \text{GeV}/c$

10 12

 $P_{\rm max}=100$. Установлено, что при малых значениях Dev (от 0,01 до 0,03) наблюдается плато с последующим увеличением χ^2/N . Максимальное значение Dev на плато считалось оптимальным, так как соответствует минимальному χ^2/N и наибольшему количеству фрактальных событий. Установлено, что с увеличением центральности оптимальное значение Dev незначительно уменьшается (от 0,03 до 0,02), значение χ^2/N увеличивается (от 1,8 до 7,9), а параметр наклона не меняется $(2,36\pm0,02)$.

На рис. 2, a–b показаны результаты анализа всех AuAu-событий с гипотезой независимого деления при $P_{\rm max}=100$ и оптимальных значениях Dev для каждого класса центральности. На рис. 2, a показан p_t -спектр фрактальных и нефрактальных событий. Нефрактальные события (синие точки) имеют экспоненциальный спектр до значений $p_t=6,2$ ГэB/c, а спектр фрактальных событий (красные точки) имеет сложное поведение. На рис. 2, 6 приведено распределение событий по фрактальной размерности D_F . Оно имеет два четко выраженных узких пика при $D_F=0,775$ и 0,85. Распределение событий на двумерной плоскости $\{p_t,p_{t_{\rm max}}\}$, где $p_{t_{\rm max}}$ — максимальный поперечный импульс частицы в событии, а p_t — поперечный импульс частицы для фрактальных событий, показано

и $\{p_t; p_{t_{\max}}\}$ -распределение (s)

для фрактальных AuAu-событий

на рис. 2, g. Из этого рисунка видно, что фрактальные события имеют разряженную область, соответствующую группе лидирующих частиц в событии, в том числе при малых значениях $p_{t_{\rm max}} < 4~\Gamma$ эВ/c. Такое поведение распределения связано с изломом p_t -спектра фрактальных событий. Распределение $\{p_t, p_{t_{\rm max}}\}$ для нефрактальных событий не имеет разряженной области, поэтому предполагаем, что фрактальные и нефрактальные события имеют различную динамику.

Нефрактальные AuAu-события, полученные после применения гипотезы независимого деления, проанализированы SePaC-методом с гипотезой зависимого деления. Показано, что распределение по p_t фрактальных и нефрактальных событий сходно с распределениями событий, имеющих экспоненциальный спектр. Также установлено, что распределение по размерности D_F имеет широкий пик, характерный для фоновых событий [12].

Показано, что распределения по величинам δ_K , δ_D и $P_{1,1}$, характеризующим статистическую повторяемость структур, для фракталов и случайных событий не имеют областей перекрытия. Введенные критерии $\mathrm{Cr}_K:|\overline{\delta}_K|\leqslant 0,25,\ \mathrm{Cr}_D:|\overline{\delta}_D|\leqslant 0,65$ и $\mathrm{Cr}_P:P_{1,1}\leqslant 0,35$ позволяют подавить случайные события (остаются 9, 2 и 17% событий соответственно) и восстановить фракталы (подтверждаются 76, 95 и 99% событий соответственно). Установлено, что доли фрактальных AuAu-событий с независимым делением, удовлетворяющие критериям $\mathrm{Cr}_K,\ \mathrm{Cr}_D,\ \mathrm{Cr}_P,\ \mathrm{составляют}$ 100, 88 и 98% соответственно. Введенные критерии подавляют фрактальные AuAu-события с зависимым делением на уровне 88%. Таким образом, можно утверждать, что фрактальные AuAu-события с независимым делением имеют одинаковые статистические свойства и могут быть интерпретированы как фракталы, а с зависимым делением фракталами не считаются.

ЗАКЛЮЧЕНИЕ

В работе обсуждается возможность использования фрактального анализа для поиска нового состояния вещества, рожденного во взаимодействиях адронов и ядер высоких энергий. Представлено обоснование этапов развития SePaC-метода фрактального анализа для описания различных физических процессов. Проведен анализ фракталов, случайных и AMPT AuAu-событий при энергии $\sqrt{s_{NN}}=200~\Gamma$ эВ. Описаны физические процессы, используемые в модели для генерации AMPT AuAu-событий. В качестве исследуемой величины рассматривался поперечный импульс отрицательно заряженных частиц для событий пяти классов центральности. Показано существенное различие в поведении доли случайных и AuAu-событий, определяемых как фракталы, от параметра метода P_{\max} . Установлено, что гипотезы независимого и зависимого делений соответствуют различным областям зависимости \Pr trn (P_{\max}) для AuAu-событий. Показано, что фрактальные AuAu-события с независи-

мым делением имеют несколько узких пиков в спектре фрактальных размерностей и выделенную группу лидирующих частиц по поперечному импульсу. Оставшиеся события обнаруживают экспоненциальное поведение p_t -спектра. Установлено, что фрактальные AuAu-события с зависимым делением имеют широкий пик в D_F -спектре. Показано, что большинство фракталов и фрактальных AuAu-событий с независимым делением (86 %) удовлетворяют критериям, описывающим статистическую повторяемость структур на разных уровнях, а все случайные и фрактальные AuAu-события с зависимым делением подавлены.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Abdulhamid M. et al. (STAR Collab.).* Energy Dependence of Intermittency for Charged Hadrons in Au + Au Collisions at RHIC // Phys. Lett. B. 2023. V. 845. P. 138165; arXiv:2301.11062 [nucl-ex].
- 2. Bjorken J. et al. Fractal Phase Space as a Diagnostic Tool for High-Energy Multijet Processes // Phys. Rev. D. 1992. V. 45 P. 4077.
- 3. *Dedovich T. G., Tokarev M. V.* Method of Systems of Equations of P-Adic Coverages for Fractal Analysis of Events // Phys. Part. Nucl. Lett. 2011. V. 9, No. 6. P. 552–566.
- 4. Zi-Wei L., Che Ming K., Bao-An L., Zhang B., Subrata P. Multiphase Transport Model for Relativistic Heavy Ion Collisions // Phys. Rev. C. 2005. V. 72. P. 064901.
- 5. *Hausdorff M.* Mass Constituents of a Flat Lattice Multiverse: Conclusion from Similarity between Two Universal Numbers, the Rocksalt-Type 2D Madelung Constant and the Golden Mean // Math. Ann. 1918. V. 79. P. 157–179.
- 6. Dedovich T. G., Tokarev M. V. Comparison of Fractal Analysis Methods in the Study of Fractals with Independent Branching // Phys. Part. Nucl. Lett. 2013. V. 10, No. 6. P. 481–490.
- 7. *Dedovich T. G., Tokarev M. V.* Analysis of Fractals with Dependent Branching by Box Counting, P-Adic Coverages and System of Equations of P-Adic Coverages // Phys. Part. Nucl. Lett. 2013. V. 10, No. 6. P. 491–500.
- 8. Dedovich T. G., Tokarev M. V. Analysis of Fractals with Combined Partition // Phys. Part. Nucl. Lett. 2016. V. 13, No. 2. P. 169–177.
- 9. Dedovich T.G., Tokarev M.V. A Two-Step Procedure of Fractal Analysis // Phys. Part. Nucl. Lett. 2016. V. 13, No. 2. P. 178–189.
- 10. Dedovich T.G., Tokarev M. V. Fractal Reconstruction in the Presence of Background // Phys. Part. Nucl. Lett. 2019. V. 14, No. 6. P. 865–873.
- 11. *Dedovich T. G., Tokarev M. V.* Reconstruction of the Dimension of Complete and Incomplete Fractals // Phys. Part. Nucl. Lett. 2019. V.16, No.3. P.240–250.
- 12. *Dedovich T.G., Tokarev M. V.* Criteria of Fractal Reconstruction and Suppressing Background Events with the SePaC Methods // Phys. Part. Nucl. Lett. 2021. V. 18, No. 1. P. 93–106.