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YAK 539.1.01

FUNDAMENTAL SYMMETRY BREAKING
IN NUCLEAR REACTIONS

V.E.Bunakov
Joint Institute for Nuclear Research, Dubna*

A theoretical review is given of P- and (or) T-invariance violating effects in nuclear
reactions. It is demonstrated, that all of them are characterized by 2 major enhancement
factors — dynamical and resonance ones. The net enhancement effect reaches 5—6 orders
of magnitude. Both enhancements are caused by quantum chaoticity (complexity) of
compound-nucleus resonances. This complexity, however, demands statistical methods of
analysis of observed data in order to extract information on symmetry-breaking interaction
strength constants. These methods are also presented and discussed in the review.

Han Teoperudeckuit 0630p acpextos P- u (1) T-HECOXPaHEHHS B SNEPHBIX PEAKLIHSX.
TlokasaHo, YTO BCe OHM XapaKTEPU3YIOTCS JABYMS OCHOBHBIMH MEXAaHM3MAaMH YCHICHHA —
AMHAMHYECKHM ¥ pe3oHaHCHbM. TlonHoe ycuieHue NpH 9TOM HOCTHraeT 5—6 NOpsaKoB.
O6a MexaHM3Ma YCWIEHHS SBISIOTCS CIENACTBHEM KBAaHTOBOH XAOTHUHOCTH (CIOXHOCTM)
CTPYKTYPBI PE30HAHCOB KOMIayHA-A1pa. DTa XAOTHYHOCTh, OHHAKO, NPHBOIHT K HEOG-
XOOMMOCTH KCIIONIB3OBAHMS CTATHCTHIECKHX METONOB AaHAIM3a 9K CIEPHMEHTANBHBIX JAHHBIX
A U3BIIEYCHUS M3 HIX WHOOPMALMH O CHIOBBIX KOHCTAaHTAX, HAapYIIAIOLIMX CHMMETDHIO
B3aMMOJEHCTBHI. BTH CTATACTHYECKHE METOIbI TaKXe 06cyXaaTcs B 0630pe.

It is frequently pointed that discovery of America by Columbus nicely
illustrated transformation of scientific hypothesis into discovery. Colubmbus
cherished the idea that Earth is round and hoped to reach East India by sailing
to the West. Notice that:

a. His idea was by no means original, but he received new information.

b. He faced enormous difficulties both in search for subsidies and in
carrying on with his experiment.

c. He did not find a new way to India, but discovered a new continent
instead.

*On leave of absence from St. Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia.
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d. In spite of all the arguments to the contrary he continued believing that
he discovered a new way to the East.

e. He got neither special respect nor substantial reward in his lifetime.

f. Since then it was proved without doubt that he was not the first European
to reach America.

(«Physicists Joking». Mir, Moscow, 1966, p.66)

I. INTRODUCTION

The phase «fundamental symmetry» in the title is the frequently used
shorthand for P- and T-invariance. It just reminds us of old times, when both
those symmetries were considered to be most unbreakable. Since then P-
invariance lost a good deal of its glamour. Its fundamentality was shaken by the
discovery of P-violation first in [(-decay and then in nucleon-nucleon
interactions. For a certain time it seemed possible that weak interaction which
caused P-violation in those two cases might be different for leptonic and
barycnic processes. This could have added interest to nuclear P-violation
studies. However the electroweak interacrtion theory of Weinberg and Salam
closed this possibility. The T-invariance fortress remains much more invincible.
The only experimental fact known by now is CP-violation in K-mesons decays
discovered 30 years ago. On the basis of the CPT-theorem this implies T-vio-
lation, which can be explained theoretically in an infinite number of ways. All
this makes further search of T-violation a much more exciting problem of
general importance in physics. In other words, T-invariance is much more
fundamental nowadays than the P-one.

The present wave of interest to P-violation in nuclear reactions was boosted
by the theoretical predictions [1,2] of possible huge (6 orders of magnitude)
enhancement of these effects in the vicinity of compound-nucleus resonances
which were almost immediately confirmed experimentally [3]. A year later the
same huge enhancements were predicted [4] for the effects violating both P-
and 7-invariance. Similar enhancements of P-conserving T-violating effects
were predicted a few years later [5,6]. It seemed to us at that time (and still
seems to me now), that those huge enhancements should be primarily used in
experimental search of T-violating effects, since even establishing new upper
bounds on CP-interaction constants might help a lot in selecting the most
promising models of CP-violation.

However this natural way of reasoning does not seem to be well understood
and shared. The major part of experimental and theoretical efforts up to now
was concentrated on P-violation effects. Even there a good deal of energy was
wasted on sensation-hunting and theoretical re-discovering of facts known for
years.
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One of the reasons for this is, according to my experience, a poor under-
standing of basic and quite general physics, which governs the above
enhancements even by those, who work in the field. Lots of them naively
believe that one can professionally discuss and analyze symmetry breaking in
nuclear reactions without any knowledge of ‘nuclear reaction theory or, at best,
with rudimentary knowledge of Breit-Wigner formula. This strange belief is
partially explained by bad traditions in nuclear physics, where nuclear structure
studies were always considered to be of major importance in spite of the fact
that most information for those studies was obtained from nuclear reactions. On
deeper level it comes from the fact that quantum mechanics of bound states is
in all respects much simpler than for continuum. Therefore it is quite tempting
(and often quite misleading) to oversimplify the description of the process by
using well-known bound-state analogies.

This unprofessional approach and naive clinging to the bound-state
analogies create a fragmentary and wrong impression about the enhancement
mechanisms for different observable quantities. For instance, very popular
interpretation of neutron transmission enhancement in terms of «structural»

enhancement factor (kR)_l does not allow one to understand the significance of
P-odd correlation asymmetry measurements in inelastic channels, where the
effects might be even larger [7,8] but could not be understood in terms of
bound-state parallels. Exactly the same applies to T-violation tests of detailed
balance in isolated resonance regime, where the net enhancements might be
orders of magnitude larger [6,9] than in transmission experiments and are
practically bound only by the experimental energy-resolution. All this leads to
prejudiced distortion of the «priority scale» for different observables and often
makes the experimentalists to choose rather difficult experiments, which in
reality promise no enhancements whatsoever.

Only when the results start to deviate from naive expectations, people start
reading papers on nuclear reaction theory. And the lack of professionalism
again shows itself — people start mixing one mechanism with the other, re-
invent models, which were longly discarded with by professionals or invent
«home-brew» models whose validity was never checked in description of
nonexotic reaction processes. This in turn often leads to aggressively
incompetent statements of the type — «Live me alone with all your fancy
reaction models, I had already wasted several days reading some of them and
I'm sure, that you are overcomplicating quite simple things».

In view of all this, my present review is primarily addressed to those
unprejudiced readers, who realize that nuclear reaction theory is a special
branch of nuclear physics developed by generations of professionals. It has only
few features in common with the bound-state spectroscopic theories, and I shall
try to emphasize them.



288 BUNAKOV V.E.

Therefore I shall start with brief reminding of P-violation theory in cases
of bound states (Sec.II) with special emphasis on its specific enhancements.

Then I shall switch over to my main topic of nuclear reactions for isolated
resonances when the average resonance spacing d is much larger than average
resonance width T" (Sec.IIl).

I shall start this Section by short reminder of some results of nuclear
reaction theory for isolated resonances (III, 1), which will be essential for all
the further analysis, namely the structure of the wave functions for a system of
incident (outgoing) particle and a target (residual) nucleus. In doing this I shall
use the best and most physical version of nuclear reaction theory, namely the
shell-model with continuum, developed by Mahaux and Weidenmuller [10] as
the natural realization of Feshbach’s unified theory of nuclear reactions. The
advantage of this approach over the more popular R-matrix one lies in much
more physical treatment on continuum wave-functions, which allows one to
describe both the direct and compound processes in a unified way.

A fairly large Subsection III.2 discusses all the aspects of P-violation in
nuclear reactions. Paragraph 2.1 contains the analysis of possible P-violating
observables. In paragraph 2.2. a short historical background is given with
special emphasis on how erroneous the bound-state parallels might be. The
rather lengthy paragraph 2.3 contains the analysis of all the possible
mechanisms of P-violation in nuclear reactions (all the 32 terms contributing to
P-violating scattering amplitude). Mark that the absolute magnitudes of the
corresponding effects are defined by nucleon-nucleon weak-interaction
constants, on which up to now we have only educated guesses and whose
extraction from experimental observables should be the ultimate aim of our
P-violating investigations. Therefore only estimates of relative contributions
coming from different mechanisms and of their energy behaviour are
meaningful in the analysis of different competing mechanisms. For this reason
I expand in paragraph 2.3 on this kind of analysis and emphasize the generality
of various enhancement effects specific for each mechanism. It turns out that
only 2 major enhancement factors govern the P-violating amplitudes —
dynamical enhancement v/d ~ VN (7 is the variance of strong interaction matrix

element between compound states and N~ 10° is the number of basic
components, which define the complexity of the compound state wave function)
and resonance enhancement d/I'. While the former enhancement is well-known
in the bound-state P-violating theory, the resonance enhancement is a specific
feature of continuum spectra, which has no bound-state analogous. After
analyzing the energy behaviour of P-violating amplitudes we are forced to come
back to observables (paragraph 2.4) in order to investigate their rather com-
plicated energy dependence, caused by the combined influence of P-violating
amplitudes in their numerators and P-invariant ones in their denominators. This
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allows us to compare the specific enhancements of all the P-violating observ-
ables in different energy regions and to understand in quite general terms the
«priority hierarchy» of observables, which is confirmed by experiments. We

also show that the «structural» enhancement factor (kR)‘l is an artifact of
presenting the auxiliary quantities instead of the really observed ones.

Subsection II1.3 deals with T-violation. In paragraph 3.1 we discuss specific
hidden dangers, which make true T-invariance investigations much more subtle
than the P-invariance ones, and present the list of «true» T-violating observ-
ables. The theory of T-violation in nuclear reactions dates back to late 50-ies
and is rather dramatic. However only few people know about it. Therefore I
present a short survey of its development in 3.2. Paragraph 3.3 deals with the
most important theoretically P-odd T-odd «triple correlation» (TC). The ana-
lysis of possible TC enhancements is given in it together with analysis of spe-
cific difficulties in its experimental observation. In 3.4 we analyze the P-even
T-odd correlation (FC) in neutron transmission, demonstrating both its
advantages and drawbacks. In 3.5 we analyze the possibilities of 7-violation
detailed balance tests (TVDB) for 2 close-lying resonances, when average
spacing d in much larger than average I'. In paragraph 3.6, we briefly
summarize our results on T-violation effects showing that all of them are
governed by the same dynamical and resonance enhancement effects as the
P-violating ones. In complete analogy to P-violation we present the «priority
hierarchy» of T-violating observables and conclude that most promising results
in the near future might be expected from TVDB tests of paragraph 3.5.

In Section IV the statistical approach to compound-resonance measure-
ments is discussed. In Subsection IV.1 it is demonstrated that both dynamical
and resonance enhancements are quite general consequences of quantum chaos
characteristic of compound nucleus, which was faced and physically understood
in «strong» symmetry-breaking from the dawn of nuclear physics. Therefore the
meaningful analysis of weak symmetry-breaking (WSB) matrix elements
extracted from experiments should be done with exactly the same mathematical
methods which were successfully applied in studies of «strong» symmetry-
breaking, namely with the use of randon-matrix theory and Gaussian ensembles
of Wigner and Dyson. Since historically such methods were first applied to
calculation of energy-averaged WSB quantities, I discuss in Subsection IV.2 the
practical disadvantages of «unbiased» energy-averaging and come to the idea of
«biased» on-resonance ensemble averaging, which is fully described in
Subsection 1V.3. In IV.4, I discuss how should one apply the on-resonance
theory of IV.3 to the realistic case of necessarily imperfect experimental meas-
urements (small number of independent on-resonance observations with poor
experimental accuracy), concluding that the only appropriate way in this case is
given by Bayesian statistics (BS) based on the use of standard conditional prob-
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ability theory. I also discuss the parallels and differences between BS results
and empirical maximum-likelihood method (MLM), which is applied in
experimental analysis of P-violating effects during recent 5 years. Most obvious
disadvantages and nuisances of MLM are shown, especially in the typical case
when the spins of observed resonances are unknown. In view of this, I only
briefly analyze in Subsection IV.5 the sensational «sign-correlation» effect
observed in P-violating experiments on 2321 target, and conclude that its
statistical significance was greatly exaggerated and is highly questionable.

In Section V, I present a short summary of the most important and general
conclusions and recommendations for future.

IL. P-VIOLATION IN THE CASE OF NUCLEAR BOUND STATES

We shall start with brief reminding of the «classical» P-violation
experiments in low-energy physics when only the mixing of bound states was
considered. Pretty early (see, e.g., [11]) it was realized that the experimental
observation of the interference-type phenomena (i.e., observation of P-odd
correlations in the amplitudes of different processes) has an advantage over the
«brute force» violation of probabilities (e.g., P-forbidden a-decay) because the
latter are quadratic in weak interaction strength constant F. There are several
possible P-odd correlations (see the list in [11]), among them the correlation
(cy-py) = hY between the spin and momentum of y-quanta emitted by the excited

unpolarized nuclei. The value h is called helicity and leads to circular pola-
rization of the emitted y-quanta which can be observed experimentally (see, e.g.,
[12]). Let us consider this experiment in more detail in order to demonstrate
various enhancement mechanisms, which might manifest themselves in it. The
wave function ‘¥, of the decaying excited state might be presented as a sum

Y=y +avy, 1

Here y, and v, are the states of opposite parity, while the coefficient o

describes the admixture of the state Y, caused by P-violating weak interaction
V- Standard first-order perturbation theory gives

iveiyy) )
_. EI_EZ ' @

Circular polarization appears as an interference of the electric E, and

magnetic M, transitions of the same multipolarity A. Therefore

A A
h=20 (W10, ) Xy, 10y, ), ©)

—
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A
where 0, is the «regular» y-transition operator which connects the main
component Y, of ¥; with the final state ‘I’f, O' is the «irregular» transition
operator which, due to P-selection rules, connects only Y, component with

‘Pf. Then the degree of circular pluralization observed will be defined by

h (\uflO' hy, )
p 2, 42 oy 2=
K "’f'ox"'ﬁ N+ a“K \yfIO 2w, ( \yfIO hy, )
It is important to note that & like any other observable, which measures the

degree of any symmetry breaking, is always normalized by the total transition
probability. Therefore, in general, the denominator of (4) contains a sum over

. A 2
all the allowed transitions z K l;lfIO)_le e
A

&=

“

S h (4a)
- A 2, .2 A 2"
Yy K VA0 1y WP+ 02Ky 10, Iy, )
A

Only this kind of normalization for observables has real physical meaning
— the maximal value of & is unity, meaning 100% parity violation. This almost
trivial rule is taken for granted in all fields of physics, from optics to elementary
particles, and all the meaningful enhancements appear only within this
normalization. Of course some odd personalities might introduce the
normalization of their own by, say, retaining only the weakest term in the
normalization sum. If this term is really small, this would immediately enhance
the newly introduced quantity. But such a fictitious «enhancement» would have
nothing to do with the physics of the process. I have to mention this triviality
only because, as we shall see below, even this standard rule is unprofessionally
violated all the time in the majority of experimental (and, alas, even theoretical)
publications on P-noninvariance in nuclear reactions.

Coming back to ex.(4), we can analyze its structure in order to see the role
of different enhancement mechanisms. First of all, we observe that o increases
with decreasing level spacing D= |E, - E,] — a natural result of perturbation

theory. Therefore naively one should expect the average effect to increase
linearly with increasing state density p = 1/d of the system (d here is the average
level spacing). However the increase of p is closely connected with increasing
complexity of the mixing states y; and y,. In terms of basic (so-called «simple

configurations») components, which build up the compound state wave function
Y, this means increasing number N of this components and simultaneously the
random signs for their admixture coefficients in y. Therefore the average value
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of (W IVyly, )= v, matrix element will be zero in proper statistical treatment
(see Sec.IV below), and we can speak only in terms of its variance

v =2, 5)

Using the simple scaling procedure we can express vy in terms of the strong

vV ——1 vV, 6
\% ( )

where F is the characteristic ratio of the strengths for weak and strong inte-

raction, which is given by the phenomenological models as F = 107+ 1078,
The average value of v can be estimated from the usual expression for the

spreading width Fspr of the single-particle resonance (which roughly equals the

imaginary part W of optical model potential and in the limit of black nucleus
approaches the single-particle level spacing d)):

2y 2
T =g = W=dy @)
This gives us
~ 1“S rd
v =F = q——‘p"’-zF Vd d. )
p P 2n p 0

Therefore the variance of o in (2) can be estimated as:
=F N =E_F —0=FPW. )

Thus we see, that the many-body aspect of the compound nuclear system
manifests itself in the systematic enhancement of P-violating effect by roughly
a factor of YN, where N is the number of basic components forming the
compound states. The namber N increases with increasing excitation energy E*

and nuclear mass number and reaches ~ 10 for E*=B . (B, is the neutron

binding energy) in medium and heavy nuclei. This sort of enhancement was
considered several times [13,14,15,16] and received the name [15] of
«dynamical enhancement».

One can also see from (4) that increasing the value of «irregular» amplitude
and decreasing the value of «regular» one leads to the additional enhancement
of the effect. This usually happens, when for purely structural reasons the
«regular» component is strongly forbidden, while the «irregular» one is
favoured. Therefore this kind of enhancement was called (see [15]) «structural
enhancement».
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These enhancements made possible one of the earliest P-violating obser-

vation in y-channel [17] on the level of 6-10°°. However even earlier [18],
similar experiments were done in (n,}) reaction with thermal neutrons showing

the effects up to ~ 107, As we shall see below, these more impressive results
can be easily understood in the framework of nuclear reaction theory.

As we see, the general trick of any enhancement mechanism is to make the
numerator of the observable (4) as large as possible and the denominator small.
The same trick will be used in case of nuclear reactions. Since however both the
numerators and denominators of observables in that case are rapidly varying
functions of energy, this allows a much larger variety of situations and leads to
quite specific enhancements, with we consider in the next sections.

IIl. NUCLEAR REACTIONS (ISOLATED RESONANCES)

1. Elements of Nuclear Reaction Theory for Isolated Resonances. We
shall introduce the basic results of nuclear reaction theory which will be
extensively used in all our further applications. In doing this, we shall follow
the approach of Mahaux and Weidenmuller [10], which is a projection of
Feshbach’s unified theory of nuclear reactions on the realistic shell-model basis.

The most essential for our purposes result of this approach is that in the
region of isolated resonances, where I" << d, the wave function of the system of
incident (outgoing) particle plus target (residual) nucleus is given by:

YOE) =Y o) (B, + 3, | b (EEWOEE (10)
k c

Here ¢, is the wave function of the so-called «bound state embedded in

continuum» (BSEC) or, roughly speaking, the wave function of the k-th
compound state, where all the nucleons of the system occupy only the bound
states in average nuclear potential, but are not allowed to collect all the
excitation energy via pair-wise collisions on a single particle. The X (E) is the

continuum c-th channel wave function which, describes the (infinite) motion of
a particle in the average field of the target (residual) nucleus. In the particular
case of a neutron incident on the ground state target (elastic channel ¢ = i), X; 18

the antisymmetrized product of the target nucleus wave function in its ground
state times the wave function of a neutron moving in the average field of the
target. The @, and y, correspond to Feshbach’s projections on closed (Q) and

open (P) channels, respectively. Mind that unless you switch on the pair-wise
residual interactions V between the channels (PHQ = QHP in Feshbach’s
notations), you do not allow the incident neutron to share its energy with the
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target nucleons. This does not allow this neutron to form a compound
resonance. Therefore in the absence of pair-wise interaction V the BSEC’s
would never decay, while %’s would describe only potential scattering in the
mean field. This unphysical situation changes as soon as we switch on the
residual interaction V. Then each resonance k receives partial decay widths

I}/ with amplitudes:

TNV =yif = 2m) V2 ( Xif ENVIQ, ). (11

In other words, the pair-wise residual interaction allows the nucleons of
BSEC to collect their total excitation energy on one of the particles and emit it
into the open channel i or f.

For the expansion coefficients a and b in this case the theory gives rather
transparent expressions:

exp (£ 6, T
(%) = Wk
% =" m E-E+iT, 2 (12

Here E, is the energy of a given compound resonance, I', = Z ch is its total

width.
The open channel wave functions (second part of (10)) are governed by the
coefficients:

BEE) =8, S(E~E)exp (£i8) +

1
EX*-F

(13)

<+

Y, G(E) (X ENVIg,).
k

Here EX=E+ ¢ is the usual notation for pole shifts in the complex energy
plane.

Let us now simplify the picture, neglecting all the BSEC’s in the sums of
(10) and (13) besides the one, whose energy Ek is the closet to the energy E of
the incident neutron (this might always be done when T, is much smaller than

the distance between resonances of the same spin and parity). Let us also
consider the case when only the neutron elastic scattering channel is open
(c=i=)). In this case the continuum term in (10) can be written as:

e, (E) + afy(® | % (UENV 19,y =€ ) +

dE"Y (E)
E_p (LEWIle) |, (149

+ (B [ i (L BNV 19, 1B 2|

where P stands for the integral principal value.
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The first term in (14) describes the potential elastic scattering of a neutron.
The resonance behaviour of ak(E) (see (12)) shows that the two terms in square

brackets of (14) are the «imprints» of compound resonance at E =E, on the

elastic continuun. Using eq.(11) one can express the first of these terms as
. "
iV 5 Y X4E). (15)

Recollecting now that X,(E) describes the single neutron (valence particle) in

the mean field of a ground-state target, we see that ex.(15) is exactly what
was called the single-particle (or valence) component u of the compound
resonance wave function in the simplified R-matrix theory. The wave function
X,(E) belongs to the continuum, as it should. However, if it has a potential

resonance at FE =E0 with (single-particle) width I',, one can use the

approximate expression (see [19]) valid inside the nuclear potential radius R
(for simplicity we suppress the coordinates of the target nucleons):

LI uy(r)
X(E) ~ s T o e oA
2n E-Ey+ily2
Here uy(r) is the solution of the Schrodinger equation describing particle

motion in average field, which is normalized to unity inside the nuclear
volume r < R. Substituting this expression into (15), we get in the T, vicinity

oszE0

]..,' 172
RN LI ~| _k 16
restoring thus the approximate result of R-matrix approach. The quantity
Sr= F_k" ~ l
k o N

is usually called the spectroscopic factor. It defines the probability of finding
a single-particle (valence) component in the compound-resonance state, and is
equal in the black-nucleus approximation to 1/N ~(d/7)? that is, to the
inverse square of the dynamical enhancement factor of (9).

Adding up this term (16) to the BSEC’s wave function @ just gives us the
R-matrix compound resonance wave function:

@, =g, +\ S/ u, « a7
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Therefore the wave function (10) of the system in the vicinity of isolated
compound resonance E, can be expressed as:

YO(E) = at (E) [ O+ S/ u, ] +& X(E) +
dE"X(E") i
+af(B) 2| =TS (U ENWIg) =GB, + &y (B) +

. dEY(E)
vat (B P] =" (L EWIg,). as)

2. P-Violation Let us consider now the case of P-violation in neutron-
induced reactions, which would demonstrate all the specific features of any
symmetry-breaking in them.

We shall first discuss the P-violating quantities, which might be observed
experimentally in these reactions.

2.1. P-Violating Observables in Neutron-induced Reactions.  Using the
polarized neutron beam, one can observe the P-violating correlation (o, 'k ) be-

tween the spin o, and momentum k of a neutron. There are several possibilities

of doing it. One can consider the transmission of neutrons with opposite helicities
through a target sample and measure the difference of the corresponding total
cross-sections:

AP =¢* —0o7 =ﬂlm(f -f). (19)

tot tot tot k +

Here f, defines the forward scattering amplitudes for neutrons with opposite

helicities. To obtain the second equality we used the optical theorem.

The corresponding dimensionless measure of this transmission asymmetry
effect is

P P

p= Aot - A ot

~ (20)
+ —

Gtot+6tot 20 tot
One should point (see, e.g., [20]) that in reality the experimentalists do

measure the numbers N, of neutrons with opposite helicities transmitted
through the target sample with thickness x and calculate the ratio:
b= N, -N_
exp N —N_

2D

Now for counter efficiency € =1

N@)=Nye wP, (22)
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where N, is the intensity of the incident beam and p is the density of nuclei

in a target sample. Expressing O“fot as
P
+ _ 0 tot
Ctot =Tt 2 (23)

one can write

0 P P 0
= A /2 = 2 —
N=N_=Nye Cule™uf? ™ ul? o N ™ulAP xp  (24)
- tot
Therefore
P

tot
exp >~ T xp. (25)
It seems from (25) that since the experimentally observed effect increases
with x, one should use very thick targets. However (see (22)) the counting rates
N(x) go down exponentially with increasing x. The relative counting statistical
error equals 1/VN and increases exponentially with x:

1 1 o px2 '
= e tot . (26)
VN TN,

In order to maximize (25) retaining the minimal possible error (26) one has
to choose xp = (1/0, oo Thus really measured quantity (25) coincides with the
expression (25):

P

- ot _
exp = 2, P. (X))

One can easily see [21] that the same quantity could be obtained with
unpolarized neutron beam. Then P is just a measure of the longitudinal
polarization of the initially unpolarized beam arising after passing a distance in
the sample equal to mean free path (hence the symbol P, denoting this quantity).

Sometimes one measures the difference in radiative capture cross sections sziy)
and gives the quantity:
+ -
A= %YT%I . (28)
ny - ny
The same (o, 'k,) correlation in the elastic scattering amplitude also causes
the rotation of the neutron polarization around k. The angle of this rotation per

unit length of the target sample is defined [22] as follows:
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o _2mp
= Re (f,f), 29)

where p is the density of nuclei in the sample. For the same reasons of better

statistics the experimentally defined angle ® is measured for neutrons, which

travelled the distance z equal to mean free path 1/pc,  in the target:
1 d® Re(f -f)

PO de Im(Hf)

One can also look for inelastic reaction (n,f) and measure the P-odd
correlation (O'n‘kf) between the initial neutron polarization and the momentum

(0]

(30)

kf of the outgoing particle in channel f. This is done by measuring the
asymmetry of the final products with respect to ©,:

_f _[ 1
A=mg T-—g N €2))
The corresponding dimensionless degree of asymmetry is:
Anf (32)
(an —[ _[ .
o M+

2.2. Historical Background. The possibility of using low energy neutron-
nucleus interactions and all sorts of neutron coherent scattering processes (neutron
optics) in studies of P-violation was considered long ago (see [21,22,23,24]). But
these theoretical investigations were concerned only with potential scattering
models completely disregarding the presence of compound-resonances. Some of
these approaches ([23,24]) made a point of possible enhancement of the effects in
the vicinity of potential (single-particle) p-wave resonance. The first theoretical
paper [25] mentioning the possible enhancement of y-ray circular polarization in
the vicinity of compound resonance remained unnoticed. The first simplified
approach to compound resonance analysis which really encouraged the
experimental investigations was done only in 1980 ([1], see also [26]). In this
approach the p-wave compound resonance was treated in complete analogy with
the bound-state case above (see Sec.Il). Indeed, Sushkov and Flambaum took the
case of two closely-lying bound states (imitating p- and s-resonances) with
corresponding wave functions y, and ,. Then in complete analogy to (1), the

p-resonance wave function, which takes into account the possible parity
admixture, looks like: .

‘P(Ep) = ‘Pp +a¥. (33)
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Now one might just say that in case of elastic scattering both states decay
by neutron emission and substitute the y-ray transition probabilities in (3) and

(4) by the corresponding partial neutron widths an and Fp". Then one immedi-
ately obtains for, say, P-value in analogy to (4):

P an (34)
=0 ==, :
T

In slow neutron case T’ p” = (kR)zl"s", where (kR)2 comes from the centrifugal

barrier penetration factor. Thus

o
P= R (35)

The typical value of (kR) for eV energy region in medium and heavy nuclei

is ~ 1073, Thus in addition to the dynamical enhancement contained in ¢, they

got a particular case of «structural enhancement» factor ~ 103.

This way of arguing sometimes gives, as we shall see later, the correct order
of magnitude estimate of the effect, but is quite misleading. To start with, the
initial equation (33) for the continuum wave function is meaningless, since each
continuum wave function with fixed momentum k, is always a linear

superposition of states with opposite parities (i.e., superposition of partial
waves). Therefore the compound nucleus wave function W(E) even in the
simplest case of slow neutron elastic scattering without any P-violating forces
is a sum of p- and s-compound resonance wave functions ‘Pp and ¥  with

corresponding «mixture» coefficients (see eq.(10) or any sound reaction
theory):

eisp (r n)1/2 eiss (an)l/Z
E-E+iT /2 ™ E-g+it/2

Thus even in the maximum of p-resonance (E =Ep) we have:

YE)~Y +0'¥,
P p s

where
1/72
L T(rr
2D | T
p

Proceeding now with the bound-state arguments which lead us from (33) to
(34), we obtain
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n /2 n
T
IPl=lo’] I = T —E~——l-—‘i 106—1:.
p" r) 2D (kR)? 2D D

For the famous La case this would give us P= 10> without any weak
interaction!

There are also other striking absurdities in (34), (35): a) Consider its energy
behaviour. Since all the E dependence enters (34), (35) essentially through the
energy dependence of partial widths, we see that the effect (35) blasts to infinity
for very small E (small k). b) We know that neutron partial widths vary in a
rather wide range obeying Porter-Thomas law. Eq.(34) clearly indicates that the

largest P effects would be observed for the smallest l"p" possible — the less

observable p-resonance is in total cross-section the more it would stick out in
P-violation. Even more tempting is to repeat the whole above reasoning for
mixing of resonances in higher partial waves (say, /=3 ones) with s-wave
resonance. (This is perfectly legitimate if one considers the target with spin [ 2 2).
Then the «regular» neutron partial widths would be even smaller

(I“"z(kR)ZIF") and for /=3 we obtain «structural enhancement» factor

1/(kR) ~ 109 in eq. (39). This allows the quanuty P, which by definition (20)
cannot exceed unity, to reach the value 10°. Obviously Sushkov and Flambaum
were too good theorists to be caught into such traps, but I have seen an
experimental proposal with clearly stated intentions to hunt for the weakest
p-resonances in order to obtain maximal P effects. I also know experimental
group, which made special efforts to perform transmission experiments with
thermal neutrons and was quite disappointed when the effect turned out to be
about 10°® instead of huge increase predicted by eq. (35). To mix up things even
more, the above «structural enhancement» of Sushkov — Flambaum nowadays
is called in a lot of experimental papers «the kinematic enhancement» (origi-
nally this name was given by Shapiro [15] to the typical ratio of electric to
‘magnetic transition amplitudes, which might really cause additional enhance-
ment of P-violating observables in y-transitions).

In spite of all these inconsistencies, these theoretical results, as I had
already pointed out, greatly encouraged the preparation of on-resonance
experimental measurements of the Dubna group [3].

The first proper theoretical treatment of the problem in the framework of
nuclear reaction theory was given by us in the beginning of 1981 [2]. We had

derived the expressions for Af:)t and Re(f_-f,) essential for the description of

P-violation in neutron transmission. Since the Dubna on-resonance measure-
ments were still in preparation at that time, we had to check our theory [2] by
comparing the theoretical relations between P and @ values at thermal energies
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with the existing experimental measurements in Sn performed by the Grenoble
group [27]. A few months later Dubna group has performed the first on-
resonance observations in Sn [3] and checked our expression for P(E) by
comparing their on-resonance results with thermal-energy ones, obtained by
Lobashov’s group in Gatchina [28]. This was the first experimental
confirmation of the resonance enhancement mechanism. Ironically enough that,

although our expressions for A tP;)t(E) derived in [2] clearly manifested the

resonance enhancement parameter D/I, we fully understood its physical
meaning and generality only a year later, while finishing a big paper on general
theory of P- and T-violating effects [7]. Some of our expressions obtained in
that paper were re-derived later on in the framework of R-matrix theory [29,30].
Quite apart stands the theoretical investigation [31] of the o, f—type correlation

in the particular case of (p, &) reactions. The authors obtained fairly large
estimates, but did not realize that.they hitted the new far-leading enhancement
mechanism for o, ¢ correlation. This fact, together with principal possibility of

observing P-violating effects of the order of unity, was pointed out in [8].

2.3. P-Mixing Mechanisms and Specific Enhancements in Neutron-Induced
Reactions. Any proper treatment of P-violation in nuclear reactions consists of
two steps: 1. Expressing the observed quantity in terms of the P-violating part of
T- (or S) matrix Ty, 2. Calculating T, in the first-order Born approximation with

respect to weak interaction V..

The first part of the task involves the standard theory of reaction kinematics
with polarized beams (see, e.g., [32,21,22]). As it is usual in any of anguiar
correlations, this gives rather awkward combinations of vector-coupling
coefficients, which are all of the order of unity and which do not contribute to
the understanding of essential physics. The general expressions for them can be
found in [7,29,30] (two latter references even give numerical values for some
target spins). We shall further on omit them in the majority of expressions. The
effects also depend linearly on the incoming beam polarization p, which will be
set to unity in all the further expressions. In case of slow neutrons one can also
restrict the neutron angular momenta by / =0 and |, =1 .

With these remarks one obtains the following expressions:

Af"t:k_n; Im [ p, j= 1/ 2Tyl )+ siTylp, j = 1/2)], (36)
P _2 . .
d—z=%BRe Kp,j= 1/2|TW|S)+(S|TWlP,J= 1723, - 37

2r
A = I 1L,fiTl L+ 1), fIT I )}.
w2 5 m (1, fITI, X (+ D, FITyML ) a5
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Here (lf+ 1,f ITWIln) means the parity violating element of T-matrix
describing the transition from initial state with I, =0,1 (s-, p-correspondingly)
to the final state with angular momentum (lf+ 1); f means all the additional

quantum numbers defining the channel f (j in case of elastic p-wave);
(lf, fITW ) defines the corresponding P-allowed transition.

Now one can use the Born approximation to calculate the P-forbidden
transition

T, = ‘P}") IV IPD). (39)

To simplify the problem even more, we shall retain only one s- and p-wave
resonance in expressions (18) for the initial and final states. In this case the
first-order Born amplitude (39) contains 9 terms:

Ty =(¥OWD ) = EX Y IV ¥, )l (E) +

+€ % BB IVt (E)) +

+ G (E)E) P £ (Vi () XX (ENVIg, )+

+ €% (U BNV I®, at By € g BNV () +
+e% a0 2| 2 (1, WV B XA EWV g, ) +
+a4(E)a}(E) ?f 5 (O VB XL ENVyo,) +

+a (E) %P % (@ VI E) XX, (ENVylx, )+

+a}(B)a (E)Tlﬁ—b—w—((p Vi (E) ) x

X (UENVy X (ENVIQ,) (40)

In order to understand the physical meaning of each term it is useful to
introduce the graphical technique with the following correspondence rules:
the wavy line with indices (p- or s-) means an /=1 or =0 neutron in the
mean field of the target; thin solid line means the ground state target; empty

circles correspond to strong interaction amplitudes Y,"exp 8 / \V2n and

y; exp i8p/\121t; crossed circles correspond to weak interaction matrix
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elements; double solid lines with indices correspond to resonance propagators
IVIE-E)+il /2] or 1/[E—Ep)+i1“p/2] for s- or p- BSEC’s ?, 0r @ the

boldface solid lines mean the same propagators, but for the «full» compound-
resonance wave functions <I>s or CDP (see eq.(17)); the closed loop of neutron

and target lines implies the principal value integration over neutron energy.
The first term in (40)
.

eisn v 1 1 ey,
T1=#@W<¢plvwl¢s)mw 41)
describes (see diagram 1 of Fig.1) the p-neutron strong absorption into
compound resonance <Dp, p-resonance propagation, its weak-interaction
mixing with compound resonance ® , propagation of s-resonance and its

strong decay.
The second term

& v 1
L= = E)+iT,/2 (@, IVylx (E)) 42)

describes (diagram 2 of Fig.1) the p-neutron strong absorption into compound
resonance d>p, p-resonance propagation and its subsequent «weak» decay into

the s-wave continuum state.
The third term

3= 11 (E—E)+,r/2?fE E(¢'VVVIX(E))X

1 e 3, st

XEWIR) By viT /2 Vom

(43)

describes (diagram 3 of Fig.1) p-neutron strong absorption, p-resonance
propagation of d>p, its «weak» decay into s-neutron continuum with immedi-

ate strong reabsorption of s-neutron into the s-resonance state ®_. Then
follows s-resonance propagation of ®, and its strong neutron decay. We see
that this is another way of mixing p- and s-resonance (compare with T P by

virtual emission and reabsorption of s-wave neutron. The processes of this
type were first encountered in isospin symmetry breaking, where they played
an important role. Historically they were first analyzed in terms of R-matrix
theory and called «external mixing» processes, contrary to the «internal
mixing» of T,.
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P s p s
T T,

1
g S ‘ s p s
: p i : S ,\J : S :
T3 T,

Fig. 1. Diagrams of possible processes contributing to p-violation in neutron-nucleus
elastic scattering
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The fourth term T, describes p-neutron «weak» absorption forming s-re-
sonance compound state @ which then decays in a normal «strong» way. It is
obvious (see Fig.1) that this amplitude closely resembles the T, amplitude.

The fifth term T describes just the potential scattering of p-wave neutron

in the weak mean field of the target. This type of process was historically
discussed in P-violation first of all (see, e.g., [22]) and is important, since all
the specific enhancements below should be defined with respect to this simplest
amplitude.

The term T, describes re-scattering of p-wave neutron in the weak mean

field of the target with subsequent «strong» absorption of the created s-neutron
forming the s-resonance BSEC ¢_. This resonance propagates and ther decays

in a normal «strong» way governed by st amplitude. This process is
topologically close to the process Ty (see below).

The term T, describes strong p-neutron absorption into p-compound BSEC
¢,, resonance propagation and strong decay, which is followed by «weak» re-
absorption of neutron into s-compound resonance state ®_. This state then
decays in a normal «strong» way. Obviously T, is very similar to the above
T, one.

We have already mentioned that Ty is very similar to T,. It describes the
strong formation of the p-resonance BSEC and its strong. decay followed by
weak re-scattering in the target field. Exactly this amplitude was considered

recently by Weidenmuller and Lewenkopf [33,34].
Finally T, describes «strong» p-compound formation of <bp and its «strong»

decay, which is followed by «weak» re-scattering in the target mean field. The
s-neutron created in this re-scattering is then «strongly» re-absorbed into s-
compound BSEC, which finally decays in a normal «strong» way.

Now, as we know all the essential mechanisms contributing to P-violation
in slow neutron-nucleus elastic scattering, it is high time to estimate which of
them gives the most important contribution and why. In doing this estimates we
shall drop all the phase shift exponentials because in the energy region of

interest to us & .~ (kR) ~ 10'3, 8p ~ (kR)2 ~1075. Since the total resonance
widths in this region are defined essentially by y-emission we shall assume that
I‘szl‘p=1". For simplicity we shall denote lEs—Epl as D and assume that
D~d.

We shall tell the reader in advance the result of our analysis carried out
back in 1982 (see [7]) — the dominant contribution comes from the mechanism
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of T,, which is usually called compound-compound (c-c) mixing. Other
mechanisms’ contributions are smaller by, at any rate, the above factor of

dynamical enhancement /D ~ VN ~ 103 (see eq.(9)). Therefore we shall
estimate the ratios of T, to all other amplitudes in (40).

We shall start with standard weak potential scattering TS, which defines the
process in the simplest systems of n—p type. In order to estimate T we shall
first take the weak interaction scaling factor F out of (xp(E)IVWIxs(E) ). Then

we shall proceed by removing the extra barrier penetration factor out of the
amplitude, thus converting T into the strong interaction amplitude

(X (E)VIx(E)), which roughly equals the s-wave phase shift _~ (kR). Thus:

(A BNV (E)) = F - (kR)>. @4)
The exact calculation of T5 done in [34] shows that ex.(44) is correct to
within a constant factor of ~ 7. Now we can estimate the ratio

T, y;ys’% (DPIVWI(D ) 1

T (E-E,+iT,/2)E-E+iT,/2) FkR)? -

S @2y
- n 0
(E-E +iT /2)(E-E +iT . /2)"
4 P s s

(45)

Here we have done the scaling (see eq.(6)) of weak interaction matrix element
vp=Fv and used the standard estimates of neutron partial widths, factoring

2041
)

out the barrier penetration (kR)™"", spectroscopic factor S and the «single-

particle reduced width» @% = 2h%/mR?. The resonance denominators of T, give
the smallest ratio (45) exactly between the E_and Ep. In this energy point (we

consider the case of D>>T):

T1 Sné)gv 9(2)1/ v N

In estimating (46) we assumed that S ~ d/d,, where the single-particle level
n 0 gle-p

spacing d, was taken to be roughly equal to @g (see, e.g., [12]). Thus we see
that under the worst «off-resonance» conditions c-c mixing mechanism T,

gives us the dynamical enhancement factor. We also see that this
enhancement disappears for the simplest systems with N ~ 1. This, however,
is not the whole story. We also see from (41), (45) that in the vicinity of each
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resonance pole (E =~E_ or Ep) T, presents us with extra resonance enhan-

cement factor D/T', providing thus for the overall enhancement of the ratio

T1 vD v
[T} “PTTT “7)

res

The above resonance enhancement is a specific feature of nuclear reactions
which has no analogues in case of bound states. Its meaning is, however, quite
transparent — the magnitude of P-violating effects is proportional to the time
T spent by incident neutron in the weak-interaction field of the target. The role
of the complicated compound resonance is to capture the neutron and keep it
inside the compound system for a long time T =A/T. This kind of effect was
first mentioned by Mahaux and Weidenmuller [35].

Consider now the ratio of T, to T,

YO IV P ) v
- (E-E +iT /2K ® IVyly ) C(E-E_+i r,/2)°

Tl
= 48)
T2

In performing the estimate we introduced the scaling (CDPIVWI)(S) ~
~F<<DSIVIXS) = F-y". We see again that even in the worst case of E=Ep the

T, dominates by the dynamical enhancement factor v/D, while at E =E_the

resonance enhancement D/T" is added.
Since T, amplitude is topologically close to T, the ratio T,/T, demonstrates

exactly the same enhancements with exchange of E_by Ep.

All the remaining diagrams in Fig.1 contain closed loops of principal value
integrals. In estimating those loops we shall follow the arguments of
Weidenmuller and Lewenkopf [34,35] carried for the case of T8‘ Crudely their

argument was that the main E” dependence in the integral

0V ) X, EWV bty (E)) 49)

P

comes from the barrier penetration factor (kR)ZlJ'1 of pr(E’)IZ. This allows one

to drop the principal-value symbol and carry the integrands at E’ = E out of
the integral. Thus (49) becomes:
dE’ X2(k'R)
ey (50)
XE(R)
In case of square well potential xp(kR) ~Jj(kR), and one gets the analytical

(@I (E) XX, (ENVylx (E) )

result
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n_F_
(kR)3 P (kR)

In order to obtain the final result we used the above estimate (44) for
weak-interaction amplitude. More exact numerical calculations of [34] for
Woods-Saxon potential show that instead of 37 one gets the value C=3.1. This
obviously does not affect our order-of-magnitude estimates.

Now we can estimate the ratio of T, to

1""F

Ty=TE_ E, +zr /2)(kR) ° (52)

(5D

We see that this ratio is

T, ' (kR)v v -
— = : . (53)
Tg y (E-E +iT_ /2) (E—Es+zrs/2)

Again we observe %hat even at E= Ep the T_is smaller by the dynamical

enhancement factor v/D ~ VN.
Since T is topologically close to Tg, the same dynamical enhancement is

lacking in T6 even at E =Es, while at E= Ep the resonance enhancement of Tl
is added to the ratio TI/I' 6 -

Now we can use the above procedure for estimation of the principal value
integral in T, (see 43)):

2 [ 2 (O Vit (B) XL BNV 10,) = (@, Vbt () X

I dE' X 2k’R) F-y™

X (X (ENVIg ) = (54)
E YR KR
Therefore
VO
T, = P (55)
3 (E-E +il /2)YE-E +il_/2)kR)
P p s 5
and
T, (kR)v v d, v v
—z————'——n z'—'—zz—"i—z_. (56)
T3 r S @0 (-30 d d

In doing this estimate we used the same factorization as in (45), (46) for
neutron width an'

In the same way we get the same estimate (55) for T, and (56) for the ratio

T/ T,
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The only remaining term now is T,. Each integral in it can be estimated in
the way we have already used several times, giving:

f ﬁ;’% (0, IVix,(E) Xx (E')IVWIx (E) X X (ENV Ip, )=

=y" v, 57
VX, BNVl () ) v (kR)4 =1 el (57
Therefore
TIFT)
Ty=——5% (58)
(kR)*(E - E+;r L/ DE-E+iT /2)
and
T, (R v dyv v
T o s et a a (59)
T, s S,95 O;d d

To finish with our analysis we shall recollect that some of the above
amplitudes (T}, T,, T;, T, and T;) contained the «full» compound nucleus
functions CI)k=(pk+(Sk")1/2u. Substitution of ¢, instead of ®, in the above
amplitudes would not affect, as long as we see, the above estimates of their
relative contribution to (40). The additional valence terms (S ")I/Zu would give
us seven more amplitudes with the exchange of corresponding ® by (S ")1/2

All of them would contain at any rate the additional small factor V" = INN
(inverse dynamical enhancement). Therefore in all the amplitudes but T, they
should be disregarded as small additions to the already small amplitudes. In the
case of 7, there will be 2 «mixed» terms containing the products ((p-\[.S'_”_u) and
one term of the form:

F" (u IVWlu l"x"

T
10~ (r")V2 (E-E,+iT, /2)(E~E+iT /2) o2’

(60)

Since this term contains extra smallncss S" ~ 1/N in comparison with T, it

seems that it should be dropped first of all. However the compound-compound
matrix element v, (to be exact, its variance \7p) of (41) goes down with

increasing complex1ty N of the wave function CDk as do/\ﬁv— (see eq.(9)).
Therefore the «single-particle» matrix element ( uprWIus) should be larger than
VP by roughly a factor of W ~VN. Thus the overall ratio of T/T, is
17N rather than 1/N.
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An important point is that, contrary to partial amplitudes y" of (41), whose
signs vary randomly from resonance to resonance, all the partial widths in (60)
are positive. Similarly, contrary to randomly varying sign of vy in (41), the sign

of single-particle matrix element in (60) (defined by s u) might vary only
over the energy range of single-particle levels spacing d;. The overall sign of
(60) at a given resonance, say Ep, seems to be also defined by the sign of
(Ep——Ex). If, however,we switch over to multi-resonance case, we should sum

T, at EI7 over all the s-resonances which might mix with a given p-one:

F" {u IVwJu S (s) 60
(r*))‘/2 (E~E,+iT,/2) (I*’)"l 2 E-E (602)

)3 Tyo=

s

Since the spectroscopic factor saturates to unity over the energy range
I“W around the position E  of a single-particle level:

"(uIVWIu Am 1
;Tm (E-E +iT,/2) r_g' E-E,’ (60b)

therefore the overall sign of the effect caused by valence neutron remains
constant over the range d;,. However the same is true for mechanisms of T

and T8 (see (58), (52)). All these mechanisms, which essentially sprang to life

because of the single-particle (valence) contributions X(E) to the BSEC wave
functions ¢, would provide for the constant sign contributions to the effect.

But as we pointed already in [7] all of them lack the factor of dynamical
enhancement v/ D ~ YN and should be dropped on this grounds. We shall
briefly come back to this problem in discussing the «sign correlation effect»
below (see Sec. IV. 5).

Up to now we considered (see (40) and Fig.1) only the case, when the
initial p-wave neutron is transformed by weak interaction into the final state
s-one — i.e., the second term in (36). Repeating the above analysis for the first
term of (36) will add 16 more amplitudes similar to those of Fig.1. One can
easily see that diagrams 1,3,5,7 and 9 are symmetric with respect to the ex-
change of s- and p-neutron states. Therefore such an exchange will just double
the contributions of corresponding mechanisms to (36). The same exchange in
amplitudes 2, 8 of Fig.1 would shift their resonance poles to E. However the

poles of T, and T after this exchange would be shifted to E - Therefore the

addition of the first term in (36) would just completely restore the symmetry of
the whole expression (36) with respect to the exchange of initial and final states,
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which is expected for any elastic scattering T-invariant amplitude. The relative
dominance of c—c mixture amplitude T, remains unaltered.

To sum up, we have seen that proper nuclear reaction theory allows us to
find all the contributions to the weak interaction elastic scattering amplitude of
neutrons on a nuclear target. The leading contribution to this amplitude comes
from compound-compound mixing mechanism T, of eq.(41). This mechanism

shows two kinds of enhancement factors: a) the dynamical enhancement factor
w D ~ YN: b) the resonance enhancement factor D/ T'. The physical reason of
both enhancements is the complexity (or quantum chaoticity) of the compound
nucleus resonances. The lack of symmetries characteristic of quantum chaotic
system (see, e.g., [36]) removes all the degeneracies of the independent
particles’ shell-model and thus exponentially decreases the resonance spacing.
At the same time it complicates the structure of the compound-resonance wave
function, hindering in this way all the decay processes and reducing the total
resonance width T".

One should also mention that in our analysis we met no traces of the
mystical «structural enhancement factor» 1/ (kR). As is mentioned above,
theoretically this factor is a false result of inconsistent application of bound-
state theory to the continuum nuclear reaction case.

2.4. Back to Observables. In the previous paragraph we performed an
analysis of all possible P-violating amplitudes in the simplest case of elastic
neutron-nucleus scattering, understood the physics of their enhancements and have
chosen our «favourite» — c—c mixing amplitude T, which exceeds the others by

at any rate dynamical enhancement factor of VN ~ 10
Inserting Tl into egs. (36), (37) we obtain
no o n i(8j+8p)

p_2n YoV X

O (E-E)+T YA (E-E) +T 4]

X

X((E-E)T, +(E-E)T], (61)
n n i(8'+5)
_@=4n£ ‘Yp' vp. Ys . E 4 8
dz~ K2 [(E-E)Y+T¥4 [(E-E)}+T%4]
p p 5 s
[ £ -5
x| (E-E) (E~E)-—72"|. (62)

Here v, stands for the weak interaction matrix element i(CDpIVWICDS ). The

presence of Breit — Wigner denominators shows that both effects de-
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monstrate symmetric resonance enhancements in the vicinities of both s- and

p-resonances. A {’ , reaches its maxima at E_and Ep:

'Y Y
P _ 81'C
Ao (Breg) = k2 T D

The quantity (62), however, changes sign at points EzEsp+

(63)

+T I' /4D = E__ and reaches its maxima
s p 5,p

dq’ ,Y n ,Y n
LN L (64)
Az ) e K2 F D

at points E = Esp + l"sp/ 2. For the characteristic curves of the energy
behaviour of (61), (62) see our paper [2].

Provided that the asymmetry in total cross-sections A {’ot is dominated by

resonance-resonance mixture of T,, we can write (see, e.g., [2]) for the

asymmetry Aﬁ in the denominator of ex. (28):

Y

r .
P =gt —qg _1 P =~ AP
A, 1= %y Ony~ Aot = Aot - (61a)
Mind that for other mixture mechanisms this might be not true. Even in this
case the last equality holds only for low-energy neutrons incident on non-
fissioning target.

We have not yet performed the analysis of the P-violating amplitudes in the
inelastic channels, which are essential for calculation of the quantity A, y of eq.
(38). This can be easily done on the same lines as the previous paragraph.
Those, who are interested in more details, might look through our papers [7]
and [8]. The net result of such an analysis is again the conclusion that c—c
mixture amplitudes are dominant. For incident I,=0 and [ =1 those

amplitudes are (see Fig.2):

i @+ 8{“)

v, ) e
(E - E+1F/2)(E E+il,/2)’

(1)—(l+1fITWIO)-z

i (8+38)) (65)

fe '
TO =(1L,fIT1)=i Y Y %
nf 9w (E—Es+1l‘s/2)(E E, +iT, /2)’
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Fig. 2. Two P-violating compound-compound mixing processes in (n,f)
inelastic channel

Both amplitudes demonstrate resonance enhancement of D/ T at E_and Ep

plus the dynamical enhancement of v/ D. However their ratio is

r® vy v/
Ty Yf - (kR v
Therefore for low-energy (E < 1 Mev) neutrons the second diagram contains
«the initial channel hindrance» factor (kR) (see [7]), which again has no
bound-state analogues, but can be easily understood in terms of nuclear
reaction theory. Contrary to P-violating elastic amplitudes of the above para-
graph the inelastic amplitudes are not symmetric with respect to the exchange
of s5- and p-neutron waves, and it is highly preferable to excite the s-wave
compound resonance in the initial neutron channel rather than p-wave one.
This initial channel hindrance leads to even more general and important con-
sequences (see below), making the «inelastic» observables more preferable in
general than the «transmission» ones. The corresponding «allowed» reaction
amplitudes are:
i 8"+ &)
n, Ys e If

<1f’fIT|O)=(E—-Es+il"/2)’ (66)
i@+ 8
ypfc i

iy = G- E,+il /2 (67

Inserting (65)—(67) into (38) and retaining only the largest terms, we obtain:

nf k2 2

v (E - E)2+]"2/4][(E E)2+r2/4]

v v, v

i (8- 5[ )
] 68)

xRe[(E—E)I‘”~e ¥
P s .
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In this expression we already neglected the neutron potential phase shifts
SS, Sp. When the final channel is a y-emission one, we get:

_2r Yy YI{
My 2 [(E-E)+T24[(E~ Ep)2 + rlf/ 4]
Mind that 7, here denotes the particular y-transition (say, to the ground

E-E)T  (69)

state of initial nucleus). Mark also, that the effect changes its sign in close
vicinity to E = Ep in analogy to d®/ dz of eq. (62).

Generally speaking, the most nontrivial part of P-violation theory ends with
expressio'ns (61), (62), (61a), (68) and (69) for A P dd/ dz, Aﬁ v and Anf. In

tot’
order to find the dimensionless ratios P, ®, A and o y observed experimentally,

one should just divide those expressions by 20, ., 20, y Of 2do, f/ daQ,

respectively. However it turns out that even this seemingly simple arithmetical
operation is full of intricate tricks, because, as we have already mentioned, the
denominators also exhibit rapid and sometimes complicated energy depend-
encies.

Indeed, even in the simplest case of one s- and one p-compound resonances
the simplified (i.e., without interference terms) expression for O,ot is:

O (B) = 0, (B) + G, (B) + 0, (E) =

- N r"T

==L + 4(kR)* + L_r . (70
K| E-EY+T4 ( (E - Ep)2 + rpz/ 4 )

Here o, o, and O ot 1€ the contributions to total cross-section coming from

s-, p-compound resonances and potential elastic scattering. As is pointed
above, the numerators A fm, d®/ dz display resonance enhancement both in s-
and p-resonances. However in the energy region of major interest to us (from
thermal neutrons to few eV) 6, (E) and S, (E) are dominated by s-resonance
contribution: O_ (EY otot(E) ~1; Gns f (EY o, y (E) ~ 1. Therefore in this region
the resonance enhancement at E ~ E is completely cancelled from the «ob-

servable» ratios:

v v (E-E)T +(E-E)T]
P -2 p s p r_s 71
B =1 (E-EY+T%4 2r 7y
s P p
v v (E-E)(E-E)-T.T /4
(D(E)zl— P s P s p (72)

Y (E-E)+T7/4 T ’
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Y0 —
S ¥

Myl (152—12-P)2 + sz/4 2
Since the p-resonance contribution to cross-section is usually only a small
bump on the large smooth tail of s-resonance (and Opot background of ¢, ) all

(73)

the observables demonstrate characteristic resonance enhancement in the
vicinity of Ep, although the latter two change their signs at E = E » and therefore

display more complicated patterns typical of optical dispersion rather than
simple Breit — Wigner ones. The largest among them is the «inelastic channel»
observable (73) which reaches at E = Ep + Fp/ 2 the value:

_pp '
&, A ,YYO r (73a)

s
And here come a few more specific features of nuclear reactions. Consider
now the ratio of observables at maximum E = Ep + l"p/ 2:

Y,
PE Y YWD KD
o (E) T
A i i, Yp
Y,
OB | % KD %D 73
N YT
0"‘YO(E) max YS PO YP

We see that both observables P and ® connected with the elastic channel
correlation (o, kn) contain the already familiar entrance channel hindrance

factor (kR). This demonstrates a very general law — if any symmeiry-hreaking
correlation contains a certain power of k , all the corresponding cbservabies

will contain hindrance factors (k R) of at least the same power. (We shall return

to this point in our discussion of 7-violation below). This fact puts all the
«transmission» observables of symmetry-breaking into unfavourable position
with respect to inelastic channel ones from the very beginning.

Thus we at last encountered the factor (kR) in the observables (71), (72).
But, contrary to naive expectations of bound-state parallels, it is a hindrance
factor rather than enhancement one.

On the other hand, we have a factor ypf/ st in inelastic channel observables,

which in general might play both ways, but for some special cases might serve
a role of the only true «structural enhancement» factor (see,e.g.,[8]) increasing
the P-violation effects in inelastic channels practically to 100% level.
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We also see that the interference patterns of resonance enhancement are
rather complicated, which often results in extra resonance enhancements D/ T’
(see, e.g., ® and P observables). These extra enhancement factors in most
favourable on-resonance situations (see below) might almost compensate the
general smallness (kR) pertinent to transmission experiments.

Since historically P-nonconserving effects were first observed at thermal
energies, it is instructive to classify the magnitudes of these effects at E = E;:

y* v ET +ET Yy*v E +E
P(E)z__ﬂ_._l’_ s p_pSs__ PP 5 P (74)
th "YnE2 2r 'Y"E E ’
s p s s P p
le_vl_’_ ErE —I‘YF/4 —Y&"-\jﬂE\_
~ s p S P _ _S
@ (£, =L b =l T (75)
s p s s P S
Y,
Yo ]
(lnyo(Eth)z-— T, EZE. (76)
p

We see that both P and & contain the above strong hindrance factor

Yp"/ ch ~ (kR) ~ 10~ which is not present in inelastic case of o v Therefore
: ]

the «inelastic» value o, f is the largest (10"3 + 10_4) at thermal energies and was
experimentally observed for Y's and fission fragments in almost «prehistoric»
times (see [18,37]). It was exactly those unbelievably large (compared to
107 + 1078 effects in n—p scattering) effects observed in neutron-induced
fission that initiated the theoretical studies of Sushkov — Flambaum and
Bunakov — Gudkov, which led both groups to the prediction of p-resonance

enhancements. Next in magnitude (typically 10—5) comes the value of ®, which
contains additional large factor E /T . The P value containing instead the

factor (E + Ep)/ Ep‘ is usually smaller (typically 1075). Consequently the first

experimental observations for them were done later (see [27,28]). Comparison
with experiment nicely confirms the above «hierarchy» of observables (see,
e.g., [2,7]).

Let us come back to the behaviour of P in the vicinity of p-resonance:

21t v F ,Yn_ ,Yn
PE) ==L 3 e 77)
2 K D E- Ep)2 + rp2/4 O, (E) (

Mind that this expression is valid only for D > T /2.
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Since even at its maximum p-resonance contributes only a small fraction to
Gtot(Ep)’ the overall behaviour of O,(E) in the vicinity of p-resonance is quite

smooth. Therefore the resonance enhancement of P (E), represented by Breit —
Wigner denominator of (77) fully displays itself in experiment. Seemingly
everything is clear — we have both this resonance enhancement mechanism.
plus a familiar factor vp/ D of dynamical enhancement in (77).

Nevertheless, here starts the «mythology» of experimentalists, which prefer
to stick to naive bound-state analogies, whose physical inconsistency we have
already analyzed at length. Instead of presenting the observable P, given by

(77), they prefer to introduce the auxiliary quantity P by relating observed
Afot to a small fraction of the observed ©

contribution GP(E) (see third term in ex. (70)):
AP

top Damely to the p-resonance

c
tot tot
=———=p— (78)
ZGP(E) o,

The purely technical reason for such a renormalization is explained as
follows. We have already mentioned that the really measured quantity (25) is:

P E)=AL (E) - C,

where the constant C depends linearly on the target sample thickness x. In
order to optimize the statistical significance of measurements this x is chosen
in such a way that C = 1/ 20, - While measuring Pexp(E) in the I‘p vicinity of

Ep, the experimentalists do not re-adjust x for each energy point (again be-

cause the smallness of Gp/ Cot ratio allows this). Therefore the measured

value Pexp(E) performs a «full-scale» resonance behaviour of Afm in the
vicinity of p-resonance:
n n 1"
AP (= 2Ep 5% e
ol E) =

KD (E-EYX+T¥4° (79)
)4 p

In order to avoid quoting a whole set of numbers chp(E) at all the energy

point E measured on the resonance curve (79),the experimentalist prefers to
cancel the resonance behaviour of the effect by normalizing it to O'p(E). This

allows one to present only one value of P instead of the whole resonance curve.
Of course this makes some sense, although one might rather use the know-
ledge of C to quote directly the measured matrix elements v, — that will be

again one number and exactly the only one we are looking for in performing
our experiments. One should, however, realize that this artificial normalization
by one of the weakest components of the total cross-section gives you only the
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auxiliary quantity without much physical meaning (see eq. (4a) of Sec.II and the
discussion which follows it). The non-physical normalization of this quantity
produces fictitious enhancement which has nothing to do with reality — one

might as well normalize Afot by the neutrino cross-section and surprise the

world with huge unobservable effects. To mix up things evea more, nowadays
all the experimental papers use for this auxiliary quantity of eq. (78) the same
notation as for the physical observable P, which was defined already for 20
years by eq. (20). Dubna experimental group in the past at any rate bothered to
introduce different notations for those two quantities, although they never ad-
vertised the difference between them and always presented P as the observed
result. The main reason for such an «absent-minded» mixing of two physically
different quantities becomes quite obvious when one presents (78) in a slightly
different form:

p 2t %1 %0
'Dypn"'l)(kk)‘ (80)

This is exactly the result which was so easily obtained (see (34), (35)) in a
simple but inconsistent attempt to apply bound-state perturbation theory to the
reaction continuum case. The physically meaningful resonance enhancement
mechanism is «swallowed» in it by the renormalization of P, while instead of it
out of nowhere appears the misleading factor of «structural enhancement»

(kR)_l. If one recollects that the majority of experimental papers and reviews
practically start with quoting the simple bound-state expressions (33), (34), one
realizes how tempting it is to make a small step, substituting the observed P by
the auxiliary : no need to study reaction theory with its strange terminology
of continuum spectra, all the theory you need to understand the results boils
down to the above 2 simple expressions (33) and (34). This is exactly the case
to apply the Russian proverb: «Simplicity worse than robbery».

To summarize, we have shown that the «structural (or kinematical)

enhancement factor» ('kR)—l is an artifact produced by renormalization (78). It
immediately disappears when you come back to the observable
o (E)

=p P _
P(E)._chmt(E) P . (81)

which always contains a small factor GP(E)/ Gmt(E) ~ (l"p"/ I"s") ~ (kR)z, over-

compensating the above «structural enhancement».

As to the resonance enhancement mechanism sitting in resonance deno-
minator of (77), one often hears naive statements: «Why, it is quite trivial,
everybody knows that compound-resonance effects are of Breit — Wigner
shape, and we do not need your fancy theories to prove it». This is again a
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wrong nonprofessional statement which might lead to erroneous conclusions.
To begin with, the energy behaviour of A :'ot in eq. (61) is more complicated

than simple Breit — Wigner formula combined with bound-state perturbation
theory, as it might seem from, say, eq. (79). When one divides it by the energy-
dependent O,(E) the resulting expression becomes even more complicated (see,

e.g., [7,8]). For instance, the observable P at the p-resonance maximum is given by:

Y* v (E -E) o o 17! .
P(E)~8 L b—P—5 )14 Ly ba) (82)
LA s G, O

Suppose now that we face a situation when s- and p-resonances almost
overlap E =~ Ep (the normal Wigner repulsion does not apply to resonances of

opposite parity, so this can easily happen). Then the maximal observed effect
goes down linearly with decreasing spacing D = IE_ —Epl, contrary to naive

expectations of bound-state perturbation theory and even to our eq. (77) which
was valid only for D > I'/ 2. All these intricacies become quite essential in the
attempts to calculate the energy-averaged effects (see below). Another
illuminating example is provided by the «capture transmission» observable A of
eq. (28). In view of eq. (61a) we can write this observable at E = Ep as

_ _SnyEp 97 (E)
s 4
cn’ Y(Ep) + cn‘ Y(EP)

A

One can see that, in analogy to all the interference type quantities, A would
be maximal when the s-resonance contribution ¢ * to the (n, Y) cross-section at
E= Ep exactly equals‘the p-resonance one o P. Then and only then A would
reach its maximal possible value

\%
max _ P
A 2 -
The observable P (E) differs from A by a factor of o, Y/ O, Therefore

P ™* would never reach 2vp/ I'. However (see [7,8,38]) the most optimal

situation for P (Ep) happens again when Gs(Ep) = cp(Ep). Then

v ©
P™XE )= R T
P r Gtot

The famous La resonance with P=~10% satisfies this condition:
O'P(Ep) = cs(Ep) = opm(Ep), thus providing for the observed P = 3%.
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Egs. (78), (81) and above considerations show that for strong observable
p-resonances (present beam intensities force us to select just those for measure-
ments) the enhancement of P would be maximal. Since in those cases

GP(EP)/ otot(Ep) is about 0.1 + 0.3, the difference between quoted P and

observed P would not be too large, although P values already sound more
impressive than the really measured P. However with increasing intensities
experimentalists will start observing effects on weaker p-resonances, and this
difference might rise to orders of magnitude. The impressive 10% -effects,

recently observed in 232'I‘h, when expressed in terms of physical observables P,
turn out to be more modest 1% effects. So it is high time to stop mixing the 2
quantities and fooling each other.

To finish this paragraph we should mention that we paid special attention
to transmission measurements of quantity P (E) since this type of experiments
is most popular nowadays. This feeds a constant stream of publications, where
the same physical errors in interpretation are repeated again and again.

A special case is P-violation in neutron-induced fission. I am not going to
expand on it for several reasons. First of all, this interesting subject is worth a
separate review. I shall only mention that there are 2 theoretical approaches to
it. Sushkov and Flambaum (see, e.g., [26]), likewise in case of P-quantites, used
intuitive bound-state analogies to construct o, g Gudkov and I (see [7] and

especially [39]) tried to apply the general expression (68) to this case. However
the most striking fact connected with experimental observation of o, . dates

back to the midst of 50-ies, when it was discovered (see [40,41]) that, in spite
of the fact that all the experimental observables in fission are sums over the
enormous amount of outgoing reaction channels seemingly with random signs
of Y this summation does not destroy the interference effects in (n, fission)

cross-section. This difficulty was bypassed at that time by the fission transition-
state hypothesis of A.Bohr (see [42,43]). Now the same story repeated in the
measurements of o .. This quantity is also an interference type phenomenon

(see €q.(68)) and again the summation over all the outgoing channels Y does not

destroy the P-violation effects caused by c— mixing mechanism in each
channel. In view of this common origin of the difficulty we tried to resolve it
by generalizing Bohr’s hypothesis of transition states. Sushkov and Flambaum
used instead of it a purely classical model of fission-fragments motion plus a
hypothesis of pear-like shape of the fissioning nuclei at the saddle-point. Both
approaches have their weaknesses. Applying the classical trajectory notion to
the analysis of quantum interference effects seems quite hazardous to us.
Moreover, while most people agree that for asymmetric fission the fissioning
nucleus has a pear-like shape near the scission-point, the same assumption on
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the top of fission barrier seems quite dubious and contradicts some
experimental evidence (see [7,39]). We are, however, not very happy with our’s
(or, rather, with A.Bohr’s) transition-state hypothesis because it seems up to
now a rather artificial construction in the framework of quantum reaction
theory. I am sure that P-violation in fission is just an additional guide-light in
search for yet nonexistant quantum theory of fission.

3. T-Violation

3.1. Specific Intricacies of T-Invariance and Observables. One of the grea-
test dangers in the analysis of T-violation is to follow too closely the parallels
with P-violation — these parallels might be quite wrong. To demonstrate this
point we shall consider the cases of P-odd and T-odd correlations. Everybody

knows the mnemonic rule — if the transition operator %changes sign under the
space reflection operation P (is P-odd), then it has nonzero matrix elements
between states of opposite parity. This is perfectly true. Therefore if you ob-
serve nonzero amplitude of P-odd correlation (say, ¢ - k) this means P-vio-
lation. However, if you observe nonzero amplitude of T-odd correlation, this
fact in itself in the majority of cases has nothing to do with T-violation. In order
to understand this let us see, how f—violation is mathematically connected with
P-odd operators (or correlations) 7. Acting by unitary transformation operator P
on a state |A ) we get a number & 4 (parity quantum number) equal to + 1 or — 1:

PA)=m, 1A) (83)
For operators the space reflection looks like:
TP =n, T (84)
Consider now the transition amplitude:
(BTW)=(BP-'PT P-'AA ) =y n m, (BT ). 895)
The first line in this equation uses the fact that PP7! = 1. The second line

makes use of (83), (84) and the unitarity of ?. The whole equation gives us
a selection rule:

T, Mg N = 1. (86)

Thus the P-odd operator (m; =— 1) leads to nonzero amplitudes only in

case when A ) and IB ) are of opposite parity.

However the action of time-reversal operator 7 changes the signs of
momenta and spins and exchanges the initial and final states. Therefore its
action on any state lA ) cannot be expressed in terms of eigenvalues, like (83).
If one also adds that T'is not unitary, one sees that it is impossible to construct
(85) for Tand get selection rule (86).
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Therefore Finvariance leads only to 2 immediate consequences (see, e.g.,
[11,12]). The first is the detailed-balance principle. For binary process
A+ a — B+ b it looks like:

2

(2sa +1)@2s,+1) ka doab/ aQ 1
5 =

(25, +2) 2sy+ 1) kb dcba/dQ

Here s, are the corresponding particles’ spins.

&7

The other consequence is the so-called P--A theorem which connects the
polarization P and asymmetry A. For elastic scattering of spin 1/ 2 particles it
states:

P=A. (88)

However lots of papers seriously discussed T-odd correlations, hoping to
measure T-violation. Was it completely meaningless? The answer is no, but the
arguments are quite subtle and tricky (see, e.g., [44,45,46]). We start with
unitarity of S-matrix:

sst=1.
Inserting this into the expression
A
S=1+1iT
for the transition matrix, we get:
A A A A
T-TT=irT" (89)

In case of transition from the initial state i ) to final state |f ) this looks like:
A A A A
(FITHY = (AT Ty =Y (fITIn ) (T i ), (90)
n

where In ) forms a complete set of all possible intermediate states. Up to this
point everything was quite exact. And now starts the approximation. Suppose
that the interaction which defines our transition T contains a small parameter
F. Then the 1.-h. side of (90) is linear in F, while the r.-h. side is quadratic.
Therefore in the first-order approximation

(FITNY = (i ITH ). ©1)

A
This means that matrix 7 is Hermitean. Let us now combine (91) with the
condition of T-invariance (see definition of Foperation above):

(FITH Y = (= iIT 1~ f), | 92)

Here minus signs mean changes of signs for momenta and spins.
Eqgs. (91) and (92) give us:

(FITNiY = (= fIT i ), 93)
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or
KFITHY = = £IT 1= i Y2, (94)

The last equation means that in case of Tinvariance (92) the transition
probability should be an even function under the sign exchange of all spins and
momenta. Now (93) shows that sign-inversion operation for initial and final
states means just complex conjugation. Therefore the overall sign of transition
probability under tl}is sign inversion is completely defined by the sign of

transition operator 7. If this operator is T-odd, (94) demands that transition
probability should be zero.

Thus we have seen that nonzero T-odd correlations are connected to T-vio-
A

lation only when the transition matrix T is approximately Hermitean and within
the accuracy of this approximation. The last point is very delicate. Consider it
in more detail, taking as an example the T-odd correlation o, [k, x k], which

is measured in neutron B-decay. Seemingly this is a weak interaction process,
which is governed by weak interaction constant F and therefore deviations from
Hermiticity are

T-T'-F2

However we should not forget about final-state electromagnetic interaction
(Coulomb scattering of electron on proton). This means that the non-
Hermitean r.-h. side of (90) should contain terms of the type:

- A - — A '
i(peVITIp'e’V ) ( p'eViT Tin') . (95)
While the second amplitude in (95) is really of the order of F, the first one

A
is proportional to the fine-structure constant o. Therefore the deviation of T
from Hermiticity is of the order of aF, and this would imitate T-violation even
when it does not exist (see also [44]). In principle one can calculate this final-
state interaction correction and subtract it from the experimentally observed
value of T-odd correlation. However all the existing experiments of this type
were giving only the experimental upper bounds on the effect. While
experimental accuracy is more or less easily defined, the accuracy of theoretical
estimates of final-state interactions is usually much less reliable. This makes the
estimates of the upper bounds on «real» T-violation correspondingly unreliable.
Therefore experiments of this type are gradually dying out.

If strong interaction is present in the process, the final-state interaction
corrections become of the same order as the Hermitean part of the amplitude,
and situation becomes completely hopeless.

The only exclusion, when 7-odd correlation is a direct evidence of T-vio-
lation, is the transmission-type experiment. Then the O quantity, which
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defines the transmission, is expressed via the optical theorem (see, e.g.,
eq. (19)) as the imaginary part of zero-angle elastic scattering amplitude f{(0). In
this case the initial and final states coincide li ) =|f) and the T-invariance
conidition (92) by itself (without approximation of (91)) immediately gives us
(93) and (94).

There exist 2 types of those «true» T-odd correlations in elastic forward
scattering amplitude, which can manifest themselves in neutron transmission
experiments with nonzero target spins /.

One of them ‘is the correlation G, (kn xI)(k, - I). One can measure this

correlation in polarized neutron transmission through the oriented-nuclei
samples. Observing that this correlation depends on the angle 8 between k_ and

the target alignment axis as sin 20, one immediately sees that the best
observation conditions would be for 8 = 45° and neutron spins ©, directed

parallel or antiparallel to (k, X I) axis. The presence of T-violating interaction
would cause the difference in o, for those two choices of neutron polarization

T _
AT=c_-o_. (96)

Using the optical theorem, one can express this quantity in terms of 7-vio-
lating part of the scattering amplitude f;.:

T_41l
AT=ZF Imf, o7

in complete analogy with egs. (19), (36). Since the experimentalists would
always prefer to measure relative quantities rather than absolute ones (see
(20)—(27)), the experimentally observed T-violation effect will be:

B AT AT

o_,+0_ - 20, ) (98)

Observe that the above correlation is T-violating but P-conserving. The
conventional name for it is «five-fold correlation» (FC).
There also exists another correlation, namely o, [k, x I}, which is both P-

and T-violating. This «triple correlation» (TC) should be measured with
polarized neutron beam and polarized target nuclei. Performing transmission
experiments with beam polarization parallel or antiparallel to [k x I] axis, one

might observe the cross-section difference:

4T
APT=GT_‘G~L=-—]:’Im(fT—f~L) (99)

and the corresponding P- and T-violation effect:
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APT APT
o (100)
Gp+Gy 20,

In complete analogy with P-violating effects (see (29)), this correlation also
causes the precession of neutron spin around the [kn x I] axis. The

Tl:

corresponding value of the rotation angle  per unit length in a target sample is:

ay _4np -

In the optimal experimental conditions z = 1/ No, , the corresponding angle

of rotation is:
Re (fy - 1))
Xy Ay

3.2. Historical Background. Although the general remark that nuclear
reactions of strong dynamical complexity are most likely to be sensitive to
T-violation was done by Henley and Jackobsohn [47] long ago, this remark
seemingly passed unnoticed till the experimental discovery [48] of CP-violation
in K-meson decay. In the framework of CPT theorem that meant T-violation.
This discovery brought a new wave of experimental and theoretical studies of
T-violation in nuclear reactions. First experimental tests of T-violation in
detailed balance (TVDB, see (87)) were carried out [49] in 1966.
Simultaneously appeared first publications on nuclear-reaction theory in the
presence of T-violation [50,35]. Mahaux and Weidenmuller [35] obtained the
theoretical expression for 7-violating amplitudes in case of two near-lying
compound resonances and were the first to understand the above mechanism of
resonance enhancement. However both experimental and theoretical efforts at
that time were concentrated on the energy domain of overlapping resonances
I'>> d (Ericson regime). Therefore Ericson [50] claimed the enhancement
parameter to be V(W/T') ~ 10, where W was supposed to be of the order of
spreading width of eq. (7). Mahaux and Weidenmuller [35] pointed out that W
should be much smaller, reducing the enhancement factor VW/ T to unity. Thus
the possibilities of isolated resonance region with really large resonance
enhancements d/ I" >> 1 remained unnoticed. Much later Pearson and Richter
[51] considered TVDB for one isolated resonance. This case (for its analogues
in P-violation see diagrams T, and T, of Fig.1) in principle contains resonance

(102)

enhancement but lacks the dynamical enhancement factor VN typical for 2-re-
sonance interaction. Moreover, in case of TVDB experimental observable (see
below) this resonance enhancement is completely cancelled by the resonance
enhancement of the T-invariant cross-section in the denominator. Therefore this
mechanism remained unnoticed and main theoretical investigations of TVDB
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[52,53,54,16] were centered on energy-averaged quantities for strongly-
overlapping resonances.

The full significance of both dynamical and resonance enhancements in
T-violation was first realized by Gudkov and the author [4,7] in 1982, when we
started the theoretical analysis of the newly suggested [55,56] P- and T-viola-
ting triple correlation in neutron transmission and predicted 5 + 6 orders of
possible enhancement for this effect on p-resonances interacting with near-lying
s-ones. Later on we [57,38] studied the resonance enhancement of P-conserving
five-fold correlations (96)—(98). The same investigations were done inde-
pendently by Barabanov [58]. Ironically enough, in both investigations the
resonance-resonance T-violating term in the amplitude (analogue of T, term in

P-violation) was unnoticed and only analogues of T, and T, were considered.

This mistake was finally corrected in 1988 by the author [8], who realized the
possibilities of both dynamical and resonance enhancements for this type of
correlation. Since however the FC contains an extra Ikl factor in comparison to
TC, this results in the extra hindrance factor (see eqs. (74)—(76) and the
discussion following them) of (kR) order which reduces the overall -
enhancement of FC to more modest 2 + 4 orders of magnitude.

Detailed balance tests for a close-lying pair of resonances in isolated
resonance regime was first considered by Weidenmuller and the author [6].
Both dynamical and resonance enhancement effects were found in that case
together with possible «true» structural enhancement. However, the measured
quantities in TVDB show even more complicated interference energy behaviour
and the conditions for observing the maximal possible effect are even more
involved. The net enhancement in realistic conditions was found to essentially
depend on experimental energy resolution and was estimated by us as

10% + 10%. However, recently Mitchel and co-workers [9] generalized our
analysis by including the angular dependence of observable quantities. This led
to even more complicated two-dimensional picture for the effect as a function
of energy and angle. However, this more complicated analysis brought even
-more optimistic estimates. Analyzing their own high-resolution experimental
data on (p, p) and (p, 0) reactions, obtained at Duke, the authors proved that it

is possible to obtain enhancements up to 10* + 10°. This fact together with
various difficulties characteristic of other types of T-violating experiments (see
below) makes the TVDB tests for interfering resonances perhaps the best
possible way of T-noninvariance observation in the nearest future.

3.3. T- and P-Violation (Triple Correlation). The triple correlation
quantities Ap,. and dy/ dz of (99) and (100) can be analyzed in complete analogy

to P-odd quantities Ap and d®/ dz (see [3,7]) by substituting the 7- and P-vio-

lating interaction iV} instead of P-violating weak interaction V,, into the Born
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amplitude (39). Analysis of the resulting analogue of eq. (40) shows again that '
c—c mixing amplitude
n, L yh
TPT - Yo Vpr Y
1 (E—Ep+in/2)(E—ES+iI"S/2)

(103)

dominates, since it contains both factors of dynamical v/ D and resonance
D/ T enhancement.
Inserting this amplitude into (99) gives [3,7]:

n n
= _2_71: G YI’ Vet Y x
TR (E-E)P+TY4(E-EP+TY4]

X[(E-E) ]“‘!7 + (E - Ep) r] (104)
with

1 3 21+ 1 ;
GJ:E\/2(21+ 1 [‘/21+3 8 v 128 12t

+V—L_5 5 ] (105)

T+1 Sn-172%1+1/2

Here J is the total compound resonance spin and c is the channel spin.
In p- and s-resonance points we have maxima:

s . Ver Y, Y,
Bpp s = 2 G, J?—l:- . (106)
Exactly in the same way we obtain:
ﬂ._ ﬁ'lt.G an'vPT.st %
dz 2 2 2 Y 2
Z [(E Ep) + Fp/4] [(E Es) + l"s / 4]
l"s r
X (E—EP)(E-ES)——4£ (107)

Observe that (107) changes sign at EzEp or E_ and shows maxima at
E ' /2:
Ps ™ T pis

n

d) _sn, Ve
i) ~2%DT (108)

Introducing the scaling factor A between the P-, T-violating interaction
;PT and the weak one VP, we see that in average the P-, T-violating observed

effects will be enhanced in the same p-resonances as P-violating ones:
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n=AP, (109)

x = AD. (110)

It is worth mentioning that all the present gauge-invariant theoretical models
consider only the simultaneous P- and T-violation giving a wide range of A

between 10~ and 10713 (see, e.g., [46, 59]). Since the existing experimental
constraints on the theory are given only by the case of K-meson decay and by
the upper bound on neutron electric dipole moment (EDM), there is a special
branch of CP-violation theory called «model-building» — anybody can
construct his own branch of CP-violation theory provided that it does not
contradict the above 2 experimental constraints. Moreover, A enters those
constraints in a model-dependent way. Thus any additional constraint on A
obtained from TC measurements could help a lot in narrowing the class of
acceptable CP-violation models. It also seems that after 3 decades of constant
improving the methodics of EDM measurements, the experimentalists had
already exhausted their possibilities there. Mind also, that EDM does not
contain the above 6 orders of enhancement, which somewhat resemble the
good old Wolfenstein enhancement of CP-violation in K-mesons. Therefore
FC measurements might rank as highest-priority ones from the point of view
of its «fundamentality».

There are however grave difficulties with the idealized transmission expe-
riments we were analyzing above in search for FC, and we ourselves were the
first to realize their presence [60]. Indeed, the simplest way seems to choose I
and k directions along, say, x and z axes, while directing o parallel or anti-
parallel to y axis. However, in order to polarize the target we need external (and
rather strong) magnetic field H. This field would cause Larmour precession of
o around H as soon as the neutron enters the target. This precession in its turn
produces non-zero helicities (of different signs for initial cases of o TTy and
o Tly ). Those helicities would cause the P-odd difference in transmission
coming from «normal» weak interaction and considered in the previous sub-
section. Moreover, this weak interaction would start rotating o around the k
direction as well (see ex. (62)). Therefore the neutron spin starts wobbling in 3
dimensions in almost unpredictable way. Since all the CP-violating theories
agree that A << 1, those effects would completely camouflage the 7-odd cor-
relation we are looking for. To make the situation worse, even if we manage to
keep the target polarized without the strong external magnetic field, we still will
face the so-called «nuclear pseudo-magnetism» (see [61]). This is the pheno-
menon caused by ¢ - I dependent part of nuclear strong interaction, which
imitates the external magnetic field causing the ¢ precession around I. Since
this effect arises from nuclear interaction, it is quite strong (usually equivalent
to several KG of magnetic field).
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The only crude remedy we could suggest in 1984 (see [60]) was to
compensate the nuclear pseudomagnetic field by fine-tuning the external field
H (this is in principle possible since the direction of pseudomagnetic precession
is not correlated with neutron magnetic moment). We fully realized that such a
solution is rather awkward in practice, since one needs to control this
compensation by measuring neutron spin rotation angle with high precision

- 8¢ ~ 10739 1 principle much higher precision of 107® was reached [27] in
measurements of P-violating value ® of eq. (75), but in our case one should do
these high-precision measurements simultaneously with the measurements of
FC itself. \

On publishing this kind of «experimental» proposal [60] we expected to
hear the reaction of professional experimentalists. Our expectations lasted for
about a decade. Only in 1993 we received first response. One suggestion was
presented by KEK group of Masuda [62] and actually contains a refined version
of our magnetic field fine-tuning. The other suggestion came from PNPI group
of Serebrov [63]. It involves the simultaneous measurements of polarization and
asymmetry in transmission of initial longitudinally-polarized neutrons, and
seem to be free of the above camouflaging effects. It remains, however, to
check the energy dependence of the much more complicated observable
suggested in this experiment in order to see whether the above enhancement
effects survive in it and to estimate the accuracy of this experiment in realistic
conditions.

3.4. P-Conserving T-Violating Transmission (Five-Fold) Correlation. We
shall start with the T-violating part of the scattering amplitude frineq. (97). It

can be expressed (see [57,58]) for low-energy neutrons (I = 0, 1, 2):

_A 1 2 1 Thy _ _
fT_k[sxfz“{l_V2 . 1+1/2}[<’+1/2’“T r-121)

(-2, TP +1/2,1 >]+

+(- 1)2’\]2—31 KI+12,2T™1-1/2,0) -

-(I-12,0TMI+1/2,2)]8,, _,,,+
+(-1)2'\l 3 Ki+1v2,21M-11,0)-
20+ 1)
~(I=-12,0T I+ 1/2,208,,, (111)

= _@=1) o m3
A‘(Z’+1)\/(21+1)(21+3)( D
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Here T=1 - §, § being the scattering matrix. Notation ( ¢’, I'lTIc, | ) is used
for transition matrix elements, where / and !’ are orbital momenta of the initial
and final channels, ¢ and ¢’ are the corresponding channel spins and J is the
compound system spin. Upper T indices denote 7-violating part of the
T-matrix. ;

One might introduce, following Mahaux and Weidenmuller [35], the
quantity SS)»u = qu - SM arising in the presence of T-noninvariant part Vpin

the Hamiltonian, and consider the matrix SSM=— Tx{l in case of two

interacting resonances, using the wave function expressions (18) for the initial
and final channels p and A. This would give us the whole set of amplitudes
similar to those of Fig.1 — the role of parity quantum number is «mimicked»

in our case by channel spins. The analysis of different contributions to Txﬂ gives

us essentially the same results as in P-violation. This analysis was schematically
mentioned in connection with detailed-balance tests already in [35] and later in
[5,6]. As usual, it boils down [5] to the dominant contribution of c—c mixing
term, which demonstrates both dynamical and resonance enhancements:

TT - 4oy — w1 V1o + Yy Yia Viy
M= E-E +iT/2) (E-E,+iT/2)’

(112)

Here E,, T are the energies and total widths of the mixing compound

resonances. The 7-violating matrix elements between the compound states
@, and @, (V),, =( DIV, ID, ) =- (V}),, are purely imaginary

(VT)12 = ivT‘ (113)
Therefore:

iy Yop = Yo Vi) V1

Im 7, =
T BB YA (E-EY T
X[(E-E)T,+(E-E)T,]. (114)

Substituting (114) into (111) and (97), we get the terms of p—p resonance
mixing (we omit the geometrical factors):

Mo Yo ~ Yoo M) " Vr y
[(E-E)*+T74] [(E-E)’ + T/ 4]

Aoy p) =7

X(E-E)T, +(E- E)T] (115)

and s—d resonance mixing terms:
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Ayts, dy = 4% ) Yaey = Yot Vi) V1
k2 [(E-E)+TY A4 [(E-E)+TY4]

X[(E-E)T,+(E-E)T]. (116)

The indices (+) and () stand for the channel spins. The order-of-magnitude
estimates for the brackets with y-amplitudes in (115), (116) are (yp")2 and

Yg' ¥, respectively. Comparing this with the value AP of (61), we see that
in both cases AT is smaller by roughly (kR) factor arising from extra |kl value

in FC. Otherwise both (115) and (116) show dynamical and resonance
enhancements. However the optimal conditions for maximal observable B(E)
of eq. (98) differ from those of P(E). Detailed analysis (see, e.g., [5])
demonstrates that observations in strong isolated p-resonance (when Gp(Ep) =

~ct0t(Ep)) are most favourable. In this case the overall (kR)?> smallness is

compensated by resonance enhancement (D/ I')? to give:

B vT o (E)
(E)=~—+— L 117)
M Dy O(E)
In the vicinity of s-resonance one gets from (116):
'y 12 5 VT
BCE )= D = (kR) (118)
A SP

The additional small (kR) factor makes those observations impractical. The
main trouble with observations of (116) in d-resonance lies in the fact that

exceedingly small T’ d" values make those resonances unobservable in O If

only we knew E d in advance, then:

v; vy D,, oE) D \?
BE )~ =2 (R)2 20 (119)
d n r Fs o-tot( ) Dsd r

Observe that for very small D, (119) decreases drastically and transforms
into (118) for D ,=T. If the d-resonance lies sufficiently far away from
s-resonance (say, Ds P 10 eV) then the resonance enhancement factor
(Ds d/ F)2 in (119) might almost compensate the smallness of (kR)2~
~107% + 1070, Since, however, the E 4 are not known in advance, the d-

resonance enhancement seems to be of purely academic interest, as it was
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pointed in my ref. [5]. This point was misunderstood by the authors of ref.
[30] who «re-discovered» the s—d mixing two years later (see also [64]).
Unfortunately the only known target of 165H0 suitable for FC measurements
does not show any p-wave resonances [64]. Therefore the above possibilities
of resonance enhancement (117) in FC were not used by the experimentalists
up to now.

3.5. Detailed Balance Tests (TVDB). The simplest quantity, which describes
the T-violation in detailed balance (TVDB) is (see eq. (87)):

oab(E, 0) — o,,(E, 0)
cab(E, 0) + oba(E, 0)

Aps(E, 6) =2 (120)

Since, as usual, the ADB value is a ratio of experimentally measured
quantities, we included the kinematic factors k¢2; (2s,+ 1) (25,+ 1) into the value

o,,(E, 6) = kz (2s,+ 1) (28,+ 1) do,,/ d2 (E, 0). To simplify our analysis we

shall also restrict ourselves with only E dependence of the cross section,
omitting the 8 dependence for the time being. Thus (120) would read:

Gab(E) - oba(E)

o, (E) + o, (E)
Any statistically meaningful deviation of this quantity from 0 would mean

T-violation. However the experimental accuracy for absolute cross-section

measurements is much less than for relative ones. Therefore it is- preferable to
do measurements at any rate in 2 different energy points E; and E; and

App(E) =2 (121)

construct a quantity:
_ Sw(ED By
O (Epp Op(ED

Here one of the points, say E, is chosen for the normalization of the ratio.

ApyEp E, (122)

This allows one to cancel out most of systematic errors. This can be seen,
since to first order in A(E) we have:

AppEp Epp = Apg(E) — Apg(Ep)- (123)

Therefore in most cases we shall proceed working with the simplest form
(121). In doing so we shall use the general expression obtained in [35] for the
difference SSab=S ab—Sba between S-matrix elements, connecting channels

a and b and caused by the presence of T-violating part V. in the Hamiltonian.

As usual, we shall consider the situation for only a pair of close-lying
compound resonances 1 and 2. As we have already mentioned in the previous
paragraph, the use of the wave functions (18) would give to first order in V..
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amplitudes similar to those considered in P-violation (Figs.'l,2). These
amplitudes are characterized by the same dynamical v/ D and resonance D/ T’
enhancement factors. Therefore the dominant contribution to 6Sab would come

from c—c mixing amplitude of type T:
(ae Vi = Yop N1
5S =4\IE 2'a 1b 2b 'la T. .
ab (E-E +iT/2)(E-E,+il,/2)
Here v, =-i(®@IV/I®,)=i(D,VJ® ) is the matrix element of Vy
interaction between the compound resonances’ wave functions @, and @, (see

amn).

Now, for the numerator of (121) we have:

G, ~0,,=2[Re(85,) Re (S9) +Im (35 ) Im (S))1.  (125)

(124)

While the corresponding expression for the denominator is:

2
Y12 Y1p Yo Yop

; + - .
E-E +il''/2 E-E,+il,/2

1 102 _ ,
5 (O, +0y) = IS5 = (126)

Ther for the case of two weakly overlapping resonances
T < |E, — E,l = D) we get (see [6]):

_ vr (M, Vol — Wy M) @ M, Ml + T 1y, 7y,
[(E - E2) I'y]a ’Ylbl + (E - El) Iyza Y%I]2+ 1/4 (le‘y]a Ylbl + l"lly,za 'YZbl)2
The analysis of this expression shows that it reaches its maximal value in

A B . (127)

. .. . 2 .
the interference minimum of the cross-sections ISa%I , 1.e., when

E-E = Wig Vip! By + Wy, Vo) By
0 Mg Vip! + Moy Yo

(128)
In case of I"l = F2 =T this yields for (127):

A (E) =4 vr Moy Nigd — My Vol (129)
pE*"0 T 1y gl = o !

Supposing for simplicity I, T, =T, T, (ie., equally strong resonances)
we obtain:
g
Yla

Yap
Yip

Vr
AppEQ =2 %

1%
_.T
]= rt (130)
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where f=2 [ly2b/ Y — o 'Ylal], and the position of the interference dip of
O, is given by:

1
Ey =5 (E, +E)).

Thus we observe how the already familiar factors of dynamical and resonance
enhancement give in (130) the overall enhancement factor v/ I". We also see
that (130) can be sometimes enhanced even more by the «real» structural
enhancement factor f (compare with eq. (73a) for the «inelastic channel» ob-

servable (xnf in P-violation). To be realistic however, one should take into

account the finite experimental energy resolution AE, which usually exceeds
I' and smears the whole interference picture, bringing the observed effect
down to (v,/ AE) f. Making now a conservative assumption f= 1, we get the

overall enhancement factor in ADB(EO) to be

v
AE (131)
Remember that v is the variance of strong-interaction matrix element (see (9))
which is of the order of 1 MeV. Therefore the net enhancement of TVDB is
about 10,

This was essentially the result of our analysis with Weidenmuller [6]. As I
already mentioned, recently the TUNL-Duke group [9], which is the world
authority in fine-resolution experiments, generalized our approach to include the
8-dependence of eq. (120) in it. After performing a tedious analysis of their own
experimental data on (p, p) and (p, o) reactions, they concluded that there are
real experimental situations when the enhancement in TVDB reaches

10* + 10°. In view of specific difficulties which mark the TC and FC
experiments, this seems to be the most realistic experimental way of T-inva-
riance measurements in the nearest future.

3.6. Brief Summary of Possible Enhancements. Thus we have seen that the
dominant contribution to all the above effects of T-violation comes from c—c
mixing amplitude of the type T, in Fig.1. This amplitude contains two basic

enhancement mechanisms — dynamical enhancement v/ D and resonance
enhancement D/ T'. Since however the experimental observables are different,
those mechanisms manifest themselves in different manner. Therefore in the
optimal conditions we might have the following enhancements:

For TC in the vicinity of Ep, provided that GS(Ep) = cp(Ep) 20

(82a)):

pot (see

%, oy (132)

)<t
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For FC in the vicinity of strong isolated p-resonance (O'p(Ep) 2
pJ Gs(Ep)+ dp ot(Ep)):

\4

Brax ~ D (133)
In this case the extra (kR) factor with respect to FC cancels D/ T.
For TVDB in interference minimum of two close-lying resonances:
v
Aps ~TH®) (134)

where f/(8) might serve as an additional enhancement factor. In realistic

conditions, when experimental energy resolution AE > T, we have:

A DR~ 2= £0). (135)

Of greatest interest to the «high-brow» gauge theories of CP-violation is
TC, since it is both T- and P-violating. However, I remind that estimates (152)
were obtained by us [4,7] for idealized experimental case without Larmour and
' pseudomagnetic effects.

Among the remaining, purely T-violating effects, TVDB has obvious
advantages compared to transmission FC. Its enhancements (135) for already

known experimental cases reach 10* + 10° , while the only available target for
FC shows no p-resonances and therefore lacks even the enhancement of (133).

IV. STATISTICAL APPROACH TO COMPOUND-RESONANCE
MEASUREMENTS

1. Nuclear Chaos and Necessity of Statistical Approach. The analysis of
the previous section shows that in the isolated resonance regime I' << d (d is
the average spacing between compound resonances of the same spin) the
symmetry breaking interaction of a pair of close-lying resonances with energy
separation D leads to two major enhancements — dynamical enhancement
v/ D and resonance enhancement D/ T, which very often combine with other
specific factors of nuclear reaction theory to produce the net enhancement v/ T,
reaching 5 + 6 orders of magnitude. Both enhancements result from a
complexity of nuclear compound resonances and practically disappear in simple
nucleon-nucleon scattering (see €q. (47)). To be more specific, they manifest
quantum chaos, whose idea is still rejected by the majority of professional
«chaotists», but accepted (at any rate on intuitive level) by all the nuclear
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physicists. Establishing the connection between the fully recognized chaos of
classical mechanics and quantum chaos of nuclear physics is an interesting and
perspective problem (see, e.g., [36]), whose solution shows that a generic
feature of any chaoticity (both in quantum and classical mechanics) is the lack
of symmetries in the Hamiltonian of the system. In compound nucleus this lack
of symmetries is caused in the first place by the strong pair-wise «residual»
interactions, which remove practically all the degeneracies connected with the
mean field symmetries (let us call it «strong» chaos) and thus lead to the
exponential increase of level density 1/d. This chaoticity also increases the
complexity N of the compound resonance wave function and randomizes the
signs of its basic («simple») components’ amplitudes. In plain words this means
that the incident nucleon quickly distributes its energy among the target
nucleons and gets entrapped in a compound system. This, together with small
barrier penetration factors, strongly reduces the contribution of particle-
emission channels to the resonance total width I" leaving only the y-emission.
The same complexity of the resonance wave functions considerably reduces the
gamma widths. All this results in large compound-resonance lifetimes T ~ 1/ T
which enter the above enhancement factors. This seems to be a rare occasion,
when complexity helps us, leading directly to 6 orders of magnitude
enhancement of the experimentally observed effects.

However, one has to pay for everything. The above complexity of
compound resonance wave functions ® makes the head-on calculations of the
«weak chaos» symmetry-breaking (WSB) matrix elements ( D,V D, )

completely hopeless. Therefore even if we observe the WSB effect and manage
to extract the corresponding vy,¢, out of it (which might be a problem in itself),

we seem to learn nothing about the strength constant of the WSB interaction.
Coming back to the origin of strong chaos, we see that the above problem with
weak interaction matrix elements vy,c, differs from the same problem with

strong interaction ones only by the strength constants F (see (6)—(9)) which we
are hunting for. The problem of strong quantum chaos and strong symmetry
breaking matrix elements was faced and physically understood at the dawn of
nuclear physics and led to Niels Bohr’s hypothesis of compound nucleus, which
does not «remember» its formation, and to Weisskopf’s idea of black absorbing
nucleus. A more refined mathematical technique of nuclear Hamiltonian random
matrices was developed by Wigner, Dyson, Mehta and other outstanding
physicists in 50-ies. In this approach the expansion coefficients c; of ® as well

as the matrix elements ( ®|VI®, ) are considered to be random numbers varying

from resonance to resonance while the value v for the ensemble of individual
" resonances obeys the normal distribution law with zero mean and variance

V= \](vz). This led to various statistical predictions concerning the properties of
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resonances which were all brilliantly confirmed experimentally: the Wigner
distribution law for level spacing, the Porter-Thomas law for neutron width
distribution and corresponding laws for y-widths distributions. Therefore the
problem of WSB presented practically nothing new to us. This fact was
intuitively recognized in the analysis of WSB for a pair of isolated bound states
or resonances from the very beginning (see, e.g., the conception of dynamical
enhancement factor ~ VN in [15]). Therefore all the order-of-magnitude
theoretical estimates of enhancements from the very beginning (see, e.g.,
[26,4,7]) were done actually for ensemble-averaged variance. We also predicted
the sign randomness of the observed effects in c—c mixing mechanism and
possible constancy of sign (connected however with loss of dynamical
enhancement factor) for -valence mechanism [7]. However the intricacies of
specific nuclear reaction enhancements for various observables discussed above
were so exciting, while the statistics of experimental observations was so
meager, that we were postponing the problem of meaningful analysis for
experimentally observed values.

2. Energy Averaging. In the meanwhile a highly professional and
sophisticated statistical theory of symmetry breaking in nuclear reactions was
developing. For purely historical reasons it was essentially concentrated on .
TVDB effects. After the observation was made [47] that in the two-channel case
detailed balance follows from unitary alone (without T-invariance), theoretical
[50,52,53,54] and experimental [49,65] interest shifted to the domain of many
open channels and strongly overlapping resonances (I' >> d). Even the explicit
appearance of I in the denominator of TVDB energy-averaged expression [50]
remained unnoticed. Mahaux and Weidenmuller derived the two-resonance ex-
pression (112), (124) which allowed 2 decades later me [5], Weidenmuller and
me [6] to see the large enhancements in FC and TVDB, discussed in the pre-
vious section. But they also applied it to I" >> d regime of Ericson fluctuations
to show that the only enhancement in this regime is the structural factor f (see
eq. (130)). Later on Moldauer [52] obtained the same results in R-matrix
formalism, again sticking to I >> d region. He also considered TVDB in direct
reactions (see also [66]) proving that direct reaction mechanism contribution to
T-violation is 3 orders of magnitude smaller than that of compound resonance
mechanism for I >> d (unfortunately, on obtaining this result he formulated it
in a somewhat misieading way — the direct reaction sensitivity to 7T-violation
is 3 orders of magnitude smaller than that of compound resonance reactions).

A new wave of statistical approach to energy-averaged TVDB which
involved a full scale mathematics of random-matrix theory developed in [67,68]
started with the papers [53,54]. Only in 1989 the technique developed in those
papers was first applied by Davis [69] to numerical calculations of energy-
averaged FC and TVDB — numerical since the method involved the
computation of rather complicated multi-dimensional integrals. «An informed
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guess» allowed Davis to approximate in semi-analytical form the results of
exact numerical integration for the energy-averaged values of ( A%) (see
eq. (115) for FC) and ( (0, — Gba)z ) (see egs. (124)—(125) for TVDB) in the
limit of isolated resonances I" < 0.1d. The corresponding expression for FC was
given (omitting the trivial 41/ k? factor) as

2 2
7 (V7) (035-0171n1
" r® T g2 t ’

(A2)y=4 (136)

where the neutron transmission coefficients for channel spins (%) are given by

ro T
@7 4 ’ T d

Since by this time the resonance enhancement effect for 2 interacting
isolated resonances was already recognized, ref. [69] was the first recognition
of the fact that resonance enhancement survives also in energy-averaged effects.
Moreover, the necessity to pay attention to the isolated resonance regime
(T << d) was also accepted. However a statement was made in favour of using
energy-averages of observables for this regime as opposed to the statistics of
individual on-resonance observations, which I (and the experimentalists) kept in
mind all the time. It took me some time and a bit of reasoning to persuade the
author of [69] that his point of view is rather academic than practical. My
arguments were as follows: Consider the FC expression (115) in the I'-vicinity
of each resonance energy assuming the typical case (E, — E)) =d, I', =T, = I':

V.. a
AT ~ 4 FT 12 (137)

T r

Here a,, = YI'E—) YZ'E e 72'('_) Yl'z " and the 47/ k? factor is omitted for the sake

of comparison with (136). The same expression for (113) in a typical
situation between the resonances |E — Ell = |E - E2| ~ d would be:

- V12 T :

A=212% (138)
This expression is a factor of (d/ 1")2 smaller than A;.cs. Let us estimate in a
simple-minded way the energy-averaged effect (136) starting from (137) and
(138) and averaging their squares over an interval d. Then the (A™%)?

contribution should be weighed by roughly a factor of I/ d, while the (K)2
should have a weighing factor (d - T)/d = 1:
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2 2 2
r%rl , Vrr?
(A2)= (%97 +A2~16d2 dti (139)

Thus we calculated the contribution to (136) from the interval d around one
particular resonance. It remains now to average the v% and “%2 parameters over
all the possible resonances. Since ¥'s in a,, are uncorrelated random variables

(a%2 )= 21"( )1"(:) Using the I'/ d smallness, we shall retain in (138) only the

on-resonance contribution. Thus

r T . (12) 2n? (v2.)
o) ) 2 T0d _yp g T2 4

2y
<AT)”32 d d 42 L~ T ne) nH+) d? 2t

We see that this crude but simple picture almost exactly reproduces the

results of (136). The only marked difference is substitution of 2/ 7% = 0.2 factor
for the (0.35 — 0.17 In ). This difference comes essentially because we took
from the start a fixed value d for the inter-resonance distance (E, - E,). The

actual distribution of this distance obeys a more complicated two level
correlation law (see the correlation function R2 of [70]), which, apart from

Wigner repulsion at very small distances allows for all the possible values be-
tween O and d. If one allows (E, - E,) to vary in this way, the distances smaller

than d will contribute more to the resonance effect (137) thus increasing the
value (A% ). Indeed, energy integration of (115) with the correlation function

(see [71]) gives the analytical result exactly equal to (136).
The main point of the above simple arithmetic is that only the small T-vi-

cinity of each resonance contributes to { A? ). It turns out therefore that in order
to compare my theoretical value (136) with experiment and to extract ( vi, »I

ask the experimentalist to make accurate measurements not only on the
resonance curve, but also in the whole «empty» interval d >> I' between the
resonances. At that I know for sure that all these tedious off-resonance meas-
urements would give null results. I also know that in this way I would decrease

the sensitivity of ( v%) definition by a factor of &/ T'. In order to compensate
this loss the experimentalist has to increase the accuracy in measuring each null

effect by, say, increasing the beam flux by a huge factor (d/ l")2. One should
also recollect that transmission experiments around the strong s-resonances are
impossible, or, at best suffer poor statistics. All this almost devoids energy-
averaged calculation for isolated resonances of any practical meaning. I want to
stress this point because of repeated attempts to compare the energy-averaged
quantities in this regime with experimentally observed ones. Even in our joint
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paper [71], after reading the above critical comments on energy-averaging, one

meets a vague statement that it is still appropriate for 16540 case where there
are no observable p-wave resonances below 100 eV. This statement is again a
purely academic one* — if you observe no p-resonances in G, this just means

that either the p-resonance spacing d in this energy-region is anomalously large
or that T’ p" are anomalously small. Both facts should be somehow taken into

account in the «unbiased» estimates (136) as additional biasing and this would
lower its value. Even then it would be necessary to drop out of thus biased
estimate (136) the unobservable regions around strong s-resonances. One might
still hope to get something from averaging the (s — d) mixture term (116).

Seemingly one should get for ( A?. (s — d) ) practically the same value as (136).

However here comes another very serious danger of energy-averaging. We had
already noticed that the (- In f) term in brackets of (136) which dominates in
our case of small t appears because unbiased energy-averaging procedure fa-
vours the situations when the mixing resonances lie anomalously close to each
other (Dsp << d). But exactly in those situations the denominators of observable

B (see (98)) would exhibit strong s-resonance maxima which reduces the
resonance enhancement of the numerators practically to zero. Therefore the
averaged observed quantity B would strongly deviate from the calculated

«a2n¥ (o,

nominator. In terms of experimentally measured quantities of the type (21)—(25)
this means that experimental measurements would be impossible or give ex-
tremely poor statistics in exactly the same energy intervals (near strong s-re-

) because of the strong correlation of the numerator and de-

sonances) which mostly contribute to the calculated values of (A2 (s—-d)).
Together with the above loss of sensitivity by a factor of I'/ d and the abundance
of strong s-wave resonances in experimentally observed spectrum of Ho this just
means that Ho measurements might be a waste of time. Conclusions to the same
effect concerning the energy-averaged estimates of P-violation observables done by
Koonin et al. [72] with the aid of optical model functions were reached by
Weidenmuller and Lewenkopf [34] — thus averaged quantity lacks resonance
enhancement and bears no relation to the experimental observable P of eq. (20).

To finish the matter of energy averaging, I mention the recent publication

[73] on FC experiments with 2 MeV polarized neutrons in 16540, where the
theoretical analysis is done in the spirit of a very simple model of T-violation
in direct reactions considered almost 30 years ago by Moldauer [66]. I already

*1t is unusual to disagree with one’s own publication. The main conception and the analytical
part of [71] were finished before the end of 1989. However the final text was written only 4 months
later, when I was out of reach in Russia and 2 other co-authors in Arizona and Heidelberg, respectively.
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mentioned that actually Moldauer had shown in [52,66] that the contribution to
T-violating amplitudes from compound resonance mechanisms is about 3 orders
of magnitude larger than from direct interaction ones — the fact, which is quite
obvious in terms of resonance enhancement physics (time spent by the particles
inside the T-violating nuclear field is much larger for compound processes than
for direct ones). Therefore I cannot understand why (apart from its extreme
simplicity) the authors of [73] applied the direct reaction analysis to their data.
This is especially strange, since this experimental energy range might be the
most appropriate place to apply the «big guns» of complicated numerical
integration worked out [69,74] by one of the authors of ref. [73].

3. «On-Resonance» Ensemble Averaging. Having thus discussed the
drawbacks of «unbiased» energy-averaging in isolated resonance regime
I' << d, we are coming back to the natural idea discussed in Subsection IV.1,
namely, to follow the lines of well-developed statistical approach to «strong»
chaos of neutron resonances and consider the ensemble of weak-interaction Vi

values, measured in different p-resonances as an ensemble of random numbers
obeying the normal distribution law with zero mean and variance

VPEM= V¢ vP2 ):

V2

—L— (141)

1
p = exp| —
)= o mZ ™| " w2

Thus any particular value of v, obtained from one on-resonance measurement

is of minor importance and the main interest is shifted to the variances M. If
we are able to extract the value of M from a set of on-resonance observations
(and we shall see below how intricate this extraction might be), then we can
use the scaling trick (see egs. (6)-—(8)) and compare this value with its
equivalent v for strong interactions, obtained from a well-established quantity
of the spreading width 1"spr of eq. (7). This comparison would give us the

scaling constant

F==, (142)

<X

or, at any rate, an upper bound on it.

Everything seems fine in such a simplified scheme. However, the realistic
situation is much more complicated. To begin with, in deriving all the
expressions for weak symmetry breaking quantities of the previous Section we
retained for simplicity only one resonance in the initial and one in the final
channel. In principle all the observables of Sec. III should contain a double sum
over all the mixing resonances. Since we consider the on-p-resonance measure-
ments in the isolated-resonance regime, the contributions of all the other p-re-
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sonances to the observed effect would be smaller by at any rate a factor of
(d/ 1")2 and can be discarded. However the other sum still remains, and the
correct expression for, say, A fot at Ep would be:

81; ( S|VWIP )
Atot(Ep) _LZ —2 A(v); s
no.oyn (143)
_38n Ye'_.l_ =
A= 2 E (vp)‘. = siVylp; ).
Assuming that all the parameters y 'y and E, are known, AP (E ) is a

tot
sum if Gaussian distributed random varlables (v) with fixed coefflclents

Smcc a sum of Gaussian random variables is also a Gaussian random variable

tot (E ) itself is a Gaussian. However it is not ergodic in the sense of ref.

[75]. Ergod1c1ty here means that the statistical ensemble average of an observ-
able (whose behaviour we know theoretically) is equal to the running average
of the same observable taken over a set of experimentally observed

resonances. For A fot (Ep) to be ergodic, it is necessary that it should be inde-

pendent of the parameters of the actually investigated resonances. In plain
words this means that we should get rid of all the trivial constants known for
each particular resonance p, , and consider the new value whose variance is

given by ( vﬁ ). Since all the (vp)i in (143) have the same variance, such an

ergodic variable in the present case would be

or )

i 'z A2I1/2. (144)

In the one s-resonance approx1matlon A{.’ = (VP)i .
Let us now slightly complicate the situation. Before doing this, we shall

step back to the original expression (61) for AP tot

derivation we considered the case of zero-spin target / = 0. In this case the total
compound-resonance spin J is completely defined by j =1+ s of the neutron,
and the partial width of the p-resonance admixed to s-one is simply

In order to simplify the

1"" —l"p"1 s Where 1/2 is neutron j-value. If, however, we remove the
restrlctlon I=0, then the p-resonance partial width would contain two

n . .
components 1" = Fp 2t l"p 3/ - 10 the channel spin representation (see, e.g.,
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(111)—(116)) this corresponds to 2 different values (%) of the channel spin c.
Since T-invariant interaction conserves c, only the Fp"l /2 widths (and

corresponding amplitudes Y 1/2) Would enter the AP tot €Xpression. However in
the majority of cases we know only the total Fp", while the values anl ,, and

'yp"3 /o, are unknown. Therefore for / # 0 even the simplest form of on-resonance

P
A tot would be

A
P 81! s B n,

tot( pi k2 ]‘ (E E ) 1/2 va pi Ypi pi? (145)

A
i.e., the product of a known constant BP and the unknown Ap =Y, 1/2 v, . Now

for different choices of p-resonances anl ,o behaves as a Gaussian random
variable with zero mean and variance (I"p"l /2 ), which can be easily related
to, say, neutron strength function. The p-wave amplitude yp”l ,, and the matrix
element v, are independent random variables. Thus we can introduce on-

resonance ensemble of ergodic values:

A AP (E)
AP"=L‘B&’ (146)

This random values are, however, distributed according to the law which
governs the distribution of a product of 2 independent Gaussian random
variables:

P(ﬁp):ix (K/m) (147)

where K, 1s MacDonald’s function and «? —(F"l/z)(v ) defines the
variance of Ap

In the many-level generalization we have (see (143)):

P =
A tot (Ep) - Yp"l/ 2 Z Bps(vp)s (148)
s
and can introduce the ergodic variable:

A E
A = A(_L)_ : (149)

which obeys the same distribution law (147).
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Observe how the lack of knowledge of only one additional parameter
anl s Of «standard» nuclear spectroscopy complicates the statistical analysis of
WSB and data interpretation — instead of the well known analytic Gauss/i\an
shape of (142) for A f.’ , we get the much more complicated low (148) for A, .

One can also be sure that statistical confidence levels of variances, extracted
with the help of (148) would be much lower than those obtained using (142).

The case of T-violating FC (eq. (116)) generalized for many levels gives the
on-resonance expression:

161t 1
Ap) = Z M2 Y2 = Va2 Yok 1/2) X

. vy E,—E)T
_ 2
(E, E ) +T /4

In a rather optimistic case we may know in this expression the parameters
of the p-resonance, where we do the measurements, namely Ep, I‘p = I‘pk =T,

(150)

anl /o and 'yp"3 /o Since our information about p-resonances in general is very

poor, the rest of parameters in (150) are very likely to be unknown. The
analysis of this situation in [71] demanded numerical Monte-Carlo simulation
for the distribution of distant Epk and allowed one to built two approximate

analytical expressions for the distribution of ergodic variable &, corresponding

to (150). Both of them contain two-fold integrals (see [71]) for details).

This strikingly increasing complexity of distributions with the increase of
unknown spectroscopic parameters serves a good lesson for experimentalists. If
they want to extract useful information on WSB interaction constants rather
than surprise the world with large P-violation effects, then they should try to do
a good deal of dull job in «standard» spectroscopy in order to define as many
spectroscopic parameters as possible. We shall have to strengthen this statement
in the analysis below.

4. Analysis of Realistic Imperfect Experimental On-Resonance Mea-
surements. The distribution analysis of the previous subsection concerned only
the statistics for the «theoretical» values of observables arising from the chaotic
nature, of compound-resonances. However each on-resonance measurement of,
say, A, value can be done with finite experimental error o, and the

experimental results x; of the measurement in majority of cases would obey the

normal distribution law:

A 1
P (xl.IAi) = Vo o exp 1—
1]

202 (151)
1

(xi - 392 }
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Here we introduced the notation of conditional probability P (alb) of a
given b. In our case the measured value A itself is randomly dlStl‘lbl.ltcd in
accordance with the Gaussian law (141), Wthh we shall denote as P (A IM).
Therefore the connection between the mcgsured value x; and M will be given
by:

P (xjM) = [ d(A) P (x1A) P (AIM) =

i

1 x
= -t 152
\2n (62 +M?) P 207 + M ?) (152

For an infinite set of experimental measurements, x; with small errors, o,

one could plot the curve (152) and extract the M value by applying, say, the
least square method. Even in this idealized case the problem of finding the
confidence intervals AM for M is not clearly defined. However the realistic
situation of imperfect measurements is much worse. In practice we might hope
to get only few experimental points x; with accuracy not exceeding a few ;.

To dramatize the problem even more, consider a case when after years of hard
experimental work we shall finally get an upper bound x, <G, in the triple-

correlation measurements on La resonance. What shall we do then in order to
connect this upper bound with the corresponding upper bound on M?

Up to now denoting (151), (152) as conditional probabilities might seem to
be an unnecessary terminological complication of simple things. But when we
start considering the above case of imperfect measurements, only the
conditional probability theory allows to solve our problems. Indeed, the exact
formulation of the problem is: We have a theoretical expression (152) defining
probability of experimental result x; (with ;) for a given M value. We need to

«inverse» (152) and find a probability P (Mlx) of M given an experimental
result x(0,). This problem is in principle easily solved by using the well-known
Bayes theorem of standard conditional probability (CPr) theory:

P (Mx)-P (x) = P (xIM)-P (M) (153)

and putting it into the form:

P (Mix) = ZEMP M) (154)

P (x)
According to the same standard CPr theory the «unconditioned» probability
P (x) = [ P (xiM) P(M) dM = N(x). (155)
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Expressions (153)—(155) are given in any textbook on CPr and accepted
by all the mathematicians. However the interpretation of (154) given by Bayes
himself makes a special branch of Bayesian statistics (BS), which is criticized
by the representatives of the more orthodox «frequency» school in mathematical
statistics for its «subjectivity» (see an excellent and very brief review of this
topic in [76]). Unfortunately BS is practically unknown to physicists.
Unfortunately, since every physicist who ever worked with experimental data or
with any kind of the above «inverse» problem intuitively felt the necessity of
BS or even tried to apply it without realizing that this is BS. Bayes supposed
that before we do any kind of measurements x of the physical quantity M, we
often have some «a priori» knowledge concerning P (M) — e.g., before
measuring the mass we know that it is positive. Bayes theorem (154) formulates
in a mathematically precise way how to combine this «a priori» knowledge with
the results x of our measurement in order to obtain the «a posteriori» probability
P (Mlx). One might associate this «a priori» P (M) with considerations of
common sense, which prompts to a physicist that application of orthodox
statistical prescriptions to, say, negative experimental x; obtained in the mass-

measurement experiment leads tc nonsense — he is sure that mass is positive,
and that only poor accuracy of his measurement produced the negative x; . But

without BS the physicist does not know how to get out of this trap. The best
solution might be to throw this result away and take a more precise measuring
device. But what to do if this is the best at your disposal (and often the only
one in the world)? In BS approach you just suppose the «a priori»
P (M) =0 (M) and go ahead through (154), (155), obtaining a sensible upper
limit on mass as an «a posteriori» result of your imperfect measurement (see
[77], where Philip Anderson describes BS as «the correct way to do inductive
reasoning from necessarily imperfect data»). In case when nothing is known «a
priori» about M the standard assumption is (see [76]) that P (M) is uniform and
constant. :
There is a close, but sometimes misleading connection between the
Bayesian post probability (BPP) given by (154), and the maximal likelihood
method (MLM) described in numerous manuals on statistics for the experi-
mentalists (e.g., [78]). One might characterize MLM as an attempt to use
Bayesian statistics without recognizing it. Indeed, the P (xIM) function of (154)
is often called «likelihood function» L(M) and MLM says that the best estimate
of M is the value M__ , which maximizes P (xIM) considered as a function of

M. One easily sees from (154) that in case of complete «a priori» ignorance
(i.e., P (M) = const) BPP coincides with the likelihood function to within the
normalization (155). Therefore the BPP in this case has exactly the same
maximum. As to the definition of the confidence, the MLM usually prescribes
to assign the errors of M by finding the values of M for which L (M) is reduced
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from its maximal value by a factor of exp (— 1/2). This prescription is

obviously based on the assumption that L (M) is a Gaussian centered at M.

For this (and only for this) assumption the above prescription indeed gives the
conventional «one o» confidence level of 68%. What is even more important,
the ratio of confidence intervals AM for 99% and 68% confidence levels in this
case is only a factor of 2.6, and this is known to everybody. We shall see,
however, that for a small number n of independent experimental measurements
L (M) is highly non-Gaussian — in terms of BPP this means that AM for 99%

confidence might be larger than AM for 68% by a factor of 10% = 10° (see, e.g.,
[78])! Therefore for small n the MLM confidence prescription becomes sense-
less. For this reason the most accurate manuals on MLM warn against the use
of this method for small »n cases and vaguely state that the actual accuracy of
M_ .. definition in MLM should not exceed the characteristic width (whatever

it is) of the L (M) function maximum (see, e.g., [80]).

Thus we see that standard MLM coincides with BS only when
P (M) = const and the ensemble of experimental measurements 7 is large. In all
the other cases MLM strongly deviates from BS and should not be applied to
data analysis at all.

Since most physicists do not know the ordinary CPr theory (not to mention
the BS) I shall briefly mention most dangerous points, where CPr and BS
disagree with our «intuitive» expectations based on rudimentary knowledge of
the ordinary (non-conditioned) probability in its «frequency» modification.

First of 2ll, the BPP of eq. (154) (as well as any conditional probability) for
2 independent measurements is not equal to the product of BPP’s for each
measurement:

P (xlleM) P (m)

P (Mixjx,) = —— 2 ———— 2 P (Mix)) P (Mx,). (156)

N (xl, x2)
Here N (x), x,) = [ P (x,, x,}M) P (M) dM.

Thus for n independent on-resonance measurements X Xy X, = {x; 1 we

obtain:
P (Mi{x; }") =
G(A/I) " 1 x?
e —— exp {— : (157)
N ({x; }" ,1} \2n (02 +M?) [ 2(0?+M2)]

with normalization
P

oo n 1 ’
N{x, ) =|dm Xp = ——o———= L.
(ix; } ({ E NaEy ep{ 2(6‘_2+M2)] (158)
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Expressions of this type were used by us [79] for the analysis of TVDB
experiments [49,65], which were unfortunately done in the regime of strongly
overlapping resonances long before the discovery of resonance enhancement.
Our analysis revealed the already mentioned highly non-Gaussian shape of

P (Mlx:') curves for small n. Therefore in case of [49] with its n = 2 we got at

confidence level 85% the upper bound on T-violation constant & < 41073,
which is comparable to 3107 quoted in [49]. However at confidence level 99%

our result was & < 8.8.107% = 0.1. Mark 2 orders of magnitude difference be-
tween confidence levels 85% (not even 68%!) and 99%. Only after combining
the n=6 independent observations of [49,65] the BPP curve started

approaching Gaussian and allowed us to obtain § < 3.5-107 at 99% confidence
level.

We also observe that for one measurement the N(x) integral of (155)
diverges logarithmically at the upper limit M, even for infinite accuracy ¢ = 0.

This means that a single experimental upper bound (however accurate) would
never allow you to extract the upper bound of random variable variance M. This
is obvious, since observed x, = 0 might emerge both in case of M = 0 and for

large M — as an unlucky fluctuation of random variable.
All this was true for p, ,, resonances. For p,,, ones, which can’t mix with

s-resonances, we know «a priori» that M =0. Here the BS results differ
drastically from our naive expectations. Since now the «a priori» probability
P (M) = 8 M), we get from (152)—(155):

_ P (xl0) _
P (Mlx, 3/ 2) = P (xI0) (M) = dM). (159)
The meaning of this purely Bayesian result is also quite simple — if we
know for sure the exact value of M, before the experiment, this knowledge
would not be changed by any further measurements.
The situation becomes much more complicated if we do not distinguish
between p,, , and p,, , resonances. Then we can only use their statistical

weights and claim that while probing p-resonances at random, one gets spin
1/ 2 with probabiliy p = 1/ 3 and spin 3/ 2 with probability g = 2/ 3. If only one
measurement is done, we can use the ordinary CPr expression:

PM)=Y P MxB)P B (160)
B

in order to combine the BPP’s of (157)—(158) (for n = 1) for spin 1/2 and
(159) for spin 3/ 2 with the aid of corresponding probabilities P () (equal to
p or q). However, the trivial 8(M) arising in (160) from the J = 3/2 term of
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(159) is not of interest for us. Therefore we can easily subtract it from (160)
and consider only the P (Mlx 1/ 2) term given by (157).
The case of 2 measurements X, X, is more subtle. Then we should consider

different possibilities. With probability A both resonances might be J=1/2;
with probability B only one of them is J =-1/2, and it is equally possible that
this is either x; or x,. Therefore:

P (Mix, x,) = A-P (Mix, x,, 1/2) + B [P (Mlx,, 1/2) + P (Mix,, 1/2)].  (161)

The coefficients A and B are well known in statistics of Bernoulli trials and
are closely related to the binomial distribution coefficients. The general analysis
of [81] gives for a case of n measurements:

n
P (MI{x, }") =ﬁn-2 pq"" Yy, P (Mix, }fr, 2. (162

r=1 Kr
Here r denotes the number of 1/ 2 resonances which we might hit in our n
trials, and coefficients in the first sum give the probabilities of this to happen.
However for each given r we need to find all the possible combinations K, of

K . o K
r particular X; values {xi }r' . For each particular combination {xi }r' the BPP

X ;
P (Mi{xi },71/2) is given by (157)—(158). The number of K, increases with

increasing r < n in a factorial way. Therefore trying all the options in the
sums of (163) for, say, n = 30 takes weeks of fast-speed computer time, while

K
the calculation of each particular P (M{x; } " 1/2) defining the M-distribution

for a chosen set of 1/2 resonances takes only seconds. This is another
example of how the lack of elementary spectroscopic information on
resonance spins enormously complicates the P-violation analysis.
Unfortunately this is not the whole truth. Much worse is the fact that this lack
of information on spins makes the results of all P-violation measurements
practically meaningless. We shall show below that without the spin
assignment all the measurements performed on 238y and 232Th in recent 6
years allow only to find the statistically significant upper bound F < 1076 on
the strength of P-violating weak interaction in those nuclei. It is just a lucky
chance that the purely phenomenological expression used for likelihood

function in the analysis of these data produced for 238 the results close to
those obtained with the spin assignment.

Before showing this, let us summarize the difference between Bayes
method and MLM prescriptions of the orthodox statistics in application to our
problem. When resonance spins are known the only principal difference for
J = 1/2 resonances is that BPP of eq. (157)—(158) are normalized to unity,
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Fig. 3. Likelihood function L(M) for seven J= 1/2 p-resonances in?%8U  based on
experimental data of [83] and spin assignment of [84]

‘while the MLM functions are not. This seemingly insignificant detail leads in
case of small ensembles n to quite different results: in case of one measurement
the BPP cannot be normalized (and we have seen the deep physical reasons
behind it), while standard prescription of the MLM still gives the 68%
«confidence level» which is quite meaningless. In case of n 2 2 measurements
the BPP curves are normalizable, but the MLM prescription for 68% confidence
remains misleading since: a) The exp (— 1/ 2) prescription deviates from actual
68% confidence level; b) The AM intervals for confidence levels of 68% and
99% might differ by several orders of magnitude. With increasing n the
difference between BS and MLM becomes less marked because L (M) gradually
approaches the Gaussian. To illustrate this we show in Fig.3 the L (M)

behaviour for seven P/ ) Tesonances in 228U based on P-violation measure-

ments of [82,83] and spin assignment of [84] together with «one-G intervals» of
MLM prescription. Mark that even for n =7 the L (M) is still not Gaussian.
Therefore the correct definition of 99% confidence would raise the upper limit
of M to Mup = 1.5 meV.

In case of J=3/2 the BPP would always give &M) distribution, while

MLM will not — see L (M) for nine 3/ 2 resonances in 238y of ref. [84] shown
in Fig.4. This case shows how misleading the MLM prescriptions might be even
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Fig. 4. Likelihood function L(M) for seven J = 3/2 p-resonances in?®U based on
experimental data of [83] and spin assignment of [84]

for the case of n = 9. We all understand that for 3/ 2 resonances L (M) results
should be compatible with M = 0 and that all the extra maxima of L (M) curve
should be associated only with poor statistical ensemble (small n). The Bayesian
results agree quite well with the above natural expectations — on normalizing
the L (M) curve of Fig.4 and looking for 99% confidence level we obtain only
the upper bound of M < 1.5 meV. Definitely this upper bound is a rather poor
one, but this reflects the basic fact that n =9 ensemble is still a poor one.
Bayesian statistics can’t produce miracles and heal this drawback,but it warns
that the positions of L (M) maxima are much less important than the correct
definition of their confidence levels.

In case of no spin assignment the purely empirical expression was
suggested for L (M) in [82]:

n 2
L M) = % i
o0 g [ 2m (o + M2 CXP{ 2(c§+M2)]
@
ﬁz -1, 163
+ 2no-izexpl 20%]] ) (A )

We see that this expression is built in violation of both Bayes statistics
(since the 3/ 2 term with g coefficient should be 8-shaped — see (159)) and the
rule (159) of conditional probability theory (conditional probability of n inde-
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Fig. 5. Likelihood function of ex. (163) for 16 p-resonances in 238y without
spin assignment (see [83]) .

pendent measurements differs from a product of n conditional probabilities).

The plot of (163) for 16 resonances measured in 2334 as given by [83] is shown
in Fig.5. When a similar plot of ref. [82] was first demonstrated at 1989 Alushta
School, the response of the experimental audience was: «How do you manage
to extract the M values so precisely, when only 6 out of your 17 measured x,

deviate from zero by more than 267» (One should add that now we know that
only 3 of those 6 non-zero results are actually J = 1/2!) This perfectly sound
remark aroused my interest to imperfect data statistical analysis and led finally
to the above Bayesian results. These results, given by (162), are demonstrated

for the case of 228U measurements in Fig.6. Their obvious meaning is (compare
with Fig.4) that without spin assignments the extracted value of M is compatible
with zero and gives only the upper bound M <3 meV at 95% confidence level,
in complete agreement with sound expectations. The oscillations of L (M) curve,
likewise in case of Fig.4, result only from the poorness of the statistical
ensemble. - '

The problem now is to understand the striking similarity between the curves
of Fig.5 obtained by using the erroneous analysis (163) and Fig.3, whose
analysis (besides the above remarks on confidence levels) is correct. The plain
answer is — the occurrence of several lucky and unpredictable coincidences.
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Fig. 6. Bayesian post probability of ex. (162) (normalized to p = 1/3) for
16 p-resonances in 238y without spin assignment

Let us compare the phenomenology of (163) with the Bayesian ex. (162).
By removing the constant factors exp — (x?/ 20'?) out of each factor in the

product of (163) and presenting (163) as an n-th power of binomial we can
simplify this comparison. Now we see that the main difference between (162)
and (163) lies in the fact that each term of the binomial expansion in (163)

contains an extra weight factor exp (x?/ 20‘:2), which exponentially enhances the
contribution of each significant deviation x;z/ 20? of the effect from zero. In
particular 238y, case a single 63.5 eV resonance with x, = 70, contains an

enormous enhancement factor A0 = 10'%. Therefore the maximum of this term

Mrgax = V,\% - og = 0.65 meV practically defines the maximum of the whole

expression (163). The remaining 4 statistically significant results, whose
maxima lie on both sides of M, only slightly shift the overall maximum to
0.58th§ meV of ref. [82]. In order to estimate the influence of those remaining
terms, observe that omission of one of the 20 effects at 57.9 meV in [83] shifted

this maximum to 0.561'3:; meV. Naturally, all the abundant zero-effects,

mentioned above, produce no influence whatsoever on the L (M) curve of (163).
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Thus the phenomenological construction (163), built in violation of
conditional probability theory, has a surprising feature of artificial
«exponential» selection of the most statistically significant results, or, to put in
the other way, exponential suppression of all the null results. Intuitively one
might expect that this lucky feature of (163) (quite unexpected by its creators)
is a strange but reasonable way to select 1/ 2 resonances, since we expect that
in average only those resonances would show marked deviations from zero. To
a certain extend this is true, but only to a certain extend. Let us come back to
our basic expression (152) to understand how sound this selection might be.
First of all, we observe that for any value of M (that means 1/ 2 resonances!)

the most probable result is x; = 0. 238 case is not an exclusion — 4 out of 7

resonances J = 1/2 show zero results. However, the width of the distribution
curve (152) depends both on M and o; values. Consider first a limiting case of

extremely high experimental accuracy (M/ cri)2 >> 1. In this case practically all
the non-zero results x; would come from 1/2 resonances with M # 0. The

«contamination» from 3/ 2 resonances would be negligible because of small ¢
values. Therefore in this idealized situation the suppression of null results is
perfectly correct and the ex. (163) might be a reasonable approximation of
(157).

Consider now the case (M/ q:r)2 ~ 1. In this case the distributions (152) for
M =0 and M # 0 would come closer to each other and 3/ 2 resonances would
considerably «contaminate» our measurements contributing a lot of non-zero
results x; . However, if we have a very large ensemble of resonance-measure-

ments n >> 1 and exponentially select the most significant results, we can still
be sure that more x; # 0 would come from 1/ 2 resonances. Mind that for small

n ensembles this will not work and a «degree of contamination» coming from
3/ 2 resonances would randomly vary from ensemble to ensemble.

Finally consider (M/ (ii)2 << 1. Then the distributions (152) for M = 0 and
M # 0 would practically coincide. Only by taking the unrealistic limit of infinite

ensemble n — o plus some kind of selection of largest results one might hope
to select the 1/ 2 contributions.

Coming back to B8y results, we know only after spin assignment that
M =0.56 meV. Comparing it with o; of [82,83] we see that experimental
accuracy parameter (M/ ‘c,.)2 is more or less evenly distributed between 400 and

0.05. Therefore the chances that non-zero effects come only from 1/2
resonances are roughly «fifty-fifty». Indeed, as we know now, 4 out of 7 non-
zero results in U were coming from 3/2 resonances. Therefore the above
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coincidence of 2 maxima positions is an unpredictable chance coming
essentially from the fact that the main 7 contribution to (153) alone was giving

the value MOnmx already within o of the true M-value of [84]. Therefore it

would be much simpler and honest to say plainly: «<We have reasons to hope
that 7 effect is a 1/ 2 resonance one, while with the rest we have no guaranties.
So we identify the matrix element of this large effect with the variance M».
Obviously, the statistical significance of such a statement if quite unpredictable,
but so is the statistical significance of results obtained with the much less
transparent ex. (163).

We can also understand now the results of Monte-Carlo simulation [85] of
Th case. The authors of [85] considered the ensemble of n = 7000 resonances

with non-zero effect in case when (M/ C)'i)2 parameter was distributed in the

range from 10® to 1. We have already shown above that for such a choice of

M/ 6)2 the unrealistically large ensemble of 7000 non-zero observations would
almost certainly produce the correct results, which was the outcome of [85]. The

trouble is that in actual 232Th of [86,87] we have only 7 non-zero effects and
do not know in advance the (M/ ()'l.)2 values. Therefore without the spin

assignment we cannot even make a clever guess how many non-zero effects

arise from «contaminating» 3/ 2 resonances and how many null effects come

from 1/ 2 resonances {(in U those were 4 out of 7 resonances with J = 1/ 2).
Therefore in realistic measurements even the correctness of M_ . derived

from (163) would be always unpredictable without spin assignment, not to
mention the confidence levels given by (163). This unpredictable character of
(163) is mathematically reflected in Bayesian expression (162) and in the results
of Fig.6.

5. Sign-Correlation Effect. Returning back to the multilevel ex. (145) for

Afot, we see that the signs of the observed effect should vary randomly from

resonance to resonance. This comes from sign-randomness of 3 quantities in it:
matrix element (v,); » partial amplitudes Y, and yp", and energy denominators
(Ep -E).

However the measurements in 2>>°Th (without spin assignment)
demonstrated that 7 out of the 7 statistically significant (x; 2 20,) effects have

the same positive sign (see [86,87]). This poses a question — is it a fluctuation
or it comes from some systematic effect, which is not included into (143) and
which has constant sign. The answer to this question might be best found on the
lines of Bayesian statistics (see [77], where Anderson demonstrates how
efficient BS is in «null-hypothesis» tests, discarding with notorious «fifth-
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force» experiments). However authors of [88] preferred to introduce «ab initio»
the constant-sign term in addition to (143). This resulted in constant-sign
addition B V1 eV/ E (%) to the quoted effect P (see (78), (81)). The magnitude
B of this addition was defined in the 2-dimensional MLM analysis, using

L (M) of (164) modified by the presence of the B term. The result of this

analysis was B = 8‘:2% %, i.e., of the same order of magnitude as the effect P

itself (which ranges between 1% + 10%).

This highly sensational result was taken for its face value as an
experimental one by a lot of theorists and experimentalists and produced an
avalanche of publications with attempts to explain it theoretically. Since it
might take a special review to analyze (and even mention) all of them, I will
just classify the main trends in those publications. Some of them concentrated
on the analysis of possible sign-correlation between matrix elements (vp)l. ,

completely ignoring the random signs of ¥’s and (E - E). Others re-discovered

our old statement (see, e.g., [7]) that valence mechanism leads to sign
correlation of the P-effects (see ex. (60) for valence part T10 of Tl amplitude),

ignoring however that we discarded this mechanism in [7] because it lacks the

dynamical enhancement factor VN = 10°. Apart stand papers [33,34] which
concerned the amplitudes of Ty type. Since all the diagrams containing the )

wave function (see wavy lines in loops of T,, Ts—T, in Fig.1) describe the

motion of valence particle in target mean field, we called them all «the valence
mechanism» in [7]. We estimated them with a crude procedure similar to that
of eq. (15), (16) and, on discovering that they lack the dynamical enhancement
factor VN, simply stated this fact in [7]. Weidenmuller in [33] developed a
much more elegant technique of principal value integrals evaluation which I
borrowed from him in the above estimates of Sec.III.

Practically all the authors concluded that valence mechanism needs extra

enhancement of 102 + 10° in order to explain the above B-value. Practically
nobody mentioned that this extra factor is exactly the same dynamical
enhancement which provided for large observed effects in complex nuclei in the
first place.

Nobody also questioned the reliability of the above huge B-value, obtained
from MLM analysis, whose drawbacks we have just discussed. To those, who

do not believe in Bayesian approach, I can suggest to compare the above

B =82 % value with MLM value M = 0.07°0:30 meV in Fig.4. It is believed

by all that the results of Fig.4 should be compatible with M = 0. The same must
be said about B even by the MLM adepts. So the actual statistical significance
of sign correlation effect remains an open question which could be solved, if



FUNDAMENTAL SYMMETRY BREAKING 357

really necessary, in terms of Bayesian approach. Since this approach gives only
the upper bounds even for M-values without spin assignment, the same will be
even more true for B-values. Therefore spin assignment in Th is essential also
if one really wants to consider the sign-correlation problem seriously.

V. SUMMARY

Thus we have seen that the enhancements of all the symmetry-breaking
effects in nuclear reactions on isolated resonances comes essentially from
dynamical factor 3/ d ~ YN and resonance enhancement factor d/ I', which com-
bine in most optimal situations to the overall factor v/ I'. For inelastic channels
(including TVDB) there might be an additional structural enhancement factor
f~ (/") (see egs. (73a), (130)). For «elastic channel» observables probed in

transmission experiments the situation is more complicated. All of them contain

instead of the above f the barrier penetration hindrance factors (kR) or (kR)2 (for
FC). However, they also contain an extra resonance enhancement &/ T (see, e.g.,
eq. (73b), (73c)) which might almost completely (in case of P-odd correlation)
or partially (in case of FC) compensate those hindrance factors.

We have also seen that the «structural (kinematic) enhancement factor»
1/ (kR), so often used to explain the enhancements for the «elastic channel»
P-odd correlations, is merely an artifact of misleading analogy with bound
states in theory and of quoting the auxiliary value P instead of the really
observed P in experiment.

Both major enhancements (dynamical and resonance) are quite general
results of quantum chaoticity of compound resonances, which increases the
complexity N of the compound-resonance wave function and reduces their total
widths T'. This reduction is most efficient in the low-energy region of isolated
resonances I << d.

The same chaoticity which produced huge enhancements also necessitates
the use of statistical methods for the analysis of observables and their proper
connection with strength parameters of the symmetry breaking interactions. This
does not lower the reliability of information obtained as compared to simple
nucleon-nucleon interaction processes, provided that one obeys certain general
rules and uses the correct statistical methods. In theory this boils down to using
the methods of random matrix approach, whose reliability was established
during half a century in neutron-resonance spectroscopy. In processing the
experimental data one should use Bayesian statistics (BS), whose significance is
gradually realized by all the physical community.

Both statistical approaches (in theory and experiment) show an important
general feature — lack of information on «standard» spectroscopic parameters
immediately complicates the analysis and enormously lowers the statistical
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significance of the symmetry-breaking observations. BS also strongly vouches
for the increase of independent experimental observations rather than their
individual accuracy.

In this review I had to concentrate essentially on reaction aspects of
symmetry breaking and on proper statistical analysis, paying much less
attention to the ultimate aim of on-resonance experiments — analysis of new
information on symmetry breaking interaction constants. As mentioned in
Introduction, since the creation of Weinberg-Salam electro-weak interaction
theory nobody would be surprised by P-violation caused by weak components
of nucleon-nucleon interaction. Therefore in P-violation one should try to study
the systematic behaviour of F (e.g., its A-dependence). Even from this point of
view P-violation is only a particular case of symmetry breaking in nuclei.
Studies of «strong» symmetry breaking (see Sec.IV.1) are by no means less
important — they are only much more advanced. Even in those studies there are
still open problems whose solution might be of major importance for P-vio-
lation — see Weidenmuller’s comments on isospin-violating spreading widths
and their implications in [89]. Therefore even more important is to use P-viola-
tion as «test sites» for future T-violation «on-resonance» experiments by
developing most reliable experimental and theoretical technique.

I have to point that although on-resonance enhancements were continuously
predicted for various 7T-violating observables since 1982, the experimental
situation in this field lacks dynamics. Perhaps too much experimental energy is
wasted on P-violation, especially on creating and discussing «quasi-sensations».
The same applies to FC correlation measurements in almost hopeless Ho. In
view of the facts stated in the end of Sec.Ill the on-resonance TVDB
observations seem much more promising than the FC ones in general. I must
also repeat that discussion of all the experimentally realistic modifications of
TC measurements should be a highest priority. In planning the experimental
strategy of T-violation measurements one should especially follow the rule
resulting from BS — more independent on-resonance observations even with
smaller accuracy. Mind that in the optimistic case of non-zero effect one meas-
urement would only produce a sensation, telling nothing about the interaction
constant. In the more probable case of experimental upper-bound observation
one point, however accurately measured, would be quite meaningless.
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The description of the pionic double charge exchange reaction is given within the
gGroton-neutron quasiparticle random approximation. The approach is tested in a case of iron
Fe, and a fairly good agreement of the calculated quantities with recent data is found. The
observed resonance-like behaviour of the energy dependence of the cross section is
explained semiquantitatively in terms of two-nucleon process without invoking exotic
mechanisms, like dibayrons or multiple quark clusters.

MaHo onucaHne peakuuu ABOHHON Nepe3apsiKy NHOHOB B PaMKaX IPOTOH-HEHTPOHHOTO
KBa3M4aCTHYHOIO NPUOJIMXKEHHS clydaitHeix ¢has. Meron anpoGUpoBaH Ha IpUMEpe Aupa
xenesa ~ Fe, M MONMy4eHO JOBOJBHO XOpOIIEE COIACHE PACCUMTAHHBIX XapAKTEPUCTHK C
COBpEMEHHBIMH faHHbIMH. Habmionaemoe pe3oHaHCHOMOR0GHOE TOBEAEHHE SHEPTETUYECKON
3aBUCHMOCTH CEYEHU: IOYKaYECTBEHHO 0OBACHEHO C MOMOILBIO ABYXHYKJIOHHBIX IpOLEC-
COB Ge3 IPHBIIEYEHNUS IKIOTHIECKHX MEXAHU3MOB, TAKHX KaK ANGApHOHBI WIM MHOIOKBAp-
KOBbIE KJIaCTEpBI.

1. INTRODUCTION

Investigations concerning double charge exchange (DCX), both
experimental and theoretical ones, have attracted much interest during the last
decade. Studies of double charge exchange of pions on nuclei are attractive for
many reasons. Since the charge conservation law ensures that at least two
nucleons must be involved in pionic DCX on a nucleus, the reaction can be
regarded as a promising source of specific information about the short range
correlations between bound nucleons. Some authors also hope that the reaction
makes it possible to study the expected difference between the neutron and
proton densities in nuclei. Depending on the choice of the target nucleus, the
DCX process may populate neutron- or proton-rich nuclei far from the stability
region [1—4]. It is also possible to obtain information from the reaction about
double isobaric analogue states [5,6], double isovector dipole resonances [7,8]
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or some exotic states of nuclear matter such as states of three and four neutrons
[9,10]. (For a recent competent review of the pionic charge exchange reactions
see Ref.11.)

In most theoretical investigations of the DCX reaction in the low energy
region one assumes that the process is sequential: If two nucleons are correlated

in space, then one can expect that a neutral pion n° emitted from the first charge
exchange reaction on one nucleon finds a good chance to initiate the second
charge changing process on the correlated partner. Further, one expects that the
pion interacts during the two step exchange only with valence nucleons and thus
the core plays only a passive role. This picture is quite natural for the transitions
to the final double analogue state since during such a transition all quantum
numbers of nucleons are unchanged except the third component of isospin
(change of a neutron into a proton). In a non-analogue transition like the
transition to the ground state of T# 1 nuclei, the core can play an active role
due to the antisymmetrization of the total wave function, which allows the core
nucleons to participate actively in the reaction [12].

Most of the theoretical approaches in the low pion energy domain are plane
wave impulse approximation — PWIA theories. Some of them account for
distortion effects (distorted wave impulse approximation — DWIA, coupled
channel techniques). The conclusicns are not unique and we can find statements
about either importance [15—17] or negligence of the distortion [13—14].
Moreover, all calculations of DCX differential cross sections and angular distri-
butions taking into account even simple correlated nuclear wave functions show
a fairly satisfactory agreement with data, while theories without such correla-
tions disagree with experiments by an order of magnitude or more. Some
authors argue [13,14,18—20], that correlation effects are so important that it is
impossible to see other effects such as those of reaction dynamics or the pion
distortion unless nucleon-nucleon short range correlations will be accounted
properly. It is also not clear what roles play the initial and final state
interactions in this context.

From this point of view the nuclear structure involved in the DCX models
is a very sensitive aspect of theoretical interpretations of the process. Here one
can find pronounced differences ranging from very simple shell model
approaches [13,14], through the generalized seniority scheme [21], to very
advances realistic treatments [22,23]. Of course, the problem of nuclear
structure will display its complexity as one deals with heavier nuclei. This is the
reason why most existing DCX theoretical treatments concentrate on light
nuclei. Recently, Vergados [24] proposed a treatment of the DCX reactions in
the context of any shell model in which one separates reaction amplitudes into
two parts, one depends on the nuclear wave function and another one is con-
nected with characteristics of the charge changing process between a pion and
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a nucleon. It can help in some aspects, but even here one has the problem of
explicit construction of the -excited states of the intermediate nucleus and the
Green functions.

In a series of papers [22,23,25] a new approach to the DCX process in the
framework of the proton-neutron quasiparticle random phase approximation
(pn-QRPA) was developed. The model utilizes wave functions in large configu-
ration spaces for both protons and neutrons in the initial, intermediate and final
nuclei and there is no need for a closure approximation.

The study of the DCX process is especially interesting for the medium-
heavy nuclei, for which numerous data exist and therefore this case provides
one more subtle test of the theory. Another point is the observation of the
resonance-like behaviour around the pion energy 7, =50 MeV. In contrast to

the experimental observations microscopic treatments did not predict a rise of
cross sections in this energy domain. Only recently Schepkin proposed a non-
nucleon (dibaryon) mechanism [26,27] as a partial explanation of such a
behaviour of low-energy cross sections. I am going to show that there is a
chance to shed some light on this intriguing behaviour in the framework of an
ordinary two-nucleon mechanism.

2. DOUBLE CHARGE EXCHANGE PROCESS

2.1. Brief Description of Chosen Charge Exchange Operators. The for-
malism of the charge exchange process for the low energy pions was applied to
the DCX reactions on calcium [22], germanium [25] and tellurium [23] targets.
I shall brifly recapitulate the main features of the theory, however in a more
general form than in previous papers.

Within the simplest local TWNN interaction Lagrangian known as
pseudoscalar coupling, one can construct in the nonrelativistic approximation
the effective pion-nucleon Hamiltonian [23,29]

hp(q)=—\/2_i—"'lL‘PLo-qc‘q" L 2 )
n

which generates the p-wave pion-nucleon interaction only. In eq. (1) o and
T, are Pauli and isospin raising operators, respectively. ‘I’L (‘PN) are nucleon
creation (annihilation) field operators and the momentum transfer is taken to
be q.

A possible s-wave contribution to the mNN interaction is obtained from

phenomenological considerations taking into account a composite meson
exchange mechanism [23,29,30]. It has the form
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A
1 .
h(@)=4n—\2 Yo 1 ¥, . @)
n

In both Hamiltonians the plane wave approximation for pion wave functions
was used. The constants f and 7"1 are determined to reproduce the

experimental data for nucleon-nucleon and nucleon-pion elastic scattering
[29,30]. Of course, in the case of bound nucleons they can, in general, be
modified and fitted separately in each DCX reaction of interest. For the
purpose of preserving the important features of the model and because of the
approximations used in the construction of the charge exchange operators, we
will apply these constants with experimentally determined values J7Ar=0.08
and ?\.1 =0.046 (Ref. 30 and refs. cited there).

The second quantization procedure applied to the nucleon field allows one
to express the interaction Hamiltonians in terms of creation and annihilation

operators for the protons (c;, cp) and neutrons (c::, c,) as:

hy@ =2 i ,,{‘ 3 [[#*wweqe veolere, @)
and P"
)"1 *
h(@=4n—2w, 3 [f d 3x\v,,(x) w(x)] che,- )
T pn

Here Y ,(x) is the solution of Schrodinger equation for any average nuclear
potential, e.g., harmonic oscillator or Woods — Saxon with a = p or n for
protons and neutrons, respectively.

2.2 Transformation to Quasiparticles. Because of the quasiparticle charac-
ter of the RPA, which we will use to describe the structure of the nuclei
involved in the charge changing process one needs to transform expressions (3)

and (4) to the Bogoliubov — Valatin quasiprotons (a;,ap ) and quasineutrons

T
® ., b)

f i j,tm N
a =ucl +y 1) e o, =(a ), )
Pmp p Pmp p p mp Pmp pmp
T T )4 jn + m — T
. bnmn =4, Cnmn +vi (=1 Cn - m ’ bnmn - (bnmn) ’ (6)

u and v coefficients are related in a well-known way W2, +v2 =1. After
p(n) ~ “pin)

transformations (5)—(6) are performed, the p- and s-wave Hamiltonians have
the form:
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h@=-2i-L 3 Mg &M, ™
gk pn, JM
}"l 12 00
h(q)=—4n— 2 ®, Y 2,+D"*8, R ®)
b1 pn

In both egs. (7) and (8) the transition density operator RPJ:‘W is given by a
formula

ﬂg‘{,“ = upvncT(anM) + vpuné(anM) +u u, D(pnIM) - vpvnﬁ*(anM). )

The proton-neutron pair creation and annihilation operators and additional
one-body type operators needed in the construction of operator (9) are
defined in the usual way,

clonmy= 3, G,m,jym,\ I al, bl (10)
P n
m", mn
CpnM) = [C'pnim)]', Cnim) = (-1)"*M Cpni - M), (11)
Dl priMy =3, Gm, j,m, | IM)a’, P 12)
mm P "
pn

D(prM) = D' (prm)]', D(pniM) = (=1)"*MD(pns - m). (13)

In eq. (7) we follow Ref. 23 for a definition of the function 9::" s

=3 WG, =m0 [Py o e, w]. a9

(m)
After some algebra the function ,‘};Jn M can be written in a more compact form
For'(@) =Nan N6 ¥, Q)G (9) (15)
by setting apart the form factor Gplnz
R 1 +1 -1"
J j +jn P AN - ” 7,
Gpn(q)=(—1)’l’ ]plp pln ,"Zo -1n 2 (lpOan | 170)(J010 | I”0) x
= L
2%
. 1 ,
R (@15 1y nt -

(16)
1y
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In the above equation the symbol { } is the 9j-symbol (Fano) and (1) repre-
sents a Clebsh — Gordan coefficient. Further, Y M denotes the 'spherical

harmonic depending on the solid angle Qq. The coefficient V6 in eq. (15)
comes from the reduced matrix element of the nuclear spin operator o. We
also used the abbreviation jA=\/2]—+_1 and the corresponding expression for ?
In eq. (16) we introduced the overlap integral Rll;, between radial nuclear

wave functions and the radial part of the plane wave pion,
R (@)~ [ drdrj(an R, (R, () (17)
0 nn
Its explicit form depends on the choice of radial nucleon wave functions
R, ! and R, ;. In the case of harmonic-oscillator wave functions one can find

PP nn
a very compact analytical expression for this integral [23].

3. QRPA MODEL FOR THE DCX REACTION

3.1. DCX Amplitude and Intermediate Excited States. In second order
pcrturbation theory the DCX transition amplitude is given as [23,25,37]

Fk, k)=

5 04K 101 mIM ) (mIM\mIM Y (mIM 1O 1iG.S.); 7 (k)
-3 . as)

J pJ
m DELE, . E, . q)
In the above equation 1i(G.S.), 1t+(k)) denotes the ground state of the initial
nucleus (A, Z) and an incoming positive pion with momentum k and the initial

energy (k2+m12‘)lé. In analogy, If, n”(k)) stands for an arbitrary state (ground

or excited) of the final nucleus (4, Z+2) and an outgoing negative pion with
momenta k’-q means the momentum transfer. Note that in expression (18) we
have assumed that the charge operators are nonrelativistic Hamiltonians 3)
and (4). It should be stressed that the denominator in eq. (18) differs in each
case of the interaction (3) or (4). The Hamiltonian (3) represents a
contribution of pion absorption on nuclear pair. From the general rules the
Hamiltonian is known to be a small part of pair absorption at low energies.
But in the DCX reaction it can play more important role [55]. The

denominator in this case has a simple form E+w - (E':+Enjl,)/ 2. The double

scattering of a pion by two nucleons within sequential mechanism is caused
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by the interaction (4). Of course, the denominator for this channel has no
explicit form and one can calculate the nuclear matrix elements of the charge
changing operator including the propagator of the intermediate neutral pion.
Integration over intermediate pion momentum is understood.

The DCX amplitude (18) contains all terms coming from two different sets
of the intermediate states {lmJM )} and {Im'JM )} generated within the proton-
neutron quasiparticle random phase approximation (pn — QRPA). In principle,
the two sets obtained by QRPA on the initial and on the final nucleus are
identical and describe the excited states of the same intermediate nucleus
(A, Z+ 1). But, since both calculations are not exact solutions of the many-body
problem, they lead to slightly different solutions {ImJ/M ¥} and {Im’JM )} for the
intermediate wave functions.

ImiM )= Q0" | RPA; (4, Z)) =

= (pz) [X’E"pn) S Cloniny -y, E(pnlM)] li; (G.S.), (19)
\m'IM )= Q™ " IRPA; (A, Z+2)) =
) (pz ) an)f C'pram -¥, 6(anM)] If: (G.S.)). (20)

Here X(X) and Y(Y) are forward- and backward-going amplitudes,
respectively. p and n stand for proton and neutron quasiparticle states
(compare egs. (5) and (6)). As we pointed out states (19) and (20) are
mathematically nonequivalent. In particular, the intermediate states belonging
to different sets are not orthogonal and this is a reason for involving their
overlaps (mJ Im’J ) into sum (18). Some authors applied a similar proce-

dure in double beta decay calculations [35,36]. We also used this scheme in
our previous description of the DCX processes on calcium, germanium and
tellurium isotopes [22,23,25].

In eq. (18) E; is the initial energy of the parent (target) nucleus. Usually one

can also adopt the average QRPA excitation energies (E"J’+E;,)/2 in the

denominator according to the above-mentioned procedure of accounting for the
nonequivalence of the two sets of intermediate states. It is worth emphasizing
the fact that the amplitude (18) does not contain the usual closure
approximation in which one takes, instead of a sum over states in the odd-odd
mass nucleus with their individual energies, some average energy equivalent for
all states. In our calculations we use explicitly the intermediate QRPA states,
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their structure and the corresponding excitation energies in the denominator of
eq. (18). In this respect we are able to find individual contributions coming

from the different multipolarities J* and to estimate the importance of the
analogue and nonanalogue routes in the DCX reaction.

3.2. Excited States of the Daughter Nucleus. In Refs. 22 and 23 one can
find expressions for the DCX amplitude in the case of ground and analogue
state transitions. There are no principal difficulties to obtain more general
formulae for transitions to any state of the final (A, Z+ 2) nucleus. Analogously
to what was done above (egs. (19) and (20)), one can generate such states by
the following Anzatz:

IvIM)=Q F IRPA; A+2))=

= 1
_{z [ pyy A (PP IM) - 9’(,,,,)]/‘(1’17 )]M)]
@r)
"
+ 3 [ oy B (""JM) Y(nn),B(nnJM)] If. G.S.). @n
(nn')
The creation and annihilation pair operators for protons A', A and neutrons

B', B are defined in full analogy with eq. (10). X ¥ and 9 ¥ stand for forward-
and backward-going amplitudes. They, as well as other amplitudes, X, Y, X,
Y, are determined by solving the appropriate QRPA equation of motion for
the states in the initial, the intermediate and the final nucleus. Details of the
structure of the QRPA equations and their solutions can be found in Refs. 22
and 23.

3.3. Matrix Elements and DCX Cross Section. Using the above
expressions for Hamiltonians (3) and (4) and definitions of the intermediate
(egs. (19)—(20)) and final (eq. (21)) states, one can find the following formulae
for matrix elements needed to write amplitude (18) in an explicit form:

— matrix element for the s-wave charge changing operator contributing to

the transition between the intermediate state | m’J "M ) in the nucleus (A, Z+ 1)
and the final state | vJM) of the daughter nucleus (A, A +2)

(VIM (K LR I m'T™M ) = 4n \f—(o 8,842 %

‘m YA m = =
X 2 (—1), {( Y (p, ”)J“p“n” ?’(pp)]Y(p,n,,)J VU )817""+ ‘

;o

psp,n

_m Vo m’ = .
Ty ( w131 % %= Y o Yt U ")8”'""]’ 22)
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— matrix element for the p-wave charge changing operator contributing to
the transition between the intermediate state |m’J"™M) and the final state

I vIM)

(VIM T (K) Lh, | m'T™M )=

—zi«/”‘«l_z Tramrme gty e et L @) x

u P < p ,n"J"M”

ey ) o
[ g jp} G ,,(k') (.X e (p,n,,) Jup un,, 9’ o7 (p,n,,) 7 vp vn,,)+

" , - PYAY m -
+("1)]{ ’ lGJ' AK) ( o0 X sy =Y gy Vs Vot o )] 2

Formulae (22)—(23) are written only for proton-proton quasiparticle
excitations in the final nucleus. In the complete expressions one has to add
analogous terms for neutron-neutron excitations.

Further, we also need two other matrix elements:

— matrix element for the s-wave charge changing operator contributing to
the transition between the ground state | i; (G.S.)) of the parent nucleus and the

intermediate states | mJ "M )

(mI™ I h 1i; (G.S); 7' (k) =

A
S
=2 |4n— m o)kSJOSMO[Z S, ( (pn)Jupvn+ Y(pn)J o H (24)
pn

— matrix element for the p-wave charge changing operator contributing to
the transition between the initial ground state | i; (G.S.)) of the parent nucleus

and the intermediate states | mJ ™M )

(mJ™M 1 b Vi (GS.); ' (k) =

=i L ', @9[2 o) (X 7+ Y ¥y j] @s)
pn

Expressions and definitions (18), (22)—(25) allow one to write down the
explicit formula for the DCX amplitudes in the most general case of the
transition to any final state | vIM),
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2
)\, KI ’ Jﬂi
Fik K)=-5, |4n—> AmIAm ")
J 9 m_ Z,D(E EJ EJ', 0
.’ +] e v —_—
{\/_ 2 1> [ ( o)1 (p,n,,) J upun,, 9’ y Y(p,n,, ; vpvb,,) Spn,, +
n",p<p’
vV ym = =
+ (1) (x N SN B AR 7 vp,vn,,) 5,,'""} +
p—n A
’ ’ . m m
+ 2 13, - n” [\/7 o 10 2 J Spn [X(pn) FpVn ™ Y on) vaun)] . (26)
P”, n<n n - P pn

T)mm Enju'+Eri’
O E+ o - 2

2 —
FJp(k,k,)=_(_mL] ) (mI™\m'J™ %

i

psp,n

X 2 ./}.’}"(_1)]+M{Yf,(m ,) ® YJ"(Q’C)}M{\[— z (__1)ip +jp', %
M

o jp, J o, _ B
x [] 4 f,,]G ,,(k)( & g X b T = O o V¥ vn,,)+

G gy d _
1 p ’,
e {J v ip'] '"(k)( o9 Xy = Y i3 Vs ¥ )J+

p—on
+V12 2 p-n

ponsn n” _)P”

[\/_ 2 G(pn)J ( (;ln)lu pvn - Y(’:n)lvpun)] - 27N

The full amplitude. F,(k, k’) is taken to be a sum of all multipolarities

allowed for each part of the charge changing operator. Selection rule steming
from angular momentum and parity conservation laws limits the transition

caused by s-wave operator (4) only to 0" intermediate states, whereas p-wave
operator (3) has nonzero contributions for all the so-called pion-like

intermediate states (0, _1+, 2, 3+...). The differential cross section is normalized
in such a way that

Y [F; (&, k) + FP(k, K)11%, (28)

£

do
@9 l 4n

where q =k —k’ is the momentum transfer in the DCX process.
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As is mentioned above we used throughout the paper the nonrelativistic
approximation for the charge changing operator. In general, the relativistic
corrections can influence the differential cross section (28). One can expect a
negligible role of such terms for the p-wave part of the transition amplitude and
a larger contribution to the s-part. The plane wave approximation for pions used
in this paper can also be a source of inaccuracies for the cross section. I shall
not treat the pion distortions in this paper.

3.4. Ground State DCX Transition. Formulae (26) and (27) represent
general expression for the amplitude of the DCX transition into any final state
of a daughter nucleus. The DCX transition to the ground state can be simplified
to the amplitude [23,27]:

A + .t

0" 1m0
Flk k)=|4n—| @, o, L—Lx
GS [ m_ k "k 2 D(E,.,E,g,E"?,,q)

,
mm

X { [2\/2_ Y, &p. n)jl';, (i(:;)o;pin - ?gn)oﬂpvnj] X
pn

x [2«/2_ )y (X(';n)oupvn - y(;'n)oqun)] } 29)
pn

P n_ (L (mIM | m'JM )
FGS(k’k)"_[myj 2 P, P (cos 8,,)) x
mm’, J E+@ —-M m
it O 2

'+j"+JJ,-'..._ > m - -
x {[\/ﬁ PENL Gpn(k)(x(;'n) b y(;'n)jupvnﬂx

pn

x [«fﬁ PIRIIN0) (X(';”)jupvn - Y(';")vaun)] } (30)
pn

All symbols in the two last equations have been used already. The only new
quantity P (cos ) is Legendre polynomial coming from the reduction of the

tensor product of spherical harmonics in eq. (27). We also used the
abbreviation 8(p, n)=8 8j j 5, -
pn pn pn
We would like to note that the s-wave part of the transition operator
contains only the route in which the neutron occupying some nuclear particle
state with defined quantum numbers n, I, j is changed into the proton with

exactly the same quantum numbers. These transitions excite the isobaric
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analogue state (IAS), if they are coherently superimposed. However, because of
the pairing correlations the situation is more complicated and one obtains

appreciable transitions through other 0" states. In the theory developed here we
are able to separate both types of contributions using a method of identification

of the IAS transition which, in general, represents the strongest 0*-transition
[23]. We already stressed that the p-wave part of the charge changing operator
gives a contribution to the DCX amplitude only for the pion-like intermediate
states and thus causes nonanalogue routes which are sensitive to short-range
nucleon-nucleon correlations.

4. EXAMPLE OF THE DCX REACTION ON °Fe

4.1. Details of the Calculations. As an example of application of the theory

I shall discuss the ground transition in iron: 2Fe — ONi. This reaction was
already studied in the eighties [38,39], but the data base is still very sparse for
nonanalogue transitions. For the pion energy of 50 MeV three experimental
points of the angular distribution have been measured at PSI for the ground to

ground transition as well as to several individual predominantly 0% excited
states of °Ni [38]. Some preliminary data also exist at pion energies T =35
and 61 MeV. Although the data for the ground to ground transition is very
limited, one already can conclude the following: The transition exhibits a well
pronounced resonance-like behaviour. This means that the cross section at
T, =50 MeV is for forward angles by one order of magnitude or more larger
than at other energies.

The results presented below are achieved with a model space consisting of
Op1 Py Opm, 1s1 Py 0d3/2, OdS/z’ lpm, lp3 7 OfS/z and Of,m. The single particle
states used here are calculated with a Coulomb-corrected Woods — Saxon
potential. It was assumed that both types of nucleons — protons and neutrons

— occupy the same shells and calcium 40Ca was taken as the inactive core.
Two-body matrix elements needed for construction of the QRPA matrices were
obtained from the realistic nuclear matter G-matrix by solving the Bethe —
Goldstone equation (see, e.g., Refs. 40 and 41 for more details)

Qo
G =V+ .
(w)=V w_HoG((o) (€3]
In the above equation Q is the Pauli projection operator, ® stands for the
starting energy and V is taken to be the nucleon-nucleon realistic one-meson
exchange Bonn potential [42—44]. H, is the unperturbed single particle



374 KAMINSKI W.A.

Hamiltonian. In the present work we used the harmonic oscillator
Hamiltonian. To take into account the effects of the finite nucleus we solve
eq. (31) with as small absolute value of the starting energy as -25.0 MeV.
" This corresponds to an average single particle energy of -12.5 MeV. The
oscillator length used is b=2.0 fm.

The two-body matrix elements are obtained for nuclear matter. They are not
specialized for a given nucleus. Thus and due to the finite Hilbert space used
one has to renormalize them by multiplying with factors slightly different from

1.0: gpa“ g’; air? g:; and gﬁ .. For the ground states of the parent and daughter

nuclei one obtains uncorrelated vacuum states by solving the standard BCS
equation in the above-mentioned model space. Two renormalization factors

g;air and g’l;air multiplying the proton and neutron pairing matrix elements
<(aa)0iG\(bb)0> are fixed by adjusting the empirical pairing gaps A? and A} to
the lowest quasiparticle energy obtained from the gap equation

- -2
A = g‘;(a':r) ‘Z iy (€, =R )P + A1 <(@a)OIGI(bb)0> . (32)

The empirical pairing gaps are deduced according to the recently published
prescription of Moeller and Nix [45,46]:

Acven—cven _ _ % [M(ZN+2)—4M (ZN+1)+6M (ZN) -

neutron

-4M(ZN-1)+M@ZN-2)], : (33)

Acven—even _ [M(Z+2,N) 4M (Z + 1,N) + 6M (Z,N) —

proton
—4M(Z-1,N)+M (Z-2N)] . (34)

Expressions (33) and (34) cannot be used for nuclei with a magic number of
protons or neutrons. Thus the pairing gap and the corresponding pairing
strengths are estimated using the adjacent even-even nucleus. The table

contains values of the pairing strengths g" . and g;’m fitted in this way for

palr
5Fe and *®Ni. All the renormalization factors are close to unity. Thus the bare
G-matrix elements of the Bonn potential are already reasonably good.
Solutions of the BCS equations with matrix elements fixed in this manner
allow one to evaluate the occupation amplitudes u’s and v's needed for
construction of the QRPA equation of motion. To determine the QRPA matrices
fully one must also fix two additional renormalization factors, the strength of

the particle-particle gl’;; and the strength of the particle-hole ggz interaction. For
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Table. Experimental neutron and proton gaps for Fe, 5*Fe and 8Ni nuclei
obtained from egs. (33) and (34). The last two nuclei are used to estimate
the strengths in nickel Ni because of its double-magic character.

(see text for details). Masses are taken from the mass tables [54].

The pairing strengths g;m and 3’;;air were fixed
to reproduce the experimental gaps

Nucleus A7, MeV A2 Mev 8Pair 8hair
S6Fe 1.360 1.570 0.938 0.993 '
S4Fe — 1.520 — 0.908
S8Nj 1.300 — 1.030 -

this purpose we used the isobaric state (IAS) and the Gamow-Teller state in

cobalt ®Co which are known to be 3.65 and 10.60 MeV, respectively [47,48].
The QRPA energy of these states depends predominantly on the particle-hole

strength and adjustment of them to experimental energies gives gzZ=0.8.

Details of such a procedure are given in Ref. 23. The second factor ggz will be

treated -as a free parameter of the theory and we will discuss all reaction observ-
ables as a function of it.

4.2. Results and Discussion. We calculated angular distributions and the
energy dependence of the cross section for the DCX ground-ground transitions

on Fe. Figure 1 shows the angular distribution for the incident pion energy
T,=50 MeV. Three curves are presented for three different values of the

particle-particle strength gl‘;;: 0.8, 1.0 and 1.1. The experimental points are

measured at the Paul Scherer Institute by the Tubingen — Karlsruhe group [38].
The angular distribution decreases rapidly as the particle-particle parameter

increases. This behaviour is observed in a full range of the gZ; strength up to

the value 1.1. for which the QRPA solution tends to a collapse. A similar
behaviour was also observed in other nuclei [22,23,25] and other processes,
e.g., the double-beta decay [35,36]. The mechanism for the collapse is con-
nected with increase of the ground-state correlations by enlarging the particle-
particle interaction. As a result, the lowest excited QRPA state is pushed down
in energy below the ground state. Simultaneously the cross sections drop by
factors of 3—10 depending on the scattering angle. The cross section is reduced

since increasing g:; produces stronger the ground-state correlations. This en-

larges the backward-going amplitudes ¥’s. The terms with ¥’s in egs. (29), (30)
become large enough to cancel against the terms with the forward-going
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Fig. 1. Angular distribution for the ground
state transition on iron 3Fe. The patticle-
hole strength ggﬁ is fixed to reproduce the

Fig. 2. The most important contributions
to the transition amplitude come from the
intermediate 0" (dotted line), 0~ (solid

line), 1* (short-dashed line), 2~ (long-
dashed line), and 3* (dashed-dotted line)
states. The results for the pion energy
T,=50 MeV are plotted as a function of

Gamow — Teller and isobaric analogue
state difference in S°Ni. The results for
three values of the particle-particle
strength are shown: gg;= 0.8 (short-dash-

ed line), p;',= 1.0 (long-dashed line) and

m’;= 1.1 (soled line). The experimental

the particle-particle strength ggl';. The
particle-hole strength is fixed to be 0.8

data are taken from refs. 38 and 53

amplitudes X’s. The magnitude of the DCX cross section rapidly diminishes.
Comparison of the experimental results and theoretical predictions (fig.1) shows

that the physically important domain of gzz is the interval 1.0—1.1.
It is interesting to compare the importance of contributions to the total

amplitude coming from the different angular momenta. Such contributions for
the forward-angle DCX amplitude and for the intermediate states

J®=0%,07,17,2" and 3" which are most important, are presented in fig.2. One
can notice immediately that a crucial role in pushing the contributions down
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Fig. 3. Angular distributions for two choices 100 ——
of the model space are presented for fixed
interaction strengths (g§"=0.8, gl‘;;=0.9)
and the incident pion energy T, =50 MeV.
The solid line represents the results of a
smaller and the dashed line of a very large
model space. The experimental values are

from Refs. 38 and 53. (For details see text.) 104

into agreement with the data is played
by the dependence of each partial
amplitude on the particle-particle

strength g?”. The transition through 0"
pp g

Differential Cross Section [ub/sr]
s

states with the biggest contribution

_  56Fe —+ %Ni(G.S.)
from the IAS dominates the total ampli- i

FENS B S ST BT U SN S

tude at law gﬁ: But in the physically 0 30 60 90 120 150 180

inferesting interval gﬁ; 2 1.0 this ampli- Scattering Angle [ ° ]

tude is comparable with the 17 and 2~
amplitudes. Thus, all approaches restricted to the intermediate isobaric analogue
state are not a good description of the cross sections and other DCX observables
because nonanalogue routes play as an important role as transitions through 0"
states.

We also examine in this paper the influence of the model space on the final
results. Additional calculations of angular distributions at the pion energy T, =

=50 MeV were performed for a «huge» single particle basis consisting of the
states Os, ,, 0p, 0p5 ), 0d3/2, OdS/Z’ 1, s 115, 0fs 5 0f, 251 ld, ld ),
08772 08920 2P0 203y Visppr Wy Oy 35,15 2y, 24, 1g, 5, 18, for
neutrons and Osl 2 Opl 2 OpM, lsl 2 Odw, Od5 s lpm, 1p3/2, 0f5/2’ Ofm,
25,0 1d4, ld 08,/ 084/, 2p, . 2p, . 1f,, for protons. All these single

particle levels are below 5.0 MeV in Woods — Saxon potential and are either
bound or quasi-bound. Figure 3 presents the angular distribution for this two

choices of the size of the basis for the particle-particle strength g’;;=0.9. A

change of the shape of the angular distribution by increasing the basis is clearly
seen. A minimum around the scattering angle 8 = 70° appears, which is also in
the agreement with Gibbs’ prediction [38]. Compared with the «small» basis,
the angular distribution with the large basis is steeper. Absolute values of the
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1 — Fig. 4. Energy dependence of the forward-
angle (5°) cross section for the ground state
09 | : 1 transition on iron Fe (solid line). The
— . results are obtained for the small basis. Data
% 08 ' 56Fe——;:6=1‘{)18(G.S.) ] indicated by error bars are taken from Refs.
= 07 | ! SEE = 0:9 | 38 and 39' (the drawn short-dashed curve is
8 . n only to guide the eye)
f;) 0s - cross section are 2—>5 times smaller for
[72] : : n
o 04l the same particle-particle strength gﬁp.
2 This means one obtains agreement with
5 03} the experiment for smaller values of the
g particle-particle strength. In this stage
i 021 \ of the theory we are not able to separate

\ = . two effects which influence the lower-
‘\/E L) ing of the cross section, i.e., particle-

P ot S . . .
0 50 100 150 20; 250 particle correlations manifested by the

Pion Energy [MeV]

01 |

0.0

magnitude of gl’:: and participation of

core nucleons in the DCX process (in the
«huge» basis all nucleons are involved).

Recently measured ground-ground transition %Fe on at pion energies
T, =35 and 61 MeV [38] together with the earlier data at higher energies from

LAMPF [39] allow to systematize the dependence of the DCX cross sections.
The experimental observations shown in fig.4 exhibit a resonance-like structure
near T =50 MeV.

In a contrast to such an observed behaviour almost all of the theoretical
models with a distorted wave as well as with plane wave approximations are not
able to predict even roughly this strong energy dependence for the DCX
forward-angle cross section. The microscopic calculations give a rather smooth
energy behaviour around T, =50 MeV except the predictions of Martemyanow

and Schepkin [26,27] who have introduced dibayron resonance «by hand» to
explain this dependence. These authors proposed a very narrow dibayron
resonance formed in the DCX whose decay into two nucleons is not allowed by
selection rules. The condition for building this dibaryon is a large overlap of a
pair of nucleons (neutron-neutron or proton-proton) in their relative s-wave with

J*=0" and T=1. This resonance can appear according to refs. 26 and 27 at
distances less than 1 fm between nucleons. Taking the estimation of G.Miller
for the 6-quark bag probability to be of the order of a few per cent for all
nucleon pairs in a nucleus [49], Martemyanow and Schepkin obtained an energy
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Fig. 5. Energy dependence of the analogue 1000
(dashed line) and non-analogue (full line)
contributions to the ground state transition
amplitude for the scattering angle 6 = 5°. The =
interactions strengths ggﬁ and gh7 are taken to

be 0.8 and 1.1, respectively

dependence for  the dibaryon
mechanism in the double charge
exchange reaction which roughly
follows the observed behaviour. All
such  frameworks together  with
calculations made by Chiang and Zou

100

Amplitude (arbitrary units)

[50] can be treated as an indication of C e f__:,j'::f

the importance of quarks in the DCX

process. : tolo . . .
Presented approach, different in 0.0 500 1000 1500

spirit, can also give the gross features Pion Energy [MeV]

of the energy dependence of the DCX.

The calculated forward (5°) cross ;
section is shown in fig.4 as a function of the pion energy up to the resonance
region*. One can notice that we are able to explain qualitatively within our
mechanism the observed experimental behaviour. The curve is not so steep on
the high energy side above 60 MeV, but a peak around T, =60 MeV is clearly

seen. It is rather obvious that we should look for some effects to reduce the
DCX amplitude in the higher energy domain.

A more careful analysis of both s- and p-wave contributions to the total
amplitude at two energies, say 10 and 50 MeV, and at forward angles may
supply possible such a mechanism [51]. In fig.5 the dependence of the analogue
and nonanalogue amplitude on the incident pion energy is shown. The s-wave
contribution is almost constant in full domain of the pion energy. A dramatic
increase of the nonanalogue amplitude (p-wave contribution) is seen up to the
energy T =60 MeV. So this component produces the maximum in the cross

section. Because the nonanalogue route (p-wave component) depends
sensitively on gz; [13,14,23] the strong dependence of the amplitude suggests

*Generalization of the model for the A-isobar degrees of freedom is possible [37], but we do not
intend to discuss such a point in this paper.
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that particle-particle correlations are of growing importance as one takes more
energetic pions. After maximum is reached both components, s- and p-wave
stay equally important. One clearly needs some additional mechanism for the
reduction if the experimental data have to be reproduced. Such a possibility is
offered by improving the s-wave charge changing operator by taking its
relativistic form.

It is worth noting, that Karapiperis and Kobayashi [16] can roughly predict
the decrease of the !*C cross section between 50 and 100 MeV. Unfortunately
cited calculations were not performed for pion energies lower than 50 MeV.
Also Gibbs and co-workers proposed a resonance phenomenon in the pion
scattering, which could be seen even more clearly in DCX around the proper
energy T, =50 MeV [52]. These approaches — including presented here —

point out a possibility of explaining the observed resonance-like behaviour
without invoking nonstandard mechanisms. The existing data does not yet
discriminate clearly between conventional and more exotic interpretations.

5. FINAL REMARKS

I have investigated the double charge exchange reaction in the framework
of the quasi-particle random phase approximation (QRPA). The charge
exchange operator was taken in the nonrelativistic form and the plane wave
approximation was used for the incident, intermediate and outgoing pions.The

approach was applied to the ground state transition on iron SFe. The predicted
values underestimate the forward-angle cross section and thus the calculated
angular distribution is flatter than in the experiment.

Amplitudes and cross sections show smooth dependence on the value of the

particle-particle strength gf,;, which was also observed in earlier calculations of

the DCX reaction on calcium [22], germanium [25] and tellurium [23]. A
comparison with data allows one to state the physically important values of the

strength 81’;; for iron and nickel nuclei lay in the interval 1.0—1.1. One should
stress that the choice of the model space influences the calculated quantities.
Because of this effect the gg ; strength is not unique. As larger the basis as
smaller is the particle-particle strength. Moreover, in the larger model space we
observed a collapse of the QRPA solution for the g’;; value as small as 0.9

which may suggest a need for inclusion of higher RPA-corrections into the
model.

The gross features of the resonance-like shape of the cross section as a
function of the pion energy can be reproduced at least semiquantitatively within
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the conventional 2N mechanism. The prediction is not too good, probably due
to approximations made. It has to be seen in the future if the very speculative
idea of a dibaryon resonance in the DCX reaction will prevail. Future
development of the approach will make it possible to settle more carefully the
questions addressed in this talk. :

The last but not the least, a sensitivity of the pionic DCX processes to
nuclear structure and especially to nucleon-nucleon correlations makes them
interesting for the double beta decay. In searches for physics beyond the stand-
ard model the last reaction has continually received much attention. Grand
unified theories predict the neutrinoless double beta decay if the neutrino is a
Majorana particle with rest mass and/or the week right-handed currents exist.
Combining both phenomena (DCX and double beta decay) ensures reliable
nuclear matrix elements and thus an accurately defined estimate of the
nonstandard physics parameters, like the average light neutrino mass, the right-
handed week current admixtures and the heavy neutrino mass.
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O CMELLUNBAHNU BOJTHOBbIX ®YHKLNIA
OCHOBHbIX 1 BPALLATEJ1IbHbIX
COCTOSAHUN NON0C
DEDOPMUPOBAHHDbIX ALEP
Yactb 1

b.C.[Ixenenos
C.-MeTepbyprckuii rocynapCTBeHHbIN YHUBEPCUTET,
Paauesbiti UHCTUTYT uM.B.I . XnonuHa, Caxkt-Metepbypr

H.H.Xykoeckuii

Paauesbiti MHCTUTYT uM.B.I . XnonuHa, CaHkr-MeTep6ypr

C.A.Illecmonanosa
BHWWU meTponorum um.[1.M.MeHpeneesa, Caxkr-Metepbypr

PaccMOTpeHO CMELIMBaHKE BOJHOBEIX (PYHKLIMI BO BpallaTeNbHBIX COCTOSHHUSAX Aedop-
MHpPOBaHHKIX sfep. [IpencTaBneHbl aMIUTUTYB! BOTHOBBIX (DYHKLMMH T 254 BpallaTesbHbIX
TMOJIOC, PACCYHTAHHBIE PAayIMYHBIMH aBTOpaMH. B naipHeilleM mpearnonaraercs MpoOBECTH
obcyxzeHue ¥ cpaBHeHHe cOOpaHHOM HH(OPMALMK C 9KCIIEPUMEHTATbHBIMHM NaHHBIMH.

The mixing of the wave functions in rotational bands of deformed nuclei has been
considered. Wave function amplitudes for 254 rotational bands calculated by different
authors were collected. The collected information will be compared with the experimental
data and discussed in the subsequent paper.

BBEJIEHHE

Ecnu y KaKOI‘O-HH6YJIb sAapa UMEIOTCA [ABa YPOBHA C OAMHAKOBBIMH KBaHTO-

BHIMH XapakTepucTHKamu J", TO B BOJHOBbIX (YHKLHMSX 3THX YPOBHEH Comep-
XaTcs MPUMECH: B BOJIHOBOH (DYHKLIUM IIEPBOrO YPOBHS CONEPXKHUTCH NPHUMEChH
BTOpPOro, a B BOJIHOBOH (DYHKLIMH BTOPOrO YpPOBHS — HNPHMECH NEPBOro. DTH
TNIPUMECH NPUBOAAT Kak OBl K B3aMMOJEHCTBHIO YPOBHEH — K MX OTTIKMBaHHIO
IpyT OT Apyra.

CMemuBaHue BONHOBBIX (DYHKLMH TakKXke BIMSET Ha BeposSTHOCTH PB- u
Y-NIEpEXO0B MEX/Y ANEPHBIMM COCTOSIHUSIMM; OT JeTaleld CMELMBAaHHs 3aBHUCAT
npasuia Anard, LIMPOKO MpPHMEHseMBble TIPY KOHCTPYMPOBAHMH CX€M pacrajia
palMOaKTHBHBIX HYK/IMAOB, PacyeTax OTHOIICHMH MaTPHYHBIX 3JIEMEHTOB Ilepe-
XOIOB M T.IL
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Hns Toro 4To6bl paccYHTaTh BEPOATHOCTH NMEPEXOOB, HYXHO 3HaTh BOJIHO-
Bbie YHKUMHM COCTOSIHMi, MEXIy KOTODHIMM OHHM IIPOHCXOHSAT, W ONEPaTOpHI,
BBI3BIBAIOLIHE MIEPEXOMBI.

YpoBeHb 3HaHHS O BOJHOBBIX (YHKUMSX MMOKa He BHICOK. IIpuxomurcs
MCKaTh NPUOTMXEHHbIE BHIPAXEHUS — CO3[aBaTh saepHble Moaenu. Hauunas ¢
1953 r. pnst onucaHus CBOHCTB AehOPMHUPOBAHHBIX SJEP TEOPETHKH MOJB3YIOTCA
NOYTH HCKJIIOYUTENBHO Monenbio Hunbccona, B KOTOpylo BBOOAT pasiiMuHbie
YTOYHEHHS W JOMONHeHHs. MBI He CTaBHM 3ajayy OLEHKH Lelecoo6pasHOCTH
9TUX YTOYHEHHH.

B npemnaraemom o630pe mpencTarneHa KONIEKUMS PE3YNbTATOB PacuyeToB
aMIUIMTYA (MaBHOM M MaKCHMIbHOM NPHUMECHOI) CMEIIMBAHHUA BOJIHOBBIX
GyHKUMA 1S TPeX HHXHHX YPOBHEH POTALUMOHHBIX TMONOC HEYETHBIX [e-
topMupoBaHHEIX snep ¢ A = 151+187 no BceM BapHaHTaM HHIBCCOHOBCKOM MO-
Aenu. Mbl He KPUTHKYeM HH ONIHY paGoTy; B3aMMHYI0 KPHTHKY HYXHO MCKaTb B
OPHTHHAIBHBIX PacyeTHbIX paGoTax. MBI He HCKJIIOYHIH HH OQHOrO pe3yNnbTara,
KpOME MEPBHYHBIX aBTOPCKHX OLEHOK, YTOUYHEHHBIX B Mocienyowux paborax
TeX Xe aBTOpoB. BceM pacueraM MBI mpHaaBanM OgHHAKOBBIA BeC.

IlpucTynas K coCTaBNEHHIO KONIEKUHH Mbl GBUIH FOTOBBI K TOMY, YTO pe-
3y/nbTaThi, MONy4EeHHbIE aBTOPaMH B pa3HbIX BapuaHTax mogenu Hunbccona, 6y-
AYT CHJILHO OTJIHYaThCA APYr OT Apyra. K HameMy yauBneHuio, 3T0ro He npou-
sowno (3rot Bompoc GynmeT paccmoTpeH B Gynywei nybnukauuu). Mbl umeem
A€o0 C IOCTaTOYHO «KOMMAKTHBIM» MaTEPHAIOM.

3neck nenaloTcs ABE MOMBITKH.

1. BoissBUTE rpynny (WM rpynnsi) saep, B KOTOPbIX MOXHO JH60 mpeHe6-
peyb CMEUWINBAaHHEM BOTHOBBIX (DYHKLHMiE, 1M60 OrpaHHYMTLCS BBEHAECHHEM TaKOM
MaJIOil pacyeTHOH MONpaBKH, KOTOpas MOYTH HE CKa3bIBAETCS Ha BEPOATHOCTAX
B- u y-nepexonos.

2. BbiABHTH Ipynnbl sep, B KOTOPbIX CMELIMBAHHE BOJIHOBHIX (DYHKIHIl B
KaKHX-TO YPOBHAX O4YEHb CHIbHOE; OOBIYHO OHO CBS3aHO C G/IM3KHM pacrnonoxe-
HHeM ypoBHeii ¢ omuHakoBhiMM J™. DTH ciyyau TpeGyIOT mepecMOTpa MpaBHI
Anaru M peBH3HH BCEX PacyeToB, KOTOPHIE HCMONb3YIOT 3HAYEHHs KBAHTOBOTO
uHcna K; B psjie CllydaeB 3TO PaBHOCH/ILHO TPeGOBAaHHIO NIEPECMOTPA CXEM pachaja.

PE3VJIbTATbI PACYETOB CMEILMBAHHUSA
BOJIHOBBIX ®YHKIIM COCTOSHMIA HEYETHBIX
JE®OPMHPOBAHHBIX ANEP C A = 151+187

K Hayamy 1994 r. B obnactu atomHbix Macc A = 151+189 6bu10 HmeHTH-
¢uumnposaro 220 snep ¢ HevernsiMu A (taGn. Jlenepepa u NDS o 1 suBaps
1994 r.). JUis MHOTHX H3 3THX sep H3BECTHBI TONBKO MEPHOIBI MOJypaciaga u

9HEPruH HECKO/IBKHX Y-IMHHH, HO Heu3BeCTHH J© U HeSCHO, KehOPMUPOBAHbI JIH
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9TH sdapa WIU HET. PacueTnl cMemmnBaHWSA U1 TaKUX A0Cp HE INPOU3BOAUIHMCH.

PacueTsl HaYMHAIOTCH, KOTJA BHIAACHEHB KBaHTOBble XapaktepucTHku JK™ He-
CKONLKMX ypoBHe#. OGbeMHEH)e HX BO BPALIATENbHbIE MOJIOCH H NPHIIUCKA UM

HUJIbCCOHOBCKUX XapaKTepucTuk JK “[an A] 06bIYHO MpeIecTBYIOT pacyeTaM
CMELIMBaHUS.

K Hacrosiemy BpeMeHH HaM H3BeCTHB 44 HeueTHBIX Ae(OpMHPOBaHHBIX
aupa ¢ A =151+187, B KOTOpBIX pacyersl CMEIUMBAHHS BBHIMIOSHEHBI IS
254 nonoc [1-—38]. Pe3ynbrarsl pacyeTOB aMIUTMTY NIaBHOTO U MaKCHMaIbHOTO
HPUMECHOTO KOMIIOHEHTOB BOJTHOBBIX (DYHKLMI JUIS TPEX CaMBIX HHXHHMX YPOB-
Heil BpalllaTeNbHBIX MOJOC mpeacTaBneHsl B Tabnuue. O603Havenus B Tabnuue

cnepyromue: J© — KBaHTOBas XapaKTepHCTHKa ypoBHs, K "[NnZ A] — Hunbcco-

ok
HOBCKHME XapaKTCPUCTHUKH, E — 9Heprud, a_. — aMIUIMTyda INIaBHOIO KOMIIO-

o) ¢
HEeHTa BOJIHOBOHM (pyHkuuu (copmagamouero ¢ K "[an AD, Mpp — aMIUTUTYyAA

MAaKCHMAaIbHOM TIpUMecH (3Ta NpMMech MOXeT HMeTh nwboe K <J), xapak-
TepucTHKa R = Iaan /a | .

H3 Ta6HHH}>I MOXHO caenarb CJ'ICIIYIOU.U/lﬁ BbIBOA: pacy€Thl MmoKasajlu, 4TO
BOJIHOBBIC Cl'))’HI(l.IIrlH AOCPHBIX yposﬂep“l ABIAIOTCA MHOT'OKOMIIOHEHTHBIMHU C BECH-
Ma pa3iYHbIMA COOTHOIIEHUSIMH aMIUIUTYA.

Okono 14% ypoBHeii MMEIOT BTOPYIO 110 BETHYHUHE aMIUIUTYAY MeHbiue 5%
OT IVIaBHO# aMIUIMTYABl; B KOHKYPUPYIOIUMX B- M Y-niepexofax MeXay TaKuMH
YPOBHSMH MOXHO OXHAaTh xopomero cobmoaenus npaswi Anaru. C mpyroi
CTOpOHBI, y 35% ypoBHeii Bropasd IO BeIMUMHE aMIUIMTyOa cOCTaBiseT Gonee
30% OT IaBHOM aMIUIMTYIbi; pa3bpoc B ONpele/ieHHsIX 3TUX GONBIIMX IpUMeC-
HBIX aMIUTHTYX NOKa O4€Hb BENIHK.

Ilnst Toro, 4ro6kl NpH aHAIX3e OTHOLICHWH MaTPHYHBIX 3JIEMEHTOB KOHKY-
pUpYIOLIMX B- WIM Y-NEPEXONOB MOXHO ObUIO OBl NMPaBHIBHO YYECTh CMELIH-
BaHHe, HEOOXOMMMO 3HAYMTENILHO YIyylluTh MHGOpPMaLMIO O HeM: a0 yTOY-
HUTb pacyeThl aMIUIATYA, MO0 HalTH 3aKOHOMEPHOCTH B HMX MOSBICHHH; B
GONBIIMHCTBE CIydaeB O4eHb OONbLINE aMILUIMTYOBl — 3TO JIMOO CHHIYISpHOE
KOPHOJIUCOBO CMEIIMBaHHeE, TM60 OmMOKH B CXeMax pacnaia.

JleTanbHblil aHATN3 YPOBHEH CMelIMBaHus R mpeanonaraercs cuaenarb B 6y-
Oylei myGIuKauny.

ABTOpHI OMacalTCs, YTO OHK HMEIT HE BCE PacyeThl aMIUIUTYA, KOTOpBIC
MOIIM ObiTh HameyaTaHbl B M3NAHMAX C MalbIMH THPaXaMH, B WHCTHTYTCKHUX
c60pHUKax M T.I. ABTOpB! GbUTH ObI pallbl NIONYYHTh 3TH PacyeThi, 4TO0B y4eCTh
ux B panpHeimux obcyxknmeHusx. CooOLieHHs NMPOCHM MPUCHUIATh MO ajpecy:
Poccua 196233, C.-Tlerepbypr, np.Kocmonasros, 92, x8.76, C.A.lllecrona-
JICBOIA.
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Tabnuua. AMIUIATYIBI 4y M Gy, M X2PaKTEPHCTHKH R
AJId TPeX HHXKHHMX YPOBHeH BpalarelbHbIX [10J0C
HEYeTHbIX RXedOpPMHPOBaHHBIX saxep ¢ A = 151-183

Homep | K ™[Nn, A] | [ccbu- JT E*, koB a,, Ay 100-R
TIOJIOCHI xa]
151 Sm

1 3/27[532) 32" 4.8 0,989 0,096 9,71
5/2- 0,0 0,792 0,595 75,1
72" 65,8 0,733 0,569 77,6
2 327 [521] 32" 104,8 0,855 0,448 50,6
5/2- 69,7 0,777 0,590 75,9
172" 209,0 0,783 0,449 57,3

3 1/ 27 [530] 172" 285,0 0,999 0,047 | 470
2 3153 0,883 -0,457 51,7
5/2" 302,6 0,789 -0,565 71,6
4 1/ 2* [400] /2% 502,3 0,862 0,507 58,8
(1] 32t 521,2 0,949 0,242 25,5
5/t 632,1 0,920 0,296 32,2
5 1/ 2* [600] 2t 3557 0,862 -0,507 58,8
3/2* 663,1 0,940 0,263 28,0
s5/2+ | 11678 0,796 0,566 71,4
6 3/ 2+ [402] 32 306,8 0,853 -0,475 55,7
5/2* 395,6 0,966 0,241 24,9
72+ 514,0 0,951 0,293 30,8
7 3/ 2% [651] 3/2% 345,0 0,844 0,496 58,8
570+ 4457 0,677 -0,543 66,5
72+ 524,0 0,819 0,500 61,0

IS’;\Eu

8 5/27 [532] s/2" 97,4 0,987 0,156 15,8
72 151,6 0,957 0,230 24,0
97 2353 0,927 0,282 30,4

9 327 [411] 32t 103,2 0,999 0,036 3,60

(21 5/2¢ 172,9 0,993 0,077 7,75

772+ 269,7 0,989 -0,090 9,10

10 | 572+ [413] 5/2¢ 0 0,997 0,064 6,42
772+ 834 0,983 0,147 14,9
9/ 2t 193,0 0,967 0,210 21,7
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Homep | K ™[Nn, A] | [ccbur- Jr E, x3B a, Oyt 100-R
TIOJIOCHI . Ka]
ISSEu
11 5/ 27 [532] 5/2° 104,3 0,991 0,134 13,5
72 169,0 0,968 0,198 20,4
9/2" 254,7 0,945 0,246 26,0
12 3/ 2 [411] 3/2* 2458 0,999 0,038 3,80
(2 5/2* 307,4 0,996 0,073 7,33
7/ 2% 391,5 0,993 0,078 7,85
13 5/ 2% [413] 5/2* 0 0,998 0,046 4,61
72t 78,6 0,993 0,071 7,15
9/2* 179,2 0,988 0,101 10,2
lSSGd
14 3/ 27 [532) 32 129 0,994 -0,076 7,65
5/2° 110 0,593 0,720 | 1214
7 216 0,628 0,671 106,8
15 3/ 27 [521] 32 0 0,985 0,167 16,9
5/2° 42 0,886 0,266 30,0
72 93 0,851 0,305 35,8
16 1/ 27 [530] V2 315 0,990 -0,136 13,7
32" 362 0,939 0,288 30,7
5/2° 449 0,870 -0,280 33,1
17 1727 [521) V2 436 0,991 - 0,136 13,7
32 (496) 0,954 -0,284 29,8
(31 5/2- 549 0,916 0,257 28,1
18 1/ 2* [400] 172 328 1,000 0,001 0,10
32t 412 0,992 -0,126 12,7
s/2* 504 0,979 -0,203 20,7
19 1/ 2* (660] 2t 484 1,000 -0,001 0,10
5/2* 184 0,702 0655 | 933
20 3 2% [402] 3/2t 212 0,992 -0,126 12,7
5/2¢ 304 0,979 0,203 20,7
/2t 491 0,966 0,257 26,6
21 3/ 2* [651) 32t 316 0,934 0,359 38,4
72t | 290 0,759 0,565 74,4
lSSGd
2 | y2523 | g { 5/2° 321,36 0,812 0577 | 71,1
7 393 0,738 0,661 89,6



O CMEILIMBAHHH BOJIHOBBIX OYHKIIMA 389

Homep | K ™[Nn, A] | [ccur- Jr E*, xsB a, oy 100-R
TIOJNIOChI Kaj

o2 485 0,684 0,706 | 1032

23 | 327 [532) 32" 287,004 0,995 0,086 8,64
s/ 321,381 0797 | 0577 | 724

72" 0696 | -0648 | 931

24 | 3/27[521] 32" 0 0,997 0,081 8,64
572 60,02 0,987 0,141 14,3
[45; 72" 146,07 0,971 0207 | 213

25 1727 [521] /72" 559,29 0,998 0,066 6,61
32 614,78 0,992 0,110 11,1
5/2" 658,97 0,982 0,160 16,3

26 | 1/27[530] v 4232 0,998 | -0,066 6,61
3/2- 450,60 0987 | 0,114 11,5
s5/2- 488,64 0962 | -0,172 17,9
27 1/ 2% [400] ‘1/2* 367,60 0,965 0,263 27,2
B3] v+ | 42121 0,992 0114 | 11,5
572+ 488,69 0,932 0238 | 255
v 367,60 0,952 0306 | 32,1
6] vt | 4121 0,972 0178 | 183
572+ 488,69 0878 | -0318 | 562
2+ 367,60 ~0,994 0,106 10,7
g 372+ 42721 -0735 | -0664 | 903

1 s 488,69 -0,998 | -0,059 5,91
28 1/ 2* [660] 72t (371,6) 0,965 0,263 26,3
51 32+ | (8474 0982 | 0144 | 147
s/2+ | (604,1) 0831 | -0413 | 4938
vt | (71,6 0952 | -0306 | 32,1
el v | 8474 0974 | o642 | 659
syt | (604,1) 0,880 0459 | 522
29 | 3/2+[402) 3/2* 268,57 0,932 0344 | 369
(7 s/2* 326,04 -0724 | -0604 | 834
72+ 350,36 0,928 0269 | 29,0
3/2* 268,57 0838 | -0,520 | 62,0
(] 5/2* 326,04 0,688 0435 | 632
72+ 350,36 0771 | -0525 | 68,1
30 3/ 2 [651] [8]{ 3/t 105,308 0,974 0,211 21,7
572+ 86,545 0,703 0,590 | 839
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;{0?;?; K n[an Al [c:é:}n- T E*, k3B a, Apnp 100-R
8] 772+ 117,990 0,682 0,693 | 101,6
32+ 105,308 0,921 0359 | 39,0
(7 572 86,545 0,807 0423 | 524
72+ 117,990 0,817 0513 | 628
31 | 572 (642) 5/2* 266648 | -0723 | -0,639 | 884
(5K 7 350,436 | -0488 | 0847 |1736
9/2* 446,1 0760 | -0524 | 689
572+ 266,648 | 0,867 0476 | 549
g 72t | 35043 | 0832 | 0412 | 495
9/ 2+ 446,1 0742 | 0654 | 881
572+ 266,648 | 0777 0367 | 472
(8] 72 350,436 0,693 0682 | 984
92+ 446,1 0,515 0676 | 1313
159Gd
32 5/ 2 [523) 5/2° 146,4 0,966 -0,258 26,7
72 227,5 0928 | -0366 | 394
92 330 0892 | -0437 | 490
33 5/ 27 [512) 5/2° 872,7 0,995 -0,102 10,25
7 948,5 0987 | 0,160 | 162
o2 | 1044 0976 | 0216 | 221
34 | yopsan | 1O v 0 1000 | 0015 1,50
572" 50,7 0,960 0260 | 27.1
72 121,9 0916 0372 | 406
35 | v2 (521 v 507,7 1,000 0 0
2 5582 1,000 0,015 1,50
5/2 589 1,000 0,025 2,50
1557y '
36 | s/27[532) 572" 2269 0,990 0138 | 139
7 250,0 0,851 0494 | 580
92 317,1 0,787 05712 | 7127
37 | w2t 2 0 0,998 0,054 5,41
2K 572+ 65,5 0,986 0118 | 120
772t 155.8 0,975 0175 | 179
38 5/ 2% [413] 5/2% 271,1 0,999 -0,034 3,40
72+ 334,8 0,817 0570 | 69,8
9/ 2+ 452,6 0,785 0,608 | 774
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fo?ll;:il K ™[Nn, A] [C:ab;ll- JT E*, x3B a, Bpap 100-R
157Tb
39 | 727523 v 571,7 0890 | -0440 | 494
92 709,1 0848 | 0489 | 577
(91 /2| 8686 0,827 -0,471 56,9
40 | s/27[532) 572" 326,4 0,990 0,136 137
v 357,7 0,871 0456 | 52,3
9/ 2" 4259 0,824 0,541 65,4
s/2” 3264 0,996 0,086 8,63
v 357,8 0,889 0442 | 497
92 4259 0,845 0514 | 60,8
41 | 32t (411 3/2* 0 0,999 0,032 3,20
(21 s5/2* 60,6 0,996 0,056 5,62
72 1438 0,993 0,072 7,25
42 | s5/2+[413) 572+ 3217 0,997 0,054 542
72 407,9 0,981 0,159 16,2
9/2¢ 513,8 0,964 0224 | 232
ISSDy
43 | s/2-[523) s/2- 136,3 0,717 0,598 83,4
72" 2244 - 0,661 0713 | 107,9
4 | v2-[532 32" 202 0,994 0,088 8,85
5/2" 325 0,736 0,205 27,8
45 | 27521 32 0 0,986 0,168 17,0
s/ 39,4 0,903 0273 | 302
(12) s 86,7 0,812 0384 | 473
46 /27 [530] V2 382 1,000 0 0,00
2" 449 0979 | -0,165 16,8
572 | (703) 0,941 0229 | 243
47 I/ 2* (660} /2% (320) 1,000 0 0,00
48 | 32+ [651] 32+ 569 0,837 0,547 | 653
) I57Dy
49 | v2- (521 32" 0 0,992 0,127 12,8
(1] 572 61,2 0,971 0209 | 215
72" 147,7 0,955 0243 | 254
50 1/ 2* [660] /2% 308 1,000 0 0,00
51 | 3/2+(651] | [12} 32+ 2345 0,972 0235 | 242
s/ 188,1 0,740 0453 | 612
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Homep | K ™[Nn,A] | [ccpur- J* E*, x3B a, Oppp 100-R
TIOJIOCH Kaj
[12] 7 2* 211,2 0,724 0,645 89,1
32t 234,5 0,819 0,537 65,6
1 5/2* 188,1 0,776 0,320 41,2
72" 211,2 0,745 0,627 84,2
159py
52 17 2% [660] 172 (564) 1,000 0 0,00
53 3/ 2+ [402] 3/2¢ (541) 0,995 0,096 9,65
54 3246511 | [12 32t 618 0,986 0,163 16,5
55 5/ 2% [642] 5/2% 177,6 0,954 0,290 30,4
7/ 2* 209,0 0,914 0,377 41,2
9/2* 239,6 0,847 0,463 54,7
. lélDy
56 127 [400) | (14 { v 774 0,726 0,688 94,8
57 1/ 2% [660] 172" 608 0,726 —-0,688 94,8
[121 vt 608 1,000 0 0
58 ¥2t 1402 | 4]{ 2 551 0,948 -0,312 32,9
59 3/ 2% [651] 3/2% 679 0,695 -0,568 81,7
32+ 679 0,998 -0,060 6,01
60 5/2* [642) [12]{ 5/2¢ 0 0,990 0,118 11,9
772¢ 43,8 0,970 0,174 17,9
9/ 2% 100,4 0,945 0,224 23,7
572+ 0 0,983 0,181 18,4
[8]{ 7/ 2* 43,8 0,950 0,255 26,8
{ 9/ 2% 100,4 0,912 0,321 35,2
5/2* 0 0,983 -0,156 15,9
(13} 772+ 438 0958 | -0222 | 232
9/ 2+ 100,4 0,926 -0,282 30,8
5/2% 0 0,989 0,147 14,9
(141 772t 438 0,958 0,206 21,5
9/2* 100,4 0,919 0,268 29,2
163])y
61 7/ 27 [514] 72 | 1448 0,998 - 0,058 5,81
9/2” 1549 0,995 - 0,087 8,74
[10] w2 | a673) 0,992 0,113 | 114
62 5/ 27 [523] 5/2° 0 0,998 0,055 5,51
72 73,44 0,994 0,084 8,45
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Homep | K "{an A] | [ccpur- J® E*, xaB a., Apgrp 100-R
TIOJIOCHI Xaj
' [10] 92 167,34 0,990 0,108 | 109
5/2 0 0,997 0,093 9,33
(16} 72 73,44 0992 | 0089 8,97
92 167,34 0,986 0,116 11,8
63 | 527 [512] s/ 711,47 0975 | -0221 | 227
(10 7 801,31 0942 | -0332 | 352
92 918,0 0903 | -0424 | 470
572 711,47 0992 | -0126 | 127
(16} 72 801,31 0982 | 0,179 | 182
92 918,0 0971 | -0227 | 234
64 | 3/27(521) 32" 421,84 0,927 0374 | 403
(10] s/ | 47539 0946 | 0237 | 250
72 553,02 0,852 0416 | 488
v | 42184 0,994 0,083 8,35
(16} s/ | 47539 0917 | 0369 | 402
7 553,02 0971 018 | 19,
65 | w2 [512) ¥2- | 1795 099 | -0027 2,70
(10] s/ | 1856 0998 | -0,044 441
w2 | 193 0997 | -0061 6,12
66 I/ 27 [521) /72" 351,15 1,000 -0,014 1,40
(10) v2 | 38975 0927 | -0374 | 403
s/ | 42768 0970 | -0232 | 239
v 351,15 0,999 0,045 4,50
lﬁl 2 389,75 0993 | -0,088 8,86
s/ | 42768 0919 | -0360 | 392
67 | v2-[510] v | 1159 1,000 0,014 1,40
(10} v | 1199 0,999 0,028 2,80
5/2 1262 0,999 0,038 3,80
V2 | 1159 0,951 0308 | 329
v | 1199 0,963 0263 | 273
s/ | 1262 0,858 0,508 | 592
6 | vzt po0) | o v | 1316 0,787 0617 | 784
v+ | 7662 0,798 0562 | 704
572t 915,7 0672 | 043 | 64,6
69 | 1/2*[660] 2+ 884,3 0,787 | -0617 2,16
2+ | 10842 069 | -0593 | 852
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Homep | K ™[Nn,A] | [ccour- J® E’, x3B a, Opop 100-R
MOJIOCHI Ka]
5/2% 781,1 0,780 0,510 65,4
70 3/ 2* [402] 3/2+ 859,3 0,961 0,212 22,1
5/2% 949,3 0,867 -0,495 57,1
71 3/ 2 [651] [16] 372 935,1 0,770 -0,440 57,1
5/2* 1129 0,851 0,461 54,2
72 5/ 2 [642] 5/2+ 250,9 0,990 0,134 13,5
7/ 2+ 285,6 0,997 0,253 25,4
9/ 2% 336,5 0,907 0,343 37,8
161H0
73 7/ 27 [523) v 0 0,989 0,144 14,6
173 o2 99,63 0972 | 0210 | 216
11/2° 221,95 0,952 0,263 27,6
159Er
74 11/ 27 [505] 11/72° 428.,8 0,999 0,054 5,40
13/ 2° (624) 0,997 0,079 7,92
15/ 2 848 0,980 0,111 11,3
75 7/ 27 [514] 72 566,7 0,921 -0,361 39,2
9/2~ (731) 0,679 -0,277 40,8
112" (932) 0,774 -0,355 459
76 5/ 27 [523] 5/2° 220,2 0,985 0,124 12,6
2" 307,0 0,888 0,377 42,4
(18] 92" (372) 0,820 0,442 53,9
71 3/ 27 [521]) 3/2° 0 0,997 0,076 7,62
5/2" 59,2 0,982 0,119 12,1
2 144,1 0,956 0,196 20,5
78 1/ 2+ [400] 172 (725) 1,000 -0,010 1,00
3/2* (788) 0,998 -0,055 5,51
79 3/ 2% [402] 3/2% 348,1 0,998 0,055 5,51
5/2* (439) 0,996 0,092 9,24
/2% (566) 0,993 0,121 12,2
80 5/ 2* [642] 5/2% 88,7 0,507 0,663 130,8
(131 /2t 120,2 0,697 0,658 94,4
9/2%" 0 0,477 0,631 1323
IGIEr
81 11/27[505] | [15) { 12 396,4 0,997 0,083 8,32
13/2° 578,5 0,993 0,122 12,3
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Homep | K ™[Nn, A] | [ccpun- JT E*, x3B a, Oy 100-R
TIOJIOCK! Kaj

1572- | 7826 0,988 0,153 15,5
82 5/ 27 [523] 5/2” 172,0 0,980 -0,161 16,4
72 266,5 . 0,944 -0,247 26,2
92 383,5 0,901 -0,329 36,5

83 5/27 [512] 5/2° 843 0,996 -0,082 8,23
2 (947) 0,719 0,502 69,8
972~ | (1096) 0,811 -0,497 61,3

84 3/27[532) (18] 3/2- 724,8 0,994 0,084 8,45
5/2° (807) 0,981 0,115 11,7
72" 910) 0,829 -0,470 56,7

85 3/ 27 [521] /2 0 0,998 0,063 6,31
5/2" 59,5 0,978 0,161 16,5
772" 143,9 0,950 0,247 26,0

86 1/ 2* [400] 12+ 481 1,000 -0,009 0,90
3/2* (529 0,974 -0,224 23,0
5/2* (599) 0,936 -0,348 37,2

87 | 1271660 | (1) { vzt | 7510 1,000 0,009 0,90
3/2% 1109,5 0,983 -0,186 18,9

[19] { 2+ | 7510 1,000 0 0
372+ 1109,5 0,984 -0,178 18,1
88 3/ 2% [402] 3/2% 463,2 0,974 0,224 23,6
[18][ s/2* 496,3 0,937 0,348 37,1
2t 590,0 0,913 0,389 42,6
89 3/ 2+ [651] 32+ 391 0983 0,186 18,9
3/2% 391 -0,984 -0,178 18,1
. 572+ 4476 0,601 0,588 97,8
[19] 7/2* 656,3 -0,767 0,546 71,2
90 5/2* [642] 5/2* 193,4 -0,793 -0,561 70,7
772+ 207,6 -0,806 -0,566 70,2
9/ 2+ 567,1 -0,639 0,668 | 105,0
579+ 193,4 0,824 -0,453 55,0
(13} v | 2076 0815 | -0470 | 577
9/ 2% 567,1 0,674 -0,519 77,0
(18] [ s/2¢ 193,4 0,824 -0,408 495
163El.

ot | wosos)| 8 | 12| a43s 0,999 0,043 4,30



396 JKEJIENOB B.C., XYKOBCKHH H.H., IIIECTOIIAJIOBA C.A.

n}l‘,’,’éﬁ. K *[Nn, A] [c:;n— Iz E', xB a, P 100-R
18] { 1v2- | 6146 0,998 0,064 6,41
15/2- | 8085 0,997 0,081 8,12
92 | s5/27[523] 5/2° 0 0,993 0102 | 103
(18] 7 83,96 0,980 0162 | 165
92 190,02 0,964 0216 | 224
572" 0 0,083 0178 | 181
(o] v 83,96 0,963 0257 | 267
92 190,02 0,934 0327 | 350
93 | s/27[512] s/ | 609 0994 | 0102 | 103
(18] 72 | 699 098 | 0,147 | 149
o2 | 806 0979 | 0174 | 178
s/~ | 609 0981 | 0171 | 174
(o} ) 0947 | 0252 | 266
o2 | 806 088 | 0338 | 381
9 | 27 [s21) v 104,32 0,996 0,087 8,73
(18] 5/2° 164,43 0,980 0133 | 136
w2 | 24955 0,954 0181 | 190
Vo 104,32 0,994 0101 | 102
(ol s/2 164,43 0,948 0178 | 188
w2 | 24955 0,889 0269 | 303
95 | 12 [530] v | 2164 1,000 | -0,022 2,20
(s v | 8669 0994 | 0,086 8,65
s/ | 8741 098 | 0137 | 139
v | 2164 1,000 0,029 2,90
(10} v | 8669 0,993 0,098 9.87
s/2- | 8741 0,978 0178 | 182
9% | 12 [521] v | 34564 099 | 0,036 3,60
(18} v 404,00 099 | 0074 7,43
s/ | 43957 0992 | -0104 | 105
v2 | 34564 099 | 0,030 3,00
(10} v 404,00 099 | -0,061 6,12
s/2- | 439,57 0,989 0,090 9,10
97 | w2 (510 v | 1075 0,999 0,036 3,60
18] 32~ | 1098 0997 | -0075 7,52
s/~ | 1183 0,994 0,106 | 107
[10] v | 1075 1,000 0,030 3,00



O CMEUIMBAHHH BOJTHOBBIX ®YHKLIMI 397

Homep | K ™[Nn,A] | [ccrur- JT E*, xaB a, Bt 100-R
TIONIOCHI Ka)
(10} { 372~ | 1098 0,998 0,060 6,01
s/2- | 1183 0,995 0,088 8,84
98 1/ 2% [400] [18] 172% 540,56 1,000 -0,013 1,30
99 V216601 | [1q) { 2+ 882,8 1,000 0 0,00
2t | 12195 0,983 -0,157 16,0
100 | 3/2+[402] | [18] 3/2+ 7353 0,928 -0,373 40,2
101 | 3/2%[651] 32 619,36 -0,988 -0,157 15,9
[19][ s/2t | 66483 | 0813 | —0479 | 589
72 | (647,0) -0,860 0,350 40,7
(18] 32+ 619,36 0,965 0,260 26,9
102 5/ 2* [642] 5/2% 69,219 0,954 0,284 29,8
(18] 72+ 91,552 0,912 0358 | 392
92+ 102,346 0,822 0,451 54,9
s/2 69219 | -0940 | -0330 35,1
(191 72 91,552 -0,893 -0,401 449
9/ 2% 120,346 | -0,814 -0,483 59,3
IGSEr
103 | 7727 [514) 72 | um 0,980 | -0,178 18,2
92 | 1285 0,993 -0,095 9,57
11727 | (1419) 0,949 | -0227 23,9
104 | 5/2-[523] 5/2- 0 0,996 0,088 8,83
72" 77,254 0,989 0,128 12,9
92" 175,86 0,980 0,161 16,4
105 | 5727 [512] 5/2° 471,76 0,941 -0,325 34,5
72 573 0799 | -0523 65,5
92" 684 0,682 -0,632 92,7
106 | 3/2-(521] | 10] Yo 242,935 0,990 0,100 10,1
5/ 297,366 0,903 0,310 34,3
v 372,76 0,811 0,509 62,8
107 3/ 27 [512] 3/2” 1474 0,999 -0,038 3,80
s/ | 1539 0,997 -0,060 6,02
72 | 1631 0,995 -0,087 8,74
108 | 1/27[530] /2= | (1003) 1,000 0,018 1,80
2 | 1039 0,995 -0,091 9,15
s/2- | 1063 0,977 -0,163 16,7
109 1/ 27 [521) /2" 297,37 1,000 -0,021 2,10




398 IDKEJIENOB B.C., XYKOBCKHH H.H., IIECTOINAJIOBA C.A.

Homep | K ®[Nn, A] | [ccaur- J* E*, xsB a, Opgp 100-R
TOJIOCH Ka) .
32" 356,52 0,993 0,104 10,5
5/2° 384,32 0,965 0,210 21,8
110 1727 [510] (10, /72 920,5 1,000 0,021 2,10
3/2° 962,0 0,998 0,040 4,01
5/2 1024 0,989 -0,131 13,2
11 1/ 2* [400] 172 507,4 1,000 0,000 0,00
3/2% 589,9 0,935 -0,336 35,9
(16} 1/72* 507,4 1,000 0,000 0,00
3/2 589,9 0,961 -0,177 18,4
112 1/ 2* [660] /2% 746,0 1,000 0,000 0,00
2t (963) 0,826 0,531 64,3
172 746,0 1,000 0,000 0,00
3/2* (963) 0,990 -0,141 14,2
113 3/ 2% [651) 3/2t 534,55 -0,990 -0,141 14,2
[19] 5/2* (564) -0,880 -0,412 46,8
2t (680) -0,757 0,610 80,6
114 5/ 2% [642) 5/2*% 47,156 -0,970 -0,238 245
2 66,76 -0,920 -0,314 34,1
9/2* 97,955 -0,874 -0,385 44,1
s/2% 47,156 0,972 -0,205 21,1
t16] 72 66,76 0903 | .-0301 | 333
9/2* 97,955 0,854 -0,360 422
167El.
115 7/ 2 (514] 2 1049 0,982 -0,171 17,4
9/2” 1 !73 0,960 -0,250 26,0
172- | (1323) 0,936 -0,310 33,1
116 5/ 27 [523] 5/ 27 667,903 0,987 0,156 15,8
72 745,25 0,960 0,216 22,5
9/2” 845,77 0,930 0,255 27,4
117 s/2-[512) | (10} 5/2° 346,55 0,991 0,128 12,9
2 430,03 0,965 0,194 20,1
9/2” 535,80 0,951 0,271 28,5
118 3/ 27 [521] /2" 752,70 0,983 0,154 15,7
5/2° 812,49 0,906 0,334 36,9
1/ 2" 894,47 0,857 0,366 42,7
119 3/ 27 [512] 32" 1489,39 0,994 0,102 10,3




O CMENIMBAHUMU BOJIHOBhIX OYHKIIMA 399

Homep | K "[Nn, Al | [ccbur- Jr E*, k3B a, ] g 100-R
TIOJIOCHI Ka]
5/27 | 1440 0,980 0,179 18,3
72 | 1526 0,967 0,229 23,7
120 | 1727530 /27 | (1344) 1,000 0,013 1,30
20 | 1317 0,989 0,102 10,3
5727 | 1426 0,968 0,183 18,9
121 | ya (5121 | [10] V2 207,80 1,000 -0,026 2,60
32" 264,87 0,997 | -0,052 5,22
5/2° 281,57 0,993 -0,077 7,75
122 1 v2 510 1/2- 763,48 1,000 0,026 2,60
32" 801,65 0,987 | —0,154 15,6
5/2° 856,9 0,939 | —0326 34,7
123 1/ 2% [660] 172* 1819 1,000 0,000 0,00
3/2¢ | 2088 0993 | —0117 11,8
124 /2% [651] 2t | (1490) 0,993 -0,116 11,7
[21] 5/2¢ | 1514 0,904 0413 | 457
125 | /2% [642) 5/2¢ 810,49 0,993 0,113 11,4
72 873,41 0,978 0,173 17,7
9/ 2* 932,96 0,955 0,231 242
s/2¢ 810,49 0,981 0,189 193
““1{ w2 | 9329 0,877 0388 | 442
5/2* 810,49 0,955 0,104 10,9
[22] 5/2¢ 810,49 0,6997 0,6538 | 934
126 | 772+ (633] 72 0 0,988 0,151 15,3
(8][ o2 79,32 0968 | 0217 | 224
w2t | 1779 0,946 0,269 28,4
72t 0 0,995 0,097 9,75
9 2* 79,32 0,977 0,156 16,0
[14] 1/2* | 1779 0,959 0219 | 228
72* 0 0,991 0,130 13,1
92+ 79,32 0,961 0,201 20,9
/2| 1779 0,934 0,271 29,0
72* 0 0,993 0,116 11,7
21} o 2¢ 79,32 0,977 0,170 17,4
1/2* | 1779 0,960 0,213 22,2
[22] { 72t 0 09929 [ 01170 | 118
9/ 2¢ 79,32 09746 | 01732 | 178




400 JIXEJIETOB B.C., XYKOBCKHH H.H,, IIIECTOMAJIOBA C.A.

Homep | K ™[Nn,A] | [ccur- J® E*, k3B a,, ptnp 100-R
TIONOCHI Ka]
[22] 1172 177,96 0,9548 0,2185 229
127 9/ 2+ [624] 972+ 1253 0,978 -0,186 19,0
11/ 2% 1382 0,951 -0,233 245
(14] 13/ 2% 1530 0,912 -0,277 30,4
9/ 2% 1253 0,987 -0,151 15,3
11/ 2% 1382 0,972 -0,204 21,0
13/ 2% 1530 0,958 -0,236 24,6
972+ 1253 0,991 -0,119 12,0
(21} w2t | 1382 0980 | -0,160 | 163
13/ 2% 1530 0,968 -0,183 18,9
169,
128 7/ 27 [514] 172" 922 0,614 0,562 91,5
9/2~ 930 0,637 0,662 103,9
172" 1051 0,569 0,679 119,3
129 5/ 27 [523] S5/2° 853,0 0,978 -0,204 20,9
72 942,1 0,848 -0,449 52,9
92" 1052 0,741 -0,580 78,3
130 5/ 27 [512] 5/2° 92,0 0,989 0,113 114
72 176,7 0,983 0,149 15,2
9/2” 285,1 0,961 0,196 20,4
131 3/ 27 [521] 3/2° 714,6 0,995 -0,099 9,95
[10] 5/2" 769,6 0,961 0,205 21,3
2" 850 0,733 0,648 88,4
132 3/ 27 [512] 3/2° 1081,6 0,999 -0,048 4,80
5/2- 1144,6 0,996 -0,076 7,63
2 1230 0,991 -0,113 11,4
133 1/ 27 [521] /72" 0 0,999 -0,035 3,50
3/2° 64,55 0,996 -0,074 7,43
5/2" 74,6 0,986 -0,111 11,3
134 1/ 27 [510] 172" 562,0 0,999 -0,035 3,50
2 599,3 0,992 0,098 9,88
5/2" 654,0 0,981 0,160 16,3
16l
135 7/ 27 [523) 72 78,2 0,973 0,228 234
(23] v 149,1 0,907 0294 | 324
136 5/ 27 [532] 5/2° 709,6 0,989 -0,037 3,74




O CMELIMBAHHWH BOJTHOBLIX ®YHKLIMH 401

rl;lo?zcez K "[Nn, Al [c]i;n- JT E*, xaB a, Anp 100-R
137 1/ 27 [541] 172 367,2 1,000 0,000 0,00
372" 376,6 0,920 0,390 424
5/ 2 465,8 0,881 0,470 53,3
138 1/ 2% [411] 1/ 2% 7.5 1,000 0 0,00
3/2t 22,7 0,999 0,042 4,20
(23} 5/ 2% 166,9 0,993 0,104 10,5
139 /2% [411] 372+ 338,0 0,999 -0,041 4,10
5/2% 4334 0,988 -0,109 11,0
140 5/ 2% [402] 5/2% 18,9 0,995 0,094 9,45
7/ 2 159,1 0,983 0,146 14,8
141 7/ 2% [404] 2t 0 0,995 0,089 8,94
9/ 2 161,8 0,988 0,132 13,4
1637 m
142 7/ 27 [523) 72 86,91 0,991 0,136 13,7
92" 174,57 0,958 0,210 21,9
1172 290,00 0,930 0,278 29,9
143 | 1727 [541) 172" 217,14 1,000 -0,011 1,10
32" 326,22 0,991 -0,131 13,2
5/2° 253,4 0,984 -0,177 18,0
144 I/ 2* [411] V72t | 0 1,000 0,008 0,80
3/2% 13,517 0,999 0,037 3,70
[24] 5/ 2% 144,392 0,774 -0,630 81,4
145 ¥ 2t [411) 2t 366,36 0,999 -0,037 3,70
5/2% 449,20 0,978 -0,181 18,5
7/ 2* 559,20 0,959 -0,267 27,8
146 5/ 2% [402) 5/2% 136,7 0,755 0,191 253
2t 258,4 0,956 0,257 26,9
9/2* (356) 0,867 0,355 40,9
147 | 7/2* (404) 72t | 2328 0,997 0,068 6,82
9/ 2% 164,68 0,992 0,106 10,7
1/ 2* 331,07 0,986 0,143 14,5
165Tm
148 9/ 27 [514) 92" 8344 0,980 -0,183 18,7
1243 1/ 2- 972,6 0,962 -0,232 24,1
13/2- | (1231) 0,945 -0,251 26,6
149 7/ 27 [523]) 72 160,47 0,991 0,136 13,7




402 JDKEJIETOB B.C., XYKOBCKHH H.H., LIECTOIAJIOBA C.A.

rll-lucr):;:p; K "[Nn, A] [C;:!]ﬂ- J*r E', xaB ay, Appp 100-R
92" 252,44 0,961 0,195 20,3
11/2° 370,2 0,935 0,240 25,7
150 1/ 27 [541] 1727 158,20 1,000 0,009 0,90
3/2° 275,53 0,958 0,296 30,9
5/2° 181,72 0,953 0,302 31,7
151 1/ 2% [411] 172* 0 1,000 0,008 0,80
3/2% 11,50 0,999 0,032 3,20
5/2% 129,52 0,997 0,072 7,22
152 3/ 2% [411] [24] 3/2* 416,06 0,999 -0,032 3,20
5/2% 491,23 0,959 -0,273 28,5
7/ 2% 592,25 0,922 -0,378 41,0
153 5/ 2% [402] 5/2* 315,54 0,962 0,271 28,2
/2t 419,79 0,925 0,376 40,6
9/ 2% 552,06 0,891 0,425 47,7
154 7/ 2 [404] /2% 80,37 0,999 0,039 3,90
9/ 2% 210,59 0,997 0,060 6,02
1172+ 366,9 0,995 0,080 8,04
167Tm
155 9/ 2 [514] 9/2” 929,77 0,983 -0,172 17,5
1172 1044,09 0,966 -0,220 22,8
13/2- | (1303) 0,952 -0,239 25.1
156 7/ 27 [523] 72" 2929 0,991 0,135 13,6
92" 383,8 0,964 0,194 20,1
11/72° 496,7 0,939 0,244 26,0
157 3/27[532] 3/2° 852,9 0,986 -0,166 16,8
5/2° 882,2 0,979 -0,202 20,6
24] 72 9354 0,935 -0,354 37,9
158 1/ 27 [541] /72" 171,7 1,000 0,007 0,70
3/2" 187,8 0,979 0,202 20,6
5/2° 282,4 0,986 0,167 16,9
159 | 1/2%[411] 2+ 0 1,000 0,006 0,60
3/2% 10,48 1,000 0,024 2,40
v 5/2% 116,66 0,998 0,049 491
160 3/ 2% [411] 3/2 471,01 0,997 0,024 2,41
5/2% 522,34 0,707 0,705 99,7
7/2% 602,09 0,715 0,696 97,3




O CMELIMBAHHWH BOJTHOBBIX ®YHKIIMI 403

Hli?[n;ceﬁ K ™Nn, A] [c;;n— Jr E*, x3B a, Ayg 100-R
161 5/ 2% [402] ( 5/2* 557,90 0,709 -0,704 99,3
7/ 2% 657,87 0,717 -0,695 96,9
[24] 9/ 2% 780,?3 0,720 0,689 95,7
162 7/ 2% [404] /2t 179,56 0,999 0,027 2,70
9/ 2+ 296,28 0,999 0,042 4,20
11/ 2+ 436,13 0,998 0,054 541
163Yb
163 5/ 27 [523] 5/2 53,6 0,807 0,573 71,0
72 132,9 0,749 0,629 84,0
9/2- 234,6 0,695 0,660 95,0
164 5/ 27 [512] 5/2- (854) 0,991 -0,099 10,0
72" 971) 0,979 -0,148 15,1
92 (1114) 0,945 0,202 214
165 '3/ 27 [521] 1251 3/2° 0 0,997 0,080 8,02
5/2° 72 0,801 -0,579 72,3
2 (160) 0,741 -0,633 85,4
166 1727 [521] ) V2 (609) 1,000 0,000 0,00
3/2” (646) 0,932 0,354 38,0
5/2 (687) 0,821 0,448 54,6
165y
167 5/ 27 [523] 5/2 0 0,991 0,108 10,9
v 87,51 0,974 0168 | 172
9/2" 1974 0,960 0,227 23,6
168 5/ 27 [512] 5/2 400,8 0,972 -0,232 23,9
2 (537) 0,883 -0,337 38,2
169 3/27[521) 3/2" 120,69 0,997 0,060 6,02
5/2 174,23 0,962 0,232 24,1
[25] 72 264,64 0,922 0,313 33,9
170 1/ 27 [521] 172 324,44 1,000 0,018 1,80
32 391,66 0,998 0,045 4,51
5/2" 427,60 0,996 0,072 7,23
171 3/ 2% [651] 3/2t 533,2 0,970 0,244 25,1
172 5/ 2% [642] 5/2% (130) 0,915 0,369 40,3
' /2 132,33 0,872 0,406 46,6
9/ 2+ 126,74 | 0,749 0,494 66,0




404 JUKEJIETIOB B.C., XYKOBCKHH H.H., LIECTOIATIOBA C.A.

Homep | K "[Nnj A] | [ccnr- J" E*, xoB a, Byt 100-R
TIOJIOCH xaj
167y,
173 11/ 27 [505] 11/2- 571,52 0,996 0,097 9,74
13/ 2" 726,4 0,980 0,141 14,4
15/2° 901,0 0,964 0,177 18,4
174 /27 [514) 12 612) 0,979 -0,182 18,6
92" (743) 0,956 -0,251 26,2
175 | 5/27(523] 5/2 0 0,996 -0,076 7,63
7 76,68 0,986 0,216 21,9
92" 178,87 0,973 -0,150 15,4
176 | s/2-[512) 5/2- 213,18 0,715 -0,691 96,6
7r 308,44 0,603 -0,561 93,0
9/2- (541) 0,666 0,206 30,9
177 | 327 (521) 251 2 179,77 0,992 -0,117 11,8
5/2" 239,18 0,716 -0,083 11,6
7 317,51 0,700 0,111 159
178 /27 [521] V2 188,74 1,000 -0,017 1,70
32" 258,56 0,992 0,118 11,9
5/2- 278,24 0,993 0,334 93,6
179 | 3/2*[651] 3/2¢ (570) 0,961 0,194 20,2
s/2* (603) 0,949 0,455 47,9
180 | 5/2%([642) 5/2* 29,66 090 | 0272 28,3
72t 3391 0,885 0,338 38,2
9/2* 58,54 0,830 0,403 48,5
181 7/ 2% (633) 12t 430,8 0,940 -0,237 25,2
9/2* (534) 0,857 -0,396 46,2
169Yb

182 | 727 ([514] 72 960,4 0,989 -0,133 13,4
(23] %2 1078,1 0,977 -0,186 19,0
172- | (1242) 0,962 -0,228 237
26] { 72 | 9604 0989 | 0,140 | 142
92 1078,1 0,975 -0,200 20,5
183 | 5/27[523] 5/2° 569,830 0,984 0,155 15,7
[25]l 2 | 647836 0,958 0218 | 228

o2 748,956 0,932 0,261 28,0

[26) { s/ | 569830 | 0989 | 0129 | 130

7 647,836 0,970 0,175 18,0



O CMEIIMBAHWH BOJIHOBBIX ®YHKIIAM 405

Homep | K *[Nn, A] [ccpur- JT E*, xaB a, Anp 100-R
TIOJIOCHI Ka)
126] 92 748,956 0,952 0200 | 21,0
579 569,830 0,989 0,146 | 148
[0y 72 647,836 0,976 0209 | 206
92 748,955 0,964 0249 | 258
184 | 5727512 5/2- 191,214 0,097 0,081 8,12
[25] 72 278,597 0,990 0,125 | 126
92 389,527 0,082 0,166 | 169
5/2 191,214 0,996 0,084 8,43
(261 72 278,597 0,998 0127 | 127
92 389,527 0,980 0,166 | 17,1
572" 191,214 0,993 0116 | 117
(10] 72 278,597 0,979 0,181 18,5
92 389,527 0,967 0247 | 255
185 3/ 27 [521] 32" 659,627 0,992 -0,061 6,15
[25] s/ | 722278 0963 | -0,158 | 164
72 807,056 0935 | -0219 | 234
32 659,627 099 | -0,073 7,33
(26] 572 722,278 0979 | 0130 | 133
72 807,056 0959 | -0172 | 179
32 659,627 0,999 0,049 4,90
(101 5/2 722,278 0979 | 0,148 | 151
72 807,056 0954 | 0216 | 226
169Yb
186 | 1/2- [521] 2 24,199 1,000 | -0,018 1,80
(23] 32 86,918 0,998 0,038 3,81
5/2 99,240 0995 | 0,060 6,03
Vo 24,199 099 | -0,031 3,10
[26] 32 86,918 0,998 0,064 6,41
5/ 99,240 0,995 | -0,091 9,15
v 24,199 1,000 | -0,022 2,20
(10} 2 86,918 0999 | -0,045 4,50
572 99,240 0,998 | -0,064 6,41
187 | 127 [510] Vo 8133 1,000 0,018 1,80
(25] 32 851,4 0,996 0,081 8,13
572" 911,7 0,991 0118 | 11,9
[10] v 8133 1,000 0,022 2,20




406 IKEJIETIOB B.C., XYKOBCKHWI H.H., IECTOIAJIOBA C.A. -

Homep | K ™[Nn,A] | [ccbur- Jr E*, x2B a, App 100-R
TIOTIOCHI Ka)
(10] { 32 851,4 0,998 | —0,050 5,01
5/ 911,7 0,995 | 0,078 7,84
188 | 372 [651] 2t 719,91 0,973 0232 | 238
(251 572 761,84 0594 | -0,630 | 106,1
72 832,05 0676 | 0658 | 973
2 719,91 0,975 0220 | 226
(26] 572t 761,84 0782 | 0558 | 713
72 832,05 0751 | 0584 | 7727
189 | /2% [642) s5/2¢ 590,687 0,767 0579 | 755
(251 72 647,286 0,732 0,636 | 869
o2 707,18 0798 | 0,535 | 67,0
572+ 590,687 0,743 0541 | 728
(26] 7 647,286 0799 | 0575 | 720
92+ 707,18 0748 | -0604 | 807
190 7/ 2* [633] 7/ 2% 0 0,986 0,164 16,6
(25] 92 70,882 0,961 0235 | 244
12t | 161,651 0,937 0285 | 304
72 0 0,993 0119 | 120
(26] o2 70,882 0,965 0,197 | 204
1172 161,651 0,939 0,273 29,1
772 0 0,978 0204 | 209
(27) o2 70,882 0945 | 0289 | 306
12t | 161651 | 0912 0350 | 384
191 | o/2*[624] [25]{ o2t | um 0983 | 0154 | 157
w2t | (1325 0841 | 0259 | 308
171 Yb
192 7/ 27 [514) 72 835,062 0,987 0,160 16,2
(23] w2 948,341 0,970 0239 | 246
12 | (1076) 0,949 0307 | 323
7 835,062 0999 | -0,031 3,10
(10} 92" 948,341 0999 | 0,045 4,50
12 | (1076) 0998 | -0,058 5,81
193 | 7/27[503] 72 | 13715 0999 | -0,048 4,80
0251 972~ | (1497) 099 | 0072 7,23
194 5/ 2 [523] 5/2° 958,158 0,928 0,363 39,1
72 | 1024582 0,843 0,504 | 59,8




O CMELLIMBAHHWH BOJIHOBbIX ®YHKLHUH 407

Homep | K ™[Nn,A] | [ccbun- J* E*, k3B a, Oppp 100-R
TIOJIOCHI KaJ
o2 | 1127062 0,723 0,631 87,3
195 | 5/27(512] | 5 s/ 122,42 0,999 0,039 3,90
v 208,01 0,997 0,060 6,02
92 317,30 0,993 0,079 7,96
512 122,42 0,996 0,081 8,13
(10] 7o 208,01 0,985 0126 | 128
9/2- 317,30 0,984 0,158 16,1
196 3/27[521] 3/2 902,27 0,994 -0,099 9,96
(23] s/2” 958,41 0912 | -0367 | 402
72 | 102439 0837 | -0,505 60,3
32" 902,27 0,994 0,104 10,5
(10] 52 958,41 0,976 0201 | 206
72~ | 102439 0,941 0,313 333
197 1/ 27 [521) 172" 0 1,000 -0,008 0,80
(23] 32" 66,73 0999 | -0,026 2,60
5/2" 75,89 0998 | -0,042 421
V2" 0 1,000 | -0,015 1,50
R 66,73 0999 | -0,032 3,20
(10} s/2° 75,89 0998 | —-0,046 4,61
198 | 1727510 /2" 9542 1,000 0,015 1,50
32" 990,9 0994 | -0,105 10,6
5/2- | 1052 0978 | -0202 20,6
Vv 954,2 1,000 0,008 0,80
[ 990,9 0,995 0,099 9,95
251 s/2- | 1052 0,984 0,173 17,6
199 | /2% [651] 32+ | (1132) 0,989 0,147 14,9
5/2* (1206) 0,833 -0,392 47,1
72 | (1363) 0824 | -0499 | 606
200 | 5/2*(642] ‘ s/2* 8953 0,918 0388 | 423
(25} v | 9207 0,852 0496 | 582
o2+ 987,3 0,958 0,562 94,0
572+ 8953 09643 | 02523 | 2672
(28] 72t 920,7 09196 | 03538 | 38,5
9/ 2+ 9873 - 06235 | 05664 | 90,8
200 | 72°(633] | a5 { vy | 952m2 0,989 0,143 14,5
o2+ 167,658 0,965 0207 | 214
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Homep | K ™[Nn,A] | [cobur- JT E*, k3B a, Opgp 100-R
TIOJIOChL Ka)
[25] 172t 259,066 0,940 0,257 273
772t 95,272 0,989 0,148 15,0
[8]{ 9/2* 167,658 0,969 0,214 22,1
11/ 2% 259,066 0,948 0,264 27,8
. 772+ 95,272 0,9881 0,1520 | 154
[28]{ 972+ 167,658 09630 | 02199 | 228
11/ 2* 259,066 0,9377 02715 | 289
202 | 9/2* [624 [25]{ 9/ 2% 935,232 0,813 -0,470 57,8
1172+ | (1144,4) 0,733 0,426 58,1
9/2* 935,232 0,8104 | -0,4918 | 60,7
(28] 12+ | (1144,9) 0,6400 | 10,5639 | 88,1
13/2+ | 1407 0,8770 | -0,2912 | 332
173Yb
203 | 7727 [514] 72 636,07 0,995 0,092 9,25
o2 749,1 0,990 0,136 13,7
11/2° 866 0,982 0,173 17,6
204 | 5/27[523] 5/2" 975) 0,998 0,055 5,51
72" 1060 0,991 -0,092 9,28
9/2" 1172,5 0,982 -0,136 13,85
205 5/ 27 [512] 5/2° 0 0,999 0,042 4,20
772" 78,650 0,997 0,064 6,42
9/2" 178,347 0,994 0,084 8,45
206 3/ 27 [521] 3/2" 1232,5 0,999 0,050 8,45
5/2" 1287,5 0,995 0,074 7,44
125} 72" 1362,4 0,988 0,105 10,6
207 3/27 [512] 32" 1340,9 1,000 -0,025 2,50
5/2- 1406,1 0,999 -0,035 3,50
772" 1493,5 0,996 -0,059 5,92
208 1727 [521] /72" 398,9 1,000 -0,012 1,20
/2" 461,5 1,000 0,024 2,40
572" 482,0 0,999 -0,035 3,50
209 1727 [510] V2 1032,5 1,000 0,012 1,20
3/2- .| 10745 0,998 -0,050 5,01
5/2" 1121,6 0,996 -0,074 7,43
210 | 7/2*[633] 772t 350,740 0,996 0,167 16,8
972+ 412,917 0,949 0,235 24,8




O CMENIMBAHHH BOJIHOBBIX ®YHKLIMA 409

Homep | K "[Nn, A] [ecemn- | g™ E*, xaB a., App 100-R
TIOJIOCHI xa]
[25] 11/ 2% 497,0 0,917 0,284 31,0
l69Lu
211 9/ 27 [514] 9/2- 439,0 0,880 0,469 53,3
11/2- 546,0 0,819 0,558 68,1
13/2° 683,2 0,779 0,606 77,8
212 | w2523 | (&9 72" 4930 0,994 0,108 10,9
213 1/ 27 [541] 1/72- 29,0 0,999 -0,034 3,40
32" 152,5 0,990 0,120 12,1
5/2- 38,1 0,981 0,168 17,1
l77Lu
214 927 [514] 9/2” 150 0,999 0,044 4,40
1172 289 0,997 0,067 6,72
1% 2- 451 0,995 0,086 8,64
215 3/27[532) 3/2° 1322 0,972 -0,232 239
5/2- 1395 0,976 -0,210 21,5
216 1/ 27 [541] /2" 795 1,000 0,005 0,50
32" 952 0,972 0,233 24,0
5/2- 762 0,978 0,210 21,5
217 IV 2% [411] | [30] /2 570 1,000 0,003 0,30
3/2* 574 1,000 0,006 0,60
5/2+% 709 1,000 0,010 1,00
218 5/ 2* [402) 5/2* 186,7 1,000 0,006 0,60
72t 289,0 1,000 0,009 0,90
972+ 415,1 1,000 0,012 1,20
219 7/ 2* [404) 7/ 2+ 0 1,000 0,019 1,90
9/2* 123,5 1,000 0,028 2,80
1/2* 289,0 0,999 0,036 3,60
177Hf
220 7/ 27 [514] 72 0 0,999 0,033 3,30
(31 92" 113,6 0,998 0,050 5,01
11/2- 249,7 0,996 0,064 6,43
72 0 0,998 0,055 5,51
(13] 92 113,6 0,994 0,079 7,95
12" 249,7 0,990 0,102 10,3
221 9/ 2% [624] 31 { 9/2% 321,3 0,982 0,189 19,2
1/2* 426,7 0,949 0,257 27,1
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Homep | K ™[Nn,A] | [ccbur- J* E*, xaB a, Oyp 100-R
TIOJIOCHI Kxa)
[31] 13/ 2% 550,2 0,920 ( 0,303 329
9/ 2% 321,3 0,970 0,199 20,5
“3][ 1ot | 4267 0,049 0277 | 292
13/ 2% 550,2 0,920 0,332 36,1
179Hf
222 9/ 2% [624] 9/2% 0 0,989 0,143 14,5
[8]{ 1172 122,790 0,972 0,206 21,2
) 13/ 2% 268,416 0,953 0,255 26,8
223 9/ 2% [624] 9/2*% 0 0,9798 0,1966 20,1
(32] w2t | 122,79 09535 | 02789 | 2925
13/2% 268,416 0,9262 0,3402 36,7
175Ta
224 1/ 27 [541] V2 68,9 0,9978 -0,0667 6,60
(331 3/2° 218,5 0,9551 0,2242 23,5
5/2° 51,5 0,9695 0,2010 20,7
179W
225 7/ 27 [514] 72 0 - 1,00 -0,07 7,0
9/ 2" 120 0,99 -0,10 10,1
226 5/ 27 [512] 5/2° 430 -1,00 0,00 0,00
(34] 7/2” 532 -1,00 -0,07 7,00
9/ 2 (662) -0,99 -0,10 10,1
227 1727 [521] 172 222 1,00 0,04 4,00
3/2 305 1,00 -0,09 9,00
5/ 2 318 0,99 -0,12 12,1
228 7/ 2% [633] 2 477,96 --0,953 0,086 9,02
9/2% (649,9) -0,699 -0,551 78,8
35] 11/ 2% (817,5) -0,582 0,608 105,4
229 9/ 2% [624] 9/ 2% 308,97 0,827 0,529 64,0
11/ 2% 372,83 0,757 0,590 77,9
13/ 2% 468,67 0,694 0,614 88,5
181w
230 7/ 27 [514] 72" 409,23 0,972 -0,217 223
92" - 528,6 0,961 -0,234 243
1361 172 | 6749 0,953 -0,231 24,2
72 409,23 0,928 -0,367 39,5
9/2” 528,6 0,868 -0,481 554




O CMELIMBAHHWM BOJTHOBBIX ®YHKLHH 411

Homep | K ™[Nn,A] | [cobur- JT E*, k3B a, Opp 100-R
TOJIOCHI Kaj
[36] 12| 6749 0,820 | -0,547 66,7
3 4]{ 72 409,23 0,81 -0,58 71,6
92 5286 0,67 -0,72 107,
231 | 7/27[503] ( v 661,3 0995 | -0,099 9,95
92 804,4 0989 | -0,147 14,9
361 w2 | 9747 0,981 -0,186 190
790 661,3 0980 | -0,197 20,1
o2 804,4 0960 | -0276 | 287
w2 | 9747 0,941 -0,332 35,3
232 | s5/27[512] 5/2° 365,5 1,000 0,014 1,40
(36] wr | 4154 0,971 0216 | 222
9/ 2" 609,0 0,961 0234 | 243
5/2- 365,5 -1,00 0,00 0,00
(34] vy | 4754 0,79 0,59 74,7
92 609,0 -0,64 ~0,74 115,6
s/ 365,5 1,00 0,029 2,90
(36] 7 4755 0,908 0370 | 407
92" 609,0 0,830 0,491 59,2
233 | 327 [512] 32" 726 ~1,00 0,05 5,0
(34] 5/2° 807 -1,00 0,07 7,0
72 937 -0,99 0,13 13,1
234 | 127521 /2" 385 0,99 -0,16 16,2
3 450 0,95 -0,30 31,6
. 52" 488 0,85 -0,53 62,3
235 1/ 27 [510] 172 458 -0,99 -0,16 16,2
32 529 ~0,99 -0,15 15,1
5/2° 560 -0,85 -0,52 61,2
236 | /2 [633] 72t | 9536 0,923 0,360 39,0
9/ 2¢ 993,3 0,772 0,495 64,1
6] 172+ | 10954 0,707 0,540 | 764
237 | 9/2+[624] 9/ 2+ 0 0,983 0,181 18,4
11/ 2% 113,3 0,953 0,257 27,0
1372t | 2511 0,923 0,314 34,0
183w
28 | Y2514 | 3 4]{ w2 | 1072 -0,99 -0,17 17,2
o2 | 1219 -0,98 -0,20 20,4
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Homep | K ™[Nn, Al [cepun- J® E*, x3B a., Oyt 100-R
TOJIOCHI Ka]
239 7/ 27 [503] 172 453 1,00 0,05 5,0
92 595 1,00 0,08 8,0
240 5/27 [512] 5/2 906 1,00 0,00 0,00
2" 1002 0,98 -0,17 17,3
92 1128 0,98 0,20 20,4
241 ¥ 27 [512) 3/2" 209 -0,99 0,15 15,1
[34] 5/2 296 +0,98 -0,20 20,5
72 412 -0,96 0,26 27,1
242 1727 [521] |V 936 1,00 0,02 2,0
32" 1029 1,00 -0,04 4,0
5/2 1056 -1,00 -0,06 6,0
243 1/ 2" [510] 172" 0 -1,00 0,02 2,0
32" 47 -0,99 -0,15 15,1
5/2" 99 0,98 0,20 20,4
185y
244 7/ 27 [514) V2 1058 -0,98 -0,19 19,4
9/ 2" 1219 -0,98 -0,20 20,4
245 7/ 27 [503]) 72 244 1,00 0,05 5,0
' 92 391 0,99 0,08 8,08
246 5/27 [512] 5/2 888 1,00 0,00 0,00
2 986 0,98 -0,19 19,4
[34] 92 1118 0,98 0,20 20,4
247 ¥ 27 [512] 3/2° 0 -0,99 -0,16 16,2
5/2 66 091 0,42 46,1
/2 174 091 0,42 46,1
248 /27 [521) 172 1008 1,00 0,02 2,0
/2 1106 1,00 0,04 4,0
5/2" 1118 1,00 0,07 7,0
187y
249 7/ 2” [503) 72 351 1,00 0,00 0,00
9/2" (482) 0,95 -0,33 34,7
250 /27 [512] | [34] 3/2° 0 -0,99 -0,16 16,2
5/2” 77 -0,97 -0,23 23,7
72 (186) 0,95 -0,30 31,6
177Re
251 1/ 27 [541] | 37 | 172 1,000 0,00 0,00



O CMEUIMBAHHH BOJTHOBBIX ®YHKIIMA 413

Homep | K ™[Nn,A] | [ccour- Jr E*, xaB a, Ot 100-R
TIOIOCH! xa]
(37] { y2- | 1842 0,981 0,019 1,94
5/2" 0 0,924 0,026 2,81
177Re
252 /27 [541] V2 1,000 0,00 0,00
37{ 32" 206,6 0,931 0,069 7,41
5/2° 0,939 0,060 6,39
177Re
253 1/ 27 [541] /2 4324 1,000 0 0,00
37 3/2° 599,5 0,700 0,300 42,9
5/2" 356,7 0,861 0,137 15,9
177Re
254 | 11/2* [615] 12t 275,7 0916 0,394 43,0
38 1372+ | 4141 0,856 0,493 57,6
15/ 2* 618,0 0,809 0,549 67,9

PaGota BemonHeHa npu (huHaHCOBOH mopuepxke Poccuiickoro douna ¢yn-
JNaMEHTATLHLIX MccenoBaHuii (rpant 93-02-3803).

CITMCOK JIMTEPATYPbI

1. Vandenput G., van Assche P.H.M., Jacobs L. et al. — Phys.Rev., 1986, vol. C33,
No.4, p.1141.
2. Askos B.A., Bananos H.H., Baepenuyk 5. u np. — Tlpenpunr OUSIH P4-87-917,
Hy6Ha, 1987.
3. AiukoB B.A., Baspeimyk 5., iusypeii .M. u ap. — Tpenpunr OHSM 6-84-121,
Hy6Ha, 1984.
4.Kanestrom L., Tjom P.O. — Nucl Phys., 1970, vol. A145, p.461.
5.Lovhoiden G., Widdington J.C., Hagemann A.et al. — Nucl. Phys, 1970,
vol. A148, p.656.
6.Meyer R.A., Gunnink R., Lederer C.M., Browne E. — Phys.Rev., 1976, vol. C13,
p.2466.
7.Borgreen J., Lovhoiden G., Waddington J.C. — Nucl.Phys., 1969, vol. Al31,
p.241.
8.Basnat M.L, Pyatov N.I., Chernej M.I. — Physica Scripta, 1972, vol.6, No. 5, 6,
p.227.
9.Bunrep I'., 3onan X., Kayn K. u gp. — DUAS, 1973, 1. 4, BBII. 4, ¢.895.
10. Kanestrom I., Tjom P.O. — Nucl.Phys., 1969, vol. A138, p.177.
11.Klamra W., Hjorth S.A., Boutet J., Andre C., Barneoud D. — Nucl.Phys., 1973,
vol. A199, p.81.



414 JDKEJEINOB B.C., XYKOBCKHM H.H., LIECTOIAJIOBA C.A.

12. Amukos B.A., I'pomos K.S1., Mymunor T.M. u xp. — Hss. AH CCCP, cep.dus,,
1980, 1.44, Ne 1, ¢.103.

13.Basnar M.H., Ilaror H.H., Yepueit M.M. — YA, 1973, 1.4, Brin4, c.941.

14.Hjorth S.A., Johnson A., Ehrling G. — Nucl.Phys., 1972, vol. A184, p.113.

15.Tpomos KA., 3ubepr X.-V., Kanununnkos B.I. u np. — DUAS, 1975, 1.6, Bem. 4,
c.971.

16.111aponos M.A. — Kannunarckas aucceprauus, Jy6Ha, 1989, c.84.

17. Renfelt K.-G., Johnson A., Hjorth S.A. — Nucl.Phys., 1970, vol. A156, p.529.

18. Aimkos B.A., Baganos X.H., Jiusypeit [.H. u ap. — Tlpenpunr OUSIH P6-84-207,
[y6Ha, 1984.

19.Hjorth S.A., Ryde H., Hagemann K.A. et al. — Nucl.Phys., 1970, vol. A144, p.513.

20. IITaponos U.A., Anmxos B.A., Kapamxos /. u ap. — Ipenpunr OHSH P4-86-36,
Hy6Ha, 1986.

21. Kanestrom I., Lovhoiden G. — Nucl.Phys., 1971, vol. A160, p.665.

22.Oshima M., Muhara E., Ishii M. et al. — Nucl.Phys., 1985, vol. A436, p.518.

23.Agam U., Anukos B.A., Bananos X.H. u ap. — Tesucsl noxnanos 35 CoseluaHus no
ANEPHOI CIEKTPOCKOMUH M CTPYKTYpe aToMHoro supa, JI.; Hayka, 1985, c.1 13.

24. Anam K., Annkos B.A., Baganos X.H. u ap. — H3s. AH CCCP, cep.dus., 1985,
T.49, Ne 5, c.867.

25.Anam H., Anukos B.A., Bananos X.H. u np. — IMpenpunt OUSH, P4-88-934, Jly6-
Ha, 1988.

26. Bory-Ocmonosckan H.A., Moposos B.A., Xynai6epaues 3.H. — His. AH CCCP,
cep.¢us., 1988, 1.52, Ne 1, ¢.53.

27.Selin E., Hjorth S.A., Ryde H. — Physica Scripta, 1970, vol.2, No.4,5, p.181.

28.Lindblad Th., Ryde H., Barnecud D. — Nucl.Phys., 1972, vol. A193, p.155.

29.Foin C., Barneoud D., Hjorth S.A., Bethoux R. — Nucl.Phys., 1973, vol. A199,
p-129.

30. Fowu-Ocmonosckaz H.AA. — U3s. AH CCCP, cep.¢ms., 1991, 1.55, Ne 5, c.850.

31. Aimkos B.A., Bonu-Ocmonosckas H.A., Hecrepenko B.O. — His. PAH, cep.dms,,
1992, 1.56, Ne 11, c.43.

32. Thorsteinsen T.F., Lovhoiden G., Vaagen J.S. et al. — Nucl.Phys., 1981, vol.A363,
p.205.

13.Foin C., Lindblad Th., Skanberg B., Ryde H. — Nucl.Phys., 1972, vol. A195,
p.465.

34. Casten R.F., Kleinheinz P., Daly P.J., Elbek B. — Mat.Fys.Medd.Dan.Vid.Selsk.,
1972, vol. 38, No.13.

35.Lindblad Th., Ryde H., Kleinheinz P. — Nucl.Phys., 1973, vol. A201, p.369.

36.Lindblad Th., Ryde H., Kleinheinz P. — Nucl.Phys., 1973, vol.210, p.253.

37.Leigh J.R., Newton J.O., Ellis L.A. et al. — Nucl.Phys., 1972, vol. A183, p.177.

38.Sodan H., Fromm W.D., Funke L. et al. — Nucl.Phys., 1975, vol. A237, p.333.



«OH3IHKA DJIEMEHTAPHBIX YACTHL H ATOMHOI'O A]]PA»
1995, TOM 26, BbII1.2

YAK 532.142/143

MAKPOCKOINUYECKAA MOZJEJ1b
MAIHUTHbLIX PESOHAHCOB
B COEPUHECKUX A0PAX

C.U.bacmpykos, U.B.Monooyosa
O6beanHeHHbIR MHCTUTYT SAEPHbLIX uccnenosaHuin, [ly6Ha

JlaH 0630p KBaHTOBO-M2KPOCKOMHYECKOH KOJUIEKTHBHOH SNEPHOM MOMEJH, HHTEpIpe-
THPYIOILICH MarHMTHblE PE30OHAHChl KaK TNpOsRICHHE KPYTWIBLHBIX YNPyrux KoseGaHuii
cchepuyeckoro spa. [TpeacrarieHbl OCHOBHbIE MPEACKa3aHHS MOMENH IS SHEPIui, mepe-
XOIHBIX TOKOBBIX [UIOTHOCTEH, CYMMapHBIX BEPOSTHOCTEH BO30OYXIECHHS, MarHUTHBIX
OCUWLUISTOPHBIX CHJI, CTOJIKHOBUTENBHBIX IUMPHH, TMONYYEHHBIX B 3aBUCHMOCTH OT
MYJILTHIIONILHOIO MOPSAAKa BO36YXAEHHA, aTOMHOTO HOMEpa M MaccoBoro uucia. IpuseneHs!
pacyeTbl ceyeHHit Bo3GyxmeHHs MA-pe3oHaHCOB B (e, e’)-paccesHHHM B [UI0CKOBOHOBOM
NIPHGTHXEHHUH H B NPUOIIHXEHHH UCKaXEHHBIX BOMH. [IpHBOMMTCS cUCTEMaTHYECKOE CpaB-
HEHHE TEOPETHYCCKHX MpeNCKa3aHHH MONENH C 3KCIEPHMEHTAILHBIMH JaHHBIMH MO BO3-
6YXINEHHIO MarHHTHBIX DPE3OHAHCOB B PEaKLUMH HEYTIPYIroro DPacCesHHs 3JIEKTPOHOB Ha
cepHyYeCcKHX Sapax.

The quanturn-macroscopic nuclear model is outlined interpreting the magnetic reso-
nances in terms of torsional elastic vibrations of a spherical nucleus. The basic predictions
of this model are summarized for energies, transition current densities, total excitation
probability, magnetic oscillator strength and spread width derived as functions of a multi-
pole degree, atomic and mass numbers. The PWBA and DWBA computed cross section are
presented for MA resonances excited by means of (e, e’)-scattering. Strong emphasis is
placed on a comparison of theoretical predictions with experimental data on magnetic
resonances with A > 2 excited by means of electrons inelastically scattered on spherical
nuclei.

1. BBEIEHHE

Teopernyeckue uccnenoBaHns KOJUIEKTHBHBIX BO3OYXIEHHI aTOMHBIX sifep
METOJaMH MaKPOCKONHYECKOH (PU3HKH CIUIOLIHBIX Cpell HampasjieHbl B KOHEY-
HOM HTOre Ha MOCTPOEHHE aJEKBAaTHOH NUHAMHYECKOH TEOPUH SAEPHOIO Belle-
crea. Tor akT, YTO MHOIHME HHTEIPAIbHbIE XapPaKTEPUCTUKH OCHOBHOIO COCTO-
SHMA M KOJUIEKTHBHBIX BO3GYXHEHHii sS1pa, TaKue KaK 3HEpIusi CBA3H, UEHTPO-
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Wbl 9HEPrUil PE30HAHCOB, CyMMapHbIE BEPOSTHOCTH BO30OYXIEHMS, CTOIKHOBH-
TenbHbIE LIMPUHBI, IUIABHO MEHSIOTCS C POCTOM MacCOBOTO YHC/IA, yKa3blBaeT Ha
KpaiiHe BaXHYI0 POJib «Pa3sMepPHOro adexTa» — 3aBUCHMMOCTH YKa3aHHBIX Xa-
PaKTEPHCTHYECKHX MApaMeTpoB OT paauyca sapa U ero ¢opmel. M3yuenue saep-
HOTO OTKJIMKA B PaMKaX KOJUIEKTHBHBIX Mojeneif, OCHOBAHHBIX Ha KOHKPETHBIX
NPEANONOXEHHIX O MaKPOCKOIMYECKHX CBOMCTBaX SIEPHOM MaTepHH, Kak pas
HMEET LeNbI0 YCTAHOBHUTh 3TH «pa3MepHble» 3aKOHOMEpHOCTH. PaccmarpuBas
AP0 KaK MakpO4YacTHIly CIUIOIIHOH cpelbl H CPaBHUBasg TEOPETHUECKH MpENCKa-
3pIBa€MbI€ 3aBUCHMOCTH, CKaXeM, S3HEPrdil U BEpPOSATHOCTEH OT MacCOBOrO YMCiia
C BKCIEPUMEHTOM, MOXHO CYIMTh O TOM, HACKONBKO aleKBaTHO HMCIOJIb3yeMas
Mogeb KOHTHHYYMa OTpaXaeT CBOMCTBA pealbHOM SAEPHON MaTepuH.

Kak M3BeCTHO, NMEpBOHAYaIbHOE HM3yYeHHE SNECPHOI JAWHAMHUKH CTPOMJIOCH
Ha OCHOBE MPENCTaBIEHHI O AApe KaK O Kaljle HECKUMAEeMOH 3apsXEHHOH He-
BA3KO0HM XuakocTH. OIHAKO HAaKOIUIEHHas K HacTOSIIEMY BPEMEHH 3KCIEPHUMEH-
TanbHas MHGOpPMaNKi MO3BONSET C YBEPEHHOCTHIO YTBEPXAATh, YTO XHMAKOCTHAs
KOHLIENLHS SIEPHOrO BELIECTBa HE MOXeT OBITh NMPU3HAHA YAOBNETBOPUTEIbHOM
NO LeNOMY psily HMpHYMH. MBI MPUBEIEM JHIIb HECKONBKO apryMEHTOB, MILTIOC-
TPHPYIOLIMX 3TO YTBEPXIACHHE, C LENbI0 MOAYEPKHYTh, YTO (PU3MUECKass HHTEP-
npeTauus MAzHUMHO20 KOJIEKTHBHOTO OTKIMKAa spa B TEPMHHAX TEOPHH
CIJIOIIHBIX CPel ¢ HEOGXOAUMOCTBIO MPHBOMHUT K 3aKJIIOYEHHIO O TOM, YTO Alep-
Has MaTepus obJyiagaeT CBOMCTBaMH, MPHUCYLIHMM YNPYroMy KOHTHHYyMY, a He
XKUIKOCTH.

BHavajle KpaTko OCTAHOBMUMCS Ha NMPUHIUMHANBHBIX MPENNONOXEHHIX, CO-
CTaBJISIOIMX OCHOBY SAEPHON Monesnu Xuakoi kammu. CoracHo MCHOJb3yeMo-
My B 3TOM MoOfenu (peHOMEHOIOTHYECKOMY OMMCAHHIO SNEPHBIX CBOMCTB, mpen-
T0JIaraeTcs, YTO AECTPYKTHBHBIH 5((eKT CHIT KYTOHOBCKOTO OTTaIKHMBaHHs CTa-
OuIU3UpYeTCS SIEPHBIMM CWJIaMH TPUTSXEHUs, MONENUPYEMbIMH CHIaMH
MOBEPXHOCTHOTO HATAXeHHs. B KauecTBe ypaBHEHHH, yNPaBIsSOIMX KaK PaBHO-
BECHEM, TaK W AMHAMMYECKHUM OTKIIMKOM SIpa, NMPUHHUMAIOTCA KJIaCCHYECKHe
ypaBHEHMs] UAEATbHOM XHAKOCTH (YpaBHEHHE HEMPEPHIBHOCTH M ypaBHeHHe Dii-
nepa). HeMenneHHbIM CIIEACTBHEM 3BPUCTHYECKOH TMMOTE3bl O CXOACTBE IOBE-
JeHHs ANEPHOM MaTepHH W TOBEICHHS HEBA3KOH XHIAKOCTH ABNAETCA TO, YTO
MOJEeNb KaIUTH JOIYCKAeT TOJIBKO ChepuuecKylo paBHOBeCHYI0 opMy sipa. Yxe
3T0 06CTOATENLCTBO CBUAETENBCTBYET O HEAAEKBATHOCTH XKUAKOCTHOM TUMOTE3HI,
MIOCKONIBKY OHa HE OTpaXaeT HaKOIUIEHHBIX 3HaHHi O paBHOBECHOH thopme siaep.
Cronb Xe SBHOE pacxOoXOeHHe C SKCHEPUMEHTabHBIMM NaHHBIMH UMEET MECTO
U JUIS TIPEACKa3bIBaeMbIX KarlelnbHOH MOMENbI0 NMHAMMYECKHX CBOMCTB sapa.

OCHOBHbIE MPHUHLMIIbI THIPOANHAMHYECKOTO ONMMCAHUS KOJIIEKTHBHBIX [BH-
XEHHIl HYyKJIOHOB HaKJIa[BIBAIOT CYIECTBEHHbIE OTPAaHHYEHUS HA XapakTep Koj-
JIEKTUBHBIX BO3OYXIEHHil sipa, MOMYCKas CYyIIECTBOBAHME B SJEPHOM CHEKTPE
TONBKO OJHOW KOJUIEKTHBHON BETBH BO30YXNEHHii, CBA3aHHOH C TOBEPXHOCT-
HbIMHM KoneGanusMu sapa. [ToBepXHOCTHBIE KONIIEKTHBHBIE MOABI MAEHTH(HLIN-
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Puc. 1. DxcnepuMeHTaNbHBIE AaHHbIE N0 3HepruaM E (2+) xBanpymions-
HBIX BO30YXICHHH B 3aBHCHMOCTH OT MacCOBOIO YHCJia A sipa: A —
3HEPrHH HHXAHLINX 2*-COCTOSHHH; @ — LIEHTPOMIBI SHEPIHil H30CKa-
JIAPHBIX AIEKTPHYECKHX pe3oHaHCcoB. TeoperHyeckHil pacyeT B paMKax
¢moHa-IMHAMHYECKOH MOIENH — CIUVIOLIHAS JIHHMA, MYHKTHpHas
JIMHHA — Npe[CKa3aHHs MONENH XHIKOH Karuii

pYIOTCA KaK BO3OYXAEHHS 3/IEKTPHYECKOIO THNA, NOCKONbKY 3TH BO30YXIEHHBIE
COCTOSIHHS XapaKTEPU3YIOTCS OTIMYHBIMH OT HYNISl 3HAYEHHSMH 3JIEKTPUYECKHX
MYJIbTHIIOJIBHBIX MOMEHTOB. M3 KJjacCHYeCKOH 3eKTPOAMHAMHKH CIUTOLIHBIX
CPel HM3BECTHO, YTO BHEIHEe 3JICKTPOMarHUTHOE BO3MYILEHHE 3apSXEHHOM
HECXXHMAEMOH KarUTH MOXET BhI3BaTh JIHLIb FAPMOHHYECKHE MCKaXEHHs €€ paB-
HoBecHO#H ctepuueckoit opmer: R(f) = R(1 + G’Ml(t) Yw(i'\)), 00yclIoBJIEHHbIE
Bo30yXmeHHeM KoneGaHMH IUIOTHOCTM  3/IEKTPUYECKOro Toka J (I, f) =
A -
= (eZ/A)nBV(r, 1) c Ge3BuxpessM nonem ckopoctu: SV(r, 1) = Vr}‘Yw(r)a)‘(t);
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R ,
31eCh n — TUIOTHOCTb YHUCJIa YacTHLL, Ym(r) — cthepuueckasi GyHKLIUS MYITbTH-
MONBHOrO Mopsiaka A U ax(t) — aMIUTATYIa KOJUIEKTHBHBIX KoneGanuid. Teo-

peTHyecKas OLeHKa SHEpPTHH, HalpHUMep, KBaJPYMOIbHOMH MOBEPXHOCTHON MOMbI
Aapa, MONydyeHHas Ha OCHOBE KallelbHOW MOJENH CO CTaHNapTHhIM HabopoM
napameTpoB MaccoBod (opMyibl, okasbiBaeTcsl npubnusurensHo B 1,5—2 pasa

Bhillle HaONMOJaeMBIX DHEPTUH HHXalIuX 2+-Bo36y>KneHm71 cthepuueckux samep,
NOABEPXEHHBIX CHIBHOMY BIMSHHIO 000JIO4eYHOH CTPYKTYpHl, U B 3—4 pa3a
HHXE [OJIOXEHUS HEHTPOUIOB SHEPrUi THIaHTCKUX KBaApYNONbHBIX PE30HAHCOB
(cM. puc.l). Ctons sBHOe pa3HOINaCHE C SKCIEPUMEHTOM TOBODHUT O HEoO-
XOAUMOCTH MEPECMOTpPa XUAKOCTHBIX NPEACTABIECHHN O SAEPHOH MaTEpHH.
Cnenyer TakXe OTMETHTBb, YTO B KalelbHOH MOJE/IM HHUKAK HE YUYMTHIBACTCH
KBaHTOBas cneuudukxa QepMH-pacnpeleseHuss HYKJIOHOB B OCHOBHOM CO-
CTOSTHHH.

IMoxaryii, Haubonee CyLIEeCTBEHHBI HEAOCTATOK XMAKOCTHOH TPaKTOBKH
SIEPHOr0 BEIECTBA COCTOMT B MPUHIMIIHATGHOH HEBO3MOXHOCTH ONHCaHHA
MarHWTHOTO OTKJIMKA siipa, B TO BPeMs KaK CYLIECTBOBAaHME MAarHHUTHBIX KOJI-
JIEKTUBHBIX MOJ B CIIEKTPaX MHOTHX siep SB/SETCS TBEPAO YCTAHOBIEHHBIM (hak-
ToM [1—5]. IeiicTBUTENBHO, COCTOSSHUS MarHUTHOTO THUIa OKa3bIBAIOTCH 3a Mpe-
JeJlaMH THAPOIMHAMMYECKOr0 ONUCaHMs, MOCKONBKY MEepexosl Karuli 3apskeH-
HOH HJICaIbHOM XHIKOCTH W3 PaBHOBECHOTO B BO30YXHEHHbIE COCTOSIHMSA C
OTJIHYHBIM OT HY/IS MardMTHBIM MYJIbTHIIONIBHBIM MOMEHTOM He peanusyrorcs. B
TIOC/IeIHEM MOXHO YOeIuThCS, MOACTaB/As TIPUBEIEHHOE BbILE BHIPAXEHHE IS
TOKa B ONpele/ieHHe SIepPHOro MarHUTHOIO MYNBTHUIIONBHOTO MOMEHTa MOpsSaKa

A [6—9]:

M (MM, ) = ZHZILT) Jitexvi Py, @ ac (1.1
Jlerko NpoOBEPHMTHb, YTO TaKas MOACTAHOBKA TOXIECTBEHHO oOpamtaer (1.1) B
Houb (cM. takxe [6], ¢.22). [TockonbKy OCUWIISLIMM MOTEHLHANBHOIO MOTOKa
SBNIAIOTCS E€OMHCTBEHHO [ONYCTHMBIM BHIOM COOCTBEHHBIX KonebGaHuil
HECXHMMAaeMOii HEBS3KOM XHUIKOCTH, TO U3 NMPUBENEHHBIX pacCyXJeHU HeMen-
JIEHHO CJIeflyeT, 4YTO CTAaHAApTHas KarejabHasi MOJENIb B IPUHLUIE HE CONEPXKHT
BO3MOXHOCTH ONUCaHHS MarHUTHBIX KOJUIEKTUBHBIX MOZ.

Ha HecoCTOATENPHOCTh XUAKOKAMNENbHOIO MOAX0Aa K ONMUCAHWI0 MATHUTHBIX
BO30YXIEHUi 5/pa, HECKONBKO C MHBIX MO3MuMi, o6paTuniy BHUMaHue XombL-
BapT U DKKapT, KOTOpbie B KOPOTKOM, HO KpaiiHe coepxatenbHoii 3ameTtke [10]
NPEANONIOXUIH, YTO KO/UIEKTMBHBIH MardMTHBIA KBaIpyNONbHBIH OTKJIMK
cepHYecKoro supa MOXHO pacCMaTpuBaTh KaK MpOSBIIEHHE IONEPEYHBIX
(MynbTHIONBHOCTH A = 2) xonebanuil noToka HykJIoHOB. PaccMorpennoe B [10]
NIOKalbHOE TIoe CKOPOCTH B chepuuecKoil cucTeMe KOOpAMHAT C (PHMKCHpOBaH-
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HOMH MOJIAPHOMN OChI0 Z UMEET BHA: 8Vx = — yz0Q, SVy = xz0, SVZ =0, roe o npen-

crapiser co6oil reoMeTpHuecKH GECKOHEYHO Malblil yroj 3aKpy4yMBaHHs KOJI-
JIEKTHBHOTO TOTOKAa HYKJIOHOB BOKpYr OcHM z. B opmHopomgHo 3apsxenHoi
cepuueckoil MakpoyacTHlle, MOAENHPYIOLIEH SAPO, BhAEIEHHOE Harmnpas-
neHue (B JaHHOM Cilyyae HampaBieHHE MONSPHOH OCH), BOKPYr KOTOPOro
NPOUCXOAAT Kosie6aHus BO30yXZaEMOrO CONCHOMAATLHOIO 3JIEKTPHYECKOro
TOKa, MOXET ONpEeAe/sAThCA TONbKO HaNpaBieHHEM NPOHHKAIOLIEr0 BHYTPH
AApa 9JCKTPOMAarHUTHOTO MOJIs, OPOXAAEMOro, HaIpUMep, pacceuBaeMoii 3a-
psAXEHHOi yacTuueil. HeTpyaHo mpoBepuTs, YTO Takoil THMN BpalaTenbHbIX
KoneGaHuil MPUBOAMT K OTIMYHOMY OT HYIS KBajpyNOJLHOMY MarHUTHOMY
MOMEHTY siipa B BO30YXIE€HHOM COCTOSHMH. ['eoMeTpuyecKkas KapTHHa TaKMX
xonebanuii u306paxeHa B JI€BOH 4acTH pHC.l: BepxHee M HUXHEe noyymapus
COBEPUIAIOT B NMPOTHBOGA3e OCECUMMETPHYHBIE COBHUTOBBIE OCLMUISALMH, Bbl-
pasUTEIbHO Ha3BaHHBIE aBTOPAMM 3TOH MOJENH «SAIEPHBIM TBHCTOM» [10—
14]. daHHBI# MeXaHU3M «HaMarHUYMBAHUS» YETHO-YETHOIO aapa (T.e. nepe-
X04 U3 OCHOBHOIO B BO36Y)KHCHHOC COCTOSSHHE C OTJIIMYHBIM OT HYJA
MarHUTHbHIM MOMEHTOM) oﬁycnoaneﬂ 00BEMHBIMH COJIEHOMIANBHBIMH KOJIE-
GaHUAMH MaKpPOCKONHYECKOH IUIOTHOCTH Toka. IlomuepkHeM, 4TO BO30YyX-
lleHue KPYTHIbHBIX KOneGaHuil He NPUBOAMT K (IYKTYyalHsIM MaccoBOil MIIOT-
HOCTH, T.€. OHH MOTYT UMETbh MECTO B HECXKHMMAEMOM KOHTHHyyMe. DTH KoJe-
€aHus ONUCHIBAIOTCS B TEPMHHAX OCLWUIALHMIA CONEHOUNAILHOIO TONg
CMEIIEHMH CIUIOIHOM Cpembl.

M3 KxnaccHuecKoil TEOPHH CIUTOIUHBIX CPEA U3BECTHO, YTO CIIOCOGHOCTD MOJI-
AepXKuBaTh HE3aTyXalOIIHE, PABHO KaK MPOMOJIBHBIE, TaK M MONEPEYHbIe, KO-
GaHus sBnsgercs aTpubGyToM MAaealbHO-ynpyroi cpenst [15,16], HO He HeBsi3-
KOii Xuakoctd. B mocnemmnedt, mpu HeHyneBoi paBHOBECHON TeMmepatype,
MOTYT PacHpOCTPaHATHCS JIMIIb 3BYKOBBIE, CYMIECTBEHHO MPOLONbHEIE KOJe-
Ganusa [16,17]. Ionmepeunbie caBuroBbie KOae6aHHS B KOHEYHOM ceprivec-
KOil Macce CIUIOMHOrO BEIIECTBa, Ha3bIBAEMbie KPYTUIbHBIMH, SBIAITCH,
MOXaNyH, IJIaBHBIM OTJIMUMTENBHBIM NPU3HAKOM TOFO, YTO JAHHOE BEILECTBO
ABISAETCA ynpyroi cpeioi. B xamne upeanbHOH Xumkoctd Bo36yxmeHHe
COBMTOBBIX OCLHJUISALMH HEBO3MOXHO, MOCKOJIBKY YPaBHEHHUs THAPOAMHAMHKHU
HE MPeayCMaTpUBAIOT BOZHUKHOBEHHS aHU3OTPONMH B paclpele/ieHHH Hamps-
XEHUA NPH BO3MYLIEHHH PABHOBECHOIO COCTOSHMA. IIpumepXuBasch Tpak-
TOBKM M2-pe3oHaHca KaK MNpPOSBIECHHS KPYTWIbHBIX Konebauuit [10—14]
KBaJIPYMOJbHOA CHUMMETPHH, €ro 3KCHEPHMEHTAIbHOE [eTEeKTHPOBAaHHE C
TOYKH 3peHHs (PU3MKH CIUIONIHBIX CPel MOXHO paccMaTpuBaTh KakK NpAMoe
JIOKa3aTelbCTBO YNPYIOCTH SAEPHOTO BELIECTBA.

B pa6otax [18--21] 311 cooOpaxeHus eru B OCHOBY ONMCAHWS MarHWT-
HOTO SICPHOTO OTKJIMKA B MOJENH yNpyrord mapa. B xauectse ypasHeHus, yn-
PaBIAOLIEr0 KO/UICKTHBHOW AWHAMHUKOH HYKJIOHOB, GBUIO HMCIIOJIB30BAHO YpaB-
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HeHHe Jlama* — OCHOBHOe ypaBHeHHe KoJeGaHH#H KNacCH4ecKOro MIeaibHO YII-
pyroro Bewectsa [16]. To, 4To agmekBaTHOE KOHTHHyaJlbHOE OnucaHue (B nepe-
MEHHBIX TEOPHUH CIUVICIIHBIX Cpel: IUVIOTHOCTH, MOJell CKOPOCTH, CMELICHUH, Ha-
NpsKEHHUi U T.I.) KONIEKTHBHBIX KoneOaHUH HYKIOHOB NPH BO30YXIEHUH siep-
HBIX MYJIbTHIOJNBHBIX PE30HAHCOB MOXET OBITh JaHO HE B paMKax KJIAaCCHYECKOH
TMAPOAMHAMUKM, a Ha OCHOBaHMM YpPaBHEHHii, CIIOCOOHBIX OTpa3uTh OCOOEH-
HOCTH ynpyronoao6HOro noBefeHUs (hepMH-BeLIeCTBa, BliEpBbie GbIIO MOKA3aHO
B paborax Bepua [24,25], nocBsLIEHHBIX aHaNU3y CHCTEMATHKH HEPIHii H30CKa-
JIAPHBIX 3JIEKTPUYECKMX TMTAHTCKHUX PE30HAHCOB B siipax. ApPryMeHTbl, BHIIBUHY-
Thie B [24,25], mocnyXuid cTHMynoM K pa3paGoTke KBaHTOBO-MaKpOCKOIMHYeEC-
KOW TEOpPHM CIUIOIIHOM SIEPHON cpeabl, MOJyYWBILEH Ha3BaHUE «sAJEpHOH
¢monn-nuHamMuku». B HacTosee BpeMs 3Ta TEOPUS NPOAOIXAeT Pa3BUBAThCA U
paccMaTtpuBaeTcs kak Haubonee amekBaTHas Mogenb saepHOro epMu-BeLIecT-
Ba**. B pamkax AaHHOH KOHTHHyaJlbHOH MOMENH SOEpHOH MaTepuu ymaercs
CTPOro, ¢ TOYKM 3PEHHS MaTeMaTHYecKoil (PU3MKH, MOKa3arb, YTO CYILUECTBO-
BaHHE MarHMTHBIX W3OCKAISAPHBIX PE30HAHCOB ABJISETCS C/EICTBUEM (hepMHEB-
CKOTO [IBHXEHHS HYKJIOHOB M CBS3aHHOH C HHM AHHaMH4ecKol aedopMauuu
noBepxHOCTH PepMH, onpenensiolleil KBaHTOBYIO NPHPOAY BOCCTaHaB/IHBalOILEH
CHIIBI MOMepeuHbIX KonebaHuii sapa. B coBpeMeHHOH TEOpHHM CIUIOLIHBIX Cpel
ypaBHEHUs paccMaTpHBaeMoil B NaHHOM 00630pe MOAENH HM3BECTHBI KaK ypas-
HEHHs TPHHATLATHUMOMEHTHOTO NPUOIHXeHHA [26], OCHOBAHHOTO HAa KBAHTOBOM
KMHETHYECKOM YpaBHEHHH (CM., Hanpumep, [25,27—30], rae naetcs BbIBOA 3THUX
ypaBHEHHH W MHKpocKonuyeckoe oOOCHOBaHHe snepHOH (hNIOHI-IHHAMHUKH).
OnucaHue KOJUIEKTUBHBIX SAEPHBIX JBHXEHHH, OCHOBaHHOE Ha KBaHTOBOM
KUHETHYECKOM YpPaBHEHHH, NpuBeaeHo B paborax [31—34]. -

B HacrosiieM 0630pe Mbi MIPEACTARNAEM KOJLUIEKTHBHYIO MOLE/b H30CKANAp-
HbIX MarHWTHBIX PE30OHAHCOB, cneays paboram [35—40]. B atux crarbsix pas-
BuTa O0000IIEHHAd Ha Ciydail nNpOM3BONBHOH MYIBTHNOABHOCTH uIoHa-

*TIpobnema cob6cTBeHHBIX KonebaHHii yNpyroro mwapa Ha 0CHOBe ypaBHeHHs Jlama Gbuta paccMoT-
peHa B KOHlte mpotwioro crostetus Jlam6om [22]. Cornacto JIamGy, COGCTBEHHBIE MOIB YIIPYTHX KOJle-
GaHuil Iapa XapakTepu3yloTcs JiByMs BeTBImH. [lepBas — BeTBb cepOHaaIbHBIX KOdeGaHHi — CBS-
3aHa C rapMOHHYECKHMH fedopMatrsamMu GopMmbl wiapa. JaHHBIH THII ABHXEHHH BO MHOTOM aHAIOTHY€EH
KoneGaHHAM KalnK XHIKOCTH. BTopas — BeTBB KpyTHIBHBIX KON€GaHHWH — CBSi3aHA C BO3HHKHO-
BEHHEM C/IBHIOBBIX BHYTpHOOBeMHBIX aedopmaunii. CoBpeMEHHOE HITOXEHHE 3TOH NpotiieMbl JaHO B
[23]. C ToykH 3peHHs TaHHOH K1acCH(HKALMH H3OCKATIPHbIC EKTPHYECKHE PE3OHAHCH ONMMCHIBAIOT-
cs B TepMHHaxX ctepOHIaTLHBIX xoncGaHun SIpa, MarHHTHBIC PE30HAHCH ACCOLHHPYIOTCS C aosﬁyx-
JIeHUeM KPYTWIbHBIX KOneGaHHi.

**OOLEenpHHATHIH TENepb TEPMEH «sAlepHas QUIIOHA-IMHAMHKa» MCHOJL3YeTCS [JIaBHBIM 06pa3soM
IA TOro, YTOGHl IOMYEPKHYTh OTIIHYME COBPEMCHHOIO CYIIECTBEHHO KBaHTOBO-MaKpOCKONHYECKOTO
MOAXOJA K ONMUCAHHIO KOJUIGKTHBHBIX BO3OYXIECHMil spa, OCHOBAaHHOTNO Ha KOHLEMUMH ypyronoxoG-
HOFO HYKJIOHHOTO ()epMH-KOHTHHYYMa, OT pPaHHeH «4AcpHOH IMAPONMHAMMKH», MpeNroiaraioneH
KJTACCHYECKYI0 XHAKOCTHYIO TPAaKTOBKY CIUIOMIHOH SI€PHOH Cpefbl.
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AUHaMUYECKas MOJENb MarHUTHBIX PE30HAHCOB U OTKOPPEKTHPOBAHBI MPENCKa-
3aHUS U1l BBICOKOMY/IBTUIIONBHOM AMIMONBHOM MOMB M KBAaAPYNOIBHOIO MarHMT-
HOro pe3oHaHca, caenaHHeie B [10—14]. Mpl TakXe BO MHOTOM ONMpaeMcs Ha
BBIBOJBI PaboT, MOCBSAINEHHBIX HM3yYEHHI0 MArHMTHBIX BO3OYXIEHMH TIXKENBIX
cepudeckux saep, BHIMONHEHHBIX KaK B PaMKaXx MakpOCKomudeckux [18—21,
29,41—46], Tak W MUKpockomuueckux [31,47—56] Meronos TEOPETUYECKOT0
OIHMCaHUd KOJUIEKTHBHOTO MAarHMTHOrO OTKIMKa ctepuyeckux simep. Cospe-
MEHHOE COCTOSHHE SKCIIEPUMEHTANIbHON (PU3HKH MarHUTHBIX BO30YXIEHMI JO-
CTaTOYHO INOJIHO OTpaxeHo B o63ope Pamana, ®arra u Xukca [5]. B manHOM
~0630pe MBI ynmenseM oco6oe BHHMaHHE OOCYXIEHHIO BOMPOCOB IPaKTHYECKOIO
BbISIBJIEHUS KPYTUJIBHOTO OTKJIMKa C(PEepHYECKHUX sSaep W3 AaHHBIX MO CEYEHHSIM
HEYIIPYTOro paccesiHhsl 31€KTPOHOB C BO30YXIEHHEM MarHUTHBIX PE30HAHCOB.

MEel npuaepXHBaeMcs CIEAYIOLIEro IUIaHa H3OXEHHUS.

B pasn.2 cdopmynuposansl pusnYecKHe IPHHLMILL, COCTABISIOME OCHOBY
KBAHTOBOM KOHUENIKH YIPYrOCTH SAEPHOrO BELIECTBA M BAPUALIMOHHBI METOX
pewenus npo6seMbl HOPMATBHBIX SAEPHBIX KONEGaHMiA, TIPOSBIEHUEM KOTOPHIX
SIBJIAIOTCS M30CKANIIPHBIE MYJIBTHIIONbHBIE PE30HAHCH. B 4acTHOCTH, MOKasaHo,
YTO YpaBHEHMs SANEPHOH (IIOMI-IMHAMHUKH B JIHHHOBOJTHOBOM Ipefiesie JOMy-
CKaloT aBa THna peuieHuid. Ilepsoe (monmompanpHOE) pelleHHE COOTBETCTBYET
chepouaaTbHBIM KONEGaHUAM, CBA3aHHBIM C DIEKTPUYECKMMH H30CKATAPHBIMH
pe3oHaHCaMd. Bropoe (TOpouaanbHOE) COOTBETCTBYET KpPYTHJIBHBIM KOJle-
6aHuAM, OTBETCTBEHHBIM 33 MAarHMTHbIE M3OCK&IApHbIE pe3oHaHChl. Takum
00pa3oM, MOTYEPKUBAETCS, YTO H3OCKAIAPHbIE EA- 1 MA-pe30HaHCH MOTYT GHITh
OMHUCaHbl B paMKax €IMHOro Nomxona.

MexaHH3M ITHHHOBOJIHOBBIX KPYTHJIbHBIX KoneGaHun nonpo6bHo obcyxna-
ercs B pa3sn.3, rae TakXe NpEeACTaBlIeH aHATHTUYECKHH BHIBOX BBHIPAXEHHl 1yist
MyJIBTUIONIBHOTO DHEPIeTHYECKOrO CNEKTpa U BEPOSTHOCTEH BO3OYXIEHHS
TBUCTOBBIX PE30HAHCOB. 3/1eCh Xe MPOBEACHO CPaBHEHWE NPENCKA3aHUil MOTenu
C JaHHBIMH FapMIUTANTCKOrO0 U MacCayyCEeTCKOro JIMHEHWHBIX YCKOpHTesel Mo
MHTETPAIbHBIM XapaKTEepPUCTUKAM MAarHUTHOIO KBa/IpyIONbHOTO pe3oHanca B
chepHyecKHX sapax.

Pa3zen 4 nocesmen TeopeTHYECKOMY ONMMCAHHMIO MPOLIECCA HEYMPYIOro pac-
CeslHUSI NEKTPOHOB Ha COEpHYECKHX aapax. Mbl NpUBOOMM aHAIMTHYECKH
nony4eHHsle (OPMYITBI JUIS KOJIEKTHBHBIX MEPEXONHBIX TOKOBBIX IUIOTHOCTEH M
MarHuTHBIX OpMaKTOPOB TBHCTOBBIX PE30HAHCOB. [IpenCTaBNeHbI PE3yabTaThI
YUCIIEHHBIX PAacYeToOB CedeHHil (e, €’)-paccessHus B GOPHOBCKOM NpPUOIMXEHUH
MCKaXeHHbIX BOMH. Ha OCHOBE MONyYEHHBIX NEPEXONHBIX TOKOBBIX MIOTHOCTEI
JdaHbl OUCHKH CYMMAapHBIX NMPHBEACHHBIX BEPOSTHOCTEH BO3OyxmeHus MA, T = 0
PE30HAHCOB M BBIYMCIIEHBl MX OCLMJIIATOPHBIE CHIBL. [IpexckasaHus cpaBHMBa-
torcs ¢ panHbiMu DALINAC st cevenuii Bo30yxaeHus M2-pe3onanca B 140¢e.

AHaJIH3 BHICOKO®HEPTETHYECKOTO JUITONBHOIO MarHUTHOIO OTKJIHKA CepH-
YECKHX fAOep CAenaH B pasi.5. MBI IPUBOAMM OLEHKH MOJIOXKEHHS LEHTPOMAA
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9HEPruil, BEPOSTHOCTH M CeYeHHs BO30YXIEHHS BBICOKONEXaIEH 1 -Monst B
3aBUCMMOCTH OT aTOMHOIO HOMepa W MaccoBoro yucia sapa. Ilpenckasanus
CPaBHHUBAIOTCS C AaHHBIMH TMHEHHOro YCKOPHTENs 37€KTPoHOB B beiitce (Bates
LINAC) no BbISIBJIEHHIO 3TOM MOABI B CEYEHHH HEYIIPYIOrO pacCessHus dIEKTPO-

HOB Ha 208py,

B pa3n.6 onuceiBaetcs uiona-aMHaMUyecKas MOJIENb 3aTyXaHHsl JTOKaIbHBIX
BpallaTenbHbIX KoseGaHHil Ha OCHOBE KOHUENLHMH BA3KOCTH SAEPHOIO BEILECTBA,
BBENEHHOH NpH aHanM3e mnpouecca JeleHus. IIpuBoAATCS aHaIUTHYECKas
3aBUCHMOCTb CTOJKHOBHTELHBIX WHPUH MA, T = 0 pe30HaHCOB OT MacCOBOrO
4YKC/la U MYJIbTHIIONIBHOCTH BO30YXIEHHS.

B 3akmioyeHHH o6CYXHalTcs NpencTaBieHHbie B 00630pe pe3ynbTaThl H
OCHOBHBIE BBHIBOJBI AIEPHOrO (UIIOHA-IHHAMHUYECKOTO MOAXOAA, KacalolHecs ac-
MEKTOB MaKpPOCKOMHYECKON TPAaKTOBKH MarHHTHBIX PE3OHAHCOB.

2. BAPHAIIMOHHBIH METOJ
OIIOHA-THHAMHYECKOI'O OITHNCAHHA
KOJUIEKTHBHBIX JIBHXXEHHI HYKJIOHOB

CoBpeMeHHOE TMOHHMaHHE KBAHTOBO-MAKPOCKOMHYECKHX 0cobeHHOCTe
KOJUIEKTMBHOIO SIEPHOTO OTKJIHKa GbUIO MOCTHrHyTOo Grarosaps MHOIOMJIaHO-
BbIM HCCIIEOBAHHSM, BHINIONHEHHBIM B MOCJHEAHHE ToAbl B paMKax LIMPOKO
NpH3HAHHBIX M B3aHMHO NOMOJIHAIOLIMX METONOB SAEPHOHN (PMioHA-IMHAMHKH,
H3JI0XEHHUIO KOTOPHIX MOCBAIEeHb 0630pst [25,29—31,57—62] u MoHorpaduu
[9,28], rne ucuepnbiBalouM 06pa3oM H3TOXEHbI PU3HYECKHE NPHHLIKIBI SAep-
HO# (IIOMA-THHAMHKH H OTpaxeHbl paGoThl, ony6nHKOBaHHbIE 10 Hayana 'rexy-
LIEro AECATHIIETHA.

2.1. YpaBHeHHs sjepHOH (uuioHa-THHAMHKH. KOHCTpYKTHBHOE YTBEpX-
JIeHHe smepHOil (MIoUI-AHHAMHKH COCTOMT B TOM, YTO aJeKBaTHOE MaKpo-
CKOIHYECKOE OMUCAHHE KOJUIEKTHBHBIX JABHXEHHH HYKIOHOB MOXeET ObITh JaHO
B TEpMHMHAX TPUHAALATH JIOKAIBHBIX MEPEMEHHBIX TEOPHH CIUIOLIHBIX Cpeld —
IUVIOTHOCTH pacrnpefesieHus Macchl p (I, ), TpeX KOMIIOHEHT CpefHell CKOPOCTH
Bo36yxnaemoro noroka V; (r, 1) W J€BATH KOMIIOHEHT CHMMETPHYHOIO TEH30pa

YINPYTHX HanpsiXeHHi P,.j (r, ), IMHAMHKa KOTOPHIX MOMYHHSAETCH Cleylluel
3aMKHYTO#M cucTeMe ypaBHeHwii [35]:

oV
ap "k _
a P ax, 2.
- dv, oP,
p— ax"‘ +p 3” 2.2)
dp.. av., av, v,
—byp —dyp -—typ K-y, 2.3)

dt ik ax Jjk ax ij ax



MAKPOCKOITHIECKAS MOJIENTb MATHUTHBIX PE3OHAHCOB 423

rae d/dt — nonHas (cybcTaHUMOHAIbHAs) MPOM3BOAHAN H N — IUIOTHOCTD
yHcia 4acTHL. 34ech U fanee M0 NOBTOPAIOLIMMCS HHIEKCAM MOApa3yMeBaeTcs
cymmupoBaHue. Ilepsoe u3 ypaBHenmii — (2.1) npeacraensier co6oit xopoiuo
H3BECTHOE ypaBHEHHE HENpEepHBHOCTH. YpaBHeHHE (2.2) ONMUCHIBAET JBUXKEHHE
NIOTOKa  sifepHoro  BewiectBa.  KonnexTHBHble  BO30yXmeHWs  sapa
KJacCH(UILMPYIOTCS MO THUMY BO3MYILAEMOro IONss CpeaHeil CKOpOCTH
IOBHXEHHS HYKNOHOB. U o6o3HavyaeT MIIOTHOCTb BHYTPEHHe#l BHEpPruu sapa,
OTHECEHHYI0O K Macce HYyK/JOHa. YpaBHeHHe (2.3) KOHTpOJIMpYET IHHAMHKY
BHYTPEHHUX HanpsxeHHH. HemuaroHanbHas CTpPyKTypa TeH30pa ynpyrux Ha-
NpsXeHHUH Moapa3syMeBaeT BO3MOXHOCTb TOrO, YTO BHEILIHHE BO3MYLIEHHS MO-
TyT BbI3bIBaTh KOJIJIEKTHBHBIH OTKJIHK (hepMH-CHCTEMBI HYKJIOHOB, CONMPOBOX-
JaeMbIii aHM30TPONHBIMH HCKaXEHHAMHU B pacnpeaeneHHH BHYTPEHHUX Hanps-
XeHHu#l B oObeme aapa. DTo MOXeT UMeTh MecTo JuGo B ynpyroii cpene, nubo
B BA3KOH XHIKOCTH. B upeanbHo# (HeBA3KOH) XHMAKOCTH NMPOLECC PacHpoCT-
paHEeHHUsl BO3MYILEHHI mpoucxoauT Ge3 pa3pylueHus paBHOBECHOIO H3OTPOI-
HOrO COCTOsIHMA. BBeneHue B omMcaHMe KOJIAEKTHBHOIH sAOepHOH AMHAMMKH
ypaBHeHHs (2.3) dakTHUECKH O3HayaeT OTOXIECTBIAEHHE MOBEAEHUS CIUIOLI-
HO# AepHOH MaTepHH C NMOBENEHHEM HAEAIBHO YNPYroro BeLeCTBa, XapaKTep-
HbIM [MHAMHYECKMM CBOHCTBOM KOTOPOro SBJSE€TCs CMOCOOHOCTb MOA-
JepXHBaTh He3aTyXalollHe KaK MpoJoJibHbIE, TaK W MonepeyHsie kKosebaHus,
NOCKO/bKY, KaK noka3aHo B [23], ypaBHeHus (2.1)—(2.3) moryt 6bITb TOYHO
NpUBEIEHbB K OCHOBHBIM YPaBHEHMSAM JIMHEHHOH TEOPHH yNpyroctu (TouyHee
roBOps, YPaBHEHHSM, YNPaBASIOINM KoneGaHHSIMH MAETbHO YNpPYroro Belle-
crBa). JlanHOe 06CTOATENBCTBO ABNSETCA OOHOM W3 IMABHBLIX MPHYMH TOTO, YTO
B sidepHOH nioMA-IMHAMHKE KOJUIEKTHBHBIH OTKJIMK HYKJIOHOB HWHTEp-
nperupyeTcs B TepMHHax KoneGaHHMH ynpyroro KoHTHHyyMa. HHTepecHO
OTMETHTB, YTO H3/IaraeMbiifi B NaHHOM 0030pe METOX MO3BOJISET MOJYYUTh B
aHAIHTHYECKOH ¢opMe CMEKTP COOCTBEHHBIX MOA MIHHHOBOJNHOBBIX YIPYruX
chepounanbHelX M KPYTHIBHBIX Kone6aHWW 1wapa, B TO BpeMs KaK Ka-
HOHHYECKHI METOA TEOPHH YNMPYrOCTH, OCHOBaHHbI Ha ypaBHeHuM Jlama, He
MO3BOJIIET ONHO3HAYHBIM 00pa3oM peluTh 3Ty npobiaemy [23].

Kak 6b110 0OTMEUEHO BO BBECHHH, MPHHLHIIHANbHAS BO3MOXHOCTh BO3GYX-
aeHus B cepuyeckoM oObeMe HECXKHMaeMOi SICpHOH Marepuu MONEepPedHbIX
CABHIOBLIX KoneOGaHHH SBISETC CNEICTBHEM TOrO, YTO SAPO MPENCTABISET CO-
60ii CyLIECTBEHHO KBaHTOBYI0 (hepMU-CHCTEMY YacTHll, PaclpedeeHHBIX I10
OXHOYACTHYHBIM OPOHTaM CPEIHEro MOJIA B COOTBETCTBUM C npuHumnoM [Maynu.
B npuUBOOMMBIX HHXE MOCTPOCHHAX (DIIOMA-IMHAMHYECKOH MOJEIH KBAaHTOBas

npupoaa SU.IepHOﬁ cpeabl OTpaX€Ha B TOM, UTO MapaMeTpbl OCHOBHOIrO COCTO-

Al/3

AHUA  CepHYECcKOro supa pamuyca R =r, M paccuuThBalOTCH B

npubnuxennu Tomaca — @epMu IS BHIPOXIEHHOH MO CIHHY M H3OCIHHY
tepmu-cucteMnl  HykinoHoB [14,18,24,27,35]. Tlpu MopenupoBanuu sgpa
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cepuyeckoil MakpoyacTHied CIUIOLIHOrO HeCXKHMaeMoro (pepMHU-BewecTsa
00BIYHO NPHHMMAIOT, YTO Macca M 3apsi OJHOPONHO pacmpeneneHel B oObeMe
spa, a paclpeiesieHHe HaNpSXEHWH, BCIENCTBHE c(hepHYecKoil CHMMETpHH,

W30TPOMHO, M OIMHUCHIBAETCS TEH30POM BTOPOIO paHra: P'3 = Pyd,. Cnenyer

OTMETHTb, YTO NPEINOJIOXEHHE O BO3MOXHOCTH OIMCAaHHMA YNPYrMX CBOKCTB
sipa B TepMHHaX TEH30pa HaIpSXEHHUil BTOPOro paHra SBasSeTcs B 3HAYUTEIbHOM
CTENeHH IBPHUCTUYECKMM. B «MeTome MOMEHTOB», pa3BUTOM MuXailoBBIM H
BansbyneBbiM ¢ kosuieramu [29], omucaHue SOepHOH AMHAMHMKH CTPOHUTCS C
HCMONb30BAHHEM TEH30pOB  HANMpPSXKEHWd BBHICIUMX pPaHIoB (DO  MATOro
BKJIIOUMTENBHO).

2.2. F'aMWIbTOHMAH HOPMAJbLHBIX KoJieGanmil. PacCMOTpUM JIMHEiHBIE KO-
nebanus sapa, npeHeOperas npu 3ToM (IYKTYaLUUsIMH IUIOTHOCTH, T.€. Hojarasi,
4TO sigepHas cpeiaa HecxkuMaeMma. JIMHeapH3OBaHHbIE YpaBHEHHS MBHXCHHS,
OIUCHIBAIOLIME MalTble OTKJIOHEHMS sipa OT COCTOSHHUS PaBHOBECHS, UMEIOT BHI:

BV,
W—O 2.4)
o8V, 08P,
i !k dU
Poar "o, tPoax % 25
8P, BV, 98V, aP,
=P St [P | Vg =0 (2.6)

ox. ox, ij k 8
j i

Co6CcTBeHHBIE 4acTOThl KOJeOaHWid MOryT 6511‘5 NOJyYeHbl Ha OCHOBE
BapHallMOHHOTO NPUHUMINA, (PaKTHYECKH NPEACTABISIOLIEro co00i COBPEMEHHYIO
¢hopMynUpOBKY «Me€TOAa HOPMalbHBIX KoopAuHat» Panes [22,63]. McxomHbM
MyHKTOM METO/a ABJSETCS ypaBHEHHE SHEPreTHYECKOro 6ananca, KOTOpoe mony-
yaeTcss YMHOXEHHEeM ypaBHeHUs (2.5) Ha 8Vi C MOCNEAYIOIIUM HHTETPUPOBaHHEM

o oﬁrbeMy sapa:

9
ot

a8V,

VT d1+§ [p, BUBY, + 8P, 8V] do,=0. (2.7)

1 pOSV 2dt - I oP.
v
DTo ypaBHEHHE KOHTPOIMPYET COXPaHEHHE BHEPrUM B mpolecce KojeOaHui.
Paznenum, nanee, NPOCTPAHCTBEHHYIO H BDEMEHHYIO 3aBUCHUMOCTH MYJIbTHIIOJb-

HBIX (IYKTyalnuil MOTEHIHana U CKOPOCTH:
U n=0"m o, W E=aman. 28

3necs a?” (r) — KOMIIOHEHTHl MOJII MITHOBEHHBIX CMEIIEHUH, H oc}‘(t) pac-

CMaTpHBaeTCs HWXe KaK aMIUIMTyAa (HOpMajipbHast KOOpAMHATa) B COOT-
BETCTBHH C TPAaKTOBKOH KOJUIEKTHBHBIX SIepHBIX KoyiebaHuii, nanHoi Bopom u
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Mortrensconom [7]. YuutsiBas Bripaxenue anst ¢nykTyauuu ckopoctd (2.8),
U3 ypaBHeHHs (2.6) HaxomuM, Y4TO GIYKTyalus TEH30pa HaNPSXEHHil BhIpaxa-
ercst 6eccieoBbIM CHMMETPHYHBIM TEH30POM BHIA

AN
BP,.]. r,n=-| P, a—xj+ 8x,. +8ij akgg a,. 2.9)

Iloncrasnss (2.8) u (2.9) B (2.7), MOXHO yOeauThCs, Y4TO YPaBHEHHE 3Hep-
reruyeckoro Gananca (2.7) CBOEMTCS K OCLHJUISTOPHOMY raMHJIbTOHHaHY
(eHeprus nuHeiHBIX KonebaHuii):

, (2.10)

KOTOPbIA SB/IAETCH MHTErPAlOM KOJUIEKTHBHOTO $AEPHOrO ABMXeHHs. U3
OMHUCaHHOH NMpOUEAYPhl BbIBOAA KOJIEKTHBHOTO raMUJIbTOHHAHA Sj1pa CIIEayeT,
YTO MAacCOBBIH MapaMeTp B, n napameTp XecTKOCTH C,, onpezensiorcs coor-

HoleHusMHU [68]:

B=[ pya dar, @.11)
v
A A
1 da; da
C'2J'P0 X~+_La. dt +
v J 1
aa}‘ aax aP
Lt 47 _ A A_ 0]
+§ Ps axj ™ ajl Po %G ox. |% do, . (2.12)
A ] j

Takum o6pasom, npobriema HaXOXaeHHs COGCTBEHHBIX YaCTOT ALEPHBIX KO-
nebanuil CBOIMTCS K BBIYMCIIEHHIO (DIYKTyaLMii CKOPOCTH (M/IH, YTO TO Xe Ca-
MO€, MOoJis MTHOBEHHBIX CMeEIeHHA) W ¢nyKTyauuii noreHunana. PaBHoBecHble
3HAYCHUS MUIOTHOCTH P, BHYTPHOGBEMHOTO P\ U MOBEPXHOCTHOIO P nanenuii

paccMaTpHBalOTCS KaK [laBHbIE MapaMeTphi MOJENH, OTpaxaioulye crneuupuky
snepHo# cTpykTypsl. Tak, B 0606menHom merone Tomaca — Mepmu TH napa-
METPEI BBIYHCASIOTCS B NPHONHXEHHH JIOKATBHOM MIIOTHOCTH C HCIOIb30BaHHEM
cun CkupMa unu FoHu.

B paGote [27] naHHbIHi BapHaUMOHHBI TOOXOX OBUT HCHONB30BAH npH
BBIYHC/IEHHH COGCTBEHHBIX HEPTHii BIEKTPHUECKHX H30CKATAPHBIX PE3OHAHCOB.
Hdna  oueHKM OGBEMHOrO HNABNEHHA WCIONB3OBATOCH (HEPMH-TA30BOE MPH-
Gnuxenne. [loBepXxHOCTb mpu 2TOM cuMTanach cBOGOZHOH OT HanpsXeHHUH:
Pg = 0. [lpennonaranocs Takxe, 4To Graroaaps HECXHMAEMOCTH ¥ CBOWCTBY Ha-

CHILUEHHS SAEPHBIX CHIT (PIIYKTYalHIMH TIIOTHOCTH BHYTPEHHEH SHEPIHH MOXHO
npene6peyr: dU = 0. B atomM npuGnuxexnu ypaBHeHus (2.4)—(2.6) cBomdaTcs K
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CTaHJApTHOMY BOJIHOBOMY YPaBHEHMIO [y (yKTyauuii CKOPOCTH 8Vi (paBHO
KaK M s (IyKTyaudid HanpsxXeHHH SPU). Ilocnennee, B CBOIO O4YeEpeb,

CBOOAHUTCA K ypaBHCHﬂlO FCIIBMI‘OII]:LIaZ
ASV + K*8V =0, (2.13)

ecii 3aBUCHMMOCTh OT BPEMEHH OCHOBHBIX JMHAMHYECKHMX MEPEMEHHBIX KO-
JIEKTHBHOTO ABMXEHHUA HYKJIOHOB I0JIaraTh rapMOHHYECKOH. MHOro4MCIeHHBIE
pacyeThi, BHINOJHEHHBIE B PaMKaX slepHOM (IIOMA-IHHAMHMKH, NMOKa3blBAIOT,
4ro HabNMIofaeMble SHEPTUM THIAHTCKHX PE30HAHCOB XOPOLIO BOCIIPOH3BOAATCA
Ha OCHOBE IpEANOJOXeHHs O BO3GYXIeHHH JUTHHHOBONHOBBIX (k — 0) Kome-
Ganmii. B npuOnMXeHHMH ATMHHOBOJIHOBBIX Kojebanuii ypasnenue (2.13),
3alMCaHHOE B TEPMUHAX IIOJII MTHOBEHHBIX CMELIEHHH, NMEPEXOJUT B BEKTOP-
Hoe ypaBHeHMe Jlamnaca, HONMONHEHHOE (B CHIY HECXHMAeMOCTH) YCIIOBHEM
COJIEHOHUAJIBHOCTH:

Aab=0,  divat=o0. 2.14)

D10 ypaBHEHHE MMEET TOJIBKO JIBa HE3aBUCHMBIX, PETYJISPHBIX B HYNE PEICHHUS
— nosiouaanpHoOe ¥ TopouaanbHoe [63,64], obnagawoiire NpOTHBOMOIOXHBIMU
NPOCTPAHCTBEHHBIMU YeTHOCTAMH. [locienHee CBOMCTBO TMO3BOJIAET CBA3ATH
3eKTPHUYECKHi M MATHUTHBIA M30CKAIAPHbIE OTKNIHKHU S7pa C TUIOM BO30OyX-
JaeMOro Moy CMELIEHHH. ’

2.3. CoberBennbie ceponnanbHble KOIeOaHUS A1pa: d/IEKTPUIECKHE H30-
CKaJIApHBIe Pe30HAHChI. B snepHOii iona-1MHaMKKe 3EKTPHYECKHE PE30HaH-
Chl MHTEPIpPETYPYIOTCA B TepMHHaX cteponnanbHbx Kosebanuii sapa. TakuM
KOJIeOaHUSIM COOTBETCTBYET TNOJNOMAAILHOE peLIEHHE BEKTOPHOINO YpaBHEHHS
Jamutaca [63]:

a(r) = rot ot r r"YM(?) =L+ 1) Vr}‘YM(?). (2.15)

'DHepreTHYECKHil CHEKTP M30CKAIAPHBIX OJIEKTPUYCCKHX MY/IbTHIIONBHBIX
pe3onaHcos, Brepsble nonydeHHsiii Hukcom u Cupkom B paGore [27] (cm.
takxe [58, 62, 65—67]), naercss BeIpaXeHHEM

2 172
E(EX,T=0)=h0)F[§(27»+1)(%—1)] , 2.16)

O, — OCHOBHad YaCTOTa KOJIEKTHBHBIX KoneOanuii cepuyeckoit pepmu-

CHCTEMBI HYKJIOHOB!

o omY3 a3, 2.17)

_F_ ko
R 2m120
Vg o6o3Hayena rpanuuHas ckopocts ®@epmu. CrinomHas NuHUs, W300paxeH-

Has Ha pHC.l, BOCIIPOU3BOAHUT pe3ysbTar BBIYHCIIEHHU, BHITIONIHEHHBIX B [27] Ha
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ocHoBe (2.16). Kak nonuepkusaetcs B [27], dopmyna (2.16) ¢ TpexnpoueHT-
HOIl TOYHOCTBIO BOCHPOM3BOAMT HaOJllogaeMble BHEPIrMH KBaIpPYyNOJbHBIX
BJIEKTPHYECKUX H30CKAISIPHBIX pe3oHaHCcOoB. CTonb BHIPAa3UTEIbHOE CoIlacue
TEOPETHYECKOr0 MpelCcKa3aHus 3HEPrHH CHJIBHO KOJUIEKTHBM3UPOBAHHOIO
OTKJIMKA SApa, KaKOBbIM SIBISETCA THTAaHTCKHHl H30CKANAPHBIH KBaJpyNONbHbIA
pe30HaHC, yKa3blBaeT Ha TO, 4TO ero (opMUpOBaHME B 3HAYMUTENHHOU Mepe
ompenessiercs CBOMCTBOM KBAHTOBOH  YNPYroe€TH SIE€PHOTO  BelUECTBa.
[punuMas 3TO BO BHHMAaHHe, B CJIEAYWOIUUX pasjenax, MOCBIIEHHbIX
MAarHMTHOMY M30CKQIIPHOMY OTKJMKY, MBI [PHAEPXHBAEMCA TeX Xke
npuOnKeHui U PU3NUECKUX NPEANONOXEHUM.

®u3ryecKoe colepXanue NOHIATHS YNPYIrOCTH SAepHOH MaTepHM MPOACHSIOT
cneqylmue apryMesThi. PaccMaTpuBas OCHOBHOE COCTOSHME siIpa KaK HaCHIIIEH-
Hyl0 10 COHHY M HM30CIHHY KOHEYHYI0 (DEPMH-CHCTEMY HYKJIOHOB, MOXHO
OTMETHTb, YTO PABHOBECHBII TEH30P U3OTPOIHBIX HAIPSXEHHH (JaBlIeHHe) U300-
paxaercsi B HMIYJIbCHOM MpPOCTpaHCTBe (hepMu-cepPOi, pamuyCc KOTOpOu
tuKCHpOBaH IPaHHYHOH CKOPOCTbI0 PepMH vy , HOCKONBKY PaBHOBECHOE JaB-

2
PoVF
5
KapTHHY, (UIYKTyal{y HanpsKeHni 8Pij , BBOJMMBIE KOHCTPYKTHBHO IIpH JIMHEA-

JIEHUE B (PEPMH-CUCTEME 3adacTCA aBHEHHEM P, = . Umes B BUOY 3T
0

pu3auuu ypasHeHu# (2.1)—(2.3) ¢ noOMOIIBIO 3aMEHBI
Pij - POSU + 8Pij (2.18)
(COBMECTHO C MOACTaHOBKaMU P —> P, + dp u V, > Vi0+ 8V, , npuiem p =08

0
CHITY HECKHMAEMOCTH H Vi = 0, T.K. B OCHOBHOM COCTOsSsHMH Npeamnojaraercs

OTCYTCTBHE MOTOKOB), TPaKTYIOTCS KaK KBaJPYNONbHbIE MCKaXeHHs (epMu-
cepst. Takas uHTepnperauus oOycIOBIeHa TeM, 4TO TeH30D GUIyKTyauuid Ha-
NPSXECHHH 8Pl.j o0jlalaeT TeMM Xe€ CBOHCTBAMH CHMMETPHUH, YTO H TEH30D

KBaJIpyMoJbHOr0 MOMEHTa (B YaCTHOCTH, IIMYp 3TOr0 TEH30pa PaBEH HYIIO).
IIpu BO3MYyLIEHHH OCHOBHOIO COCTOSIHMS $pa, YTO B UMIIYJIbCHOM MPOCTPaH-
CTBE COOTBETCTBYET BO3MYIUEHHIO Y3IIOBOH CTPYKTYpHl OPOMT OOHOYACTHYHOTO
depMu-BUXeHUs, 3an0NHIIOKX (pepMU-cepy, Bo3HMKaeT oOparHas Kore-
pEHTHas peakuus HYKJIOHHBIX OpOMT, CTpeMsllasics BEPHYTh HMCKaXEHHYIO
depmu-chepy B paBHOBecHOE chepUYECKH-CHMMETPHYHOE COCTOsiHHE. B Ko-
OpAMHATHOM MPOCTPAHCTBE siiepHOro obbeMa MCKaxeHHs ¢epMH-chepsl npo-
ABJISIOTCS KaK CABHMTOBbIE aHWU3OTPOIHBIE HANPSXEHHMs, JIOKATBHOE pacnpeje-
NleHHe KOTOpHIX omuchiBaeTcs TeHzopoMm (2.9). Takum obpasom, BoccTa-
HaBlMBaOIas cuna ynpyrux  fedopmaunit  F=G, o,  eCTh  CHIa,

Bo3Bpamammas ¢epmu-cepe PpaBHOBECHYIO ChepUYECKH-CHMMETPUUHYIO
dopMy, a pacnpefelleHHI0 BHYTPEHHUX HaNpSXEHMH — paBHOBECHHIH HM30T-
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ponHeid BuA. IlpemcrtaBneHHble pacCyXOEHHS HUIOCTPUPYIOT KBaHTOBOE
NPOMCXOXIEHHE SAEPHOH YIPYTOCTH, KoTopas, KaK nogyepkusaercs B [28], He
CTOJILKO CBsi3aHa CO crneun(HKoi 060I04eYHOH SAEPHOH CTPYKTYpPHI, CKOJIBKO
ABJISIETCA CEACTBHEM Gonee 06IMX NPHYHH — (PEPMHEBCKOTO ABHXEHHUS HYK-
JIOHOB M IMHaMH4ecKo# aedopmanuu moBepxHoctu Pepmu.

3. KOJUIEKTHBHAA MOIEID
KPYTHWIBHOI'O MATHHUTHOI'O OTKIIMKA SIIPA

M3ockansgpHele MarHMTHBIE KOJ/UIEKTHBHBIE MONBI B SIEPHON  (hioMa-
IOMHaMMKe CBA3BIBAIOTCA C BO30YXIEHHEM YHCTO BUXPEBOIO MOJSA CMEIUEHMI M
OMMCHIBAIOTCS BTOPHIM M3 [BYX HE3aBHCHMbIX PELICHHH BEKTOPHOIO ypaBHEHHs
Jlannaca (2.14). Haiinennoe B [35] perynspHoe B Hyne peLieHMe MOCIERHEro,
Ha3biBaEMOE TOpOHAANbHBIM nonieM [63], umeer Bua

8, (1) = rot r A1, (). 3.1)

Ilone (3.1) oreeyaer BO36yxneHHI0 aHddeEpeHLHATBHO-BPALIATENbHBIX
OCUMJUIALHH KOJUIEKTHBHOTO NMOTOKA HykioHoB. Kak 6su10 mokasaHo B pasn.2,
YPaBHEHHUs K/1aCCHYECKOW TMAPOAHHAMHKH, NMPHHATBIE 3a OCHOBY B CTaHapT-
HOH MOIENnH XHAOKOW KaljiM, He MMEIOT PELICHHid, COOTBETCTBYIOLIMX TAKOrO
pona KOIEKTHBHBIM BO30yxmeHHsM supa. B pa6ore [23] maremaTuuecku
CTPOro 10Ka3aHo, YTO YpaBHEHHUs snepHoil ¢umona-auHaMuxu (2.4)—(2.6) mo-
ryT ObITh CBEAEHBI K YPaBHEHHIO MUl MAEAILHO YNPYroil CIIOWHOM cpensl. B
CBA3M C ITHM €CTECTBEHHbHIM 00pa3’oM ANEPHOHl MaTepuH NPHUMHCHIBAITCA
¢u3HIECKHEe KayecTBa, MPUCYLIHE YIPYroMy KOHTHHYYMY. MarHUTHbIE TBHCTO-
BbI€ PE30HAHCHI ABIAIOTCA ONHHM M3 HauboJsiee XapaKTEPHBIX MPOSBIEHHI 3TO-
ro yHIaMEeHTaILHOrO CBOMCTBA.

B poTauuoHHOM XapaKTepe KOJIEKTHBHBIX KPYTHJILHBIX KONeGaHHIH MOXHO
yOenuThCs, NPeICTaBUB Moje CKOPOCTH 8V B XOPOIIO 3HAKOMOM M3 KJIACCHYEC-
KOH MEXaHHMKH BHIE

3V = [r x Q, (3.2)
rae
A A,
=-V'r,, ®
€CTh noJie yl‘JIOBOﬁ CKOpOCTH BpamaTCHbelX IlBH)KCHPIil, KOTOpoO€, KaK ACHO

BHIIHO, ABISAETCS JOKAIbHOM BeKTOPHOH (pyHkuueii. KonnekrusHas ammnuryna
0, B TEOMETPHYECKOM CMBIC/IC MNpeACTaBiseT CO6OH GecKOHeYHO Manbiil

a3UMYTAIBHBIA YIOJl 3aKPYyYMBAHHA KOJUIEKTHBHOTO NMOTOKA HYKJIOHOB BOKpYT
OCH, HanpasjieHHe KOTOpOii, HanpuMep, NpH BO30YXAEHHH SApa HEYNPYro pac-
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CesHHBIMH DJIEKTPOHAMH, 3aJla€TCs HaNpaBICeHHEM IONepeYHoil (TOpoHaab-
HOH) KOMIIOHEHThl MPOHHKAIOLIEr0 B SAPO JIEKTPOMArHUTHOIO MO,
HHAYUHPYEMOTO IIOTOKOM 371eKTpOHOB. KaK Mbl BUIMM, (PIIOMI-AMHaMHUYECKas
MOJeNb pacuIMpseT NPEACTABIEHNS O BPAIaTElbHBIX KOJJIEKTMBHBIX CTENEHIX
cBoGoxbl snpa. PaccMaTpuBaeMble KOJUIEKTHBHBIE KOJNeGaHHs TMOTOKa HYKJIO-
HOB HOCAT XapakTep AuU(pdepeHLHanTbHOro (a HE XECTKOIO, TBEPAOTEIBHOIr0)
BpALEHHMs, YTO, KaK ObLIO NMOJYEPKHYTO BBHILIE, MOXET MPOMCXOAMTh TOTBKO
Gnaronaps ynpyruM CBOHCTBaM sA€pHON (pepMH-CpeIbl.

3.1. CobGcrBennbie MOALI KPYTHIBHBIX SAEPHBIX KoneGaHuii M 3Hep-
reru4eckuii ciiekTp MA, T = 0 pezoHancoB. MaccoBbiii napamerp B, u napa-

METP XECTKOCTH C;» KPYTHJIBHBIX KoJieOaHui AApa BBIYUCIAIOTCS Ha OCHOBE TE€X

xe BolpaxeHui (2.11) u (2.13), 4To U mapaMeTphl BNEKTPHYECKUX PE3OHAHCOB,
4TO cam0 mno cebGe mNoKasbiBaeT OGIMHOCTb GIIOKA-IMHAMHYECKOTO METOHa
onucanusg o6oux THUNOB pe3oHaHcos. IMoncrasnss (3.1) B (2.11), MoJIy4yaeM cie-
Oyloliee BeIpaXeHHE Ui HHEPLHOHHOTO NapaMerpa:

=M —(———7“ L) (3.3)

KosthduunenT KpyTHIbHON XECTKOCTH, BHIYMCIIEHHBIH B npubnuxenun Toma-
ca — ®epmu u3 coorHomeHus (2.13), pasen

2
C, =M %—> A - 1) (A2, (3.4)

rne M = mA — macca sigpa, { V2 ) — CPENHAA CKOPOCTh (PepPMU-TBUXEHUS HYK-
3 .
JI0HOB (B NpuOIMXeHun (pepMu-rasa V2 )= 5 i,) u * ) — pamuaneHbIi MO-

MEHT nopsaka A. B nanbHeHmMx pacyerax Mbl UCNOJib3yeM (hepMHEBCKYIO ali-
MPOKCHMALMIO TUIOTHOCTH PacTipeie/eHus YacTHI

ny(r) = n(0) [1 + exp ((r — RY a)]". (3.5)

Jleranu BBYHCIEHHH WHTErpaNoB, ONPENENSIOLIMX MAcCOBBI MapaMeTp u
napaMeTp XEeCTKOCTH, BHIHECEHB B NPHIOXEHHE 1.

W3 MynbTHIONBHON 3aBUCHMOCTH NapaMeTpa KpyTHIbHOH XecTKoctu (3.3)
CIIEYET, YTO HECXKHMAaeMOe SIAPO He JOMYCKaeT AMIOJBHBIX JTMHHOBOJIHOBBIX
KPYTUIIbHBIX KoOjlebaHMii: 4acTOTa AUNONBEHONM Momel obpamaeTrcs B HoNMb. He-
TPYOHO MPOBEPUTb, YTO BO30OYXIECHHE MMIOJIBHOTO TOPOMAAILHOIO HOMS
CMELIEHU! NPUBOIUT K TBEPAOTENIBHOMY BpALIEHHIO sApa KaK Lenoro 6e3 mime-
HEHHS ero BHYTPEHHETO COCTOsHUs. JlefcTBUTENBHO, B cly4ae A = | KOMIOHEH-
THI TOMSL CKOPOCTH MUMEIOT BHL: SVx = Qy, 8Vy = - Qx, SVZ = 0, 4TO COOTBETCT-

BYCT pacCIlpEACSIEHHIO TTOJI1 CKOPOCTH MPH TBEPAOTEIbHOM Bpalll€eHHUH sAOpa C yr-
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Ta6muua 1. TeoperHueckas 3aBHCHMOCTh IIEHTPOHIOB 3HEPIMA M IPHBEJXEHHLIX
BEpOATHOCTEH BO36YKAEHHS H30CKAIAPHBLIX MATHHTHBIX PE30HAHCOB
B c(epHYECKMX AApPaX OT MAccOBOr0 YHMCJIa H ATOMHOIO HOMepa

ML | EMN=k ATV MsB | S B MM =y, Z2 A3 2 gudh?
M2 45 A~V3 MaB 0,7 Z2 u? pm?

M3 70 A~V 3 MaB 23Z2A%Y3 2 gpmt

M4 95 A~V3 MaB 59Z2A%43 12 ¢M

JIOBO# 4acTOTOH BpaweHHs Q2 = O, . Bo3byxaenne AUNONLHOrO NMONS AaeT BKJIaN

TONBKO B KHHETHYECKYIO SHEPIHI0 KO/UIEKTHBHOTO ramunbronuana (2.10), Toraa
KaK MOTEHLUHalbHas SHeprus BMecTe ¢ K03(p(HULNEHTOM KPYTHIIBHOM XECTKOCTH
obpamaercss B HONb. BCMOMHHas M3 MEXaHHKM OCHOBHYIO copMmyny s

. 1 .
KHHETHYECKONH 3HEPrHH BpaLEHHS Tsp=5"Q 2 BUAMM, YTO MAcCOBHIii KO-

a(PULMEHT ECTh MPOCTO MOMEHT WHepuMH sapa: B, = J,. Jlerko ybenuThes, YT
npu A = 1 BbYKCIIEHHBIH MacCOBbIH KO3((ULHMEHT TOUHO COBMALAET C MOMEH-
TOM MHepUMH TBepaoro wapa: J, = (2/5) MR 2

B snepHoit  (OMA-IMHAMHMKE 3HEPIMH  MYIBTHINONBHBIX  KojeGaHHi
E,L:ﬁ(o;‘ OTOXIECTBIAOTCA C LEHTPOWIAMH SHEPrHil KOMIEKTHBHBIX BO3OYX-

JeHHit (B JaHHOM Cllydae M30CKISAPHBIX pe30HaHCOB). [TonHBIH My/IbTHNONBHBIA
cnekTp sHepruii E (MA, T=0)="# C,/ B, MarHMTHBIX PE30HAHCOB, TPaKTye-

MBIX B TEPMHHAX COGCTBEHHBIX MOA MUTMHHOBOJIHOBBIX KPYTHJIBHBIX KoleGaHHi
cepuueckoro anpa, umeer sua [38,39]:

rn (3.6)

B npubnuxeHUH Pe3KOro Kpas 3TO BhIpaXeHHe mpeobpasyeTcs K cieayole-
My*:

A2y 12
E(M?»,T=0)=ﬁ[$—2(2?~+l)(l—l) }

1 172
E (. T=0)=fo,[ 5 @h+3) A= | 3.7

*B npuGIHXEHHH Pe3KOT0 Kpasi MacCOBBIi mapaMeTp (MOMEHT HHEPUMH KPYTHIbHBIX xoncﬁaﬂnﬁ)
AA+1) -

M TapaMeTp KPYTWILHOH XECTKOCTH, COOTBETCTBEHHO, paBHbl [35]: RA=3Mm

2 MAZ=1) - 2
C, = MvaH)R
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Puc. 2. TI'eomerpuyeckad KapruHa M2 M3
MarHMTHBIX KBaApyroJibHOro (ciieBa)

M OKTYNOJIBHOIO (CIpaBa) TBHCTOBEIX

OTKJIMKOB cthepHYecKOoro sapa

Puc. 3. Teoperuueckue OLEHKH TMONIO- 407
XEHHS LIEHTPOMIOB 3HEPTHil M30CKasAp- \ — M2
HBIX MAarHMTHBIX KBAApPYTIONBHBIX PE30- S M3

[+
o

ad
-

HaHCOB B 3aBMCHMOCTH OT MaccCOBOIo
yucnna (IMHUH). CUMBONIBI — JaHHbIE
DALINAC [3,4]

E(MA), MaB

[IpubnuxeHHble  OUEHKHM  LEHT-
POMAOB 3HEPrHH MY/IbTHIONbHBIX
TBHCTOBBIX pe30HaHCOB B
3aBHCHMOCTH OT MacCOBOro 4YMcla
npuseneHbl B Tabn.1. DTu oueHkH
NOJy4eHbl NMPH 3HAYEHHH MapameT-
pa snepHoro panuyca r, = 1,3 ¢mM. Monens npeackasbiBaet, 4TO H30CKIAPHbIN

MarHWTHHIH KBaApYNO/bHBIH DPE30OHAHC 3aHUMaeT IHEPreTHYECKH HMXaiiluee
nojgoxeHue. BToT akT ABAAETC CNEACTBHEM TPEANONOXEHHS O QJIMHHOBOJ-
HOBOM xapakTepe B030yxaaeMmbix KosneGaHHil, B KOTOphe BOBJIEKAETCS BCS
macca ctepudeckoro sapa. Kak yxe ormevanoch, KBaapynosnbHoe Bo3Gyx-
AeHHEe aCCOLMHPYETCA C KPYTHJIbHBIMH KOJ€6aHMAMH, MPH KOTOPHIX TOJY-
wapus chepHyecKoro siapa OCLUM/UIMPYIOT B NPOTHBOGase, KaK MOKAa3aHO B
neBo#H YacTH puc.2. B npasoit yacTH pucyHKa H306paxeHO pacrpeneneHue
CMEIUEHHH, XapaKTepH3ylolliee OKTYIOIbHBIA MAarHUTHBIH OTKJIHK.

HaxonnenHas x HacToslieMy BpeMeHH dKCIlepHMEHTaTbHas HHGOPMaLHMs 0
MarHHTHBIX Pe30HaHcax ¢ A 2 2 He cTo/b Gorara 10 cpaBHeHHI0 ¢ HHopMaLHeit
06 anextpuyeckux. Ha puc.3 npuBenenb npeackassiBaeMble SnepHOR (oma-
AMHAaMHUKOM LUEHTPOMIb 3Hepruit MA, T = () pe30HaHCOB B 3aBUCHMOCTH OT Mac-
cosoro yucna. Cyns no nureparype [5], Hanbonee HaeXHBIMH SBISIOTCS HaH-
Hpie JlapmMiTanTckoro nuHeinHoro yckopurens (DALINAC), nonydeHHrle npu
M3YYEHHH CEYECHHH HEympyroro paccesHus Mox yraom 6 = 165° anekTpoHOB

sHeprueit 20—100 MaB Ha snpax 28Si, 90Zr, 190ce u 20%py, [1,3,4]. Cornacuo
Puxrepy, cina M2-KonneKTHBHBIX BO3GYXAEHHIl cepHUECKHX Anep TOKATH30-
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BaHa B 0OOJIaCTH SHEPrHii, UEHTPOUI KOTOPO# XOpOIIO anmnpoKCUMHUpPYETCs Ciie-
IyIOIIEi 3aBUCMMOCTBIO OT MaccoBoro yucna [3,69]:
E._~44A7Y3MsB. (3.8)

exp

Takas 3aBHCHMOCTb, KaK OTMEYAIOCh BbIllle, CBUAETEIbCTBYET 00 OOBEMHOM
XapakTepe MarHUTHbIX BO3OyxpaeHuid. Kak BunHO U3 Tabn.2, SKCepUMEHTATb-
Hag CUCTeMaThKa 3Hepruii M2-pe3oHaHcoB [5] B cdepuyecKux sgpax Ha-
XOMMTCS B HEIUIOXOM COIVIAaCHH C MpPENCKa3aHHAMH SIEPHO# (IIIOMI-TMHAMUKH
NOJOXEHUH LEHTPOMHOB YHEPrUil TBHCTOBBIX KOJIEKTUBHBIX BO30YXICHHI.
[IpuBenenHsie YMCNCHHBIE OLIEHKH IMOJyYeHbl NpH 3HAYEHHSX IapaMeTpa
pamuyca r, = 1,2-1,3 ¢m u napamerpa nuddysnoctu a =0,55-0,6 ¢M. Pas-

6poc B TEOpETHYECKMX 3HAYEHHSX NPHBENEHHBIX B Tabn.2 XapakTepHCTH-
4eCKMX MapaMeTpoB Pe30HaHCOB OOYCIIOBIEH BapHallMeH 3THUX IapaMeTpoB B
yKa3aHHBIX Mpejelnax.

Tabmuua 2. TeopernyeckHe NpefCKa3aHHA IOJIOXKEHMA NEHTPOHIOB 3IHEPIHIA,
NpUBEJEHHBIX BePOSTHOCTEH BO30YKIEHHA M CTOJNKHOBHTEILHBIX HIMPHH
HM30CKAIAPHBIX MATHUTHBIX TBHCTOBBIX Pe30HAHCOB B cdepHUeCKHX #AApax.
DKcmepuMenTanbHple aaHHble DALINAC

DreMeHT E (M2), M=B Y B M7, 12 2 T (M2)T, MsB
Teopust | DKcrepuMEHT Teopus DKCIIEpHMEHT Teopust
28gj 11—13 13—16 230 £ 20 340 +20 1,5+0,5
N7 8—10 8—10 1300 + 300 1620 1,0+ 0,3
140Ce 7,5—9 7,5—10 3100 * 300 6000 + 600 0,8 +0,3
208pp, 6,5—38 6—38,5 5300 + 300 8500 + 750 0,6 +0,2

Heo6X0oaMMO TakXe OTMETHTb, YTO BBHIBOAbI JaHHOH MOIETH COBMNAgalT C
pe3ynbTaTaMH, MOJNyYEeHHbBIMU B PaMKax MeTofa MOMeHToB (pynkuuu Burnepa, B
TOM CJlydyae, €CITd OrPaHHYUTHCSA NPH OMHMCAHUM TeH30paMH AedopManuii BTOpo-
ro panra [29]. OnHa M3 BaXHBIX OCOOEHHOCTEH METOAa MOMEHTOB COCTOMT B
TOM, YTO 4YacTOTH KoJeGaHWii 3a paMKaMH IHHHOBOJIHOBOTO NPHUONMHXEHHUs
PacCUMTHIBAIOTCS MYTEM CaMOCOIIaCOBAHHOIO BKJIIOYEHHS! BBHICOKOMYIBTUIIONb-
HBIX JedopMauuii paBHOBECHOTO (hepMH-pacnpeieNieHus], ONUCHBAIOIIMXCS TEH-
3opamu jgeopmanumii BeicluMx padroB. Cneicrsus jganHoro adipexTta IpH
ONMHCaHMM PE30HAHCOB BBHICIIMX MYIBTHIONbHOCTEH A = 3 mogpoGHO obcyxna-
1oTcs B 0030opax [29,61]. ’
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BaxHb1# BHIBOJ SIEPHON (UIIOUL-IMHAMHKH COCTOMT B TOM, YTO TMTAHTCKHE
pe3oHaHCHl GOPMHUPYIOTCS KOTEPEHTHBIMH KOJIEGAHHSIMH BCEX HYKJIOHOB B IOJI-
HOM sIepHOM 06beMe, T.e. HOCAT OGBEMHBIH, a HE MOBEPXHOCTHBIH XapakTep.
Ilpu BO30YXneHHH NMOBEPXHOCTHBIX KOJIEOaHHil B KOJIIEKTHBHOE ABUXEHHE BO-
BIIEKAETCS TONBKO nepuepuiiHat yacTh HYKIOHOB. B paGore [67] mokasaHo,
YTO CTEeNEHb KOJUIEKTHBHOCTH MOBEPXHOCTHBIX BO30YXIEHHH HHXE, 4eM 0OBbeEM-
HbiX. O6 06BEMHOM XapaKTepe IMraHTCKHX BO3GYXIEHHil CBHIAETENbCTBYET TaK-

xe A 3_sapucumocrs LIEHTPOH/Ia FHEPTHU PE30HAHCa OT MaccoBOro yucna [28].
Bnusnue nuddysHoCTH AnepHOro Kpas Ha SHEPrHH KOJUIEKTHBHBIX BO3GYX-
ACHHA MpPOAeMOHCTpUpOBaHO B [62,70]. Pacuer ¢ peanncTHyeckuM pacnpene-
JIEHHEM TUIOTHOCTH yMEHbIUAET 3HA4YEHHS SHEPrHi MO CpPaBHEHMIO C MX 3Ha-
YEHHSIMH, BHIYMCIICHHBIMHM B NPUOIHXEHHH pe3Koro Kpas sapa [28].

Hccrnenosanue 3aBHCHMOCTH 3HEPrHH TBHCTOBOIO PE30OHAHCA OT TEMIEpaTy-
pbi nokasano [71], uto ¢ poctom nocnennei ot 0 1o 5 MaB ueHTpouas! sHepruii
TBHCTOBBIX PE30HAHCOB CABHIAlOTCH B BBICOKO®HEpPreTHYecKyl obnacts He Gonee
4em Ha 1—2%.

I“osopa 06 o6wmux TCHACHLUHAX B OTHOCHTE/IBHOM MOJIOXXEHHH LIEHTPOHIOB
3Hepmﬁ MarHHTHBIX H 3JIEKTPHUYECKHX H3OCKAISAPHBIX PE30HAHCOB B CIIEKTpe
cd:epuqecxoro sapa, Cieayer OUCHHTb OTHOLLUEHHE

EMAMT=0) _ (2L+3)
EEMT=0) 202A+1)

<1, A2 3.9)

H3 (3.9) cnepyer, 4TO LUEHTPOMMIBI SHEPTHH MAarHUTHBIX M30CKAIAPHBIX Pe30-
HaHCOB MYJIbTHNONLHOCTH A 22 B 3HEPrETHYECKOM CIIEKTPe PacrooXeHbl
HHX€ UEHTPOHIOB IHEPIHil 3TEKTPHYECKHX H3OCKAIAPHBIX PE30HAHCOB TOi Xe
MY/IbTHIIONIBHOCTH. BTO YC/IOBHE TaKXe BBHINOJIHAETCS H U OUMObHBIX H30-
CKa/IAPHBIX PE30HAHCOB, B MPEANOJO0XEHHH O HECXHMAaEMOCTH SNEPHOrO Be-
mecrBa. B pacuerax [18,29,39,72,73], BBINOMHEHHBIX B paMKax pa3jIMYHBIX
METOLOB ANEPHOH (PIIOMA-IMHAMHUKM, H30CKAIAPHBIH IMIO/BHBIA 3JIEKTPH-
YECKHi PE30HaHC CBA3bIBaeTCA C BO3GyXneHHeM B 06GbeMe Aapa MoaoMIaTbHBIX
TOKOBbIX KosneGaHH#i TOponmonono6Hoi cTpyktypsl. [lonoxenne uenTpouma

3TOr0 pe3oHaHCa XapakTepu3yercs oueHkod S50—70 A7Y3 MsB. Bxcne-
PHMEHTa/IbHas CHCTEMAaTHKA JHEPTHH AMMONBHOIO MArHHTHOIO pEe30HaHCa

XOpOoLIO annpoKCHMUpYeTCH oueHKoii 41 A 3 MsB.

3.2. CymmapHas BeposTHOCTh B030yxneHMs MA, T = 0 TBHCTOBBIX MO,
H3naraemblii MaKpOCKOMMYECKMii MOAXOA MO3BONSET CHENATh BIIOJIHE KOHKpeT-
HbIE BBIBOAbI O CTENEHH KOJJIEKTHBHOCTH MAarHMTHBIX BO30YXIEHHMi Pe30HAHCOB,
MEpO# KOTOPOH CIIyXHT NpHBEICHHasd BEPOATHOCTh BO3OyXiaeHHs. DTa xapak-
TEPUCTHKA MOXeT ObITh Omnpe/enieHa KaK CpefHee 110 BpEMEHH OT KBalpaTa Mo-
IyNis MarHUTHOTO MYJIbTHIOJBHOTO MOMEHTA:
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IRy
f 2
BMMN =| ~ | {MM., o) )t. (3.10)

J.

1
3nech J U Jf—— MOJHBIH MOMEHT sipa B HaYaJlbHOM U KOHEYHOM COCTOSHUSAX
COOTBETCTBEHHO, J V2A + 1. OnpepneneHue MarHUTHOrO MOMEHTa uepes
(aykTyauuu 9MeKTPMYECKOro TOKAa [JaHO BO BBEJEHMM. 3[ECh U Jajiee Mbl
NPUBOAMM pe3yIbTaThl BHIUUCIEHUH B cHCTeMe ¢ (PUKCHPOBAHHOH MONSPHOM
OCBIO.

Mb1 paccMarpuBaeM OTKIIMK Spa Ha BO3MYLUEHHME, KOTOPOE HE 3aTparuBaeT
CIIMHOBBIX CTemneHed cBOOOJbI MU HE CHUMAET M3OCIHHHOBOIO BHIPOXIEHHS B
(epmu-cucteMe HykI0HOB. [loguepkHeM, YTO U3ydaeMble pOTallHOHHBIE ITYKTY-
alMM MONisi CKOPOCTH NMPOUCXOAAT NMPH MOCTOSHHOW IVIOTHOCTH paclpeneieHHs
3apsna n, = (eZ/ A) ny u Macchl p, = mn,. B paMkax Takux NpeAnonoXeHuu

KOJUIEKTUBHbIE OCLUM/ULILKMA HYKJIOHOB KOTEPEHTHO COOTHECEHBI C KONeOaHUIMH
COJIEHOMZATLHOTO IIEKTPHYECKOro TOKA, IPOCTPAHCTBEHHOE paclipefie/ieHHe KO-
TOPOTO XapakTepH3yeTcs IUIOTHOCThIO*

i, . t)_—Zn rot r Y, (F) &, (©), 3.11)

rae o, (1) = ax e o " (xx — aMIUIMTYAa HYJNeBBIX KoneOaHHi, KOoTopas,cornac-
Ho Bopy u MortTenscoHny, naercs BripaxeHueM [7]:
172
0 2.\1/2 fi
= (la, (1) — .
oy = (loy, ()17 ), [ 28, o ]

C y4eToM CKa3aHHOTO, MPHBENEHHas BEPOATHOCTh BO3OyxmeHus MA, T =0
TBHUCTOBOH MOJBI ONpeleNseTcs CIENYIOIMM BhIPaXEHUEM:

BMM =7y, Z2A P32 gu 2 (3.13)

(3.12)

rae

_3A@+D[_A=D W2 13 a2
"m0 [5(2x+3)] Om= "

*CpasnuBast opMmyiny (3.11) ¢ XOpOIIO H3BECTHBIM M3 KJIACCHYECKO# JIEKTPOAHHAMHKH [74,75]
BbIPRXCHHEM TOKAa HaMarHHYMBaHHS
j(r, ) =crot M(r, 1),
HaxouM

M(r, ) =— n r Y, (r)(xx(t).

TaxuM 00pa3oM, audpepeHIHATBHO- npamaTcanue KoneGaHHs 9/1pa COMPOBOXAAITCH OCLHUIALHIMH
COJIEHOMJATBHOTO TOKa HAMarHWYHBAHHA.
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Or1a dopMyna monydeHa B nMpUOIHXEHHN PE3KOro Kpas sSapa, KOTOPOe Mo3Bo-
JII€T BBHUIENUTD SBHYIO 3aBUCHMOCTb B (MA) OT aTOMHOro HOMeEpa M MacCOBOTO
qucna.

IIpuBeneHHbIE pacCyXIEHHUS MOKa3bIBAIOT, YTO MEPEXObl sapa B BO36yXaeH-
HbI€ COCTOSHHUS C OTIMYHBIM OT HYJS MarHUTHBIM MYJIBTHIONBHBIM MOMEHTOM
MoryT OBITH BBI3BaHbI BO30OYXAEHMEM KOJUIEKTHBHBIX POTALMOHHBIX KoneOaHHii
IOTOKA HYKJIOHOB. YCpEHEHHBIH MO BPEMEHH MAarHUTHBIA MY/JIbTHIONBHBIA MO-
MEHT, OOYCIOB/ICHHBIH TaKMMHM KOJeGaHHSAMHM C YacTOTOM ®,, RaeTcs BbIpa-

XCHHUEM

_ZA[ A 2By o0 ek
M(M)‘"A\jxﬂ ; “k(zmc]" A22.  (3.14)

CymmapHsie BepossTHOCTH MA, T = 0 pe30HaHCOB B 3aBUCHMOCTH OT aTOMHO-
ro HOMEpa U MacCOBOIO 4YHCIIa, BhIYMCeHHbIe o ¢opmyne (3.13), npuseneHs! B
Tabn.1. Ecnu orpaHM4uThCS NMPUGIHXEHUEM DPE3KOTO Kpas, MOXHO OTMETHTh,
4TO B aHAJIMTHYECKHE BHIpAXEHHUs WIS 3Hepruu (3.7) M BEPOATHOCTH BO3OYX-
neHus (3.13) BXOOUT €AMHCTBEHHBIH MapaMeTp — KOHCTaHTa SAEPHOIO paaMyca
ro» HAIOIas HEKOTOPBIi pa3bpeC B YUCIIEHHBIX OLEHKAX STHX BeTHYMH. OTMETHM

CJICAYIOIYI0 BHYTPUMOIE/IbHYI0 KOPPENALUIO MEXAY TTOJIOXKEHUIMH LHEHTPOHAOB
aﬂepmﬁ ¥ BEJIMYMHaAMU TIPUBCAECHHBIX BepOﬂTHOCTCﬁ H 3HaYC€HHEM IapaMeTpa
I’O. C YBEIITHYECHUEM rO SHEprud MarHUTHOH TBHMCTOBOM MOMBI HpOPlBBOJ’leOﬁ

MYJbTHITOIBHOCTH YMEHBIIAETCS MPOMOPLUOHANBHO r2, a CyMMapHas MpHBEEH-
Has BEPOSATHOCTbh pacTeT Kak rgx_z.

Bonpoc o0 cpaBHEHHH MONYYEHHBIX B HaHHOH KOJUIEKTHBHOW MOIENH MpUBE-
NEHHBbIX BEpOATHOCTEH BO3GyxneHus MA, T = 0 pe30HaHCOB C 9KCHEPAMEHTANb-
HBIMM [aHHBIMH TpebyeT crenManbHBIX KOMMEHTapHeB. PealibHble M3MepeHMs
TIOKa3bIBAIOT, YTO MarHWTHas My/IbTHIOJBHAA CHla pac¢parMeHTHPOBAHA IO J(O-
BOIbHO GonbioMy 4Mcny cocrosHui. Hanpumep, no nanueiM paboTel [69] B

sape 907Zr cuna M2-konnexTBHBIX BO30yX/JeHHil pacnpeneneHa Mexny 34 co-
CTOSIHHSIMHM B 00GNacTv sHepruii 8 + 10 MsB; HeHTp nOKanM3alMu CHIIB Ha-
XOHUTCS TpH 3Hepruu ~ 9 MosB. DKcHepUMEHTATbHON HHTErpaibHOM Xapak-
TEPUCTHUKOH MHTEHCHBHOCTH BO30YXIEHMS pe30HaHca SBISETCS CyMMapHas Be-

pOSTHOCTh  MA-NEPEXOMIOB: z Bexp(M?»). CornacHo  o6wenpuHATOd B

MaKpOCKONUYECKUX TEOPHUSAX TOUKE 3PEHHs, HMEHHO C 3TOM BEIMYMHOM Ciienyer
CPaBHMBAaTh TEOPETHYECKHE OLIEHKH BEPOATHOCTH BO3OYXAEHHMs H3ydaeMo# KOJi-
JIEKTUBHOH Monpl. Takoe cpaBHeHHe TNpHBefeHO B Tabn.2 mis cdepuyecKux
Anep, B CNEKTpax KOTOPHIX BHEpBbie 65T HAEHTHHLMPOBAH MATHUTHBIN KBAIpY-
MOJIbHBIH PE30HAaHC.
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o 104 "_- L'—"E Puc. 4. Paccuurannble B paMkax ¢umona-
P 3 _--" M3 i NUHAMHYECKOH  MOIENH  CyMMapHBIE
Sy 104 NpHBEJCHHbIE BEPOATHOCTH M30CKAIAP-
& ] HBIX KBAJpYMOJBHOTO M OKTYHONBHOTO
310 MarHUTHBIX DPE30HAaHCOB KaK (PyHKLMH
= ] maccoBoro yucina. CHMBOIBI — JaHHBIE
S 107 DALINAC [3,4]
e
a 10 *3

10 1 g, 90y 1400, 208pp :

L850 100 180 200 250

A

Ha puc.4 n3obpaxeHbl cyMMapHble NpHBENEHHbIE BEPOATHOCTH M2- u M3-
TBHCTOBBIX BO30YXIeHHH KaK (PyHKLIMH MacCOBOro 4YKcia. 3aBUCMMOCTb aTOMHO-
ro. HOMEpa OT MaccOBOIO YMCJla NapaMeTpH30Banach W3BECTHOH 3MMHPHYECKOIH
¢opmynoii [76]:

- A
2+00154%3°

KOTOpas XOpOIUO OMMCHIBAaeT AAPAa, PacroOXEHHbIE BAOJAb HOPOXKH P-cTa-
6unpHocTH. CHMBonaMu HaHeceHsl aaHHbie DALINAC, npeacrasnenHsie B 06-
30pHbIX noxinanax Puxrepa [1,3,4]. BunHo, uyTo TeopeTHuyeckue npeackas’aHus
ans aGCONMIOTHBIX 3HaueHUH B (MA), BLIBOLHMBIE M3 paccMaTpHBaeMoOil KOJi-
NIEKTHBHOH (PIIOMA-THHAMUYECKOH MOJENH, HAXOAATCSA B HEMJIOXOM KaYeCTBEH-
HOM COIVIaCHH C 3KCMEpPHMEHTaIbHBIMU. OXHON M3 NPUYMH HENOCTaTKa Npen-
CKa3bIBa€MOH MarHMTHOM CHIIBI, KaK 3TO cienyeT U3 Tabn.2, mo CpaBHEHHIO C
9KCINEPHMEHTATbHBIMH JaHHBIMH SABNAIOTCH, KaK Mbl MOJIaraeM, YNpoOIUEHHbIE
NPEANONIOXEHHS O sHEpPHOH CTpyKType. IleiicTBHTENbHO, B NpeACTaBlIEHHOM
MOENH WHAMBHAYATbHOCTh KaXI0ro sapa cneuHGHUHpYeTCs JIHIIb €r0 aToOM-
HBIM M MAacCOBBIM YHC/IaMH, M HE YYHTBHIBAIOTCA OCOGEHHOCTH 00010Ye4HOI
cTpykTypsl. IlocnemHee OGCTOATENHCTBO SBISETCH, €CTECTBEHHO, CIMIUKOM
CHIIBHBIM ynpouieHHeM. TeM He MeHee, KaK BHAHO M3 pHC.4, Mojenb KayecT-
BEHHO INpaBHJIBHO nepenaer HaGiiomaeMylo 3aBHCHMOCTb B (M2)-daktopa ot
MaccoBOro 4YHcCia.

B naHHOM paszene Mbl PUBENH OLEHKH CyMMapHBIX BEPOSTHOCTEH BO30YyX-
JOEHHS MarHWUTHBIX KOJUIEKTHBHBIX MOJ, MOJIyYeHHble GE30THOCUTENLHO K TOMY,
KaKoil MpoOHOH 3apsAXeHHOW YacTHLEH WHAYyHMPOBaHbI CONEHOHIAILHBIE KOJle-
6aHKs 9IEKTPUYECKOTrO TOKAa BHYTPH siipa. BeIuHCIEHHast BEpOATHOCTD SBIAETCH
KOJINYECTBEHHOH MepOd HUHTEHCHBHOCTHM M30CKAISIPHOro pe3oHaHca, o0ycnoB-
JIEHHOTO KOTepeHTHBIMU KoneOaHusMH B (haze NpoTOHOB U HeiTpoHoB. [ToaTOMy
BeposATHOCTh (3.13) ciemyeT TPakTOBaTh KaK NpPHBEIEHHYI0 BEPOATHOCTb KOJI-

(3.15)
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JIEKTUBHOTO OTKJIMKa si1pa, BO30yXNaeMOro momnepevyHoil (TOpOMAHOH) KOMMO-
HEHTOH BJIEKTPOMarHMUTHOro mnons. B cienmynolnem pasgene paccmaTpuBaercs
Teopust Bo3Oyxnenus MA, T = 0 TBHCTOBBIX MO B PeakLM HEYNpYroro pacce-
SHUS BJIEKTPOHOB.

4. BO3BYXKXJIEHHUE KPYTWIBHBIX MA,T=0 MOJ
B PEAKIIMHA HEYIIPYTOI'O PACCESAHHUSA DIEKTPOHOB

DKCIEPUMEHTHI IO PACCESHMIO 3IEKTPOHOB Ha SApax CyXaT WCTOYHUKOM
Haubonee NOCTOBEPHBIX NAHHBIX O PABHOBECHBIX M NAMHAMHYECKHX SIEPHBIX
ceojictBax. Kak M3BeCTHO, ®/eKTpHUYECKHE IMTAaHTCKHE M30CKAISPHBIE PE30HAH-
Chl (C A 22) GBUTH OTKDHITHI UMEHHO B BKCIIEPMMEHTAX IO HEYNpYyroMy pacce-
SHUIO BIEKTPOHOB. Bosiee TOro, NpakTHYECKH BCS HAKOIUIEHHAs K HACTOSILEMY
BpeMeHH uHGopManuu 1o EA, T= 0 pe3oHaHcam 6Gbina MOMyYeHa U3 aHATH3A Ce-
uenuil (e, e’)-peakunn. TTocKonbKy smepHast QUIOMA-AMHAMHKA UHTEPHPETHPYET
MarHuTHbI€ TBHUCTOBBIE PE30HAHCBI Ha OCHOBE TeX XK€ CaMblX (U3MYECKHX
NPHHLIUIIOB, YTO H SJIEKTPUYECKHE, TO, KAK HaM NpeAcTaBisiercs, (e, e’)-peakius
HomXHa ObITe CTONML Xe 3((eKTHBHBIM CPEACTBOM BO3GYXIECHHS NAaHHOH KO-
JIEKTUBHOM BETBM SIEpPHOro cnekrpa. [IpuMevarensHo, 4to meppas mocienosa-
TenbHas Teopus (e, e’)-paccesHus ¢ BO30yXIEHHEM M30CKANAPHBIX KOJ-
JIEKTUBHBIX COCTOSHUM SJIEKTPHUYECKOro TUNa, pa3sutas Taccu [78], 6Gpina Takxe
OCHOBaHa Ha MaKpOCKONMYECKOH (KarelbHOH) MOHENH SIEPHOH CTPYKTYpHI.
IIpenckaspiBaeMpie 3TOH MoneNsio cedeHus (e, €’)-peakuuu 1o opme ynoBner-
BOPHMTENIPHO COMIACYIOTCA C SKCIEPHMEHTOM, YTO CBUAETENBCTBYET O KOPPEKT-
HOCTH TIPEANONIOXEHUH OTHOCHTENLHO THIA KOJUIEKTHBHBIX IBHXEHMH HYKIIO-
HOB, WHAYUMPYEMBIX HANETAIOIUMH 3JeKTPOHAMHU (IPOAO/BHBIX KOHBEKLHOH-
HBIX KonebaHMii TOKa C MOTEHLHATbHLIM HOJEM CKOpocTH). YTo Xe Kacaercs
TEOPMH MAarHuTHOro (e, e’)-paccesstHust (¢ BO3OyXOEHMEM MAarHHTHBIX KOJ-
JIEKTUBHBIX MOQ), TO CKONBKO-HHOYAb NOCIENOBATEbHBI MaKpOCKONMYECKHI
NOAXOX, OCHOBAaHHAIM Ha KOJIIEKTUBHOM MOJENH sIpa, HACKONBLKO HaM M3BECTHO,
He 00CyXpajcs B IUTEpaType.

B nanHOM paspmene npencrasieH, crnenys [40], oAMH U3 BO3MOXHBIX BapHaH-
TOB TEOPHH MarHMUTHOTO MYJITHIIONBHOTO SAEPHOIO OTK/IMKA B HEYNPYrOM pac-
CESHUH 3JIEKTPOHOB, OCHOBAHHBIA Ha KOJUIEKTHBHOH (MTIOMA-XMHAMUYECKOH MO-
lie/td, paccMaTpHBaloILEl AApo KaK chepHYecKylo MakpO4acTUIy HACHILEHHOTO
[0 CIHHY ¥ M30CIHHY YNPYronogoOHOro HecKHMaeMoro (epMH-KOHTHHyyMa.
ITox BEIpOXIEHHEM MO CHUHY NMOAPA3YMEBAETCS, YTO CYMMAapPHbI MATHUTHBIA MO-
MEHT OCHOBHOIO COCTOSIHHS 4ETHO-YETHOro C(hepHYECKOro siipa paBeH HYIIO.
PaccmatpuBaeMblii MEXaHHM3M «HAMarHHYHBAHHS» SApa HEYNPYro paccessHHbIMH
9JIEKTPOHAMHU (T.€. NEPEXOAa K3 OCHOBHOTO B BO30YXHEHHOE COCTOSHHE C
OTIMYHBIM OT HYNs MarHUTHBIM MOMEHTOM) HeceT B ce0e HCKJIIOUMTENbHO
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K/laCCMYeCKOe, C TOYKH 3PEHHS 3JeKTPOIAMHAMHKM CIUIOIIHBIX Cpel, COnep-
xaHue. Kak BHMAHO W3 NpenCTaBIEHHOH ' BbllIe MaTEMAaTH4YECKOH TPaKTOBKH
MarHUTHBIX MYJIBTHIONBHBIX PE30HAHCOB, KONebaHU TNIOTHOCTH 3JIEKTPHYECKO-
IO TOK2a OMMCHIBAIOTCS B TEPMHUHAX IOJIs CKOpocTH. Mcnonk3yeMoe Kiiaccuuyeckoe
npeicTaejieHHe TUIOTHOCTH TOKa HE CBA3aHO SBHBIM OOpa3oM C KBaHTOBO-Me-
XaHHYECKHM €ro ofpede/ieHMeM M, KaK CJeACTBHE BTOro, C KBaHTOBO-Me-
XaHHYECKHM OIEepaTopoM MarHUTHOrO MYJIbTHUMONBHOIO MOMeHTa (TOC/eRHuH,
KaK M3BECTHO, B OJIHOYACTMYHOH MOIENH NPEACTABISAETCS CyMMOIl ONepaTopos,
SIBHO 3aBUCSALIMX OT OpOMTILHOrO W CIIMHOBOTO MOMEHTOB HYKJIOHOB). B aTO#
CBSI3H YMECTHO NONYEPKHYTh, 4YTO OCTaBasIChb B paMKaX MaKpOCKOMHYECKOro
ONMUCaHUS KOJUIEKTMBHO AMHAMHMKH HYKJIOHOB, Obl10 Obl HEMNoC/ef0oBaTENbHO
NBITaThCS MPOUHTEPNPETHPOBATh PACCMOTPEHHbIH MEXaHU3M B KOHLENTYaIbHBIX
TEPMHHAX MHKPOCKOMUYECKOH OXHOYACTHYHOI Moienu o6osnouek (T.e. TOBOPUTH
O CIIMHOBOKM MM opOUTaNbHOH npupoge nepexonos). Llens, koTopylo npecneny-
€T MaKpOCKOMHYECKOe OMUCaHHE KOJJIEKTHBHOTO SAEPHOrO OTKJIMKA, COCTOMT,
KaK Mbl yXe€ OTMEYald BO BBEACHHH, B MOMCKE alleKBaTHOH OMHAMHYECKOMH
TEOPUH CIUIOLIHOW smepHOi cpenbl. OCHOBHas HaMpaBieHHOCTb HALLEro M3y-
YEeHHsl HalelleHa Ha BbISBIIEHHE B SAEPHOM OTKJIMKE OMHAMHUYECKUX CBOMCTB,
MIPUCYILHUX YNPYrod CIUIOLIHO# cpelie, H COMOCTaBIEHHE Pe3ylbTaTOB C XOPOIUO
U3BECTHBIMU HCCIIE[IOBAHHAMH, BBINIOJIHEHHBIMM HAa OCHOBE MpPEACTaBIEHHH O
AApe,KaK O Karuie OJHOPOAHO 3apsSXEHHOH HeCXKHUMaeMOH XHUIKOCTH.

Heob6xoauMo moayepkHyTh, YTO K HACTOSLIEMY MOMEHTY UMEETCS HOBOJILHO
oOlIMpHas JiMTepaTypa M0 MHKPOCKONHMYECKOMY aHaIM3y MEXaHH3MOB BO30yX-
JOE€HHS MarHUTHBIX KOJUIEKTHBHBIX COCTOSHHI B PeakLUHH HEYNpYyroro paccesiHus
3MEKTPOHOB (CM., Hanpumep [12, 51—53, 79,80]). OcHoBHOE BHHMAaHHE B THX
UCCNEeJOBaHMSAX YHOENeHO JHUMOJbHBIM W KBaApPYNOJbHBIM  KOJUIEKTHBHBIM
MarHuTHeIM BO36yxaeHHAM. MuKpockonuyeckue ocoOeHHOCTH BO30YXIEeHHs B
(e, €)-paccesHUH MarHUTHBIX COCTOSHHUIM BBICOKOH MYIbTHIONIBHOCTH B TAXEIBIX
sapax obcyxnaiorca B pabore [54], B nerkux sapax — B [80]. Cyas no nurepa-
Type, DIaBHbIM OOBEKTOM H3YYEHHS MarHHTHOrO OTKJIHKa e OpMHUPOBAHHBIX
ARep SABJAETCS QMMNONbHAs HOXHH4YHajg Mona (cM. [81—89], a takxe npuBeneH-
HBEIE TaM CChUIKH). TeopeTH4eCKOMy H3ydeHHI0 pacnpeneseHus M2- u M3-cunsl
OTKJIHKA AepOpMUPOBAaHHBIX Aaep nocesiueHsl pabotel [91,92], BeinonHeHHbIE B
paMKax MHKPOCKOITMYECKOH KBa3HyaCTH4HO-(POHOHHOH MOJENH ANEepHBIX KOJ-
JIEKTUBHBIX BO30yxaenuit [77].

OcHoBHas uenb GOPMYTHPYEMOTO HaMH MOAXOAA COCTOMT B TOM, YTOOHI 10-
MOJIHUTH TIEPEYUCIIEHHBIE BBIIIE UCCIIEJOBAaHH W BBIACHHTH KauyeCTBEHHbIE 3aKO-
HOMEPHOCTH 3aBHCHMOCTH WHTErpalbHbIX MapaMeTpPOB MArHWTHBIX TBHUCTOBBIX
PE30HAHCOB, M3BIEKAEMbIX DKCIIEPUMEHTAIBHO K3 aHaiu3a (e, €)-peakuuu, OT
aTOMHOTO HOMEpa, MaCCOBOr0 YHCa M MYJIbTHIOJBHOCTH BO30YyXIaeMoil MOADI.

4.1. Kpatkuii 0030p TeOpHH 3/CKTPOHHOrO paccesHHs. JUIs MONHOTHI
M3I0XKEHHUsT MBI HayHEM C KpaTkoro o63opa W3BeCTHHIX (pOpMyn Teopuu pacce-
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SHUSI HETIOJIIPU30BaHHBIX 3IEKTPOHOB Ha HEOPMEHTHPOBAHHOH MuIeHH. Bripa-
xenue 1A audgepeHunansHoro ceyeHus (e, e)-peakunu B GOPHOBCKOM

NpubIMXEHUHU TIOCKHX BOJIH MMeeT BuA [93—95]:
2

2
do _ D oLz L[ 20 | 7, 2
o = O [ ; ] staf+ 3| | vy W@l [ @
[ Z o fic cos 6/2 J
3nech Gy =| =, | — MOTTOBCKOE CEYEHHE PACCESAHHS WIS elu-
2FE sin“6/2
.2 1
HHYHOTO 3apsna, f, = [ 1 Z—E—i;"%z—] — caxTop otmauu, E — aHeprus
¢

HaJlETAIOWIEro 3J€KTpoHa, M — Macca sapa-MulUeHH, 8 — yroyn paccesHus.
IMepenanHblii uMnNynbc g = ti + 0)2, q,=2 VEEO/hc sin6/2, hw=E - E, —

sHeprus Bo30OyxaeHus sapa. SlnepHas CTPyKTypa NposiBASETCS B CEYEHHM pac-
CesHUs 4yepe3 NMponosibHbIA M nonepeyHsiit popmdakrop. [MpogonsHslii (Kyno-
HoBckHil) ¢opmdakTop IS L(q)I2=2 IFf(q)l2 COAEPXHUT BCIO HH(pOPMaLHIO O
: ,
NPOCTPAHCTBEHHOM pacnpele/ieHHH 3apsnoBOi TUIOTHOCTH sapa, TpaHCBep-
canbHblit hopmdakTop ST(q) CBA3aH C MEPEXOAHON TOKOBOH TJIOTHOCTHIO H

ABJISETCA CyMMOH (OpM(aKTOPOB 3/IEKTPHYECKHX M MATHUTHBIX MYJbTHIONb-
HbIX TEPEXOAOB:

s @ =Y, {IFE@P +IFM(g)R).
A

[Ipu paccesHun Haszan Bo3OyXOalOTCA TOJIBKO TOKOBbIE MONEpedHble KoJle-
Ganus Hyki10HOB. IT03TOMY H3MepeHHe cCeyeHHil paccesiHHs 31EeKTPOHOB Ha
yron 6 = 180° aBnsercst Haubosnee HHPOPMATHBHBIM B UIaHE M3yYEHHS COCTO-
SAHWH MarHUTHOTO THNa.

MarnutHsiit dopMmdakrop F{"(q) CBfI3aH C MEpPEXOJHOH TOKOBOH IUIOTHO-
creto J, , (r) npeobpaszosannem Pypre — Beccens [95]:

A

J, e 4.2)
+ f
Fg="" - [ 53 i,
i 0

Jhgn) — ¢ynkuus Beccens paura A, AR Jf — nommﬁ MOMEHT siipa B Ha-

YabHOM U KOHEYHOM COCTOSIHHSIX COOTBETCTBEHHO, J 2A+ 1.
I'naBHHIM U EAMHCTBEHHBIM 3NMEMEHTOM GOPHOBCKOro ¢opManusma, comep-
XamuM MHGOPMALHIO O SNEPHOH CTPYKTYpe, ABNAIOTCS NMEPEXONHBIE 3apsAA0BhIE
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M TOKOBBIE IUIOTHOCTH. PaccuuThiBaeMbie B sepHOil (haoua-IMHAMHKE Xapak-
TEpPUCTUKH BO30YXHEHHH HecyT B cebe CYLIECTBEHHO KOJIEKTHBHOE cOnep-
xaHue. [TosToMy cpaBHEHHE NpeNCKa3bIBAEMBIX MEPEXOAHBIX TOKOBBIX IIOTHO-
crei, opMGpaKTOPOB M BEPOSTHOCTEH BO30yXIeHus MAarHHTHBIX TBHCTOBBIX
PE30HAHCOB LeNecoo6pasHO NPOBOAMTh TONBKO C HHTETPATbHBIMM Xapak-
TEPUCTHYECKMMH TMapaMeTpaMH, HOMXHBIM 00pa3oM NpPOCYMMHMPOBAHHBIM [0
rnapamMeTpam peallbHO HabmioaeMbIX COCTOSHHHU.

4.2. Tlepexonnas TOKOBas IIOTHOCTh H dopmbakTop MA, T = 0 pe3oHaH-
coB. Jlyis aHa/IM3a npolecca JEKTPOHHOrO paccesiHusl yioOHee BOCMOJb30BaThCs
HECKOJIbKO WHBIM, DKBUBAJIEHTHBIM (4.2), NMpefcTaBlieHHEM pelleHHs BEKTOPHOIO
ypaBHeHus Jlarutaca, ONMCHIBAIOIIMM  JJTAHHOBOJIHOBBIE  MYJIbTUIIOJIBHbIE
KpyTuibHble KonebaHus cepuyeckoro sapa (cM., Hanpumep, [96], c.188):

A A  Ay0 A
a,@)=-ir* Y, @), a0 =ir'1¥;, O =a,(), 4.3)
rae Y;:m(?) — BCKTOprlc’C(bCpH'{CCKHc rapMOHHMKH, obnajamuue cremy-

IOIIMMH CBOHCTBaMH: '
A L x 4 A A
I [Yklle(r)] .Y;f,]le(r)d r= BW, 8}‘1;‘, 8y s 4.4)
1 22

A+k+u+1 A

[Y kl(r)] =(-)! ;:)”ll(r). 4.5)

Pacnpeneneﬂne COJICHOHUAANIBHOTIO ANIEKTPUYECKOTO TOKa B aape,
HHOYLIHUPYEMOTO HAJICTAIOLIUM 3JIEKTPOHOM, B HAHHOM IOAXOAE OIMMCHIBACTCA
KJIaCCHYECKUM BbIpaXE€HHEM

(@, )=ndV,(r,1)=na,(r) (xl(t). (4.6)

KomnnekTHBHas MepexogHas TOKOBasd IUIOTHOCTh MAarHHTHOTO KPYTHJIBHOTO

OTKJIMKA MYIBTHIIONBHOCTH A B CHCTEME C (PUKCUPOBAHHOM MONAPHOM OCHIO BbI-
paxaercst opMynoii

: 2
1 .
Do) = | oo Linte, 0 Y0y, Bad] Y2 =Ny e,

0 ' @4.7)
2oy |

AT e 2e CZB)"

3neck, KaK M paHee, ( ...), O3Ha4aeT YCPENHEHHE N0 BPEMEHH.

Ha puc.5 npuBeneHbl BBIYHCIEHHBIE IS sApa 07y HEPEXOHbIE TOKOBBIE
WIOTHOCTH (4.7), COOTBETCTBYIOIIHE BO30YXIEHHIO MAarHUTHBIX PE30HAHCHBIX
MO pa3IM4yHOH MYJIBTHNONBHOCTH. M3 3TOro pucyHKa, B YaCTHOCTH, CJiedyeT,
4TO KOJUTEKTHBHbBIA MarHMTHBIH OTKJIMK siipa HOCUT 06beMHBIii xapakTep. C poc-
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b Puc. 5. Ko/iekTHBHbIE Nepexon-
9 12 90Zr HbIE TOKOBbi€ TIUIOTHOCTH s
- Z ] AN MarHMTHBIX KBaJIpyIoJikHOro,
"8: 1.0 ] s \ _ OKTYTIONILHOTO M TeKCafeKarnob-
=) ] ',‘ ;5 ‘\\ §;§ HOTO M30CKIAPHBIX PE30HAHCOB B
™ 0.8 ] W T a=4 %0Zr. PacyeT BHINONHEH C pea-
™ ] Sl \ JIMCTHYECKHUM  pacnpenesiecHHeM
“5 0.6 ] Sl y TUIOTHOCTH YMCIIa YACTHLL
) ] () \
04 ] [ A
e f )
] ,",’ \
0.2 ] ,’, , R \\\ N
1 /.2 ) QY
i <
R S AP AP S M A AP AP S e

r, q)M

TOM MYJIBTHNONLHOCTH MaKCHMYM (PYHKUMH J, , CMeLLAeTCs B CTOPOHY MOBEpX-
HOCTH sapa. '

SIBHOE BBIpOXEHHE ISl KOJLIEKTHBHOIO MAarHUTHOTO MY/TBTHIIONBHOTO (hOpM-
dakTopa BO3GYXmEHHME, CBA3aHHBIX C JUIHHHOBOJHOBBIMU Iu(depeHLHaTbHO-
BpAlIATE/bHBIMH  KOEGaHHAMH NOTOKAa, B  I[UIOCKOBOJIHOBOM GOPHOBCKOM
npuOIHXEHUU HMeEeT BHI

oo 2
4n ,
FM@)P =2 @A+ DN2 | [ n ™%, (grr | . (4.8)
z 0

B npubnuxeHuu pe3KOoro Kpas QaHHBI MHTErpan MOXET ObiTh BBLIYMCIEH
aHanuTUHdecku [36,38]:
2

4nn
IF @ =— BMIon + N2
z

@A+ 1)j,(@R) - aRj,_,(@R) T

1 4.9)

q

BrruucnieHHbIE 30eCh NepexoHble TOKOBbIE INIOTHOCTH thopMmdakrops xa-
PaKTEpU3YyIOT BbI3BaHHbIE HANETAICILMM 3JEKTPOHOM IIMHHOBOJHOBBIE KOJI-
TIeKTHBHbIE KO/Ie6aHKs HYKJIOHOB, IPHBOISIUME K BO36YXIEHHBIM COCTOSHUSIM C
OT/IHYHBIMH OT HY/I MarHHTHBIMH MY/IbTHIIO/IbHBIMH MOMEHTaMHM, M COlepXar
MH(QOPMALIMIO O MAKPOCKOMHYECKOM pactpefie/ieHHH MOTOKA HYKJIOHOB. Kax Ml
YyX€ OTMEYalli, OCTaBasCh B paMKax H3/10XCHHOH Bhlile (IIOUA-AUHAMHYECKOM
MOJE/IM MarHUTHBIX BO36YX/IEeHMH, CTPOro roBOpsi, He MPEACTABISIETCH BO3MOX-
HbIM KOJIHYECTBEHHO BBIABUTH POJIb CIIMHOBOTO BKJIana B opMUpoBanue M2-pe-
30HAHCA, MOCKOJIbKY MAaKpOCKONHMYeCKas IUIOTHOCTh 3JIEKTPHYECKOrO TOKA He
paspensercd Ha KOHBEKUMOHHYIO H CIIHHOBYIO KOMITOHEHTbI, KaK TO MpPEIMHCHI-
Ba€T MHUKPOCKOMUYECKHI noaxon. Bonee Toro, u3ioxeHHas TpakToOBKa MM\-anep-
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10 g IAMAARAMALAAAARMAS: Puc. 6. KomrtektusHbie ¢GopMpaKTopbl
] ] MarHUTHBIX H30CKQIAPHBIX PE30HAHCOB,
BO30yXIaeMbIX B PEakMH HEYIPYroro
paccesiHus 3JIEKTPOHOB 1O YoM 165°
na sape 2%Zr, Kak (hyHKIMH nepenaHHo-
ro ummnyibca q. PacueT BBINONHEH B
MpUOIMXKEHUH UCKaXEHHBIX BOMH *

10~

3
10 ] HOTO OTKJIMKA HEe 3aTparuBaeT BOIl-
: poca O pacnpeleneHHH  CHIIbI
MarHUTHOTO OTK/THKa o
1073 M30CIHHOBEIM KaHaaM. SICHO, uTo
0.0 0.5 1.0 1. 2.0  ppolGseMa JOMHHAHTHOCTH CIIMHO-
9, (1)M'1 BOTO W KOHBEKIIMOHHOIO BKJIA[OB B

MM\, T=0 oTKNHK siipa HaXOOMTCA
B KOMIETEHIIMH MHMKPOCKOIMYECKOH TEOPUH KOJUIEKTHBHBIX SIEPHBIX BO30OYX-
JeHHH, OCHOBaHHOH Ha 000J0YeYyHO# KapTvHe sSAepHOM cTpyKTypel. OG6Cyx-

JEHUI0 3TUX npobiieM noceswersl paborst [12,48,50,53,56,69], B xoTOphIX 2~
KOJUIEKTUBHBIA OTIIMK C(epuuecKoro sSApa aHaIU3HpOBANICd C MUKPOCKOMHYEC-
Kot Touku 3penus. B [31,89] otMeuaeTcs, 4TO MarHUTHBIA TBUCTOBBIH OTKJIMK
MO CBOE MaKpOCKONUYECKOH NMHAMUYECKOH NMPUPONE KOJUIEKTUBHBIX ANEPHBIX

IBUXEHUH aHAJIOTHYEH H30BEKTOPHOM 1*-HoxHuuuHON Mone B JedopMHpOBaH-
HBIX SOpax. }

PesynbTaThl HAIMX PAacyeToB A MAarHUTHBIX opMdaKTOPOB, NOAY4EHHEBIE
B NpUO/IMXEHMM MCKAXEHHBIX BOJIH, Il SApa ~ Zr NPeACTaBieHsl Ha pUc.6—38.
Ipu (pUKCUPOBAaHHOM YIVIE pacCesHUsi BapbMpOBAIach SHEPTHS HAIETAIOLIMX
yacTHL TaK,4ToObl MEPEIaHHBIH MMITYIIC MOT MEHSTBCA, HO BO3OyXaaics Obl
NpH 9TOM OMNpeleNeHHbI YPOBEHb C ®HEPrUeid, COOTBETCTBYIOLIEH LEHTPY JIO-
Kanu3alli¥ TBHCTOBOTO MAarHUTHOro pesoHanca. Ha puc.6 usobpaxensl Koi-

JIEKTHBHbIE MarHuTHbiE (opMdaKkTOps! IF;{W (q)l2 MyJIbTHIIONBHOCTH A =234 B

3aBUCUMOCTH OT [EPENaHHOIO HMMIIY/IbCa, BBIYMCIIEHHBIE IIPH YIJIE DPacCETHHS
0=165° O6nactb MalbiXx MHEpPEefaHHBIX HMITYIbCOB (g < 0,5 (pM'l) SIBNSIETCS
HauboJsiee MpeanoYTHTENbHOM UI perucTpauny M2-pe3oHaHca Mo CPaBHEHHIO C
PE30HAHCHBIMU MOJAMM BBICLIMX MynpTHRoOnbHOCTe# [36]. IlpuMeuarensHbiM
asnserca 1ot ¢akr, yTo B obnacth g =1 (bM'l, rae rekcajgexkanoyibHbli opM-
(akTOp MMeeT MepBbIii MAKCUMYM, KBaIpyHOIbHEI OTKIMK MHUHMMalleH. [Toxo-

Xas KapTuHa HabnogaeTcss 1 B 00JIaCTH BTOPOro Makcumyma (pyHKuuu |F fl(q)lz.

Puc.7 nmaer npencraBneHHe O BHAE IF,}'I(q)I2 B 3aBHCHMOCTH OT yIjla paccesHus

0 a5eKTPOHOB ¢ MepBOHaYaIbHOI aueprueit E =40, 80, 120 n 200 MaB; ¢ poc-
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Puc.7. 3aBUCHMMOCTh  KOJUIEKTHBHOTO 10 g MARAAARARALE AR 90 """
¢opmakTopa  WIs  KBagpPYNOJLHOro = 1 Zr
MAarHUTHOTO PE30HAHCa OT yIyla paccesHus — 14
aMEKTPOHOB  ©. Pacyer BBINONHEH B 3
NPHOIMXEHUH HMCKaXeHHBIX BONH Ui ‘o 10 -]
NZr npu yKa3aHHBIX 3HAYEHHIX SHEPIHH =
HAJIETAIOMIMX 37IEKTPOHOB E = 1
10 %4 .
3 7
10 4 E.,=9 MsB } AR
1 —— E= 40 MoB
10 ™4 — — E= 80 MaB i3
3 ---- E=120 MoB b
1 E=200 MaB
10 e
o 120
. 10 31— 3
Puc. 8. MsMepeHHble Ha JHHEHHOM Yyc- 3 E
KopuTene a5exTpoHoB B Jlapminranre [1] E 1 140(‘/‘
cedyeHus BO3OYXNEHHS MarHUTHOTO KBaj- = 10 . . |
pynonsHoro pesomatca B 'Ce (cumpo- G E t ]
Jbl). JInHUS — TeopeTHYecKHil pacyer Ha \b\
OCHOBe (IIOUI-IMHAMHYECKOH Momenmd o
TBUCTOBOTO OTKJIHKA N
—_
c
)
N
o)
o
N’
10

20 40 60 80 100 120
3ueprus snextponos, MaB

TOM DHEPrHH HAIETAIOILErO BIEKTPOHA E NU(PAKIMOHHBIA MUHMMYM CMEIHAETCs
B CTOPOHY MeHbluX yrioB. M3 Hammx pacueros ciemyer, 4to 1) MarHUTHBIC
pe3oHaHCH 6onee BBHICOKOH MY/BTHIONBHOCTH BO3OYXNAIOTCA C 3aMETHO MEHb-
el MHTEHCHBHOCTBIO M 2) B TAXENBIX AApaX OXuuaercs Goniee 3aMeTHOe mpo-
SBJIEHHE TBHCTOBOTO 3(hheKTa, YeM B JIETKHX.
Ha puc.9 cumBonamm npencrasineHsl JaHHble NapMIITAATCKOTO JTHHEHHOTO
Yg(l)(opmenﬂ SJIEKTPOHOB 1O MHTErpaibHEIM CedeHHUIM (e, €’)-paccesnus Ha sape
Ce ms Bcex M2-cocrosnuii B uHTepBane suepruii 7,5+10,0 MsB npu yre
paccesHns 165° u 3Heprusx HametalowUx 3MeKTpoHoB oT 30 go 55 MaB.
AHaIU3 JaHHOM peakLMU C TOYKH 3PEHHs MHKPOCKOIHYECKOH TEOPUH ANepHOI
CTPYKTYpsl naH B paGore [51]. Ha sTOM pHCyHKE Mbl TakkXe MpPHBOIMM
TEOPETHYECKHE CeYeHHS BO30YXIEHHA TBHCTOBOIO KBAApPYMOIbHOTO pe30HaHCa,
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BoluMciieHHble B paMKax PWBA u DWBA. Kak BuAHO, 3KCHEpUMEHTIbHBIH U
TeopeTHYecKuii (popMdakKTOphl, paccUUTaHHbie Ha OCHOBE MJaHHOH KOJI-
JIEKTUBHOH MOIENH, HMET BechMa MNoXoxylo ¢opMy. Cnenys noruke,
OOLIENPHHATON B M3TOXEHUH BHIBOZOB KOJUIEKTHBHBIX MOJENEd, MOXHO
OTMETHTbh, YTO KaueCTBEHHOE COBNajeHHe no ¢opMe TeopeTnieckoro opmdak-
TOpa (KOTOpHIii HeceT B cebe MH(OPMALHUI0 O MPOCTPAHCTBEHHOM pacnpene-
JIEHUH BO30YXIAEMOro TOKa) M SKCIEPHMEHTAIbHO CBUAETENLCTBYET O KOPPEKT-
HOCTH NpeacKa3blBa€MOro XxapakTepa KO/UIEKTHBHBIX KoJieGaHUi.

B Teopuu 2nekTpoBo30yxiaeHus npuseneHHas BeposTHocTh B(MA) nepexona
Alpa B COCTOSHHE C MarHUTHHIM MOMEHTOM MYJIBTHIIONIBHOTO NOpsAiKa A onpene-
JIAETCS MHTErpalioM OT MEpPEeXOQHOH TOKOBOHM TUTIOTHOCTH Jm‘(r) COITIaCHO COOT-

HOLIEHHIO
A
e ’ A 2By iz
A ' w2, | _ A (ZY 2, 22
B =75 | = {e.lx,x(r)l}‘ dr | = (Ml)T( A]Zu M2 (4.10)

i

Kak MOXHO nerko y6emuTbCs, 3TO BbIPaXEHHE TOYHO COBMAAaET C MOJyYeH-
HbIM Bbilie cooTHomeHHeM (3.13). ConocraBneHue NpUBEaEHHON BEPOSATHOCTH
Bo36yxaeHHs MA, T =0 TBHCTOBOrO pe3oHaHCa C U3MEPIAEMOii B 9KCIIEpHMEHTE

CYMMAapHO# NMpPHBEACHHOH BEPOATHOCTHIO 2 B(M\) nepexomoB npeacTasieHo
Ha pHc.4. KOTOpblii MBI 00CYyXAalu B MpeabiAylieM pasgese. 34eCh Mbl JIHILb
n06aBUM, YTO B QJIMHHOBOJIHOBOM mpeaene opmgakTop F{"(q) BhIpaxaercs

yepe3 NMPHUBEACHHYIO BEPOATHOCTh BO3OyxaeHus B(MA):

4n q2 A+1
72 [+ D1 A

H3 Teopuu 31€KTPOHHOrO paccessHHs H3BECTHO, YTO NMPUMEHHMOCTb ATHHHO-
BOJIIHOBOro npubnuxenus (gR << 1, raie R — paauyc sgpa) onpasaaHa JuIUb
NPH CPaBHHTENbHO Mabix 3Heprusx E Haneraowmero anekTpoHa. OfHako B
3KCIIEPMMEHTaX 3TO YCIIOBHE, KaK NpaBWio, He peanusyercd. Tak, Hanpumep,
IpH HEYNPYroM paccesHHM 3NIEKTPOHOB Ha ~ Zr Ha yron 0= 165° gR=1 mns

IFMq)? = B(M). @.11)

E=26 M»B. B stom cnyuae IF){”(q)I2 yXe He MPOMOpLHOHAIEH BeJIHYHHE

B(MM\), a onpenensiercsis MHIMBHUAYAIbHBIMH 0COGEHHOCTAMH MEPEXOAHOM TOKO-
BOH IUIOTHOCTH BO36yxmaeMoro cocrosHusi. [Tostomy npu pacuere ¢opMdaxk-
TOPOB HEOOXOOMMO MONb30BAThCA HEMOCPEACTBEHHO opMynoii (4.2).

HHrerpanbHoil Mepoii CTeneHN KONIEKTHBHOCTH SAEPHOTO OTK/IMKA SBISET-
cq npaBHiIo cyMM. [IpaBuia cyMM U1t MarHMTHBIX BO3GYXIEHMH pacCMOTpeHbI B
paborax [72, 96—99]. B MakpOCKONUYECKOM IMOAXO/E aHATIOrOM MpPaBUiIa CyMM
ABISETCA OCHWUIATOpPHas cuna Bo3OyxmeHus [7]. ComiacHo HammMM
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BBIYMC/IEHUAM MarHUTHas OCUMIUIATOPHAs cuna MA H30CKanspHOro KpyTHIIBHOTO
OTKJIMKA JIaeTCS OLIEHKOM

SMN) =Y, EMNBMM) =B,Z2APV3 MoB. 12 pm™*2,  (4.12)

e B, =30, B, =160, B, = 560.

5. BRICOKODHEPTETHYECKHI JTHIIOILHBIII MATHUTHbIN
OTKIIMK CO®EPHYECKOI'O SJIPA

Kax Mbl yXe oTMedasu, IMNONbHAs TBHCTOBas MOfia TPeOyeT CHeLHaATbHOTO
paccMoTpeHusl. [1aBHas IpUYMHA OTCYTCTBHS TOM MOABI B MPEACTABIEHHOM Bbl-
i€ CNEKTPe MAarHMUTHBIX TBUCTOBBIX pPE30HAaHCOB (3.6) CBsizaHa ¢ Npeamnono-
XEHHEM O TOM, YTO BHELIHEE BOIMYIIEHHE HHIYLUPYET TONBKO JTHHHOBOIHOBBIE
BpAaLIATENbHBIE OCUM/UIALMU NOTOKA YacTHU. B 9TOM npubiuxenuu He ynaercs
OMyCaTh XOPOLIO YCTAHOB/ICHHBI MArHUTHBIH JIMIIONBHBIA pPE30OHAHC, SHep-
FeTHYECKHH LIEHTPOUI KOTOPOro HAeTCsl OLEHKOMH 4143 MsB [5]. Oanako, xax
noxasado B [100], BHe paMOK 3TOro OrpaHHYeHHMs ypaBHEHHs SAepHO (rona-
AVHAMHKH JONYCKAIOT peLIeHHEe, ONUCHIBAIOLIEE CIBUTOBbIE KOeGaHHs, KOTOPhIE
COOTBETCTBYIOT KO/UIEKTHBHOI BBICOKOZHepreTuueckoi M1, T =0 Mozne, BO3MOX-
HOCTB CYLUECTBOBAaHHSI KOTOpPO# o0cyxnaercs B [2].

BepHemcs x ypasuenuio (2.13). ITocne moncTanoBKH B HEro (2.8) Haxomum,
4TO IOJIe CMEIUEHUH MOMYUHAETCS BEKTOPHOMY ypaBHEHHIO ['elbMrosbLa;

Aa(r) + k*a(r) =0. (5.1

PerynspHoe B Hyne pelieHHe IOCIEIHEr0 ypaBHEHMs, COOTBETCTBYIOIUEE
KpYTHJIbHBIM KONeOaHUsIM spa,

a(r) = j, (kY] (), (52)

re k=w/c , — BOJIHOBOii BEKTOp H c,= VPF Py = vp/ 5 — CKOpPOCTb pacnpo-

CTPaHEHHUs TMOMEPEYHBIX OCECMMMETPHUYHBIX KPYTHJIBHBIX KoneGaHHil B
cepuueckoM sape. Yactora ® aTHX KoneGaHMii MOXeT GBITb OJXHO3HAYHO
omnpefeneHa W3 rPaHUYHOTO YCIIOBHS, KOTOpOe TpeGyeT OTCYTCTBHS CABHUIOB Ha
NOBEPXHOCTH cthepHdeckoro supa: nkSPik=O_, Te n, — EAMHUYHbIH BEKTOp

HOPMaIH K MOBEPXHOCTH Aapa. SIBHOE BbIPaX€E€HHUE 3TOI0 YCJIOBHSI UMEET BUM

da, a
= _o__o_
5Pr¢—0_> dr - =0. (53)
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2 Puc. 9. IlepexonHast ToKOBas IUVIOTHOCTh (YMHOXEHHas
] Ha r2) g BHICOKOBHepreTHyeckoro M1, T =0 TBHCTo-

BOTO pe3oHaHca B sape 298Pb, mpenckassiBaeMoro suep-
HO# (oNa-AMHAMHUKOM

b
P

."-

Ycnosue (5.3) npuBOOMT K  clenyiouieMy
] AUCTNIEPCHOHHOMY YPaBHEHHIO:
M1 djx(z)

z —d‘z“* =jx(z), %= kNR. 5.4

Ja(r)rx10%, pm!
, o

.
- VvVév’Tiyvvv'vrryvvv

8 10 UmucneHHbie 3HAUCHHS KOPHEH 3TOr0 ypaBHEHHUs
r, pm ans 1 <A <S npusenenst B Tabn.3. Co6CcTBeH-
Hble 4acTOThl KPYTHIbHBIX KojeOGaHUH omnpene-

o,

JISIOTCA BBIPpAXEHHEM (l)x' = -75- ZM. 3Hepma HHUXaHLIero AMNOJbHOTO TBUCTO-

BOTO W30CK&IAPHOrO OTK/IMKA OLEHHBACTCH BeNUYMHOM (nipu ry=1,1 M)

2 173
EM1, T=0)=fio, =20, 41 13545 MsB. (5.5)

20mry
[IpennonoxenHe O JUIMHHOBOJIHGBOM XapakTepe KoneGaHHii CKOpOCTH
NOTOKa HYKJIOHOB fillpa SABJISETCS KPHTHYHBIM JIHLIb VIS JAMMOJIBHOTO OTKIMKA,
NIOCKOJIBKY TNPOCTO €ro MCKJI0YaeT (SHEPrus NHIONLHOIO KonebaHus paBHa Hy-
mo). Yro xe kacaetcs MA(A 2 2)-pe30HAHCOB, TO IHEPTrHH, BbLIYHCIIEHHBIE B
ITMHHOBOJIHOBOM NpPHOIHXEHHH, NPaKTHYECKH TOYHO COBMAAIOT C IHEPIUSAMH,
noJy4eHHbIMH U3 ypaBHeHHs ['ensmronbua (5.1) ¢ rpaHHyHBIM ycroBueM cBobon-

HOH OT Hanpaxeﬂui'l NCBEPXHOCTH fAlpa, KOTOPOE BBHIPAXEHO HHCNECPCHOHHBIM

ypaBHeHHeM (5.4). Tor ¢akT, 4TO 3HEPrus BHICOKOIHEPreTHYECKOIO 1Y, T=0
pe3oHaHCca MoXeT ObiTh BBIYMCIECHA TONBKO 3a paMKaMH UIHHHOBOJIHOBOIO
npHOIHXEHHS NPOAEMOHCTPHPORaH B pabore [46].

K HacrosuieMy MOMEHTY M3BECTEH €XMHCTBEHHBIH 3KCNEPHMEHT, BBINOHEH-
Holii Bynsopaom u IlerepcoHoM Ha nMHEHHOM yckopurtene MaccauyceTckoro
yHuBepcHTeTa [2] Ha sape 280pp, ¢ penbio moMcka MarHUTHOI JIMIMONbHOH CHIbI
B obnactu aHepruit or 19 mo 25 MaB, He3zanonro Ko TOro npeacKa3aHHOH B
MHKPOCKONMYECKHMX pacyeTax [89]. B 3TOM 3KCHiepHMEHTE M3MEPEHO CeueHHe
HEYIPYrore paccesHus 37eKTPOHOB ¢ 3Heprueit 60 MaB na yron 180° u o6Hapy-
XeH MUK npu sHepriuu 24 MsB c mupunoil nopsgka 1,5 MaB u abconoTHoi
BEeNMYHMHOM ceyeHus do/dQ = (50  20) ub/cp.

C uensio cornocrasieHus NPEACKa3aHuil anepHOH (UIOHA-IHHAMHKKH 1S BbI-
COKO®HEPreTHYECKOIO AMIONBHOTO H3OCKAIAPHOIO PE30HAHCA C JAHHBIMH,
NIPUBEACHHBIMU B [2], HHMXE MBI NPEACTABISAEM Ppe3y/IbTaThl BHIYUCIIEHHH CyM-
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Tabmuna 3. KopHu z,; NHCIIEPCHOHHOIO ypaBHeHHA Ui ONpedelieHHs YACTOT

nosﬁymeum H30CKAJIPHBIX COCTOSHHH MATHHTHOIO THIA

i A=1 A=2 A=3 A=4 A=S

1 5,7635 2,5011 3,8647 5,0946 6,2658
2 9,0950 7,1360 8,4449 9,7125 10,9506
3 12,3229 10,5146 11,8817 13,2187 14,5108

MapHO¥# NPHBEACHHOH BEPOSTHOCTH M MOMEPEYHOrO CEYeHUs BO3OYXIEHHS 9T
MoIbl. B MakpoCKONMMYECKOM MpeicTaBieHHMH MEPEeXOQHas TOKOBas IUIOTHOCTh
MarHMTHOIO AMIMOJILHOTO BO3OYXIEHHS HAETCS BhpaXEHHEM

A, A 2
5310=( 3 Jieo ¥y @ar [ =Nn ks, 6

r1€ KOHCTaHTa Nl 3aBHCUT OT 3HEPrHH BO36)DKI[CHHSI cJIeaAyr M o6pa30M:

EM1) .
N, =-—2—0,. KomnekTusHas aMIiuTyaa HOPMlbHBIX TOKOBBIX KOJieGaHMii

1 etic
%

212
onpenensercs, cornacto [7], suipaxennem o = (jo (1)) “ = . Kak
t TJ2BIE(M1)

M paHee, CHMBOJ ("'>1 03HA4YaeT yCpeAHEHHE M0 BpeMeHH, H B, — Maccosslii

napaMeTp, paBHbIi

B, =] pyatdt=2T4 (2 1) — otk itk (5.7)

IpuBenennas na puc.9 nepexoaHas TOKOBast WIOTHOCTL WIUTIOCTPHPYET 0GBEM-
HbIfl  XapaKTep paccMaTpHBaEMbiX KOJUIEKTUBHBIX MONEPeYHbIX KoneOaHuil
MOTOKa HYKJIOHOB.

B GopHosckom npubnuxeHnn MarduTHbli dopmbakTop F| M(q) sbipaxaer-
Ci Yepe3 MepeXOAHYI0 TOKOBYIO IIOTHOCTE J, ,(r):

(D (gPdr= V? N, [ ik janiar. .8

V12
Fl@="3" [,

Ha puc.10 mel npusoauM npuddepenumanbisic cedenus BO30YyXJIeHHs

1*, T=0 Bucrosoit moast 2%%Pb 5 8 peakuuu Heynpyroro paccesHus 3JeKTpo-

HOB C 3HEpruei Ee =60 MsB Ha yron 180°, paccunTaHHbie KaK B DWBA-, tax

u B PWBA-npubnuxenun.
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10'5 """ R Puc. 10. IlpenckaseiBaeMoe Ha OCHOBE

10 '; R M1 2°°Pb 3 (TIOHI-IMHAMUYECKOH MOJETH CedeHHe

o 101 ~ BO3GYXIEHHS  BBHICOKOBHEPTETHUYECKOIO
2 . ! M1, T=0 TBECTOBOIO pe30oHaHCa B Sape
> EN 208ph, PacyeTs! BHINOMHEHBI KaK B PaM-
R AV KaX TIOCKOBOJHOBOTO GOPHOBCKOTO MpH-
C 10 ‘;,; VTN Gmuxenus (PWBA), Tak u B npubmu-
T + 1 1¥=180° i ]  xemnn wuckaxemmpix Bonn (DWBA).
,8 10 _1 E H ] DKcrnepuMeHTanbHas To4Ka — pe3ynbTaT

3 H3MEPEHHs CEYEHHs HEeylpyroro pacce-
0% T PWBA H 1 SHUS 3JIeKTpoHOB Ha 180° npu sHepruu
10 *“Fr—r————r—rr———r7rr—r—i HaJIETAIOIHUX JIEKTpoHOB 60 M3B. [aH-
25 65 105 145 185 N
HbIe JTMHEHHOTO YCKODHTEJI 3JEKTPOHOB
3ueprus onexrpoHoB, MoB B beiitce (Bates LINAC) [2]

Ta6muma 4. Teopernueckue npexckasamms amd M1, T =0 TBHCTOBOH MOXBI
B 208Pb u 3KCIepUMEHTAIbHBIE JaHHbIe [2] 10 BO30YKIEHMIO MATHHTHOIO
JUIGILHOTO Pe30HAHCA B PeaKLHH Heynpyroro paccesiHHs 3JIEKTPOHOB
¢ sHeprmeii 60 MaB Ha yron 180°

208pp Teopus DKCIEPUMEHT
E(M1), MaB 22,9 24,0
B(M1), w? ' 2,0 —
do/dQ, ub/cp 15,0 50420

CymmapHas BepOsiTHOCT BO30Oyxnenus B(M1) ana M1, T= 0 Mozs! aepHOro
KpY4€eHHsl, BBIUC/ICHHAs B 3aBUCHMOCTH OT aTOMHOTO HOMEpa iipa U ero Macco-
BOTO YMCJIa, AAaeTCA BBIpAXEHHEM

2

BM1) = g;_ [I Jl,l(r)r3dr ]2 =~1,01072 2247732 (5.9)
[pencraeneHHble B JAaHHOM pa3fene Pe3ynbTaThl MO3BOJIAIOT CHENATh CIIEAyIo-
utee pesome. SdnepHas GMIOHA-IUHAMHMKA NPEICKa3bIBa€T BHICOKOSHEPreTHYEC-
Kyio M1, T =0 mony, TOKaIH3alHKIO CUIIBI KOTOPOH ClelyeT OXHaTh B paiioHe
20—25 MbsB. B pa6orax [10,18—21,42] npuBomircs s obmacta Jo-
Ka/lM3alliy LEHTPOUa YHEPruy BhICOKO3HepreTuyeckoro M1, T =0 pe3oHaHca
oueHkH B uHtepsasie E(M1, T'=0) =21+ 27 MsB. Pe3ynbrarsl HaluMXx pacyeToB
U JaHHBIE 06CYXIaEMOro 3KCIEPUMEHTa CyMMHPOBaHBI B Tabn.4.
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6. IIUPUHBI MATHHTHBIX TBHCTOBBIX MOJ

Penakcauus KONIEKTHBHBIX SAEPHBIX BO3OYXAEHHi B MOCIEAHHE TOABI SABIS-
€TCH NPEAMETOM MHTEHCHUBHOTO M3Y4eHHS B SIEpHOH (IIOMA-TMHAMHKE
[28,33,101,102]. MHKpOCKOMMYECKOE NPOHCXOXIAEHHE paccMaTpHBaeMoro B
JaHHOM pa3Jle/ie MEXaHH3Ma 3aTyXaHHsl KOJUIEKTHBHOTO SAE€PHOIO JBHXEHHS CBS-
3BIBACTCA C ABYXYACTHYHBIMH CTONKHOBEHHSMH HYKJIOHOB, NPHBOJALINMH, B KO-
HEYHOM MTOre, K BA3KOCTH S/IEPHOTO BEILECTBA. AHAIM3 3aTyXaHHd KOJ-
TIEKTUBHBIX AACPHBIX ABHXEHUH, CBA3aHHBIX C H30CKATAPHBIMU 3/1EKTPUYECKHMH
pe3oHaHCaMM ¢ A 22, moKasan, YTO PO/ib OTAENbHOH AMCCHNAUMK (3aTyXaHHe
Jlanpay) MeHee 3HauMTENbHA 110 CPaBHEHHIO C POJIbIO ABYXTENBHON AHCCHITALMM
[102]. B Teopun CROWHBIX Cpell ABYXYacTHYHAs AMCCHMALHA MaKpo-
CKOMMYECKH OMMCHIBAETCS TEH30POM BA3KHMX HanpsxeHHWil. DddeKkT caBHroBoii
BA3KOCTH HMeeT OGBEMHOE TNPOHCXOXAEHHE M  XapakTepu3yeTcs KO-
3 PHUUHEHTOM NHHAMHYECKON BA3KOCTH I, KOTOPHIH B HAIUMX BBIYMCIIEHHSX
paccmarpuBaeTcs Kak mnapametp. OmHako, Kak nokasaHo B [27], 3TOT Ko-
appuuUHEHT MOXET GBITh M3BIEYEH H3 JaHHBIX M0 KMHETHYECKO# aHepruu ¢par-
MEHTOB JENICHHS TAXKENbIX anep. Yncnennas oueHka koahuumenTa |L coCTaBns-
er [103]:

p=(0,03+0,01)TM, I1TI=0948% pm >,

rae TIT o3Hayaer Tepanyas. B HUXeNpPUBOAMMEIX pacyeTax Mbl TaKXe HCIOMb-
3yeM KHHEMaTH4YECKHH KO3((HLUHEHT BA3KOCTH, HE 3aBUCALUMII OT IVIOTHOCTH
H onpefenseMbiii COOTHOIIEHHEM V = u/po, e p, — PaBHOBECHas IUIOTHOCTb

AnepHoro Bewiectsa. IloayepkHeM, YTO npM (PUKCUPOBAHHOM 3HaYEHHH KO-
adpduuMeHTa IMHAMHYECKOH BA3KOCTH HAlM BBIYMCIIEHHS NIEPECTAIOT 3aBHCETh
OT Kakux-1ubo ceobonnbix napamerpos. Haubonee mocriegoBarenbHoe H3jo-
XEHHE MEXaHH3Ma ABYXTE/IbHOH AMCCUNALMK NIPEACTABIEHO B HeaBHel cepuu
pa6ort, ykasauHsix 8 [33], roe, B 4aCTHOCTH, MONTyYEHEl OLEHKH K03 duumrenrta
BS3KOCTH Ha OCHOBE Pa3BMUTOrO aBTOPaMHM KMHETHYECKOrO Moaxopa (CM. Takxe
[104,105]). MuKXpOCKONHYECKHE TEOPHH penakcalMH SIEPHBIX BO3GYXAeHHI
u3noxensl B [31,77,106,107]. B naunom paspmene maercs MaKpOCKOMHUYECKHI
PacyeT CTONKHOBHTE/bHBIX IHPHH MAaTHHTHBIX TBUCTOBBIX PE3OHAHCOB COIJIAC-
Ho [37].

6.1. YpaBHenns NHCCHNIATHBHON sAepHON QUIIOHA-IMHAMHKH. Makpo-
CKOMMYECKOE ONMHCAHHE 3aTyXaHHs KOJUIEKTHBHBIX KOneGaHHil HYKJIOHOB OCHO-
BaHO Ha BBEACHUM AMCCHUNATHBHOW (yHkuuu Panes F, koropas ompenmensercs
KaK CKOpOCTh NOTEPM NOJNHOM SHEPruM KOLIEKTHBHBIX KONeGaHuil M npencTas-
nsercsa B Buae (cM., Hanpumep, ypasHenwue (3.8) B [108]):

£ Hiay, 6) = F(&), ©.1)
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rme H — raMuapTOHMaH cOOCTBEHHBIX HOPMaibHBIX KonebGauuii (2.10), a
JAMCcHNaTHBHas (yHKuMs cBsi3aHa c KoadhduuueHtoM TpeHus D CoOOTHO-

wenueM F = '2D. B marpaHxeBoii TpakKTOBKE aBHEHHE [IHCCHUNATHBHOMN
A

saxepHOi MONI-IUHAMUKH UMEET BHI

d AL AL F _

— = +=—=0, 6.2)
dt aa)' aax Bax
rae L — narpaHxuaH HOPMalIbHBIX KPYTHIbHBIX KoneOaHHi
< A2 A2
NGO A CT!
= - . (6.3)

2 2

Maccossiii napamerp B, u mapamerp KPYTHIIbHOH XeCTKOCTH C, Ompe/esieHbl

B pasn.3 dopmynamu (3.3) u (3.4) coorBerctBenHo. Iloncranoska (6.1) u (6.3)
B (6.2) PUBOXMT K XOPOMIO M3BECTHOMY YPAaBHEHUIO 3aTyXaIOIIHMX JTMHEHHBIX
KoneGaHwmii:

B)Loc)~ + 2D)\oc,L + C;\ax =0, (6.4)
OTKyha clieqyer, 4To cOOCTBEHHas 4acToTa W, u K03 pHUMEHT 3aTyXaHUs

KPYTHJIBHBIX KOJI€OAHUH Y, paBHEI

o, =(C/B)"2, v, =D,/B,. (6.5)
Koadpuuuent tpenus D, onpenensercs UHTErpanom
D=3 | oz +3 |dm, (6.6)
j i

CTPYKTYpa KOTOpOro, Kak BHIHO, COBMANaeT CO CTPYKTypoH koadduumeHTa
xecTkocTd. C yyetoM au¢dy3HOCTH SAEPHOI MOBEPXHOCTH BBIYMCIEHHS KO-
achpuLMenHTa TpeHUs COBMIOBBIX KoyieOaHMil JaloT

D, =Mv{r? a7 - 1), 6.7)

rme M — wMacca sapa. Pe3yasraT BEIMHCICHHH B MPUONMXEHHH pE3KOro Kpas
HNPHUBOIHUTCS HUXE.

6.2. CroakHOBMTEIbHbIE IIMPHHBI MArHUTHBIX pe3oHaHcoB. ConracHo
TEOpHMH JIMHEHWHBIX sAepHsIX KoneGaHuil, sHeprun E(MA) M CTONKHOBUTENBHBIE
mupuHbl ['(MA) simepHbIX M30CKaNSPHBIX PE30HAHCOB B PacCMaTpUBAcMOM IOJ-
XOJle ONpENesIOTCS COOTHOMEHUsAMH [27]:

EMM) =fw,, T(MA) =Ty, (6.8)

Moacraensas cioga (6.7), mnonmyuyaem crnenyiolee BbipaxXeHue IS CTOJK-
HOBUTENbHON WHMpUHBl MA, T=0 TBHCTOBOro pe3oHaHca:
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202
T(MA) =hv QA+ DA - 1) %Tx)l (6.9)
r

B npubmixenuu peskoro kpas ¢opmyna (6.9) npuobperaer Bug
T(MA) = 6,021+ 3)(A~ 1) A7 MsB. (6.10)

Takum 06pa30M, MBIl HaxoduM, YTO MEXaHU3M 'L[ByXTCHbHOﬁ AUCCUIIAINH
9HEPIrHd NMPUBOAMUT K TOMY, UTO LIMPUHBI MAarHMTHHIX PE30HAHCOB CMAalOT C

POCTOM MacCOBOTO YHC/a MO 3aKOHY A8 c YBEITUYEHUEM MYJIbTHIONBHOCTH
BO30YXAEHHS INMPHHA pe30HAHCAa pAacTET MNPONOPUHMOHATEHO MHOXUTEIIO
(@A +3)(A—1). YncneHHBe OLEHKM LIMPUHBI KBaJPYNOJBHOTO MAarHHTHOIO
H30CKISAPHOIO Pe30HaHCa B HEKOTOPHIX CEPUYECKUX SAAPAaX MPHUBEIEHBI B
Ta6/1.2. DTH OLIEHKH IC/IyYeHbl IPH BHILENPUBEJEHHBIX 3HAYEHUSX MapamerT-
poB hepMHEBCKOTO pacrpeneneHus I MIOTHOCTH.

O6paTuB BHUMaHME Ha TO, YTO OBHEPrHS M LIUPUHA HMMEIOT CXOTHYIO
MyJbTHIIONBHYIO 3aBUCHMOCTb, MOXEM INpPEACTaBUTh Bhipaxenue (6.10) B Bume

(M) =5—"2— [E(MA)]*> MsB™. (6.11)
fiv?

Kak cnemyer u3s (6.11), CTONKHOBUTENbHAA IIMPHHA MATHUTHOLO PE3OHAHCA
NaHHOW MYJBTHIONBHOCTH MPOMOPLUMOHANbHA KBaJpary 9SHEPrud BO30yX-
AeHus. AHAOrMYHas 3aBUCHMOCTb CTONKHOBHTENbHOM IMMPHHBI OT MAacCOBOTO
4MC/Ia HMMEET MECTO M [ BJIEKTPHYECKHX H3O0CKAISAPHBIX PE3OHAHCOB
[27,28,33]. AnanuTuyecKas 3aBUCHMOCTb IHIMPUHBI BJIEKTPHIECKUX H30CKAIAP-
HbIX PE30HAHCOB OT MYIbTHIIOIBHOTO MOPSAKA A B HAIUMX pacyeTax MMEET BHI

rED = 2% [BENT, 6.12)
v
rae E(EN) paerca ¢opmynoit Hukca — Cupka (2.16). CpaBHuBas Bppaxenus
i wupuH (6.11) u (6.12), HaxoguM

T(MA) 1 (2A+3)
T(EN) 2 @A+1)

<1, A22, (6.13)

T.€. INMPMHA MAarHMTHOTO H30CK&IIPHOIO pEe30HAHCAa JaHHOW MYJBTHIIONb-
HOCTH A 22 Bcerna Gonblie IIMPHHBI JIEKTPHYECKOTO M30CKATAPHOTO PE30-
HaHCa TOH Xe MyJIbTHIONbHOCTH.

IpencraBneHHsle OLEHKM HOCAT MpeCKa3aTeNIbHbIA Xapakrep, NOCKOJIbKY B
HacTosLIee BPEMS OTCYTCTBYET KaKas-THOO0 3KClepuMeHTaIbHas MHGOpMaLus O
IIHPUHAX MAarHMTHHIX pe3oHaHcoB. Haiiu npeackasanus JOBOJIBHO XOpPOILO CO-
IIacyloTcs ¢ pesynsrataMu pabor [28,33], rie NpuBefeHs OUEHKH Ha apaMeTPhl
penakcauMy TpaHCBEPCATbHBIX AAepHBIX KonebaHuil. B yacTHOCTH, mpenckasaH-

Hblil B [28] A3 3akon criagayusl WHPHH TPaHCBEPCAIbHBIX KOMUIEKTUBHBIX MOJ
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C POCTOM MAacCOBOrO 4MC/a, BOCIPOM3BOAMTCS B PaCCMOTPEHHOM HaMH Ciydae
MarHUTHBIX PE30HAHCOB C A > 2.

7. 3AKITIOYEHHE

B Hacrosilee BpeMsi KOJUIEKTHBHbIE MarHUTHbIE BO30YXACHHUS sep ABJIAIOT-
Csl IPEOMETOM aKTHBHBIX MCCIIENOBaHHH, KOTOpHIE CTUMYIHPYIOTCS 9KCIEpUMEH-
tam, nposoaumeiMH B lapmmitagre (DALINAC), Mockse, LlTyrrapre, Macca-
yycetce (Bates LINAC) u npyrux uextpax. B 3Toii cBA3u npencrasnsercs cBoe-
BPEMEHHBIM MpeNCcTaBUTh 0630p TEOPETHYECKMX HCCIIeAOBaHHIA, BbIMOJIHEHHBIX B
paMKax MaKpOCKOMHYECKOi TEOPHUM KOJUIEKTHBHBIX SOEPHBIX BO30OYXIEHHH.

Onxa u3 weneit gaHHoro 063o0pa cocTosijia B KOHCTPYKTHBHOM aHalUTHYeC-
KOM TNpENCTaBI€HHH TMOMHOro Habopa H3MepseMBIX MHTErpajbHBIX Xapak-
TEPUCTHYECKHX MApaMETPOB H3OCKAIAPHbIX MarHUTHBIX MY/IBTHIONBLHBEIX Pe30-
HAHCOB: MOJIOXEHUA LEHTPOUIOB 3HEPTHii, CyMMapHbIX BEpPOSTHOCTEH BO30YX-
OEHHUs, CTONKHOBHUTENbHBIX UWIMPUH M CeuyeHHit BO3OYXIEHHs B peakuuu
HEyNpYyroro paccesHHs 3JIEKTPOHOB. YKa3aHHble BEJIMYMHbI MPENCTaBIAIOTCA B
BHAE CTENEHHBbIX (DYHKLMH aTOMHOrO HOMEpa, MacCOBOTO YHCIAa M MYNbTHIOMNb-
HOro nopsaka Bo30YyXIeHHA. DTO NenaeT MOAENb OTKPHITOH [is IKCMEepHUMEH-
TaJbHOH NpoBepkH ee npexckazaHuid. ToT dakT, YTO U3N0XEHHas Teopus Npen-
CKa3blBACT 3HAYEHHA OCHOBHBIX WHTErpaibHbIX XapaKTEPUCTHYECKMX IapaMer-
poB ans M2 KOIEKTHBHOH MOABI, HAXOAALIMECS B KayeCTBEHHOM COIVIACHH C
HUMEIOLIMMHCS 3KCMEPUMEHTATbHBIMH JaHHBIMH, YKa3biBa€T Ha aJeKBaTHOCTb
pa3BUTON MaKPOCKONMHYECKOH TPAaKTOBKH Habi101aeMOro KBaipynoJbHOTO pe3o-
HaHca.

B H3n0XeHHOH KONIEKTHBHOH MOJENH MarHUTHbIE H30CKAIAPHBIE PE30OHaH-
Cbl HHTEPIIPETHPYIOTCS B TEPMHUHAX KPYTHJIBHEIX Kone6GaHHii sapa, paccMaTpHBa-
eMOro kax ctepuyeckas MaKpowacTHLa sfnepHOH ¢epMHu-cpemsl. DTHM nog-
YEepKMBAeTCd, YTO AepHas Marepus obiagaeT CBOHCTBaMH YNpYyroro KOHTHHYY-
M2, npuyeM uU3NMecKad NPHPONA YNPYIOCTH SOCPHOIO BELUECTBA HMeEeT
CYIIECTBEHHO KBAHTOBOE MPOUCXOXIEHHE, TMOCKONBKY SBJISETCS CJIEACTBHEM
thepMHEBCKOro JABHXEHHA HYKJIOHOB M CBA3aHHOH ¢ HMM AHHaMH4eckoil nedop-
Mauuu noBepxHocTH Pepmu. B aTo# cBA3M yMecTHO no6aBuTh, uTO MpobiemMa
YIPYrOCTH SICPHOTO BEIECTBA SBASETCS MPEIMETOM aKTHBHOTO H3yYeHHs B
TEOPUH SOEPHBIX ABHXeHHI Gonbiioii aMmuTynsi [110,111]. MoxHo HamesThcs,
9T0 KOHKPETHOCTh TIPEACTARIEHHBIX B 0030pe pe3yNbTaToB OKaXeTcd MOJIe3HOM
npH BbIGOpE HanpasjieHHs [IaHUPYEMBIX 9KCIIEPUMEHTOB, KOTOPHIE MO3BOJIST yC-
TAHOBUTh, HACKOJIBKO AOCTOBEPHBIMM SBJIIOTCA NpeNCTaBlIeHUS 00 ympyromo-
JOOHOM IOBENEHHM SOEPHOH MaTepuH.

B 3aximouenne Mel xotenu 6bl mobnarogaputs B.B.I'ynkosa, B.M.IlIunoga,
A.B.CymikoBa 3a IUIONOTBOPHOE COTPYNHMYECTBO, a TaKXe BBHIPa3uTh MpHU3Ha-
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TensHOCTs B.O.Hecrepenko, W.H.Muxaiinosy, M.Jlu Topo, E.B.Bans6yuesy,
A.HM.Bnosuny, IIx.Iletepcony, P.Xunrony, JI.A.Manosy, B.C.Umxanosy, C.Pa-
maHy, JIx.Ilposupencus, B.X.IOnnamGaesoi, I1.Punry, X.JIu6epy, B.B.Bopo-
HoBy, H.I'T'onvaposoii, M.Bpaky, A.I.Maruepy u H.Jlo ¥Oneun 3a nonesusie
JOMCKYCCUH IO 3aTPOHYTHIM BOIIPOCAM.

Pa6ora Brimonnena npu noagepxke Poccuiickoro ¢ouna (yHmaMeHTansHex
uccnenosanuii (rpaut 94-02-04615) u Esponeiickoro ®u3nueckoro O6umecTsa
(rpant INTAS-93-151).

INPIIOXKEHHE I

Bhrunciienue MHTErpanos, (Gpurypupylomux B TeKcre, yrobHee NpOBOTUTH B
cucreMe ¢ (pMKCHpOBaHHOM MONAPHOH och0. B 310M cnyuae cepuueckne Kom-
TNOHEHTb! TOPOMAATLHOTO MO/ MIHOBEHHBIX CMELIEHHMH @, ,COOTBETCTBYIOLIETO

KPYTH/IbHBIM KONe6anusaM ChepuYeckoro sapa, UMET BUI

dP, ()

i (I1.1.1)

a,=0, ay=0, a,=Ar*1-pH?

¢
rae L=cos 6, Px(u) — monuHoMbI Jlexannpa.

KOMIIOHeHTbl  TeH30pa  YNpYruX — HanpsikeHWil, BO3HMKAOIIMX NpPK
KPYTH/IBHBIX KONeOaHHsX, JA0TCI COOTHOLIEHUSIMU

da, oa

—=—T=9

ox, odr

% -y % 4

x, r uor
R T S
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da 1 da, dP, (1)
—= =2 5 —Q“—A A (1—112)1/2—*}”*',

I, r(1-pd) 8¢ r dp

da, da dP, (1)

L LA (ERTO O

dx, or du

da 1 da, a n dP. (W)

=~ R e N TR

ox, r ap. r (1-u9 du

da 2,12 9a dpP, (1)

95 (1=ph" % x—[ N ]
ax2 p I —A, n an AMA+ P, (W) |

B BeiYMCHEHUAX HCITO/IL3YIOTCA CNEAYIOLUWE OCHOBHBIC UHTErpasibl:

+1

2
-1

+1 dP )
[ (1_“2)[ (1 Tdu=zx(x+1)
-1

dp QL+
dp, ()
A 2A
_J; WPy ) i = s

o dp(w
A _MA+DERA-D
{{” dy ]zd“" @+

ABa TOCIAEAHMX MOJY4YeHbl C MCMONbL30BAHWEM PEKYPPEHTHBIX COOTHOMIEHMH
ana nonuHoMos Jlexauapa.
Beiuenpuenerusie opMynbl  MO3BONSKT 3HAYMTENHHO OBMErYHTL IPO-

MO3KHE BBIMMC/ICHHS UHTETPAIOB, COAEPXAUIMX TECH30P YNPYIHMX HANpsXCHHIl,
B vacTtHOCTH,

dat 3
ljF(r)[ 4 aa ]zdt 4m A2 ML 1)(2.+1)JF(r)r2)‘dr (1.1.2)
J i 0

rae F(r) — npousBonbHas GYHKUMS OT r.
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A new method is proposed for systematic approximate calculations of a large class of
non-Gaussian functional integrals beyond the region of perturbative expansion. This method
provides a good accuracy of the lowest approximation, obtained in a simple way, which
represents a generalization of the variational estimation if the functionals are real. In cont-
rast to the variational approach, this method is applicable to complex functionals and theo-
ries with ultraviolet divergencies. Higher-order corrections to the lowest approximation are
evaluated by a regular scheme. This method is applied to different problems of theoreticai
physics: the polaron problem in solid states, the phase-transition phenomenon in quantum
field models and the investigation of wave transmission in randomly distributed media.

TpensoxeHn HOBbIM, HeNEpPTYPOATHBHBIA METON CHCTEMATHYECKOTO BHIMMCIIEHNS HIHPO-
KOTo Kiiacca (PYHKLMOHAILHEIX MHTETPATIOB, NPHMEHSEMbIX B KBAHTOBOI tusuke. Meron
00€CTIEYHBAET XOPOLIYI0 TOYHOCTh B HU3LIEM NPHO/IHXEHNHY, TIONy4aeMOM HECTOXHEIM My~
TeM. B ciiyuae BeluecTBeHHBIX (DYHKLMOHATIOB OHO npencrasiser coboit 06obiwenye napua-
LHOHHOrO NpuHLANA. TTpenaraeMbiil METOR BHITOAHO OTAMYAETCS OT BAPHALIMOHHBIX TIOLXO-
AOB NPUMEHUMOCTBIO [ KOMIUICKCHBIX (BYHKUHMOHANIOB U B TEOPHAX C PACXONUMOCTIAMH.
Honpapxy BEICIIMX NOPSAKOB K HH3IIEMY NPHGIVKEHUIO BEUHCITIONCS 110 PETy/IsSpHO# cxe-
Me. MeTon npuMeHeH K psiy 3anad M3 pasTHYHEIX oGaacTeit TEOPETHYECKOH (PU3MKH: Teo-
DHH NONIPOHA B (DH3MKE TBEPAOTO TeNa, H3y4eHUI0 (Ha30BOrO MEpexofa B CKaJIIPHOH MO-
p1(2) 178 (p4 B TEOPHH TOA U K MCCIIENOBAHMIO PACIIPOCTPAHEHHS BONTH B CTOXACTHYECKHX Cpefiax.

INTRODUCTION

In modern theoretical physics the formulation of quantum theory relying on
the original classical system is mainly distinguished in two mutually comple-
mentary ways. One of them is the method of canonical quantization (CQ),
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where the field dynamic variables are considered as operators satisfying certain
commutation relations and defined on a Hilbert space of states. Many papers
have been devoted to CQ and for history and details we refer readers to [1,2].

The second formalism of quantization is Feynman’s method of path
integrals (PI) [3,4]. The basic idea of the Feynman formulation of PI is that the
quantum motion of a particle is considered as the sum of all quantum transitions
along all possible classical trajectories with amplitudes proportional to

A[x]ocexp(isf[tx] ),

where S [x] is the classic action taken on a given trajectory x. The total
transition amplitude is supposed to be proportional to the integral

Aec{Srexp{%S(t,x)}, )
where the classical action
! 2
seo=][ d { o R -V [r(@)] } @)
0

is taken along the given path r(t). Integration in (1) is performed over the
space I' of all possible «path-trajectories» r(t) with 0 <t <t for which
r(0) = X, and r(r) = x. This representation attracts much attention because it is

close to the classical theory, having both the physical clarity and the fine
compact mathematical formulation. These advantages stimulated applications
of PI to various problems in quantum physics [4].

From a technical point of view, the PI formalism of quantization represents
an essential attempt to go out beyond the perturbation expansion and becomes
effective for describing systems with infinite numbers of degrees of freedom.

In mathematics Wiener [5] was the first to introduce in 1920, the
conception of PI to describe Brownian motion. Dirac first suggested a repre-
sentation of a particle propagator in terms very close to PI techniques [6]. The
systematic development of quantum mechanics (QM) within the PI approach
belongs to Feynman.

In quantum physics, Feynman [3] formulated non-relativistic QM on the
language of PI (in other words, the functional or continual integrals) and
showed that this approach is completely equivalent to the solution of the Schro-
dinger equation. One of the main reasons for the popularity of «path integrals»
is the understanding that classical mechanics becomes an approximation of QM
in Feynman’s formulation if one applies the method of «stationary phases» to
the latter. At the classic limit i — O the leading contribution to PI is given by
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the stationary points of the phase function S (¢, r) in (1), which is the solution
of Newton’s classical equation of motion.

In 1949 Feynman used the functional integral (FI) for construction of
covariant QED (the Feynman diagrams) [4]. After that, acknowledging the
dignity of this new approach, Kac (1951) suggested a FI of Wiener’s type for
representation of the evolution operator in Euclidean space [7].

Path integration has come a long way since the 1950s. Probably the most
famous early application of FI in statistical physics was to the polaron (a
nonrelativistic electron «dressed» by the surrounding quanta of lattice vibrations
in ionic crystals). In polaron theory, FI not only helps to formulate the answer
qualitatively, but also remains the best way to calculate the answer more exactly
than other methods. It is a tractable field theory; the benefits obtained from

using FI are entirely analogous to those gotten in quantum field theory (QFT).
~ But contrary to the polaron problem, all steps for QFT are more difficult
because of the divergences, the vector character of the fields and also gauge
problems.

A number of investigators [8,9] independently came to the formulation of
QFT in terms of FI considering variational estimations for Green functions.

A relatively simple way to represent the Green function of a quantized field
within FI was suggested in [10], where the equivalence of FI over bosonic fields
to the averaging over vacuum states of these fields is proved.

A new understanding of FI occured in [11,12], where the evolution operator
of the model P(9), in Euclidean metrics was represented in FI form as follows

exp {— BH} =Id()‘0 exp {—de 1 P(g) :},
1
do, = C 8¢ exp { 2 J dx [(V(p)2 + mz(pzl } , 3)
where do,, is a Gaussian measure of integration, generated by the action

Sy(@) = % j dx [(V(p)2 + m2(p2] of a free bosonic field and jdx T P(Q) :

introduced for a certain renormalization of the classic interaction jdx P().

This definition of FI in (3) which allows the removal of interaction
divergences coming from low-order «tadpole-type» diagrams is the
essentially new and important feature of construction by Glimm and Jaffe.
Next important step in the application of FI in QFT was made in the
quantization of Yang-Mills fields. A consequent scheme of quantization for a
massless Yang-Mills field was constructed in 1967 by Faddeev, Popov [13] and
De Witt [14] within the PI approach. FI turned out to be the shortest and most
convenient method for constructing the Feynman rules for perturbation
expansion in gauge field theories. This method played an important role in the
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investigations of Slavnov [15], Taylor [16], Lee and Zinn-Justin [17], t’ Hooft
and Weltman [18]. In these papers a generalized Ward-Takakhashi identity was
obtained, various methods of invariant regularization were developed and a pro-
cedure renormalizing the perturbation series was built. Within FI there has also
been an attempt made to construct a quantum theory of gravitation [19].

In the 1970s, techniques based on the original ideas of Peak and Inomata
[20], and Duru and Kleinert [21] for solving certain non-Gaussian FIs occuring
in QM have attracted much attention. Standard examples of QM considered in
this approach are defined by using Bessel- and Legendre-type diffusion
processes, other than the Wiener process often used on these subjects. These
results do not require the machinery of stochastic analysis and can be treated in
a quick, transparent way. A development of this method is assumed in [22],

where certain non-Gaussian integrals with potentials like ~ 1/ r* or of the
Morse-type have been derived rigorously by- using techniques of changing
dimension and time in FIs. ;

Excellent monographs and review papers have been devoted to FI in
quantum theory [13], [23—29].

Although many points concerning the correct mathematical definition and
practical calculation of Fls still remain open, it becomes clear that the
description of a quantum system within the FI method is as convenient as using
linear operators acting on vectors of Hilbert space within the method of CQ.

We summarize the above, stressing in particular that:

— the FI is a convenient conception for the qualitative consideration of
quantum theories owing to the simplicity of using the WKB approximation, the
evident relativistic covariance of the fomulation and the ease with which some
specific constraints can be taken into account (e.g., introduction of «ghosts» in
Yang-Mills theory);

— the FI can, serve as a practical tool for the quantitative estimation of
characteristics of quantum systems because of the possibilities of reducing some
dynamical variables by exact integration (e.g., in the polaron problem), chan-
ging space/time (for the inverse-square potential in QM) and the convenience of
computer calculations for imaginary-time sum over paths [32], etc.

In the present paper we consider mostly the second aspect of the application
of FIs in quantum physics.

1. APPROXIMATE METHODS
FOR CALCULATING FUNCTIONAL INTEGRALS

A great number of problems of modern physics can be formulated in terms
of the FI approach. These problems have a common feature: their solution can
be obtained in the form of a functional integral, which is defined on the
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Gaussian measure. The most general form of a typical functional integral can be
written as follows:

2@ =C,[spexp |- 2 @D;'9) +gW o1} @

where
-1\ _ I J’ -1
@Dy '®) = | dx | dy (9(x) D' (x, y) ()
r r
andT e R? (d=1,2,..). The Gaussian functional measure
1 -
doo = Co 3¢ exp {_ E ((PDO l(P)} (&)

is defined by a Green function D(x, y) corresponding to a differential

operator Do_](x, y) with appropriate boundary conditions. The normalization
constant C, is chosen in such a way that

Jdo,=1 o, zo)=1.

In the standard nonrelativistic quantum mechanics the interaction functional
W is usually defined by a potential gU (¢):

Wiel=g | deU (o), ©6)
! |

where the coupling constant g is real. In other and more interesting cases (for
example, polaron, bound states in QFT, stochastic processes, etc.) the
interaction functional W [@] usually represents more complicated dependence
on @(x).

Up to now exact calculations of functional integrals of this type are known
[30] only for a quite limited class of interaction functionals: for quadratic forms
of interaction leading to the pure Gaussian integral and very limited numbers of
potentials (Coulomb potential and some others), for which the path integral can
be reduced to the Gaussian integral after a definite change of variables. For
others various approximate methods should be applied.

The contemporary progress in the computer hardwares and effective
softwares for the numerical simulation technique enables one to obtain
numerical calculations of (4) with sufficient accuracy although the practical
implementation of this approach is very laborious. Besides, direct numerical
(lattice) simulation is bound up with the difficulties of the continuous limit in
lattice discretization and limited computer resources.
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The development of analytical methods is very important because only
analytical methods permit us to investigate qualitative features of quantum
physical systems and indicate effective ways for improvement of numerical
algorithms. Much efforts have been devoted to construct analytic methods for
calculating the characteristics of quantum system within the FI formalism.

Among numerous approximate analytical FI methods we can list the
following popular approaches: the standard perturbation expansion over g, the
quasi-classic WKB approximation, the 1/N expansion, the instanton
approximation and the variational methods (e.g., the Gaussian effective
potential and space time transformation).

However, these methods have some limitations. For example, the WKB
method cannot be used to study high-order quantum effects, the 1/ N expansion
gives a low convergence of the approximation series at real space-dimension
numbers N = 3. :

The standard perturbative method usually provides the perturbation series

Z@g=Y, £z,
n=0

having the practical sense for a weak interaction g << 1 when only a few of
the lowest terms Z is enough for getting Z (g) with an acceptable accuracy.

In addition, the calculation of Z for large n really is not more a simple task.

If the FI (4) is real, then the problems of such kind are studied by means
of variational methods, which are popular due to their clear physical meaning
and relatively simple calculations. However, the variational technique does not
provide a regular prescription for choosing the trial functionals and it also does
not allow one to control the accuracy of the estimation. Moreover, there is a
class of problems (most of the QFT models with ultraviolet (UV) divergencies,
complex and nonhermitean functionals, and so on), where the variational
methods cannot be applied at all because the Jensen inequality no longer holds
for these nonreal actions.

Our goal is to develop a universal method to calculate this path integral for
any and especially large g. Sometimes it is possible to hear an opinion that in
the strong coupling regime g — oo the integral of the type (4) loses its Gaussian
character and another non-Gaussian measure should be introduced. For
example, it can be like this

do = C 8¢ exp {~ [ dx ¢*®)).
r

We want to claim that it is not true in the case of integrals of the type (4),
where
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» the highest derivative of the differential operator Do"l(x, y) is 2v, ie.
Dy '@, y) ~ 9% forv 21

* the interaction functional W [¢] depends only on ¢(x) and does not contain
derivatives like 9@ (x).

Really, let us bring semiqualitative arguments. Let f, (x) is an orthonormal
system of eigenfunctions of the operator Do‘l:
D7 f ()=~
o £ =73 £,
n
¢ f)=faxf@f@=5 . )
_ r
The eigennumbers D, satisfy the following asymptotics
D =0 L f
= [ 7 or n — oo,
n
Let us introduce the representation

o)=Y, fWVD u, ®)

where { u, (n=0,1, ...)} are a new denumerate set of variables. We have

-1 2
@Dy '®) =3, luf

n

Z(g)=c0] I1 dunexp‘-—%z IunI2+gW[(p]

n

We expand @(x) as follows
O(x) = dp(x) + &, \ (%),

o) =3, f,0)ND, u, O
n<N

£,
o0 =Y £OVD, u -~y o u,,=0(%}
>N n N

n>N

where N is a large number. Then we have
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1 2
do=c,[1 duncxp{—iz e | }=doNdc>N,

n n

1 2 /
ch=CNH du, exp{—z z lu | ],
n<N n<N

1 2
do_y = C, [ dunexp[——z— Y }
n>N n>N

fch=Ido>N= 1.

The interaction functional can be represented as follows

. .
Wiel=g | de(q’N(")”O(FJ' (10)
r
Thus the functional integral under consideration can be approximated

Z(g) ~ Z(g) = | doy exp (W (9]} (11)

and
Z(g) = lim Z\(8).
N—>eo

One can see that the existence of this limit does not depend on the value of
the coupling constant g and for any large g there exists a number N (g) so that

Z<g)=zN(g)+0[§], (12)

i.e., the functional measure can be considered as a Gaussian measure.

As a result we can conclude that the path integrals of the type (4) for any
g can be considered as functional integrals over a Gaussian measure. Thus we
can expect that there exists a representation of the initial functional integral (4)

2@)=C, [ spexp{ - (@D, ) + W,lol | (13

with another Cg, Dg_1 and Wg[(p], for which the main contributions from the

interaction functional gW [@] should be accumulated in the operator Dg—1 and
the perturbation corrections over the new interaction Wg[(p] should be small.

Our problem is to find this representation.



GAUSSIAN EQUIVALENT REPRESENTATION 467

For this aim we shall use the idea that the normal ordering of the
Hamiltonian means essentially that the main quantum contributions to the
ground state or vacuum of the system are taken into account.

In the language of the FI it means that the conception of normal ordering
with respect to a given Gaussian measure should be formulated and next prob-
lem is to represent the functional integral (4) in the form (13), where

* the Gaussian measure is defined by the operator Dg—l,

* the interaction functional Wg[(p] is written in the normal form with respect
to the Gaussian measure with Dg"1 and it does not contain quadratic terms
over @, i.e. Wg[(p] =0 ((p4) for ¢ — 0.

This representation we shall call the Gaussian equivalent representation of
functional integrals. In section 2 all definitions will be formulated.
This method will be applied to the following problems:
* investigation of the behaviour of the polaron in ionic crystals in quantum
statistics,
* phase transitions and phase restructure in quantum field models,
* propagation of waves in a stochastic medium with stochastically
distributed centres in radiophysics.

2. GAUSSIAN EQUIVALENT REPRESENTATION
OF FUNCTIONAL INTEGRALS

The main content of this Section is the development of the method of
Gaussian equivalent representation (GER) of FIs and its application to the
investigation of the ground state (vacuum) of various QFT and QM models in
order to study nonperturbative phenomena such as the strong coupling regime,
phase structure and phase transitions.

The GER method is a type of generalization of the variational technique,
but in contrast to the latter, it is efficient for QFT models with UV divergencies
and to theories with nonhermitean and nonlocal actions (stochastic and dissi-
pative processes), where variational methods cannot be used.

This method is characterized by a high accuracy of the lowest appro-
ximation, which can be obtained by simple and rapid calculations. It gives a
regular prescription for calculation of higher order corrections to the lowest
approximation and can be considered as the next step in the development of
approximate calculation methods.

2.1. General Formalism. Considering many theoretical problems in
statistical physics [33], quantum field theory and mathematical physics one
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deals with a class of functional integrals defined on a Gaussian measure. We
shall consider functional integrals of the general type (4) as follows

Z @ =Cy [ o exp { -5 @05 ') + gWifol | =
= [ do, exp (gW,01). (14)

Here we have introduced the following notation for the Gaussian measure

1 -
do, = C, b¢ exp{—i((pD0 l(p)}=

qu'l dw(x)exp{-—dedyrp(x)D x y)«p(y)l 1s)

The Gaussian measure is normalized in such a way that jdodl = 1. The
integration in (14) is performed over functions ¢(x) defined on a region

I'cR d (d=1,2,...). Usually the region I" is chosen as a multidimensional
box: T'={x: a; ij Sbj , G=1,..., d}).

A differential operator Do_l(x. y) is defined on functions @(x) with
appropriate boundary conditions. For example, the operator

Do-l(x, y)={—§+mg]5(x—y) ' (16)

acts on functions satisfying some periodic boundary conditions. The
corresponding Green function Dy(x, y) satisfies the equation

[ @y ;' y) Dy 9 = 8- )
r

and ensures definite boundary conditions.
The parameter g is a coupling constant. The interaction functional W;[¢]
can be written in a general form

Woiol = [ dy, & @@, a7
- where we have introduced the notation

(@) = | dy a0) 90),
r
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and dp,_ is a functional measure. For example, for a potential having a Fourier

transfrom one (/:an write
Wolel = [ dxt toe = [ dx [ 2 G k) exp i [ ay ko) 86 - ).
: r r ’ r

FI in representation (14) is well defined as a perturbation expansion over
the coupling constant g. Thus, physically acceptable results can be obtained
only in the weak coupling regime g << 1. In this case the Gaussian measure
do, (15) gives the main contribution in FI and corrections can be calculated by
using a perturbation expansion.

The task is to give a representation of this integral in the strong coupling
regime [34]. Our idea is that the FI beyond the perturbation regime remains of
the Gaussian type but with another Green function in the measure. In other
words, we want to obtain a representation in which all main contributions of
strong interaction are concentrated in the measure.

Let us perform the following transformations of the integral (14):

0(x) = @(x) + b(x),
D' y) = D7, ), (18)

where b(x) is an arbitrary function and D (x,y) is an appropriate Green
function of the differential operator D -1

[ay D' 3) D 3, 2) = 8(x - 2)
r

providing the same boundary conditions.

Transformations (18) represent in a certain sense a functional analogue of
standard canonical transformations made in the Hamiltonian formalism. The
functional integral (14) takes the form

Z.(8)= Vdet —DQ(; exp { —-;‘ (bDO—lb) } . Ido exp {gW ¢, b, D]}, (19)
where -
- L op-1
dc—C6<pexp{—2((pD <P)},

_ 1 _ _
dW [, b, Dl = W [9 + bl - 6D '9) - 3 (@ Dy - D71 @), 0

with the normalization condition jdo*l =1.
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The tadpole Feynman diagrams give the main quantum contributions into
background energy of the system under consideration or, in other words, into
the formation of the background state or vacuum. The mathematical problem is
to take them into account correctly. In the quantum theory the main divergences
given by tadpole vacuum diagrams are efficiently eliminated out of
consideration if the normal- ordered product of operators is introduced into the
interaction Hamiltonian. Following this, the interaction functional in (19)
should be written in the normal-ordered form. Thus we should introduce in
W, the concept of the normal product according to the given Gaussian measure

do. It can be done in the following way

1

i i ~ (aDa)
.ol @) . _ i (ag) o3 (4P

(21
This definition leads to the following relations

[ do:ef@. =1, [do:ox) ... ox): =0.
After these transformations the functional in the integrand can be rewritten

i (ab) ~ % (aDaj)
W =g | dn, e

. ol (a9) .
1€y ;'+

| .
i (ab) — = (aDa) 1 _ _
+[gfduae 2 —5([1)0‘-1) ']D)]+

i (ab) - % (aDa)

+ [ ig [dn e (a9) - tD; ") ] -

1
i (ab) - = (aD
: gjdu e @2 a)(atp)2+(<p[D"—D"l<p) : (22)
a 0

N | —

2

z_ 2 _1_.,_%
whcreez-e 1-z 5

Now we introduce the concept of the «correct form» of the action in the FI.
We demand that the linear and quadratic terms on the integration variables
@(x) should be absent in the interaction functional W, in (22). This requirement

is argued in the same way. The system under consideration should be near its
equilibrium point so that any linear terms on the variable ¢(x) must be absent.

The quadratic configurations ~ (p2 determine the Gaussian oscillator character of
the equilibrium point and all of them are concentrated in the Gaussian measure
do only. Therefore, they should not appear in the interaction functional and
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Wl~(p3 for ¢ - 0.

Thus the «correct form» requirement is satisfied if the following equations

are held
i@ -3 @a) | O
g J dy ia(x) e - f dy D, (x, y) b(y) =0,
r

i (ab) —%(aDa) . O (23)
g [ du, a9 ap) e +D5' ) =D 7', y) = 0.

These equations provide the removal of the linear and quadratic terms from
the interaction functional. Let us introduce the following functional and its
correlation functions:

Wb = [ du, exp {i @) -5 @a) h

§" (24)

T 8b(xy) - .. - obix) 1Pk

(on(xl,..., x,)
Equations (24) can be written in the form
b(x) = g [ dy Dy(x, ) ©,0),
r
D(x,, x) = Doy, 1) + g [[ dy, dy,Do(x), ) 0,0 3,) DOy ). @)
r
These equations determine the new Green function D (xl, x2) and the function

b(x) in (22). Finally the new representation for FI in (14) can be rewritten in
the form:

Zp- (@) =exp (Ey)-[ do exp (W fo1), 26)
where
1 D 1 -1 | -1 0
Eq =3 In det (D—o J— 5 ®Dg'b) =2 (D5 = D D) + gW [b],

i (ab) - % (aDc)

gWlol =g [du e ALY @n

The representation of the interaction functional in the normal product form
means that

[ do wie1=o0.
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The function E; defines the «energy» of the zero approximation. Next

corrections to the leading term in (26) can be calculated by using a perturbation
expansion over the new interaction functional W, .

It should be stressed that representations (14) and (26) are equivalent.
Therefore the mathematical object Zp. (g) has at least two different repre-

sentations (14) and (26). In principle other representations may exist if equation
(26) has a more distinct solution. In this case we give preference to the repre-
sentation in which the perturbation corrections connected with gW or gW, are

minimal for given parameters.

All our transformations are valid for real and complex functions and
functionals in the FL.

In the case of real Fls representation (26) leads to the following conclusion.
Using Jensen’s inequality one can get

Z.(g) 2 exp {Ey}, (28)
so that Eo defines the lowest estimation for our FIL.

On the other hand, one can easily check that (26) defines the minimum of
the function E,. Thus, inequality (28) is the variational estimate of the initial FI.

Moreover, representation (26) makes it possible to calculate the perturbation
corrections to E; by developing the functional integral (26) over W, .

2.2. The GER Method for Calculating the Partition Function. In this
Section we develop the main techniques of the GER method especially for
calculating the partition function in QM and QS. In other words, we deal with
integrals where the field variable is the coordinate of a particle r(f) which is
parameterized by the one-dimensional parameter f. For simplicity one can
choose the symmetrical interval — T < t < 7. The parameter 7 is connected with
time in QM or the inverse temperature 27 = B in QS.

The partition function plays an important role in QS. For a wide class of
quantum mechanical and quantum statistical problems describing the interaction
of a quantum particle with a field or the propagation of waves and quantum
particles through a media with random or stochastic admixtures the partition
function can be represented in the form of a FI of the following general type

Z,/(8)=

T T

¢, | erexpi- %j dr (0 + 9;— [[ards vaw-r@; -9t @9
r(-T) = x(T) -T -T

The standard normalization is Z(0) = 1. The integration in (29) is performed

over all «paths» in a d-dimensional space satisfying periodic boundary
conditions.
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The kinetic term in the Gaussian measure can be written in the form

T T
[ @i =] ards e Dl 5) ),
T T

Dyt ) =~ % (¢ — ). G0
The Green function D(t, s) corresponding to the differential operator
Do"l(t, s) and satisfying the periodic boundary conditions is
s T
~oT —)—-Elt—sl. (31)

The Fourier transform of this Green function is

Do(t, s)=-— % It — sl

bo(p2)=jdte'ptD0(t)=%[ L —L 2]-»%. 32)
o P +i0)° (p-i0) p

The parameter g is a coupling constant. In QM and QS, the potentials
describing the influence of a field interaction or media on a quantum particle
usually have a general form like V (r —r’; t—t’). So, we will consider this
class of potentials further. The potential V (r(¢) — r(s); t — s) in (29) is assumed
to have the Fourier representation

V(@) —r@s),t-s)= I (_:_!S)—Z [ k; t-s) KR, 5) _ j dK (k; t — 5) o kR(, S)y
n

dX (k; t—s)=id ."/(k;t—-s),
(2m) ’

R (¢, 5) =r(t) — x(s). (33)
Thus the initial FI in (29) can be rewritten as
Z/8)= I do, exp {gW,[r]}, (34)
where
T
do, = C, dr exp | - % H dt ds (1) Do"(t, s)r@s) b, (35)
. -T
gW,lr]l = % ﬁ dt ds _[ dK (k; t — 5) e *RE: 9 (36)
-T

and the normalization condition is [ do, 1 = 1.
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Now we are ready to apply the GER method to this FI. Note that for the
potentials V (r; ¢) of type (33) having their maximum at r = 0 we do not need
to introduce the function b(f), i.e., b(f) = 0. According to the GER method a
new Gaussian measure should be introduced into the integral (34) as follows

T
do=Cérexp|~=[[ ards ey D7t~ 16) | 37
-T
The normalization constant C is J do-1=1.

Second, we introduce the «normal-ordered» form of the potential (33) in
the following way

KR40 — . oR(S) . oy [ K2F (- 5)], (38)
where

F(-5)=D@0)-D(t-ys),
[do R ¢, 9) R (t,5) =28, F (1~ 5).
In particular, the next relations are valid:
, Jdc e GRS
r; () rj(s)=:-ri(t)rj(s):+5UD(t-s), Lj=1..d
The functional ﬁ’ [b] in (24) becomes

W b] =+ ﬂ dt ds jdﬂ( (k; £ — 5) exp [ K2F (= 5)] PO 26D (39

-T
Its second correlation function is
82 | <
8'bm(t) . () W [b] o= Sij [8(t — ) f dTdT)-D(t-13)], (40)

—oo

where
® @ =2 [ a0 K exp - KF ().

Equation (26) defining «the correct form» of the interaction functional
becomes

E ) =- [ dui1-cos (pv)] jdx(k; 1) K2 exp [~ K2F (D)), 1)

2+ Z(p)

1
d
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Equations (41) and (42) define the Green function D (7). For the asymptotic
cases of weak (g — 0) and strong (§ — o) interaction regimes, these equations
may admit analytic solutions because one needs only that their behaviour be

within the accuracy of the first several leading order terms such as ~ g, g2 or,

~1/g I/ g2. In general, these are not solvable analytically as they are nonlinear
integral equations over functionals, but their solutions may be obtained by
developing some numerical techniques. For example, the fixed-point method of

consequent iterations can be used. Starting from guess function }Eo(pz) we can
calculate the iterations:

Bpa0) =5 [ dt 1 = cos o) [ ax ks 0 2 exp [- K2 (o),

= _ (43)
F =] % L=cos@n

2 S 2"
o T PT+eZ ()
This procedure can be developed for numerical solutions of (41) and (42). In
this case, however, the initial guess functions F(t) and io(pz) should be

chosen reasonably, i.e., the iteration process (43) has to converge to solutions

ZeH=%, )= lim 0P, (44)
n—oo
F()=F (0= lim F). (45)
n—oo .

For a reasonable choice of guess functions, it is useful to investigate
asymptotics of solutions for equations (41) and (42). An example of analytic
and numerical solution of (41) and (42) is given in Section 3.3 within the
polaron problem.

Substitution of (37)—(42) into (34) and the requirement that the new
interaction functional to be written in the «correct form» (see Section 2.1) lead
to the new representation of the initial FI

Zp (8) = exp (= 2TE(8))J (2),
Jr(®) = [ do exp (gW,ir]}, (46)

where the interaction functional looks as

T
gWr] = £ [ aras [axcas 1 - s)exp - k2F (¢t - 5y RO . gy
-T
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The function E(g) being «the leading-order energy» or the energy in the zero
approximation is

D%

o Tdp|, PP o s
Eo(g)_d(j) = lnb(p2)+p DEH-1|+

+ % [ a [ dx ;v exp - KF @)1 (48)

Thus the Gaussian equivalent representation of the initial FI in (34) is
defined by (46)—(48). For a given potential V (r) we have a pure mathematical
problem to solve (41), (42) and find the Green function D (¢, 5). Then we can
compute the leading-order energy E(g) (48) and the highest corrections to it by

perturbation calculations over the new interaction functional v, 7).

Below, in the following sections of this paper, we apply the GER method
to different problems of theoretical physics:

» the problem of the polaron in QS,

« the phase transition phenomenon in the QFT model,

» the solution of the wave differential equation.

Each of these subjects reflects a feature of the GER method. High accuracy
is reached in calculation of the ground state energy of the d-dimensional

Frohlich polaron. One effective scheme of mass renormalization in the gq);3

theory, suggested within the GER method, leads to the correct prediction of the
nature of phase transitions in this theory. Finally an estimate of non-Hermitean
path integral arising in the theory of wave propagation in media with Gaussian
noise is obtained. The reduction of the initial PI to the new representation
generates a certain constraint equation determining this state and one should
give preference to the representation, that is efficient for solving a given task.

3. THE POLARON PROBLEM

The study of the physical properties of a particle interacting with a quantum
medium is common to many branches of physics. A classic example of this kind
is the Frohlich model of the polaron, — an electron moving with the
polarization distortion of ions in a crystal. The polaron’s popularity as a model
is due to its similarity to many field-theoretical constructions where bosons
couple linearly to fermions (the meson-nucleon interactions inside nuclei, the
«dressing» of quarks in the nonperturbative vacuum of QCD, etc.). The polaron
problem is treated most straightforwardly in the FI formalism which allows one
to reduce this problem to an effective one-particle task and, leads to new results
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not given by other conventional techniques. However, despite its long history
and importance, the exact solution of the Frohlich Hamiltonian is still lacking
due to a high nonlocality (in time) and a Coulomb-like singularity in the
polaron action. The application of the GER method to the d-dimensional
polaron in this chapter results in highly accurate estimations of the main quasi-
particle characteristic of the polaron — its ground-state energy.

The polaron problem embraces a wide range of questions concerning the
behaviour of the electron of conductance in polar crystals [35—37]. The first
field-theoretical formulation of polaron theory was proposed by Frohlich [38] to
describe the interaction of a single band electron with phonons, quanta
associated with the longitudinal optical branch of lattice vibrations. Since that
time, the Frohlich polaron model has attracted interest as a testing ground of
various nonperturbative methods in quantum physics. One of the main quasi-
particle characteristics of the polaron is its ground-state energy (GSE) Ej(ov).

Historically, the GSE of the polaron has been investigated in the weak [38],
intermediate [39] and strong coupling regimes [40,41] using different methods.
The first attempt to build the polaron theory, valid for arbitrary values of o, was
made by Feynman [35] within the path integral (PI) formalism using variational
estimations. As a result, Feynman’s PI approach gives good upper bounds of
Ey(a) in the entire range of o in a unified way.

There arises the question, whether the Feynman’s estimations of the
polaron GSE can be improved by introducing some trial actions, more general
than the quadratic action with two variational parameters used in [35]. This
question, in particular, has been studied within different variational approaches
[42,43]. But giving variational answers, it could not estimate the next
corrections to the obtained values.

Traditionally, the polaron problem has been investigated in three-
dimensional space (d=3) [44,45]. In recent years, however, polaron effects
have been observed in low-dimensional systems [46], and certain physical
problems have been mapped into a two-dimensional (d = 2) polaron theory [47].
The possibility that an electron may be trapped on the surface of a dieleciric
material has attracted much interest [48]. The GSE of the polaron for d=2 is
discussed in [49,50].

In the Section, we investigate the GSE of the polaron in the case of
arbitrary space dimensions (d>1) and try not only to improve Feynamn’s
result, but also to estimate the next corrections that allow one to test the
accuracy and reliability of the obtained values.

3.1. Polaron Path Integral in d Dimensions. The Frohlich longitudinal-
optical (LO) polaron model for d=3 is determined by the Hamiltonian

H——p +ﬁmz ala k+;]-=2 g (af e —a &), (49)
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which describes the interaction of an electron (position and momentum
vectors x and p, band mass m) with the phonon field (creation and

annihilation operators al, ay, quantization volume Q, Plank constant %)

associated with a LO branch of lattice vibrations (wave vector k and
frequency ®) in a polar crystal. The electron-phonon interaction coefficient
for coupling with the wave vector k in (49) is defined as follows:

i ot/ 2mw) 4 (an o2
g = TN 2mo)_(ne) (50)

where the dimensionless Frohlich coupling constant o takes the value
o~ 1+20 in most of the real ionic crystals (e.g.,ot ~ 5 for sodium chloride).
In the following, units will be chosen such that i=m=w=1.

Until now, no nontrivial solution of H‘l’n=En‘l’n was known. It has been
shown [51] for generalized Frohlich models that the function Eo(a) has no

points of nonanalyticity for an arbitrary o2 0. Various methods [35,40,52,39]
have been used to approximately calculate the spectrum of H, especially to
obtain its GSE E,, for selected (weak, intermediate or strong) regions of o.

To extend the Frohlich Hamiltonian (49) written for d=3 to arbitrary
spatial dimensions d > 1, we follow a physical approach [53,54] inspired by the
formulation of a lower-dimensional polaron problem obtained from the Frohlich
Hamiltonian of a higher-dimensional system by integrating out one or more
dimensions. Following [54] we assume that the form of the Frohlich
Hamiltonian in d-dimensions is the same as in (49) except that now all vectors
and operators are d-dimensional and the electron-phonon interaction coefficient
8 s redefined as follows:

2

A
2_ " 2_p(d=1\,d-3/2_(d-1y2
= xd_r( - )2 n @2y, (51)

Accordingly, we write the FI representation of the free-energy F(B) of a
polaron with a given temperature © = 1/8 as follows:

exp (—BF) = Tr {exp (-BH)], (52)
where the Hamiltonian H in (49) should be written in terms of the coordinates
and momenta. The «Trace» Tr= TrelTrph here is assumed to be taken over the
whole space of states of the «electron + phonon» system.

It is well known from the famous paper by Feynman [35] that the path
integral approach to the polaron has an advantage because the phonon trace
Trph in (52) can be adequately eliminated and as a consequence, the polaron
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problem is reduced to an effective one-particle problem with retarded
interaction. The result reads

Zg=exp-BR= [ &xexp(six), (53)
A x(0)=x(B)
where the action S[x] is

2
ﬁ ﬁ. s 1 oty ¢ B-lsl
8n 0 Ix()— x(s)l ePo1

The free energy F(B) tends to the GSE as P — o (zero temperature case)

b
Stxi=— [ dr ey (54)
0

. 1
E =-lim = InZ(0). (55)
0 Bo B B

The path integral in (53) is not explicitly solvable due to the non-Gaussian
character of S. For its variational estimation for d =3, Feynman proposed [35]
a quadratic two-body trial action S instead of S:

S[x] = S,,. [x]=-

N |

B
I de (1) +
0

p
+ < [ atastx(ty - x(s)1 exp (- @it 51}, (56)
0

where constants C and o are variational parameters. With the trial action Sp
one gets an exact solution for path integral in (53). A variation for finding of
the absolute minimum of E: ()=F (@) for B — o over parameters C and ®

leads to a rigorous upper bound of the polaron GSE at arbitrary o, that is
Feynman’s known result [35]. '

Here we will show that the application of the GER method improves
Feynman’s estimation. We consider the polaron GSE in the case of arbitrary
space dimension d > 1 and start again from the FI in (53)—(54).

For further convenience, to get a symmetrical region over ¢ [56], we change
the variable of FI in (53) to

X ->r@e-17), T=f2 (57

with the electron motion r(f) embedded in d-dimensional space. Accordingly,
the GSE of the Frohlich polaron E(0) (it will hereafter be denoted by E(cx))

can be defined as follows:

E0)=—lim -

InZ_ (o),
T— oo r T(

(58)
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where a FI is introduced [55]

z(=c, | srem -—-(rD“r)+ | jdtdsV[r(t)— r(s); t—s]}
KT £(D T

T (59
C,=Vdet Dy', (r, Dg'ry=] | didsr()D5', 5) x(s).
-T

The standard normalization E(O)'=0 in (58) is satisfied under the condition
Z0)=1
The free-electron system is described by the kinetic term (rDalr), where the

differential operator Dal and its Green function D, are given by (30)—(31) in

the previous Section as T — oo,
The Coulomb-like interaction part, the electron self-interaction, is given by
the retarded potential

VIR; t=s] = H% “'H'I X exp(i kR),

R =r(f) — r(s). (60)

with the electron position vector r(f) embedded into d-dimensions.

The path integral in (59) is not explicitly solvable due to the non-Gaussian
character of V [R; t—s] in (60).

3.2. Bounds for the Polaron Ground-State Energy in d Dimensions. For
o not too large, the PI in the initial presentation (59) may be estimated by using
a perturbation expansion in o. The problem is to estimate Z(c) beyond the

weak coupling regime. Accordingly, we can apply the GER method to this
problem.

Our key steps will be the same as those in the previous Section. We
remember that these are:

(i) the introduction of new Gaussian measure dc (20) standing for the
kinetic part of the FI, which forms a new representation of the initial FI, and

(ii) the requirements of the «normal-ordered» and «correct» form of the
interaction part of the FI in this representation, that is reached by introducing
constraint equations (41), (42). This scheme results in a new representation of
the initial FI: an exponential with the leading term of energy factorized out as
a free multiplicand (48) and all the corrections to it are defined by another FI (47).

Performing this scheme and using formulae (41), (42) and (46)—(48), we
obtain the new representation (47) of the GSE of optical polaron within the
GER method as follows:
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E(0) = E (o) + AE(av), 61)
where the function E (o) being the «leading-order energy», or the GSE in the
zeroth approximation, is (see Eq. (48))

= Lw 2501 — 127D¢ o T exp(=t)
Eq0)=—d{ 5 :‘;dk[ln(k D)~ KD+ 14+ 57 { a2 ) | (62)
The function F(¢) in (62) is defined by the equations (see Egs. (41) and
(42)) ‘

Fo=] % ba-eky=1 [a=col 63)
e T Ty Kto,Zk)
= _w ikt 1 i _y 1 —cos(kr)
(k) __‘L dr ™M 3() = = ! drexp-) L - (64)
Here we have introduced the «effective coupling constant»
_3AWNn(d/2-1/2) (65)

0=0-Rys Ry="" ra2)

Our leading term (the zero-order approximation) Ej(ct) gives an upper

bound to the exact GSE of a polaron E(a). Actually, applying the Jensen’s
inequality to (61) one gets

exp {—2T - E(o)} 2 exp {-2T - E (o)}. (66)
Consequently,
E (o) 2 E(0v). 67
The high-order corrections AE(c) in (61) can be obtained by evaluating the
PI

T

exp (2TAE@)=C | drexp -% [[ drds r@)D™e.5) r(s)+Wir1 | . (68)
r(-T=r(T) ~-T

Here, the interaction functional written in the new representation is

T
Wirl=o,- T@2)d H dtds ¢ x
-T

6-\’2nd/2+1

dk i - 69) -
xj ] exp{— k*F(t - 5)} :e'zk['(') el (69)

where e’2‘=ex- 1-x—%72.
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Due to equations (64) and (63) in the new representation, all the quadratic
terms in the polaron action functional are concentrated only in the new Gaussian
measure do and do not enter W[r].

It should be stressed that representation (61) is completely equivalent to the
initial representation (58) for asymptotically large T — . The Gaussian
equivalent representation (61) gives the origin of various approximations
differing from each other in the accuracy of deriving equations (63)—(64).

As a simple approximation of Z(k) obeying the nccessary asymptotlcs one
can take the function:
K

§+k2

where [ and & are parameters. Then (62) becomes

S = "‘— (70)

dt exp(-t)
3wf— o Vi-exp(—Aep A E242

2 x3/2d
0(a)——~[& x+“—]

A=VpZ+ €2, (71)

Minimizing the obtained energy over the parameters | and &, one easily finds
a variational upper bound in d dimensions. For d=3 (a;=0) it explicitly

reproduces the well-known Feynman’s variational upper bound to the polaron
GSE [35]:

EF(0) = min min E (o, d = 3). 72)
bog

We stress that the extremal conditions on parameters W, & in (72) are
equivalent to a particular choice of the function X(k) in (70). However, the
function in (70) is not an exact solution of (64) and (63). It means, that
Feynman’s trial quadratic action does not represent entirely the Gaussian part
of the polaron action for d=3. Exact numerical solution of equations (64),
(63) by the iteration procedure allows us to obtain Eo(oc) more exactly, which

improves Feynman’s result E F (o) in the entire range of o. The obtained
numerical results E(o) for d=2 and d=3 as compared with Feynman’s
variational estimation are displayed in Tables I—VI.

The correction AE(0) should be evaluated from the functional integral in
(69) by expanding e” in (68) in a series

< 1 e 1 n
AE(o) = Z AE,,(“) = _7111:1 ?27 2 F j do {W[r]}conncctcd' 73)
o0 n=1 .

n=1
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We stress that (73) is not a standard perturbation series in the coupling
constant o, as o, enters into W not only explicitly as a factor, but also
‘implicitly through the function F(f). The first term in (73) with n=1 equals
zero due to normal ordering. Nontrivial corrections are given by terms with
n22. For the second order correction to E (o) we get

oo

Y QR (), (74)

n=2

__ 2 T/
AE,(0) =—oc; - )

where
__(@nT(n+1/2)
" 16" ) T+ d/2)
R - m dadbde | 6o [F(a+b)+F(b+c)-F(a+117;f-zc)—F(b)]2”+
" [F@F(e1™

+ e~a-2b-c [F@+F()-F(a+b+c)—F(b)]*"
[Fla+b)F(b+c)]*V 2

4 g2 [F@rb)F(bro)—F(a)-F(o)|”"
[Fla+b+c)F(b)]™V 2

We stress that expression (74) can further be simplified, but we keep this
form for clarity.
Finally, we get the following expression for the GSE of the polaron

E®(0) = E(a) + AE, (o), (75)
which can be evaluated numerically for arbitrary o and different space
dimensions d. _

Notice that Eo(a) in (62) is of an order of ai, (i=0,1,2,..) while AEz(oz)
in (74) is only of an order of aj, (G=2,3,...).

The theory under consideration has two parameters o and d. In general, all
our expressions should depend on both of them. Notice that key expressions in

(64) and (63), completely defining the functions F(f) and Z(k), depend only on
the effective coupling constant o 4 This means that the following relations

F"o, 0=F"(0 0, 20, k)=2"0 k) nm>1 (76)

take place, where the numbers of space-dimensions n and m are in square
brackets [...]. In the particular case of d=2 and d= 3, we found

FP@n=F [31( me, ) . 2ok = ):[31[ 2y J : a7
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Table 1. Comparison of known weak coupling results for the polaron ground
state energy E(0)=a-C,,+02-Cy,+O0(03) in two-dimensions

Authors Coi Co2
S.Das Sarma, B.Mason [58] -2 -0.062
R.Feynman’s theory [59] -2 -0.04569
4th, 6th order pert. theory [59] -2 -0.06397
O.Hipolito [60] -2 -0.0245
Present Eg(o) -2 -0.046626
Present Ey() + AE, -2 -0.063974

Table II. Comparison of known weak coupling results for the polaron
ground state energy E(a)=a-C, +0% Cyot 0(03) in three-dimensions

Authors Coi Co2

S.Das Sarma, B.Mason (58] -1 -0.016
R.Feynman'’s theory [59] -1 -0.012347
J.Roseler [61] -1 -0.0159196*
T.Lee,... [52] -1 - 0014
D.Larsen [39] -1 -0.016
Present E(c) -1 -0.012598
Present Ey(at) + AE, -1 -0.015919

*The exact value

Then, considering (62) one easily finds that this scaling relation is also valid

for %Eo(a d)‘ We have
2oy = 2 g1 30
E0) =7 B ( . ) (78)

Note that the relation (78) was obtained earlier in [54,50]. But this scaling is
not valid beyond E;, because the interaction functional W[r] depends not only

on o, but also on d in a complicated way.

Let us consider the asymptotic limits of spatial dimensions d at fixed finite
o. We get

. 3o .
llmad=———d_1—>oo, limo,=—~ —0. 79)
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Table III. Comparison of obtained estimations of the coefficient C, of the
polaron ground state emergy E(o)=02C+O(1) for d=2 as 0 o0

Authors C,
S.Das Sarma, B.Mason [58] -0.392699
R.Feynman’s theory [59] ‘ -0.392699!
W.Xiaoguang, ... [59] -0.40472
O.Hipolito [60] -0.392699
Present Ey(o) -0.392699
Present Ey(a) + AE, -0.400538

IEstimated in [59]
2Adiabatic approximation

Table IV. Comparison of obtained estimations of the coefficient C, of the
polaron ground state energy E()= oz2C +01) for d=3 as o0 — oo

Authors C,
Feynman, Schultz [65] -0.1061
Pekar (by Miyake) [41] -0.108504!
Miyake [41] -0.1085132
Luttinger, Lu [62] -0.1066
Marshall, Mills [67] -0.1078
Sheng, Dow [68] -0.1065
Adamowski, ... [57] -0.1085128
Feranchuk, Komarov [69] -0.1078
Efimov, Ganbold [56] —0.10843

IEstimated in [41]
2The exact value

Taking into account (79) we can conclude that as d becomes larger, o ’

decreases rapidly and in fact we deal with the effective weak-coupling regime
o, << 1 even for o not too small. For example, the second-order corrections

AE, (o) behave as follows:
AE (o)) > — 12 o2 0. (80)
2 d oo 8n ~d

In other words, our leading-order energy term Eo(oc) tends to the exact GSE

E(o) as d grows because the role of AE(ct) becomes insignificant.
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Table V. The obtained estimations of the poralon ground state energy Ey(ov)
and E@(a) for d=2 in the intermediate range of o compared with known
results obtained in [60,70,58]

o {Feynman* | Hipolito [60] | Huybrecht [70] | Das Sarma [58] Present
E, Ey+E,
0.6364 | -1.0198 -1.0266 -1.0201 -1.0405 -1.020 -1.028
1.909 | -3.2247 | -3.2263 -3.2263 -3.5690 -3.231 --3.250
3.183 | -5.9191 -6.0902 -5.9193 —6.9688 -5.928 -6.039
4.450 | -9.6935 -9.8723 -9.7154 —11.388 -9.710 -9.871

*Qur estimation by Feynman’s variational method

Table VI. The obtained estimations of the poralon ground state energy E (o)
and E@(a) for d=3 in the intermediate range of o compared with known
results obtained in [57,65,64,39]

o | Osc. [57] | Feynman [65] [ Smondyrev [64] Larsen [39] Present
upper upper upper | lower | upper | lower E, Ey+E,
0.5 -0.5 -0.5032 -0.5041 | -0.5041 | -0.5040 | -0.5052 | —0.504 |-0.5041
1.0 -1.0 -1.0130 1.0167 {-1.0175|-1.0160|-1.0270| -1.014 | -1.017
1.5 -1.5 -1.5302 —- — |-1.5361| -1.576 | -1.532 | -1.539
2.0 -2.0 -2.0554 —_ — |-2.0640| -2.172 | -2.058 | -2.071
25 =25 ~-2.5894 — —  |-2.5995| -2.872 | -2.593 | -2.614
3.0 -3.0 -3.1333 -3.1645 | -3.2122 | -3.1421 — -3.138 | -3.167
4.0 -4.0 -4.2565 — —  |4.2771 — | —4.265 | -4.305
5.0 -5.0 -5.4401 ~5.49451-5.7767| — — -5.452 | -5.528
7.0 | -7.356 -8.1127 -8.0406 | -8.8832| — — -8.137 | -8.255
9.0 | -10.72 ~-11.486 |-10.834|-12.654| — — -11.54 | -11.69
11.0] -14.94 -15.710 |-13.905|-17.165| — — ~15.83 | -16.04
20.0| —44.53 —-45.283 — — — — —45.33 | -45.99
30.0| -97.58 -98.328 — — — —_ -98.52 | -99.86
40.0| -171.9 -172.60 — — — -— -173.4 | -175.1

3.3. Numerical Results. In this Section, we present numerical values of
Ey(o) and E(2)(a) estimated *within the GER method and compare them with

known results obtained in various (weak, strong and intermediate) ranges of c.
Obtained resuits are given in Tables I-IV.

A. Weak Coupling Limit. Among known numerical results, concerning the
GSE of the polaron, the more accurate are those obtained for o — 0. Below, we

calculate the exact GSE of the d-dimensional polaron for the order o? in the
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weak coupling limit and compare the accuracy of the obtained results with exact
perturbation estimations presented in [52,58,59,49,60,54] for d=2 and d = 3.
For o not too large, the polaron self-energy E(a) has the form
E@=a-C, +a’ C +0(c). 1)
The coefficients Cy1 and C_ , are known with a good accuracy for d=2
[54] and d=3 [58,54]. In our approach, the coefficient le arises only from
E\(a) in (62); whereas the C,, > from both E (o) and AE,(o) in (74). We get
the coefficients C, and C,,, exactly as follows

R,
Cu) =73 d (82)
and
R%d RM(d/2)d* =
d 8 d (2nhI'(n+1/2)
Co2=" 36 (1_3n} 32 noo2 B,
9 o 4" (ned/ 2)
o (83)
1 1 1
B = j I dxdy [ + ]
n l (x+y)2 (x .y)n+l/2 (x+y- ])n+l/2

The behaviour of these coefficients with respect to the space-dimension
number d is shown in Fig.1I.

For comparison, in Table I we give the known results for d=2 as o — 0.
One can see from Table I that our C,,, obtained only from E(a) improves

Feynman’s estimate about 2 per cent. Adding the next correction calculated
from AE, results in Cy o =—0.063974 which is in good agreement with the exact
value in [54]. Note that AE, contributes about 40 per cent to the total value of
Cpo

For three dimensions, obtained results are displayed in Table II together
with the known results of the polaron GSE for the weak coupling limit. Our
leading term of energy E(o) improves the Feynman variational estimation of

C,, 2 by 2 per cent. Next correction results in Co =—0.015919 which is in good
agreement with the exact value in [54]. Note, for d=3 our AE, contributes
about 29 per cent (smaller than for d=2) to the total value of C,, - Comparing

the obtained results for d=2 and d=3, we conclude that higher-order
corrections (the second-order one in our case) coming from J (o) are

substantially more important for d=2 than for d=3. In other words, the
polaron effect is stronger in low space dimensions (see Eq. (80)). This effect
was noted earlier in [54,50].

~
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Fig. 1. The behaviour of the coefficients C,; and C, of the polaron
ground state energy E(0)=aCy, +02Cy,+0(03) at the weak

coupling limit o — 0 in dependence on the number of space-
dimensions d '

B. Strong Coupling Regime. The GSE of the polaron in the strong electron-
phonon coupling regime has been considered in [41,58,59,57,56].
It is well known that at this limit
E() = o C+ O(1). (84)

For large a (75) becomes

E oy =— o] 4 +21"(d/2)42 ¥ @ITEV2) | o0y (ss)
dom " o9p¥? = 16"(n)’nl(n+d/ 2)
For comparison, in Table III we give our result with the known results of
the polaron GSE for d =2 in the strong coupling regime o — oo.
For three-dimensions the estimation of the next higher-order corrections for
the coefficient C; was obtained by-the authors earlier in [56]:

C,<-0.108431. (86)

A comparison of the known results for the coefficient C_ for d=3 is displayed
in Table IV.
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C. Intermediate Coupling Range. In the intermediate-coupling regime the
main tool for obtaining polaron properties is the variational approach [35,52].
For d =3, the Feynman variational method based on a trial oscillator-type action
gives an upper bound of the polaron free energy, valid for arbitrary o.
Generalizations of the Feynman action for d =3 to the arbitrary density function
[42] and arbitrary quadratic action [43] have improved this upper bound. In our
opinion, the result [43] obtained for d =3 is the best variational upper bound in
the whole range o. But this variational method does not give the next
corrections to this bound. Other numerical methods dealing with this problem
[62,63] require specific complicated schemes of calculations which may
introduce statistical errors. Estimations of both the upper and lower bounds for
the polaron self-energy obtained in [39,64] should be improved.

Considering intermediate values of o, we have derived equations (64) and
(63) numerically, by the following iteration scheme:

Fr(=®[Z,)

. 0=Q[F,), n20, (87)

starting from reasonable assumed functions Fy() and io(k) (see (70)). Both
the series F (f) and }En(k) turn out to be rapidly convergent and the value of

the leading term E (o) does not change after n 2 6. The results for E (o) and
E(z)(a) in two dimensions are presented in Table V.

The values of Ey(o) and E(Z)(a) for d=3 are given in Table VI (and

displayed in Fig.2) in comparison with the known data [39,65,43,64]. Our
E (o) for d=3 coincides with the upper bound obtained in [43] and improves

the variational results calculated in [71].

We have made preliminary estimations which indicate that the decreasing
series in (73) is alternating. Then one can expect that the third-order correction

AE, (o) may slightly increase the value of E(z)(a) and inclusion of higher-order
corrections AE (o) might result in an insignificant oscillation of E(">2)((x)

between E(c) and E (2)((1). In other words, the obtained E (2)(00 may be accep-

ted as a lower bound of the ground state energy of the polaron. Note that
numerical results obtained in [66] at three points (o= 1,3,5) by the method of

«partial averaging» lie exactly between our curves for Ey(o) and E (2)(00. Recent

exact Monte-Carlo calculations [72] are in good agreement with our results for
d=3.
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Fig. 2. Some known results of the polaron ground state energy
E (in three-dimensional space) displayed as a function of the
electron-phonon coupling constant o. For clarity, the ratio
R=(E,-E,VIE, .. is shown, where E, are estimations
obtained in [86,52,89,97] and E,,  is the «harmonic-oscillator»
approximation [86]. In these units the curve for E,, = coincides
with the abscissa axis. Curves correspond to estimations: 1 —
Feynmans’s upper; 2/3 — Larsen’s upper/lower; 4/5 —
Smondyrev’s upper/lower; 6 — our Ey(c) and 7 — our E®X(at)

Our results obtained with the proposed method provide a reasonable
description of both two- and three-dimensional polarons at an arbitrary coupling
o. The consideration could be extended to computing the other characteristics
of the polarom the effective mass and the average number of phonons, as well
as to estimating the energy of the polaron in the presence of a magnetic field
due to the validity of the proposed method for the complex functionals.

4. CHARACTER OF PHASE TRANSITION
IN TWO- AND THREE-DIMENSIONAL <p4-THEORY

The phenomenon of spontaneous symmetry breaking, or in other words, the
vacuum structure rearrangement is an important part of many quantum field
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constructions. In this Section, we will investigate this phenomenon within the
GER method. The problem, of course, can also be studied within the canonical
quantization method. However, the functional representation has an advantage
of calculating the whole effective potential (EP) in this theory, which allows
one to get more information about phase transitions in the system under
consideration.

4.1. Statement of the Problem. The scalar (p4 theory in two- and three-
dimensions has been intensively investigated [73,74] as a simple, but nontrivial
example, on which the problem of spontaneous symmetry breaking or, in other
words, the phase structure of quantum field models is studied. It has been found
[75] that the highest order quantum corrections can give rise to the instability
of the classical symmetric vacuum. There are two phases in this system and PT
phenomena take place at certain coupling strengths. The most difficult problem
here is to determine the order of the PT.

The simplest example, where the vacuum exhibits a nontrivial structure, is
the (p;' theory. Many papers [73—76] are devoted to investigation of the nature

of PT in this model. We shortly treat some nonperturbative methods that seem
to be basic among the investigations on this subject. An original approximation
[73] using the Hartree-type renormalization exhibits the first order PT in this
theory. A similar result was obtained [77] within the Gaussian EP approach.
The dimensionless critical coupling constant, for which the first order phase
transition takes place is G =1.62 in both papers. These conclusions disagree
with the mathematical theorems [83,84] proving that the second order PT

should occur in the (p‘z1 model. There are papers [76—85], where different

variational methods have been used for solving this problem and the second
order PT has been observed in the region G ~ 1. In the previous studies {88,891,
we have shown that the critical coupling constant leading to a second order PT
cannot exceed the value G, =1.4392 and may be found near G~ 0.53.

We study this problem using the method of the EP. The absolute minimum
of the EP V(¢,) at the point @ = @, determines the true ground state (vacuum)

of the theory. If a PT takes place at a certain coupling g = 8, then for g < 8, the
system is still in the original unbroken symmetry phase with ¢.=0. At reaching
& =g, the origin 9y =0 is no longer the absolute minimum of V(¢y) and the
system goes to a new state with ¢, #0 corresponding to the lower energy. The

first-order PT means that the point @ =0 remains local, but is not the absolute
minimum of V(@,)- In other words, the first derivative of V(@) is zero and the

second one is positive at the origin @, =0. In the case of the second-order
transition, the point ®=0 is a local maximum of EP at &> 8, The second




492 EFIMOV G.V., GANBOLD G.

derivative of V(@,) at @, =0 becomes negative. Thus, the coefficient oi(g) in the
representation of V(@) for small @,

V(9,) = E(g) + () 97 + O(¢D) (88)

plays an important role in determination of the character of phase transition.
If a(g) is zero at certain g =g and negative for g > 8, up to g — oo, then one

can say that the second-order PT appears here. On the contrary, the
positiveness of a(g) for any g excludes the second-order transition. Rigorous
calculation of a(g) at an arbitrary coupling constant is a complicated problem.
However, we know that at large g, the coefficient a(g) remains negative in
case of the second-order PT and is positive if the transition is of the first-
order. »

We study this problem qualitatively by using the GER method, described in

Section 2.1. We will show the possibility of the second order PT in g(p; and

give an estimation for the corresponding critical coupling constant 8, For the

model g(p‘; our result excludes the occurrence of the second order phase
transition.
4.2. Renormalized Lagrangian of the cp; ;-Model. We consider the g(p4

scalar field model in two- and three-dimensions. We will use throughout this
Section the Euclidean form of the model*. This theory contains ultraviolet
divergences, but it is superrenormalizable, i.e., it has only a finite number of
divergent Feynman diagrams. In order to remove these divergences we should
introduce appropriate counter-terms into the Lagrangian. In this section we
consider the superrenormalized scalar field theory with the Lagrangian:

1
L=3 ([ - mp(x) - f N _(9*)}-R , (89)
where we have introduced a «normal-ordered» form of interaction as follows:
N, {60} = ¢*x) - 69*D, (0) + 3D (0),
d% exp {ikx)
m I en? m?+ k2
Here x € , Q is a large but finite volume in Rd (d=2,3) and m and g are the

mass and the self-coupling constants, respectively. In two-dimensions (d = 2)
all divergences are only of the «tadpole»-type and are readily removed by

*In the case of the Euclidean metrics a separation of the coordinates into space and time is

unimportant, so the accepted notation for the «space-time» is R where d relates to number of space
coordinates plus Euclidean (imaginary) time as well.
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introducing the normal product N, of the fields @(x) into (89). In this case
R =0. In the three-dimensional theory there arise additional divergences
which are cancelled by counter-terms

=1 2

R, = 2 AN {0°(x)} + 8Em,, 91

where

A, =6 [ d*D} (),
_3 2 34,0 3 3([ d% 3 ikep2 oy 13 92)
8Em-—4 g Jd xDm(x)—zg I o’ {Id xe Dm(x)} .

At small g the Lagrangian (89) describes a system invariant with respect to
the transformation ¢ <> —¢. The question is whether this symmetry remains
for increasing g.

4.3. Effective Potential in the (p; s-Theory. The EP is defined as

1
V(@) =-lim = In I,(@,),
O SR

1@=C,[808{0-g [a%ow | exp [atitiow) o3
Q

C,= \det{—9° + m’}.
All integrations are performed in Euclidean metrics.

According to the GER method, we transform the field variable as:

O(x) = ¢ + b(x) + ¢(x), (94)

where the new field variable ¢(x) corresponding to the new mass . and the
function b(x) satisfy the conditions:

[ a%m =0, [ d%bx)=0, b*x)=5=const. 95)
Q Q

Let us go over to the normal ordering in the new fields ¢(x) using the well-
known formula [75]

2
N, {exp(B 0()}) =Nu{ exp{ B(¢0+b(x)+¢(x)+*32— A(m ) }}
A=A(mp) =D,,(0) - D,(0), » (96)

d% explik} 1

D = .
ne '[ ent 2+ p’o
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First we substitute (94) and (96) into (93) and perform integration over d¢0.
Then, following the key steps of the GER method, we obtain

(9 = e V(9p j do,, X

X exp { J ash, { £16%0 + 40° o+ b + 1205b (01 -
Q

- [ 2 4,0+ AHWOW) + BE, + 3 5P+ gDA, ]H ,

[do 1=c,[80exp ‘- 3 ({ d%e(x)(-9%+ u2)¢(x)] =1, ©7

where the new counter-terms concentrated in the second square brackets in
(97) coincide with (92) if we substitute m — Q. The leading order term of the
EP is obtained as the «cactus»-type part V,(¢,) of the EP as follows:

d 2 2 2
ACAEEEY | dk[ [1+'" "] mop ]+—(‘Po+b2)+

2m)? W+ k2| p+ K
+& ((po + 6G2b% + b* — 6A(9%+ bY) + 34%) +

(p0+ b?

+ (Am—Au)+(8E _SE-1a A] | 98)

B2 m
The requirement that the linear term Nu(q)} must not arise in the interaction

and the quadratic field configurations be concentrated in the Gaussian measure
d()‘u leads to the following constraint equations for the parameters b(x) and p:

b(x)[-m’+ 3g(A - @3- gb*~ A, + A1 =0,
W2 m*+ 3g(A - g2~ bH)-A + A,=0. 99

Thus, we finally obtain the formula for the effective potential
V(@) = Vo(@p) + V(@)

V@9 =~lim & InJg(gy) (199

where the new path integral is introduced:
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-QV
IACAETIREALE

=[do, exp L{ d%x N, {— £ 0"+ 40’ @@+ b)) +

+12,5(x) 62(x)] -[ % A,9°() + A B0 + 8Eu+% e (pg)Au]}] . (101)

Equations (98) and (99)—(101) define completely the EP at an arbitrary
coupling g. Below we will investigate the EP in (100), whose parameters
b(x) and p are limited by the constraints (96).

For further consideration, it will be convenient to work in units of m
dealing with numerical results. We define

E=(wm*?, o) =dnm* %2 and B*=dnm® 2. (102)

4.4. The «Cactus»-Type Potential as the Leading-Order Term of the
Effective Potential. In two-dimensions, the «cactus-type» part of the EP
becomes as follows

2
m
Vo ®p) =g (E~1-InE+®] + B

G 103
+E[¢3+B4+3ln2§+6(82¢(2,—821ﬂ§-¢gl“§)1}- (103)

We note that the potential (103) is invariant for <l>0 & B.
The parameters £ and B in (103) are limited by the following equations:

BY&-GBY) =0,

104
26 -2+3G(In &~ ®] - B = 0. (104)

Let us consider the constraint (104). A pair of «trivial» solutions:
B=0 and g:x-%(lng-d)g) (105)

can be found for an arbitrary coupling constant G. Since G > G,=1.4392an

additional pair of «nontrivial» solutions
-8 =2+3G E_o?
B-G and E=-2+ ) (Ing @) (106)

appears here, too. So for G < G, the only solution to be substituted into (103)

is the «trivial» one, but since G > G0 there is an alternative: one can choose
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Fig. 3. The Gaussian part V(®) (in units of m%/8m) of the
effective potential as a function of @ for different values of the

constant: crosses, G = 0.5; triangles, G = 1.5; squares, G = 1.6251
and rhombs, G=2.0. The dashed lines represent the
«nontrivial» branches. The «trivial» branches are denoted by
the solid lines

either (105) or (106). We choose the pair obeying the lowest value of
V(@) for certain fixed @,

All necessary calculations can be performed numerically. The obtained po-
tential Vy(®) is plotted in Fig.3. Near the origin @, =0 the potential V(®) is
presented by the «nontrivial» branch (if G>Gy) B#0 as it is situated lower
than the «trivial» one. But for larger values of @ the «trivial» solution B=0

provides the lowest value of the potential. This picture leads to an interesting
result. Let us consider the local minima of both branches. For B=0 the
minimum point ®, =4 in Fig.3 is given by the equations

B=0,
2-3GIng+GOL=0. (107)

On the other hand, the minimum’ of the «nontrivial» branch B #0 is fixed at
the origin @, =0 for any G> G, and (104) becomes

@, =0,
2-3GIn&+GB*=0. (108)
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Due to the invariance of the potential Vo(®y B) in (103) for (DO(—)B

Eqs.(107) and (108) are identical. In other words, the minima of the potential
(103) corresponding to different solutions of (104) are equal. The vacuum
with ((D(x)):(bo;tO is not lower than the initial one located at the point

(<D(x))=<I)0=0. There is no reason for occurrence of the first order phase

transition.

4.5. Non-Gaussian Correction in the (p;-Model. In the previous Section,

we derived the expression for the EP consisting of two parts. Considering only
the «leading» term Vo(®,) one can say nothing about the nature of the PT in the

theory. To answer this question one should also consider the remaining part
Vio(®,) of the effective potential, defined in (100). In the weak coupling limit

one can estimate it expanding the exponential in (97) in perturbative series. But
explicit calculation of the non-Gaussian functional integral Jo(@y) in (97) at

arbitrary values of the coupling constant g and @, is a complicated problem.
However, we are able to estimate it for infinitesimal values of @, at arbitrary g.

We rewrite (97) in the form correct for infinitesimal Py

Jo(p) =] do, exp [ = £ [ 2,160 + 460 0] +
2 .

2.2 g
% [I d %N () + 3b(x)¢2<x»ﬂ : (109)
Q

This representation can easily be obtained due to the validity of the following
transformation in the integrand of (97):

1
exp (- @, W) = cosh (W) = exp { 5 W2+ 0(g) }

for infinitesimal ¢, and a finite functional W.

Applying to (109) the Jensen’s inequality we get upper bound
2
V@) S V@) = - o Id" Id % [ do, x

X (NN, 6°0) + 9b<x>b(y)~u¢2(x)Nu¢2(y)}. (110)

It is easy to show that
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[ do N $* N $°0) =6D3x - 3),
| | douNu¢2(x)Nu¢2(y) = ZDi(x -y). (111)
Then, we rewrite (110) in the form

o m2 3G}
V@)=~ 5o~ (@ +357),

4nin2 (112)

_dﬂ_ _
0="TF -4 I ‘o W2)=23439...

Substituting the parameters & and B in either (105) or (106) into (112) one
gets the behaviour of VS’;(CDO) for small values @, ~ 0. Omitting the details of

calculations we write the results

2 113
(d)o)—-;n—n{—3QGd> +0(<1>0)} for G<G, (13
and
vt _[308 9G @2+ 0@ | for G>G
sc( 0) - 87 —; 2§ + ( 0) or > *°

3Glng-&-2=0. (114)

From (103) we get the following asymptotic behaviour:
AC) ’"2 %+ 0@} | 115
O( 0) - { + ( 0)} ( )

as <I>0—> 0 at any G.

Finally, taking into account (100) we obtain the following behaviour of an
upper bound of the EP in the region of small @, ~ 0:

2
VD] =V (D)) + Vo] = ;"—n (G} + O@D)], (116)

where

o,(G) =1-30G%2, G<1.6251,

o 0,(G) =1-30G*/(28) -9G/2, G > 16251,

3GInE-E-2=0. 117)
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One can easily check that the coefficient o,(G) in (117) becomes negative as
G> Gcm=0.5333 and remains negative for increasing G. But 0,(G) is

negative at arbitrary G > 1.4392. In our opinion, it indicates an occurrence of
the second order PT in the model under consideration.

4.6. Strong Coupling Regime in the (p;'-Model. In the three-dimensional

case the counter-terms defined by (92) play an important role in the behaviour
of the EP in the strong coupling regime. We have

Du(x)=w A=4L”1E(§—1). (118)

4mixl
Substituting (118) into (99) we get
B®)[2+3G (@} -+ 1)+ GB* +3G2In £] =0,
282 +2+3G (@2 -E+1)+GB*+3G InE=0. (119)

A non-trivial solution B#0 exists only for 0 <& < 1. Let us consider the
solution B=0. In the strong coupling regime we obtain

g:c\l% InG +0(GVInIn G). 1(120)

In other words, the effective coupling constant

G =8 -G _2_ {1+0[“"“G]} (121

off 2np & 3G InG

becomes small as G — e and one can successfully develop a perturbation
expansion in G series for the functional integral (101):

V(@)= GV gy (122)
n=1

Here Vs(cl) =0 due to normal ordering in the exponential in (101). After some

calculations we obtain:
1 —yv® _
Vs(c )((pO) = Vee ((pO) =0,

3
m~ 18C (123)
(3) = 1 ~3452
VSC ((pO) - 8n § G d)o’

where the constant is
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_ L d*kd>pd’q
Cl - 2
L P (1 ktp D+ 4D

6 ©o
=—n—f o (arctan u?=17593... .

Taking into account the «cactus»-type potential

m
Vo(®9) = 5 { E(©) +2 GmE-pe)+o@p ], (124)
we finally obtain the effective potential
3
V(D) = V(@) + V(D) = E;m; {EG)+ oc(G)~<Dg + 0((b8)}, (125)
where the desired coefficient
3G2 «/9? C, 1
(G)——-—lnG (I G)3/2+0((l 65/2] , (126)
n n G)

is positive. This result excludes the second-order phase transitions in the ¢g

model. It can be accepted as an argument in favour of either existence of the
only first-order transition or absence of any PT in the three-dimensional case.

Comparing the results (117) and (126) for d=2 and d =3 we find that the
effective mass renormalization is crucial for this problem. In two-dimensions
the mass renormalization includes the «tadpole» divergences only and the

behaviour of o(G) in (117) indicates a favour of the second-order PT in (pg. For

d=3 the mass renormalization contains an additional term of the second
perturbative expansion’s order which has the opposite sign comparable with a
«tadpole» contribution. As a result, the function a(G) in (126) remains positive
for all G> 0.

5. WAVE PROPAGATION IN RANDOMLY DISTRIBUTED MEDIA

Theoretical investigation of the propagation properties of waves in a
randomly distributed environment reflects certain interest due to its many
practical applications, including calculation of electronic conductance in crystals
[90], wave localization [91] and dumping of signals in the atmosphere or water
[92]. A series of different methods has been applied to this problem, among
which path integral techniques [93]1—[95] reflect considerable interest.
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In this Section we investigate wave transmission in a randomly distributed
media using the GER method.

5.1. The Green Function of the Wave Equation. The propagation of a
wave u(x) (e.g., electromagnetic) in a time-independent environment can be

described by the wave equation given in real 3-dimensional space x € R>:
[A+ ooz(l + &(x))]u(xie) = J(x), w=0. (127)

The constant ® is the «dielectric constant» and defines the frequency of
unperturbed waves. J(x) is the source function.

The random noise is described by a random stationary field e(x), which is
assumed to vary stochastically with a certain correlation function ((x)e(y)). For
simplicity we shall consider Gaussian noise

(EMEY)), =AP(x —y) =
x—y)? _ dk 2, ., X—
=xexp[——41§L]_x ;gzexp{——k +zk—l—¥}, (128)

where the interaction coefficient A shows the intensity of noise described by
the distribution function P(x—y) with a correlation length I These two
constants define the influence of the Gaussian noise on the propagation of
waves in media.

The solution of (127) can be represented in the form
u(xle) = [ d yGaxyle)i(y),
where G(x,yle) is the Green function of wave equation:
[A+ 0’1+ e(x)IG(x,yle) = d(x —y). (129)

The problem is to find the solution of (127) and then average it over
random fields €(x) to find the wave amplitude:

u(x) = (u(xle))e.
For this the Green function should be averaged over random fields &(x):
G(x—y) =(G(x.yle ),.

Thus we consider this problem solved if the averaged Green function G(x) is
found and its asymptotic behaviour for large distances Ix| — o can be
calculated.

Let use proceed to solve the equation (129) for the Green function. It is
essential that the operator
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K=A+ (1 +&x))

is not definitely positive. We shall consider the solution

G(xyle) = 3(x —y),

K+0

corresponding to the so-called causal Green function. This solution can be
written in integral representation like (29) as follows:

T K+i0
G(x,yle) =— é [ du 2 ke "5(x —y) =
0 .

2

- %(_‘;duT exp[ jdt[(a"t) + @i+ e(x) |} 8(x—y).

Here we have used the «time-ordering» operator T.. Omitting details of
calculations we display the results:

2
wu + 9‘—"“-'9— ]] I(xyle),

17 i
G(xyle) =~-—= — a3 X [ -= [
2 ! @2n m) P 2
where a FI is introduced:

1 (x,ylt-:) Ido exp[é w?

O o ®

d‘re(x%+y(l—%)4v(t)]], (130)

with the measure defined as
. u
1l .
do,=C,8 v exp l 5 [a wz(r)} .
0

The integration in (130) is taken over «paths» v obeying the condition
v(0) =v(u) =0.
Here the normalization is chosen as
Jdoy=1 o, ILxye)l_o=1.

Now we can average the functional / (x,yle) over the random fields &(x):

Lx—y) =l (xyle), =
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4 X ’
= j do,, exp { -\ % H dtd ’c’P( v(T)- v(T') + (x-y) % ]} .
0

The averaged Green function is

T du ” i x*
- G(xX)=—— I WCXP[E [(Dzu+7 )]/u(x),
where

. u
1(x)=C, I dv exp [ é f d™A(1) -
v(0)=v(u)=0 0

u
-2 %4 ﬂdtdt’P(v(‘t)—v(t’Hx T;t’ )] )
For further convenience w(:: introduce the following notation:
=Ixl, u=—z P=ro, =51 v=-"5, g=—
o 4
and change the variable of the FI:

V(1) =—f§_ p(1).

Then we have

_ E
G = T J (21“2)3/2 exp :2(z+ J]I(Bz),
where
; p
IB.2) =C, j 8pexp[§ J. dtp(r) -
P(0)=p(B) 0
B
_8 Y oo t=s
3 I aar (5 00-p@+n G ]}
where

n=%, (nn) = 1.

(131)

(132)
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5.2. Calculation of the FI by the GER Method. In order to apply the GER
method to this problem, let us introduce into (132) symmetrical limits by
redefining

=P, t—t-T, s—s-T, pt)—pt-T1.

Then we rewrite (132):

T
Lo=c, | &p expjé [ arp*r) -
p-T)p(1)=0 12

T vz t—
£ | _jT dtdsP(—mZ- [p(t) —p(s)] +n —mﬁ)}

Let us introduce the operator

1 0*
D '(t=s)=i—= 8(—5s).
o (1) tatz( )

Note that it differs from (30) by the factor —i. The Green function Do(t,s)

corresponding to this operator satisfies some periodic conditions and reads

i ts i
Dy(t.5) =- ’ It —sl— 2T—>— 2 It —sl.
Its Fourier transform is
~ i
Do(p) ==
p

Then we rewrite

T
1 _
Lo=C, | 3 expi—7 | didstoDy t-sp)-sWipl}
p(=1) =p(N=0 -T
C,= et DY 2.
The free «kinetic» term is diagon'al:

P(ODy'(t - 5) p(s) = (p,(1) 8; D3¢ =) p(5)).

The interaction is given by
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vz T(;s)=

T
awip) =4 J] atasr (5 0 ~p) +n
-T

T
=& ([ aras | 4E exp [ k24 i X 7 0@)-ps)yne—s) |
2 o 2 lo
We find that the measure d’X of momentum integration now becomes
_dk 2, &
A,k 1= =57 exp{—k +lm(kn)(t—s)}.

Following the GER method, we define the new measure

T
do = C8p exp { —% [] ards oy 7't - 5) ps)) ] :
-T

where
() D™t =5) p(s)) = (p; (DD}t = 5) p; (5)).

Notice that, the operator Di_jl has nondiagonal elements owing to the presence
of the vector n in W [p].
In the following we will use the notations

Jasexp{i ,—% kp(® ~p() } = exp { - o7 =9k } ‘

(KF(t = $)K) = (kF; (¢ = 5)k),

F(t-5)=D©) - D(t - 5) = 9;2 [1 = cos p(t - 5)] D(p?),
0

(133)

T
A dk .
gWib)=£ | —J;dtds | Shew {~ [ KT+ R =)k )} x

Xexp{i—(;)‘&—l—k(b(t)—b(s))+ikn ‘"Ws}

(g X q'),‘j =44,
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(- s)—f-f © g ) qlx

xexp{—[q[l+a(—z;§F(t—s)]q]+iqn %}:
=@,(t-s)+In Xni® (t-s),
(Dij (t-s5)= 8:‘] @ (t—s)+n; n D (t-5).

Then we get

&bl
©; (=)= 855" 8b, (5) 8b, (1) 8b; (s) ® =

== [®,;(0) -, (t- 9.
Following all the steps described in section 2 we finally obtain
1) = 591, (2),
T ‘ (134)
J,(z)=cf6pexp[—%f [ drdstp D7p) — g : Wip] }
-T

where the leading-order term (or the zeroth approximation of the GER
method) is

Eo(z)=-23—n Idp[ln(l+j22(p)n~
0

jd:] exp{ ( [1+(l;)217(t)] ]+zqn(;l}

The interaction functional in the new representation is

T
VV[p]=——§J' Idtdsden(q,t—s)x
TT

e
! s} oo B

X exp {—(q[l+aoz—)3F(t—s)] )+zqn .

2

z z 4
=e*=1-2z—-".
2

where : €,
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The requirement of the «correct» form for the interaction functional is held
if we put

D(p) =Dy(p) + D (P)Z@)D(p),

or
_ D,(p) ;
D (p) = ~0 - l‘I .
1+D (p)Z(p) p*+iZ(p)
Then (41) and (42) become -
2(p) =—w(p) = | di[1 - cos (pr)1®(1) (136)
and -
F() =i T dp 1 —cos p(t)
(=i [ 21zcosp) (137)
o ® p +iZ(p)

5.3. The Green Function for Large Distances. The initial (131) and the
new (134) representations are equivalent. The next step is to solve (136) and
(137) which allows one to calculate the function E(2). The explicit form of the

interaction functional (135) allows the highest corrections to be calculated. In
principle, these calculations are similar to those in the polaron problem except
that now all functionals are complex. Nevertheless, all transformations of the
GER method applied here are valid. In the future we plan to solve these
equations and investigate the behaviour of the Green function G(x) for different
values of the parameters A and [.

So the main problem is to solve the integral equations (136) and (137).
However this represents a laborious task and one can by-pass this difficulty
considering the large distance’s behaviour of the Green function G(B).

We now consider wave propagation for large distances B — . Then by
analogy with the polaron problem, where the similar asymptotics have been
studied, we can expect that the following behaviour of the FI occurs

B, 2) - B—"I‘T) exp {~BE(z; A, @l)}.

Consequently,

G(3)~ﬁ—01(;) d—éexp{ﬁ[%(uij—ﬂz;x, ml)]}~

1Y

~%1) ({ _S%CXP{BS(Z)}, (138)
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where

i

S(z) = 2

(z + i— }— E(z; A, ol).
The main contribution to the FI in (138) for large B can be obtained by
using the saddle-point method:

5(2) = S(eg) — 5 8" ez~ 2" + Oz ="

with the conditions
§'(zy) =0, §"(zy) > 0.
Finally, one gets

G(p) - Bg.‘m exp (BS(zy)).

CONCLUSION

We have formulated a regular method for calculating a wide class of
functional integrals beyond the region of perturbative expansion. Providing a
good accuracy of the lowest approximation, this method has the following
advantages compared to the variational approach: the possibility for obtaining
higher-order corrections in a regular way and the validity for complex
functionals and theories with divergencies.

We have applied this method to different problems of theoretical physics,
namely:

(i) the polaron problem in QS,

(ii) the PT phenomenon in the QFT model,

(iii) the solution of the wave’s differential equation.

These subjects show the efficiency of the GER method. High accuracy is
achieved in calculation of the ground state energy of the d-dimensional polaron.

An effective scheme of mass renormalization in the g(p; 3 theory, suggested

within the GER method, leads to the correct prediction of the nature of the PT
in this theory. At last, an estimation of the nonhermitean path integral for the
Green function in the theory of wave propagation in media with a Gaussian
distribution is performed. '

The developed approach opens up new possibilities for estimating, with
high accuracy, the bound states of few-body systems under any potential as well
as for investigating static characteristics of the polaron in magnetic fields, when
the action of the system is complex and any variational method becomes
inapplicable.



GAUSSIAN EQUIVALENT REPRESENTATION 509

ACKNOWLEDGEMENTS

The authors are grateful to Profs. V.K.Fedyanin, H.M.Fried, H.Leschke,
L.V.Prokhorov and M.A.Smondyrev for useful discussions.

REFERENCES

1.Dirac P.A.M. — The Principles of Quantum Mechanics, Clarendon Press, Oxford,
1930.
2.Kugo T., Ojima I. — Phys. Lett., 1978, B73, p.459.
3.Feynman R.P. — Rev. Mod. Phys., 1948, 20, p.367.
4.Feynman R.P. — Phys. Rev., 1950, 80, p.440; 1951, 84, p-108.
5. Wiener N. — Ann. Math., 1920, 22, p.66.
6.Dirac P.A.M. — Soviet J. Phys., 1933, 3, p.1.
7.Kac M. — In: Proceed. Second Berkeley Symposium on Probability and Statistics,
ed. J.Neyman, Univ. Calif. Press, Berkeley, 1951.
8.S.F.Edwards, Peierls R.E. — Proceed. Royal Soc., 1954, 224, p.24.
9. Gelfand L.M., Minlos R.A. — Soviet Doklady Akad. Nauk, 1954, 97, p-209.
10. Bogoliubov N.N. — Soviet Doklady Akad. Nauk, 1954, 99, p.225.
11.Glimm J., Jaffe A. — Comm. Math. Phys., 1971, 22, p.253.
12.Glimm J., Jaffe A. — Field Theory Models in Statistical Mechanics and QFT,
Gordon Breach, N.Y., 1971.
13.Faddeev L.D., Popov V.N. — Phys. Lett., 1967, B25, p.29.
14.De Witt — Phys. Rev., 1967, 160, p.1113.
15.Faddeev L.D., Slavnov A.A. — Gauge Fields, Introduction to Quantum Theory,
Benjamin/Cummings, Mass., 1980.
16. Tayler J.G. — Nucl. Phys., 1971, B33, p.436.
17.Lee B.W., Zinn-Justin J. — Phys. Rev., 1972, D5, p.3137.
18.’Hooft G., Veltman M. — Nucl. Phys., 1972, B44, p.189.
19.Fradkin E.S., Tyutin LV. — Phys. Lett., 1969, B30, p.562; Phys. Rev., 1970, D2,
p.2841.
20.Peak D., Inomata A. — J. Math. Phys., 1969, 10, p.1422.
21.Duru LH., Kleinert H. — Phys. Lett., 1979, B84, p.185.
22.Fischer W., Leschke H., Muller P. — J. Phys., 1992, A25, p.3835.
23. Antoine E.P., Tirapegui E. (eds.), Functional Integration. Theory and Application,
Plenum Press, N.Y., 1980.
24.Papadopoulos G.J., Devreese J.T. (eds.), Path Integrals and Their Applications in
Quantum, Statistical and Solid State Physics, Plenum Press, N.Y., 1978.
25.Bogoliubov N.N., Shirkov D.V. — An Introduction to the Theory of Quantized
Fields, Wiley, N.Y., 1959.
26.Simon B. — Functional Integration and Quantum Physics, Academic Press, N.Y.,
1979.
27.Glimm J., Jaffe A. — Quantum Physics, A Functional Integral Point of View,
Springer-Verlag, Berlin, 1981.
28.Ramond P. — Field Theory, A Modern Primer, Benjamin/Cummings, Mass., 1981.



510 EFIMOV G.V., GANBOLD G.

29.Roepstorff G. — Path Integral Approach to Quantum Physics, Springer Verlag,
Berlin 1994.

30.Proceed. Int. Conference «Path Integrals from meV to MeV: Tutzing-92», eds.
H.Grabert et. al., World Scientific, Singapore, 1993.

31.Kleinert H. — Path Integrals in Quantum Mechanics, Statistics and Polymer Physics,
World Scientific, Singapore, 1990. :

32. Albeverio S., Paycha S., Scarlatti S. — Prog. Phys., 1989. 13, p-230.

33.Feynman R.P., Hibbs A.R. — Quantum Mechanics and Path Integrals, McGraw-Hill
Book Company, N.Y., 1965.

34.Efimov G.V., Ganbold G. — NATO ASI Series, 1991, B225, p.133.

35.Feynmann R.P. — Phys. Rev., 1955, 97, p.660.

36.Devreese J.T., Peeters F.M. (eds.), Physics of Polarons and Excitons in Polar
Semiconductors and Ionic Crystals, Plenum Press, N.Y., 1984.

37.Mitra T.K., Chatterjee A., Mukhopadhyay S. — Phys. Rep., 1987, 153, p9l.

38.Frohlich H., Peltzer H., Zienau S. — Philos. Mag., 1950, 41, p.221.

39. Larsen D.M. — Phys. Rev., 1968, 172, p.967.

40.Pekar S.I., Untersuchungen uber die Elektronentheorie der Kristalle, Akademie-
Verlag, Berlin, 1954.

41.Miyake S. — Jour. Phys. Soc. Jap., 1975, 38, p.181.

42.Saitoh M. — Jour. Phys. Soc. Jap., 1980, 49, p.878.

43. Adamowski J., Gerlach B., Leschke H. — In: Functional Integration, Theory and
Applications, eds. J.P.Antoine and E.Tirapegui, Plenum, N.Y., 1980.

44.Proceed. Int. Workshop on Variational Calculations in Quantum Field Theory, eds.
L.Polley and D.E.L.Pottinger, World Scientific, Singapore, 1987.

45.Devreese J.T., Peeters F.M. (eds.), Polarons and Excitons in Polar Semiconductors
and Ionic Crystals, Plenum Press, N.Y., 1984.

46.Horst M., Merkt V., Kottaus J.P. — Phys. Rev. Lett., 1983, 50, p.754.

47.Jackson S.A., Platzman P.M. — Phys. Rev., 1981, B24, p.499.

48.Proceed. IV Int. Conf. on Electronic Properties of 2D-Systems, New Hampshire,
August 1981.

49. Larsen D.M. — Phys. Rev., 1987, B35, p.4435.

50.Smondyrev M.A. — Physica A, 1991, 171, p.191.

51.Gerlach B., Lowen H. — Rev. Mod. Phys., 1991, 63, p.63.

52.Lee T.D., Low F., Pines D. — Phys. Rev., 1953, 90, p.297.

53.Das Sarma S. — Phys. Rev., 1983, B27, p.2590.

54. Peeters F.M., Xiaoguang Wu, Devreese J.T. — Phys. Rev., 1986, B33, p.3926.

55.Ganbold G., Efimov G.V. — Phys. Rev., 1994, B50, p.3733.

56.Efimov G.V., Ganbold G. — phys. stat. sol. (b), 1991, 168, p.165.

57. Adamowski J., Gerlach B., Leschke H. — Phys. Lett., 1980, A79, p.249.

58.Das Sarma S., Mason B.A. — Ann. Phys., 1985, 163, p.78.

59. Xiaoguang Wu, Peeters F.M., Devreese J.T. — Phys. Rev., 1985, B31, p.3420.

60. Hipolito 0. — Sol. Stat. Commun., 1979, 32, p.515.

61.Roseler J. — phys. stat. sol., 1968, 25, p.311.

62. Luttinger J.M., Lu C.-Y. — Phys. Rev., 1982, B21, p.4251.

63.Becker W., Gerlach B., Schliffke H. — Phys. Rev., 1983, B28, p.5735.

64.Smondyrev M.A. — phys. stat. sol.(b), 1989, 155, p.155.



GAUSSIAN EQUIVALENT REPRESENTATION 511

65.Schultz T.D. — Phys. Rev., 1959, 116, p.526.

66. Alexandrou C., Fleischer W., Rosenfelder R. — Phys. Rev. Lett., 1990, 65, p.2615.

67.Marshall J.T., Mills L.R. — Phys. Rev., 1970, B2, p.3143.

68.Sheng P., Dow L.D. — Phys. Rev., 1971, B4, p.1343.

69.Feranchuk I.D., Komarov LI. — phys. stat. sol. (b), 1982, 15, p.1965.

70. Huybrecht W.J. — Sol. Stat. Commun., 1978, 28, p.95.

71.Bogoliubov Jr. N.N., Soldatov A.V. — Mod. Phys. Lett., 1993, B7, p.1773.

72. Alexandrou C., Rosenfelder R. — Phys. Rep., 1992, 215, p.1.

73.Chang S.-J. — Phys. Rev., 1975, D12, p.1071.

74.Polley L., Pottinger D. (eds.), Variational Calculations in Quantum Field Theory,
World Scientific, Singapore 1988.

75.Coleman S., Weinberg E. — Phys. Rev., 1973, D7, p.1888.

76.Polley L., Ritschel U. — Phys. Lett., 1989, B221, p.44.

77.Stevenson P.M. — Phys. Rev., 1984, D30, p.1712; 1985, D32, p.1389.

78.Efimov G.V., Ganbold G. — Int. J. Mod. Phys., 1990. AS, p.531.

79.Fukuda R., Kyriakopoulos E. — Nucl. Phys., 1975, B85, p.354.

80.Efimov G.V. — Int. Jour. Mod. Phys., 1989, A4, p.4977.

81.Jackiw R. — Phys. Rev., 1984, D9, p.1686.

82.Efimov G.V., Ganbold G. — Preprint ICTP-91-30, 1991.

83.Simon B., Griffiths R.B. — Comm. Math. Phys., 1973, 33, p.145.

84.McBryan O.A., Rosen J. — Comm. Math. Phys., 1979, 51, p.97.

85.Chang S.-J. — Phys. Rev., 1976, D13, p.2778; 1977, D16, p.1979.

86.Drell S.D., Weinstein M., Yankielowicz S. — Phys. Rev., 1976, D14, p.487.

87.Funke M., Kaulfuss U., Kummel H. — Phys. Rev., 1987, D35, p.631.

88.Efimov G.V., Ganbold G. — Preprint JINR E2-91-437, Dubna, 1991.

89. Efimov G.V., Ganbold G. — Preprint JINR E2-92-176, Dubna, 1992.

90. Garcia N., Genack A.Z. — Phys. Rev. Lett., 1991, 66, p.1850.

91.Bouchaud J.P. — Europhys. Lett., 1990, 11, p.505.

92. Flatte S.M., Bernstein D.R., Dashen R. — Phys. Fluids, 1983, 26, p.1701.

93.Chow P.L. — J. Math. Phys., 1972, 13, p.1224.

94.Codona J.L. et al. — J. Math. Phys., 1986, 27, p.171.

95.Dashen R. — J. Math. Phys., 1979, 20, p.894.



PE®EPATHI CTATEM, ONYBJIMKOBAHHBIX B BBIIIYCKE

VIK 539.1.01
Hapymense gyHIaMeHTATBHBIX CHMMETPHII B AiePHBIX peakuMix. bynakos B.E. ®uspka
B/IeMEHTAPHBIX YACTHI M aTOMHOTO sapa, 1995, Tom 26, em.2, c.285.

B o630pe TpHBEnEH TeopeTHdecKuit aHamus adekToB P- U (wm) T-HapymeHus B
ANepHBIX peakiuax. [TokasaHo, 4ToO BCeM 3THM a()peKTaM CBOHCTBEHHEI IBA OCHOBHBIX Me-
XaHu3Ma ycwieHus. [lMHaMIYecKoe yCUIEHHE, IPOTNIOPLHOHATBHOE KOPHIO U3 9KCTIa KOMIIO-
HEHT BONHOBOH (PYHKIIMM KOMIAyH[-DE30OHaHCA, 3HAKOMO HaM emle [0 Teopun P-Hapy-
HIEHHS NS CBA3aHHBIX COCTOSHHMM sxpa. Pe3oHaHCHOE yCWIeHHe, MPONOPLMOHAIBHOE Bpe-
MEHH KM3HH KOMIIAyHJ-pe3OHaHca, ABISeTcs CIeludHKOH SNepHbIX peakuud B
HEIPEPHIBHOM CTIEKTPE CHCTEMbl H HE MMEET aHATIOTHH B TEOPHM CBA3AHHBIX COCTOSHHH.
Bo3HHKaILee TIPH 3TOM CyMMapHOe ycureHue apekToB HapyLIeHHs CHMMETPHH JOCTHra-
er 5-6 nopsakoB (B ciydae P-HecoXpaHeHHUs TpPEICKa3aHHbIE TCOPETHYECKHE YCHIICHHS Ha
6 NOPSAKOB HEOTHOKPATHO MOATBEPXCHH! 9KCTIEPUMEHTATEHBIMY HabmoneHusamu). Tloka-
3aHO, YTO 004 MEXaHHU3Ma YCWIEHHS ABISIOTCS OOLIMM CIIENCTBHEM KBARHTOBOH XaOTHYHOCTH
(CITOXHOCTH) CTPYKTYphl PE30HAHCOB KOMIAyHI-Sapa. DTa CIIOXHOCTh, OJHAKO, IPHBOIHT K
HEOOXOOMMOCTH HCHONB30BAHUS CTATHCTUYECKHX METONOB aHAIM32 3IKCIIEPUMEHTAIbHO
HabMOOAaeMbIX BeJIMYMH IS M3BIEYEHHS U3 HMX WHGOpPMAaUMH O CHIOBBIX KOHCTaHTax
B3aHMOJEHCTBHUI, HAPYIIAIOUX CUMMETPHI0. AHAIU3 TAKHX CTATHCTHYECKUX METONOB TaK-
Xe IPUBOAUTCS B 0b30pe.

Win.6. Bubnuorp.: 89.

VIK 539.126.34+539.17.01

JipoiiHas mepe3apaika MHOHOB B PAMKaX KBAa3MIACTHUHOTO NPHO/IMUIKeHMA ClIyJalHBIX
tpa3. Kamuncku B.A.PusuKa seMEHTapHBIX YACTHLL H aTOMHOTO sA1pa, 1995, Tom 26, BbINL2,
c.362.

Peakupsi NBOHHON MNepe3apsiKd IMHOHOB OMMCaHa B paMKax IMpPOTOH-HEHTPOHHOTO
KBa3HYaCTHYHOTO TIPHOMMXeHus caydaiinbix (a3, JaHueli MeTo anpoGMpoBaH Ha IpHMepe
sIpa Xenie3a ~ Fe, U NOY4eHO JOBOJIBHO XOPOLIEe COIacHe PacCUMTaHHBIX XapaKTEePUCTHK
C COBpEMEHHBIMH iaHHbIMA. Habmofaemoe pe3oHaHCHONoH00HOe NOBENCHHE IHEepreTuec-
KO¥ 3aBUCHMOCTH CEYEHHS ITOJIyKa4eCTBEHHO OOBACHEHO C IIOMOLIBIO ABYXHYKIOHHBIX NPO-
Leccos 6e3 MpUBEYEHHsS 9K30THIECKHX MEXaHH3MOB, TAaKMX KaK NMOAapUOHBI WIM MHOTO-
KBapKOBBIE KJ1aCTEPHL.

Tabn.1. n.5. Bubnuorp.: 55.

VK 539.16
O cMeUIMBaHHK BOJHOBBIX (YHKIMII OCHOBHBIX H BPAIIATeIbHBIX COCTOAHUIA fI00C Je-
dopmuposannbix axep. Yacrs 1. [xerenos B.C., Kyxosckuit H.H., lllecmonanosa CA.
Pu3nKa 3MeMEHTapHBIX YaCTHL M aTOMHOro supa, 1995, Tom 26, BbIL2, ¢.384.
PaccMOTpeHO cMeIUMBaHUHE BOJHOBBIX (PYHKIMH BO BpAlUaTesbHBIX COCTOSHMSAX Ie-
thopMupoBaHHbIX snep. [IPeNcTARNeHs! aMILTUTYAB! BOJIHOBBIX (DYKHIMIA s 254 ppama-
TEJBHBIX TOJIOC, PACCYMTAHHbIC PAVIMUHBIMM aBTOpamMu. B fanbHeiileM NpearnosaraeTcs
TIpoOBECTH OBCYXIEHHE M CPaBHEHHEe cOOpaHHON MHGOPMALIMH C SKCIIEPHMEHTATbHBIMU laH-
HbBIMH.
Ta6n.1. Bubnuorp.: 38.
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YIK 539.142/143
Makpockonuyeckas Moaels MATHHTHBIX Pe30HAHCOB B clepHUECKHX sapax. bacm-
pykos C.H., Monooyosa H.B. ®usuka BMeMEHTapHbIX YacTHIl M aToOMHoro sapa, 1995,
TOM 26, BbINL.2, C.415.

B 0630pe U3n0XKeHB! (HU3MYECKHEC NPUHLMIBI ¥ YPABHEHHUA ANEPHOH (IIIOHI-IMHAMU-
KH — KBAaHTOBO-MaKpPOCKOMHYECKOTO METO/1a OMMCAHMS MYJIBTHIONBHBIX H30CKTIAPHBIX pe-
30HAaHCOB B TEPMHHAX TEOPHUM CIUIOIUHBIX cpefl. OCHOBHas YacTh 0030pa MOCBALIEHA KOJ-
TIEKTUBHON MOJIE/IM MarHUTHOIO ANEPHOTO OTKNHMKA, B PaMKaX KOTOPOH M30CKalspHblE
MarHMTHSIE MYJIBTHIIONBHBIE PE30OHAHCHI CBA3BIBAIOTCH C BO30YXIEHHEM IJIMHHOBOJIHOBBIX
KPYTHIBHBIX Kosebanuit cchepudeckoro sapa. C TOYKM 3peHHs TEODHH KOHTHHYYMa Cyllie-
CTBOBaHHE IAHHON BETBH KOJUIEKTHBHBIX BO30YXIEHNH CBUIETEIBCTBYET O TOM, YTO SAEpHast
MaTepus o0nafaeT CBOHCTBaMH, TIPHCYLIMMH YIIPYroi CILlowwHoit cpene. TMonuepkupaercs,
YTO (pu3MYECKas MPUPOA YNPYTOCTH ANEPHOTO BELIECTBA UMEET CYLIECTBEHHO KBAHTOBOE
MPOHCXOXIEHHE, MOCKONLKY SBISAETCS CIEACTBHEM (PePMHUEBCKOrO ABHXEHHS HYKJIIOHOB H
CBA3aHHON C HUMM [OMHaMuyecKol aecdopmainu nosepxHoctd Mepmu. IMpencramneHsi
AHATHTUYECKHE BBIBOLAbI M YMCJIEHHBIE OLEHKH MHTErpalbHbIX XapaKTEPUCTHUECKMX Mapa-
METPOB MarHUTHBIX M30CKAISAPHBIX PE3OHAHCOB: MOJIOXEHHH LEHTPOMIOB 3HEPIHIl B slep-
HOM CMEeKTpPe, CYMMAapHbIX BEPOSTHOCTEH BO3OYXNEHHS, MarHUTHBIX OCLUAUISTOPHBIX CHJI,
CTOJIKHOBUTENbHBIX WIMPHH, BBIYHCIIEHHBIX B 3aBUCHMOCTH OT MacCOBOTO YMCJIa, aTOMHOIO
HOMEPa H MYJIBTHIIONBLHOIO NOpsSaKa Bo36yxaeHus. ITpuBeaeHbl KOMIEKTUBHBIE NEPEXOIHbIE
TOKOBbIE TIOTHOCTH M MarHiTHeie opMaKkTOpsl, aHATHTHYECKH PACCUMTAHHbIE B TUI0CKO-
BOJIHOBOM GOpHOBCKOM NMPHOITHXEHHH; YHCIIEHHbIC PAacyeThl BLINOAHEHb B NPUOITHXEHUH
MCKaXeHHbIX BoiH. Teopernyeckue NpencKa3aHHs COMOCTABNAIOTCA C IKCTEPHMEHTAllb-
HbIMH IaHHBIMH 11O MArHMTHBIM KOJUTEKTHBHBIM BO30YXIEHHSM cepHyecKuX siep, noiy-
YCHHBIMH B PEaKLMH HEYNPYTOTO PacCesHHs JICKTPOHOB.

Tabn.4. Wn.10. BuGnuorp.: 111.

YLK 530.145+539.19
layccoso-sKBUBANEHTHOE NpeICTARIeHHe GYHKUMOHANBHBIX MHTErPAicR B KBAHTOBOH
dusuke. Epumos I'B., lanbond I'. ®U3KKa 31eMEHTAPHBIX YACTHL H aTOMHOTO s1pa, 1995,
TOM.26, BhiN.2, c.459.

Fpesnioxen HOBHIA, PeryispHblii METON HenepTypOaTHBHOTO BBLIYMCIEHMS ILHPOKOIO
Knacca YHKUMOHANBHBIX MHTETPAIOB, IPUMEHAEMBIX B KBaHTOBOM (hisuxe. Merton ofec-
[IEYHBAET XOPOLIYI0 TOYHOCTh B HU3LIEM NPHOIMXCHHHM, FTONY4aEMOM HECIIOXHEIM IiyTeM. B
Cy4yae BELUECTBEHHBIX (YHKLUHOHANOB OHO MpefcTariger coboil 06061eHHe BapaLMOHHO-
ro npunuuna. TlpeanaraeMelii METON BBITOAHMO OTIHYAETCS OT BapUAUHOHHBIX TMOKXOIOB
TIPHMEHUMOCTBIO [T KOMIUIEKCHBIX (DYHKLMOHAIOB U B TEOPHAX C pacxonuMocramu. Io-
NpaBKH BLICWIHX MOPAAKOB K HU3LIEMY NMPHOIMXEHKIO BEIYUCISIOTCS 1O PEryISpHOi CXeMe.
Mertoj J1erko aIrOPUTMH3HPYETCS, YTO NO3BOMAET MPUMEHSTH €10 K 3a1adyaM, TpeByolmm
60np110ro 06HEMa YHCIIEHHBIX PACYETOB.

Merton mpeMeHeH K pady 3alay M3 padIMuHbIX O6jacTell TeOPETHYEcKOH (PH3UKH:
TEOpHH NOJNSAPOHA B (PH3HKE TBEPROTO TENA, H3ydeHHi0 (ha30BOTO MEPEXoia B MONEBOH MO-

nenn @* ¢ pacXomMMOCTAME B BBICIIHX HOPAAKAX TEOPHH BO3MYLICHHH U K HCCIIEAOBAHHIO
PACIIpPOCTPaHEHHS BOJH B CTOXAaCTHYECKMX Cpegax, [Ae€ BapHALMOHHEIE METOHB
nerpuMeHuMbL.  TTocTpoeHo rayccoBo-sKBHBA/IEHTHOE NpeCTaBNeHHe (DYHKLMOHATBHOIO
HHTErpaia MojfpoHa B NPOCTPAHCTBE Pa3MEPHOCTH d M INOJYYEHO CKEITHHIOBOE COOTHO-
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LIEHKE VIS 3HepruM nonspoua. [TokasaHo, 4To HalneHHas COOCTBEHHAs SHEPrHs MOJIPOHa
yXe B HyJ€BOM NMPUOTHKEHUH IPEBOCXOTHUT MO TOYHOCTH H3BECTHYIO BapHALIMOHHYIO OLICH-
Ky DeilHMaHa TpH MOObIX 3HAYEHHSX KOHCTAHTBHI 3/IEKTPOH-(POHOHHOTO B3aHMOIEHCTBHA
o. BoIyuceHHbIe 3HaUeHUs CIEAYIOIIMX NONPaBOK 3aMETHO YIy4IlaloT OUEHKY WIS S9HEPrHu

nonsgpoHa. B KBaHTOBOH TEOPHH CKAIAPHOTO CaMONEHCTBHS g(p:; B [IByX- H TPEXMEPHOM

npoctpaHcTBax d = 2; 3 moiy4eHsl Hynesoe npubauxenue ans 3¢heKTUBHOro MoTeHUHana
1 3(pheKTHBHAS Macca CKaIIpHOH YacTHiibl. OTMEYEHO CYLIECTBOBAHHE «HETPUBHATLHOIO»
peleHus [ rayccoBa 3(peKTHBHOIO MOTEHUHANA, MOBEAEHHE KOTOPOro yKa3plBaeT Ha

OTCyTCTBHE (DA30BOTO MEPEXOfia MEPBOTO pola B TEOPHH g(pg. [poBeneH aHATM3 3TOTO BOII-

poca C ydeTOM BKJIANOB BBICUINX IOMpPAaBOK OT HEraycCoBOi Yacté a()peKTHBHOrO
HOTEHIHaNa, KOTOPbIH yOeIUTeNbHO YKa3bIBaeT Ha CYIIeCTBOBaHHE (ha30BOro Mepexona BTo-

poro pona B TEOPUM g(p‘zt 1 Ha ero orcyrcTue B ciydae d = 3. Haiineno 3nauenue Gespas-

MEPHOM KPHTHYECKOH KOHCTaHTHI (g/ 21:m2)cm = 0,533, npu AOCTHXEHUH KOTOPOH HacTyrma-

er ha3oBblil nepexod BToporo pofa. IloiydeHHBIH pesy/lbTaT COrIacyercs ¢ W3BECTHBIMH
teopemamu B.Caiimona, P.I'pucdpdurca u Ix.Poszena (1979). B teopun pacnpocrpaHeHHs
BOJIH B CTOXAaCTHYECKHUX Cpelax MCCIIeHOBaHO NoBeacHue (pyHkuuu I'puHa BOJIHOBOTO ypas-
HEHHs U MOJIy4eHO €€ aCHMIITOTHYECKOe TOBEACHHE Ha OONBIIMX PACCTOSHHUSIX.

Ta6n.6. Un.3. Bubnuorp.: 95.
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K CBEJAEHHIO ABTOPOB

B xypHane «(DH3HKa 2/IeMEHTAapHBIX YaCTHIl H aTOMHOrO Aapa» (DYAS) nevaratorcs 0630psl no
aKTyalbHBIM MpoGJieMaM TEOPETHYECKOH M IKCNEPHMEHTAILHOH (H3HKH 3MEMEHTApHBIX YacTHLl M
aTOMHOIO sifpa, Npo6iieMaM CO3/1aHKS HOBBIX YCKOPHTEJBbHBIX H 9KCIIEPHMEHTATLHBIX YCTAHOBOK, aBTO-
MaTH3aUKH 00PaGOTKH 3KCMEPHMEHTATBHBIX JaHHbIX. CTaThH NeYaTaloTcd Ha PYCCKOM H aHIIMHACKOM
A3biKax. Penakuus MPOCHT aBTOPOB NMpPH HaNpaRICHHH CTAaTBH B IEYaTh PyKOBOJACTBOBATHCS H3NOXEH-
HBIMH HHXE NPABHIAMH.

1. TexcT crarbu KoXeH ObiTh HaleyaTaH HA MalHHKE Yepe3 ABa HHTEPBaia Ha OJHOH CTOPOHE
nucra (06s3aTeNIbHO NPENCTARIAETCA MEPBbIH MALIMHONMKHCHBIA 3Kk3eMmnsp). Ilond c sieBoil CTOPOHMI
HoNXHB! ObiTh He YXe 3—4 CM, DYKOIHCHBIC BCTAaBKH HeE JOMYCKAOTCA. DK3EMIUIAP CTaThH HOIXEH
BKJIIOYATh AHHOTAUMH M HA3BaHKE Ha PYCCKOM H aHDIMHCKOM s3biKax, pedrepaT Ha PYCCKOM s3bKe,
YIK, ceenenns 06 apropax: aMWIHA W HHWLMaRbl (Ha DYCCKOM H aHIIMICKOM #3biKax), Ha3BaHHe
HHCTHTYTa, aapec M TenedoH. Bee crpaHHukl TekcTa 10aXHb Gbith nponymepoBabl. CTaThs JOMXHA
6bITL MOANHCaHA BceMH aBTopaMu. TeKCT cTaThi MoXeT GHITh Hanme4yaTaK Ha NPUHTEpe ¢ COOMIOAEHHEM
TCX XKe MpaBwil.

2. ®opmynn H 0603HAYCHHA NOMKHB OBITE BNHCaHBl KPYMHO, YETKO, OT PYKH TEMHBIMH
yepuunamu (60 HaneuaTaHnl Ha NPHHTEpe M 0fs3aTesbHO paiMeychbl). JKenaTeqbHO HYMEpOBATH
TONLKO Te POPMyIEI, HAa KOTOpbic HMEIOTCH CChUTKH B TekcTe. Homep dopmynsl yxasbiBaeTcs cnpasa B
Kpyrnbix cxob6xkax. OcoGoe BHHMaHHE CiiefyeT OOpaTuTh Ha aKKypaTHOe M306paXeHHMe MHIEKCOB H
IoKasaTesiei CTeneHeH: HHXHHE WHACKCH OTMEYAlOTCd IMAKOM MOHHXEHUS M, BEPXHHE — 3HAKOM
TOBBILICHHA \; WITPUXH HEOOXOMMMO YETKO OTIHMATS OT EMHHIN, a CAHHHLY — OT 3ansToi. Crenyert,
110 BO3MOXHOCTH, H30eraTh rpOMO3KMX 0Go3naucHuil H ynpowars HaGop opMyn (HanphaMep, TipHMe-
Hag exp, Apobb Yepe3 KOcyio YepTy).

Bo u3bexanue HepopasyMeHuii W OIHGOK CienyeT NeiaTh ACHOE PAYTHYME MeXy NPONHCHHMH
H CTPOYHBIMY OyKBaMH, OfMHaKoBhiMH no Hawepranno (Vu v, Unu, Wuw, Ouo, Kuk,Sus, C
uc, Pup, Z u z), DpONHCHME NOAYEPKHBAIOT ABYMS YEPTAMH CHMW3Y, CTPOYHBIE — IBYMS 4YEpTaMH
ceepxy (§ ¥ k4 G 1 ©). Heobxomumo aenars 4ETKOC PavTHUHE MEXITY Gyxsamu e, I, O (6onbinoit) H 0
(mano#t) u 0 (aynem), na 4ero GykBl 9 U O OTMEYalOT EBYMS YSPTOYKAMH, a HYTb OCTamisioT Ge3
nonuepxusanud. I'pedeckue GYKBbl MONYEPKHMBAOT KPACHBHIM KAPAHJAUIOM, BEKTOPH —— CHHHMM, THOO
3HAKOM 4. CHU3y “epHWiamu. He pexomennyercs mcnonsiosats ana 0003HayeHHMs BENHUMH GyxBb
POTHYECKOIO, PYKORHCHOIO H [(PYIHX ManoynoTpeOHMbIX B XYDHAIBHBIX CTATb4X IUPHGTOB, ONHAKO
ecid Takywo Oyksy Henb3s 3aMeHHTh GYKBOIl NATHHCKOIO WIM rpedeckoro andaskTa, TO ce paMedalor
APOCTHIM KapanjawioM (00BOIAT KPYXKOM). B ciyuae, ecny HanMcaHHe MOXET BBIIBATH COMHEHHE,
Heo6XOIMMO Ha TI0/ISX AaTh NOKCHEHHe, HanpuMep: { — «13eTan, & — «kcH», k — nat., K — pycek.

3. PMCYHKH TpPEJCTaBIfIOT HAa OTACILHBIX JHCTAX Oenoif GyMarH MM KanbkKu C yKalaHHeM Ha
o6opoTe HOMEpa PHCYHKA ¥ Ha3Batus craThH. ToHoBbie oTorpadmy HOMXHB GbITh IPEACTaBAEHH B
IBYX 3K3EMIUISpaX, HAa 06OpOTE KAPaHNALIOM YKAlaTh: «BEPX», «HU3». I'Dayiikd HONXHB OMTH TLIA-
TENLHO BHIMOJTHEHBI TYIIBIO HIH YEPHBIMH YSPHHIIaMH, HE PEKOMEHIYETCH 3arPOMOXKIATE PHCYHOK He-
HYXHBIMH JIeTansMH: OGONBUIHHCTBO HANNHCEH BHIHOCHTCA B IOMNHMCh, a HA PHUCYHKE 3aMEHSETCH
uncpamu win Gyxsamu. XKenatensio, uToOsl PHCYHKH GbUIH TOTOBH K NPAMOMY PENIpOIYLIMPOBAHKIO.
Tloamucu K PMCYHKAM NPEACTABISIOTCS HA OTASTLHBIX MTHCTaX.

4. TaGnuibl ZOJKHB ObITh HANEYATaHbl HA OTHEAbHBIX JIHCTaX, KaXpad TaliuLa J0KHA HMETh
3aronoBok. CriefyeT yKasbiBaTh SIHHHLb HIMCPCHHS BETHYMH B Tabnuunax.

5. CiacoX JIMTEpaTyphl MOMCINAETCH B KOHLE CTaThH. CCBUIKH B TEKCTE HAKOTCH C YKA3aHHEM
HOMEpa CChUIKH Ha CTPOKE B KBafiparHbiXx cKoOkax. B nHTepaTypHO#M cChUIKE HOMXHE! GBITH YKa3aHBI:
W18 KHAT — haMHIMH aBTOPOB, HHHIMATG!, HA3BaHHE KHHTH, TOPOJL, HITATE/ILCTBO (WIH OPraHu3aums),



TOIl M3JIaHUA, TOM (4acTb, [J1aBa), UHTHpPYeMast CTPaHHIA, EC/IA HyXHO; JUlS CTaTeil — (haMWIHH aBTo-
POB, MHHLIH/Ib!, HA3BAHHE XYPHANA, CEPHsl, TO/l M3aHUs, TOM (HOMeEp, BBITYCK, €CTTH 3TO HEOGXOIHUMO),
nepBast CTpaHuia cratsd. Eciu asTopos Gonee nsaTH, TO yKasarh TONBKO NMepBbie TPH (haMIIHH.
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