ФИЗИКА ТВЕРДОГО ТЕЛА И КОНДЕНСИРОВАННЫХ СРЕД

РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ ПОЛИКРИСТАЛЛИЧЕСКОГО КОМПЛЕКСА ХЛОРИДА МЕДИ(II) с 1,5-ДИМЕТИЛТЕТРАЗОЛОМ: ИСПОЛЬЗОВАНИЕ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ И ЛАБОРАТОРНЫХ ДИФРАКЦИОННЫХ ДАННЫХ

Л. С. Ивашкевич^a, А. С. Ляхов^a, А. Н. Шмаков^б, В. В. Ефимов^e, О. А. Ивашкевич^a, С. И. Тютюнников^e

^а Учреждение Белорусского государственного университета

«Научно-исследовательский институт физико-химических проблем», Минск

⁶ Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия

^в Объединенный институт ядерных исследований, Дубна

При использовании трех серий порошковых дифракционных данных, полученных на лабораторных дифрактометрах и с использованием синхротронного излучения, методом Ритвельда проведено уточнение структуры комплекса хлорида меди(II) состава CuCl₂L, где L — 1,5-диметилтетразол. Выполнен сопоставительный анализ результатов уточнения структуры, показавший, что использование лабораторных данных с длиной волны рентгеновского излучения $\lambda = 1,7902$ Å (CoK α) дало структурные характеристики комплекса, сравнимые по точности с таковыми при использовании синхротронного излучения с $\lambda = 1,5443$ Å.

Three sets of powder diffraction data, obtained by using synchrotron and laboratory powder diffraction data, were used in the Rietveld refinement of the crystal structure of copper(II) chloride complex CuCl₂L, where L is 1,5-dimethyltetrazole. Comparison of the three sets results showed that the use of laboratory diffraction data for wavelength of 1.7902 Å (CoK α radiation) allowed one to obtain structural data comparable in accuracy with those for synchrotron data for wavelength of 1.5443 Å.

PACS: 61.10.NZ

введение

Комплекс хлорида меди(II) с 1,5-диметилтетразолом состава CuCl₂L (комплекс I) интересен тем, что является первым комплексом 1,5-дизамещенных тетразолов, в кристаллической структуре которого обнаружено наличие мостиковых координационных связей тетразольного кольца [1]. Изучение структуры комплексов 1,5-дизамещенных тетразолов наталкивается на большие трудности получения монокристаллов, приемлемых для структурного анализа. В связи с этим данные соединения являются объектами исследования методом порошковой дифрактометрии.

110 Ивашкевич Л.С. и др.

Ранее в работе [1] мы изучили структуру поликристаллического комплекса I, используя лабораторные дифракционные данные для излучения СоК α . Целью настоящей работы было, во-первых, получить более точные структурные характеристики соединения при использовании синхротронного излучения (СИ); во-вторых, провести сопоставительный анализ результатов исследования структуры для трех серий экспериментального материала. Последние таковы: 1) данные, полученные при использовании СИ; 2) лабораторные дифракционные данные для излучения CuK α ; 3) экспериментальный материал для излучения CoK α [1].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез. К 1,1 (0,011 моль) 1,5-диметилтетразола, растворенного в 30 мл смеси метанол — диэтиловый эфир (объемное соотношение 2:1), при комнатной температуре при перемешивании добавляли 0,94 г (0,0055 моль) кристаллогидрата CuCl₂·2H₂O, растворенного в 10 мл метанола. Реакционную смесь перемешивали в течение 0,5 ч. Полученный комплекс I отфильтровывали, промывали два раза смесью метанол-диэтиловый эфир (2 · 25 мл, объемное соотношение компонентов 1:3) и сушили на воздухе.

Рентгеноструктурный анализ. В настоящей работе лабораторные дифракционные данные поликристаллического комплекса I получены на рентгеновском дифрактометре HZG 4A (Carl Zeiss, Jena) с использованием СиК*α*-излучения (Ni-фильтр). Приемная щель — 0,22 мм, щель Соллера на первичном пучке, ток и напряжение на трубке — 30 мА и 40 кВ соответственно. Регистрация дифракционной картины осуществлялась в пошаговом режиме.

Дифракционные данные с использованием синхротронного излучения получены в Сибирском центре синхротронного и терагерцевого излучения на станции «Дифрактометрия

Рис. 1. Экспериментальная дифракционная кривая комплекса I, полученная при использовании синхротронного излучения (точки), и рассчитанная кривая (сплошная линия) в области углов рассеяния $10 < 2\vartheta < 60^{\circ}$ после угочнения по методу Ритвельда. В нижней части рисунка приведены разностные кривые. Вертикальные штрихи показывают брэгтовские рефлексы

высокого разрешения и аномального рассеяния». В исследовании использовалось рентгеновское излучение с длиной волны 1,5443 Å, близкое к CuK α . Регистрация дифракционной картины также осуществлялась в пошаговом режиме.

Условия получения лабораторных дифракционных данных для излучения $CoK\alpha$ описаны нами в работе [1].

Следует отметить, что максимальные углы 2ϑ всех трех дифракционных кривых соответствуют близким значениям $d = \lambda/(2 \sin \vartheta)$, что важно при проведении сопоставительного анализа результатов уточнения структуры с использованием трех серий экспериментальных данных.

Параметры	Лабораторные дифракционные	Лабораторные дифракционные	Использование СИ
	данные (CuK α)	данные (СоК α)	~ ^
	Серия 1	Серия 2	Серия 3
Длина волны излучения λ , Å	1,5418	1,7902	1,5443
$2\vartheta_{\min}$	10,00	12,00	10,00
$2\vartheta_{\max}$	100,00	141,44	100,00
$\Delta 2\vartheta$	0,02	0,02	0,02
Число точек	4501	6473	4501
Число рефлексов	876	973	876
Число уточняемых параметров	52	52	52
Сдвиг $\Delta 2\vartheta$, град	-0,033(3)	-0,010(2)	-0,0325(12)
[<i>hkl</i>]-текстуры	[100]	[100]	[100]
<i>G</i> ₁ -текстуры	1,25(3)	1,076(3)	1,062(4)
G_2 -текстуры	0,00(2)	0,00(1)	0,0391(8)
R_p	0,076	0,078	0,111
$R_{\rm wp}$	0,108	0,104	0,150
R_{exp}	0,087	0,136	0,177
$R_{ m Bragg}$	0,139	0,098	0,062
R_F	0,089	0,066	0,069
Пространственная группа	P 1	P 1	P 1
<i>a</i> , Å	6,8081(5)	6,8117(4)	6,8112(2)
b, Å	7,4142(6)	7,4177(4)	7,4188(3)
<i>c</i> , Å	8,6677(7)	8,6722(4)	8,6725(3)
α , град	109,160(3)	109,167(2)	109,1479(17)
β , град	105,518(5)	105,528(3)	105,484(3)
γ , град	103,110(5)	103,121(3)	103,149(3)
Z	2	2	2
Объем элементарной ячейки, Å ³	373,66(5)	374,15(4)	374,31(2)

Таблица 1. Основные характеристики уточнения структуры комплекса I при использовании трех серий экспериментальных дифракционных данных

112 Ивашкевич Л. С. и др.

Структурные характеристики комплекса I получены полнопрофильным уточнением с помощью программы FULLPROF [2]. В качестве начального приближения координат атомов были взяты значения, полученные в работе [1]. Профиль рефлексов описывался функцией Pseudo-Voigt. Асимметрия профилей рефлексов учитывалась до $2\vartheta = 40^{\circ}$. Уточнение включало атомные координаты атомов, их изотропные тепловые параметры, масштабный множитель, сдвиг $\Delta 2\vartheta$, параметры элементарной ячейки, коэффициенты полиномиального фона, параметры преимущественной ориентации кристаллитов в образце, параметры асимметрии профилей и их полуширины. Координаты атомов водорода метильных групп рассчитывались с использованием программы SHELXL [3]. Атомные координаты и тепловые параметры атомов водорода не уточнялись. Учет преимуще-

Таблица 2. Координаты неводородных атомов в структуре комплекса I, полученные уточнением по методу Ритвельда для трех серий экспериментальных данных: для лабораторных данных СиК α — верхняя строка; для лабораторных данных СоК α — средняя строка; для СИ — нижняя строка

Атом	x	y	z
Cu(1)	0,0	1,0	0,0
Cu(2)	0,5	1,0	0,0
Cl(1)	0,5820(15)	0,7318(10)	-0,1121(10)
	0,5848(8) 0,5836(10)	0,7261(6) 0,7193(8)	-0,1161(6) -0,1140(7)
	-0,0571(14)	1,1627(11)	0,2331(9)
Cl(2)	-0,0624(7)	1,1695(6)	0,2365(6)
	-0,0634(10)	1,1744(8)	0,2432(7)
	0,2789(6)	0,7356(11)	0,3231(8)
N(1)	0,2835(6)	0,7441(13)	0,3294(10)
	0,3132(9)	0,752(2)	0,3251(16)
	0,4508(11)	0,785(3)	0,2755(18)
N(2)	0,4575(6)	0,8019(17)	0,2868(11)
	0,4607(9)	0,813(2)	0,2575(15)
N(3)	0,4019(11)	0,867(3)	0,166(2)
	0,4033(6)	0,8720(18)	0,1694(13)
	0,3679(8)	0,881(2)	0,1496(16)
N(4)	0,1926(10)	0,853(3)	0,1392(16)
	0,1911(5)	0,8496(18)	0,1370(9)
	0,1590(7)	0,852(2)	0,1354(14)
C(5)	0,1267(3)	0,8055(6)	0,2552(4)
	0,1267(2)	0,8053(5)	0,2549(4)
	0,1297(12)	0,782(3)	0,2518(18)
C(6)	-0,0945(12)	0,754(3)	0,256(3)
	-0,0950(8)	0,7326(18)	0,2506(17)
	-0,075(2)	0,722(3)	0,281(2)
C(7)	0,301(4)	0,658(3)	0,4601(20)
	0,305(3)	0,6519(19)	0,4562(14)
	0,368(3)	0,672(3)	0,4535(20)

Геометрический параметр	Лабораторные дифракционные данные (СиКа)	Лабораторные дифракционные данные (СоКа)	Использование СИ
$Cu(1)-Cl(1)^i$	2,772(9)	2,768(5)	2,797(6)
Cu(1)–Cl(2)	2,173(8)	2,233(5)	2,293(6)
Cu(1)–N(4)	2,242(19)	2,248(10)	2,113(14)
Cu(2)–Cl(1)	2,176(9)	2,231(5)	2,264(6)
$Cu(2)-Cl(2)^{ii}$	2,850(9)	2,829(5)	2,842(5)
Cu(2)–N(3)	2,153(19)	2,155(12)	2,070(15)
N(1)–N(2)	1,355(12)	1,354(10)	1,356(17)
N(2)–N(3)	1,30(3)	1,295(16)	1,29(2)
N(3)–N(4)	1,355(12)	1,356(8)	1,355(9)
N(4)-C(5)	1,319(16)	1,320(10)	1,32(2)
C(5)–N(1)	1,344(7)	1,348(8)	1,346(18)
N(1)-N(2)-N(3)	108,2(10)	108,3(6)	105,9(9)
N(2)-N(3)-N(4)	104,9(14)	105,2(9)	110,6(12)
N(3)–N(4)–C(5)	112,4(14)	111,8(8)	107,0(11)
N(4)-C(5)-N(1)	102,1(7)	102,4(5)	107,2(10)
C(5)–N(1)–N(2)	109,9(10)	109,4(8)	108,9(13)

Таблица 3. Некоторые межатомные расстояния (Å) и валентные углы (град) в структуре комплекса I, полученные при использовании трех серий экспериментальных дифракционных данных. Преобразования симметрии: ${}^{i}x - 1, y, z$; ${}^{ii}x + 1, y, z$

ственной ориентации осуществлялся с использованием функции Марша–Долласа [4,5] для кристаллографического направления [100] иглоподобных кристаллов.

Основные характеристики уточнения структуры комплекса представлены в табл. 1. На рис. 1 сопоставлены экспериментальные и рассчитанные кривые интенсивности для дифракционных данных, полученных при использовании синхротронного излучения. В табл. 2 и 3 приведены координаты неводородных атомов и основные геометрические характеристики структуры комплекса. В табл. 1-3 в скобках даны стандартные отклонения (σ) приведенных уточняемых параметров.

Молекулярная графика выполнена с помощью программы ORTEP-3 для Windows [6].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Так как структура комплекса I достаточно детально описана в работе [1], в настоящей работе дадим лишь краткую информацию о ней. Соединение кристаллизуется в триклинной сингонии, пространственная группа Р $\overline{1}$. Нумерация атомов приведена на рис. 2. В структуре есть два неэквивалентных атома меди, которые находятся в центре симметрии, все остальные атомы — в общих позициях. Комплекс является координационным полимером цепочечного типа. В цепи, простирающейся вдоль оси *a*, соседние атомы меди

114 Ивашкевич Л.С. и др.

связаны между собой как через атомы хлора, так и через тетразольные циклы (через атомы N(3) и N(4)). При этом атом Cu(1) связан только с атомами N(3), а атом Cu(2) — только с атомами N(4) (рис. 2).

Рис. 2. Полимерная цепь в кристаллической структуре комплекса I. Для атомов асимметрической ячейки дана нумерация

Переходя к сопоставлению результатов уточнения структуры комплекса I по трем сериям дифракционных данных, будем называть сериями 1 и 2 лабораторные дифракционные данные для излучений СиК α и СоК α соответственно, а серией 3 — данные, полученные с использованием СИ.

Как видно из табл. 1, образцы всех трех серий текстурированы одинаковым образом (иглоподобные кристаллы с осью [100]), но для серии 1 степень текстурирования образца несколько больше по сравнению с 2 и 3. Погрешности определения параметров элементарной ячейки максимальны для серии 1 и минимальны для серии 3. При этом обращает на себя внимание существенное отличие объема элементарной ячейки для серии 1 по сравнению с сериями 2 и 3, составляющее $\sim 7-8\sigma$. Сопоставление факторов рассогласования экспериментальных и рассчитанных дифракционных данных ($R_p, R_{\rm wp}, R_{\rm Bragg}$ и R_F) не позволяет выделить наилучшую серию с наименьшими значениями этих факторов.

Сопоставление уточненных координат атомов (табл. 2) показывает, что для тяжелых атомов Cl серия 1 отличается наибольшими значениями стандартных отклонений координат, а для серий 2 и 3 они близки. Что касается более легких атомов N и C, какой-либо определенный вывод сделать весьма затруднительно.

Бо́льшая часть геометрических параметров комплекса I (табл. 3) обнаруживает наибольшие погрешности для серии 1, в то время как для серий 2 и 3 они меньше и сопоставимы. Следует отметить, что из 16 приведенных параметров только для 10 наблюдается согласование значений трех серий в пределах 3σ . Для остальных параметров можно говорить о соответствии параметров в существенно более широких пределах. Этот факт — демонстрация того, что в методе порошковой дифрактометрии стандартное отклонение параметра является лишь минимальной вероятной ошибкой, возникающей из случайных ошибок [7] и отличающейся от реальной ошибки в 2–3 раза. Увеличение реальной ошибки может быть обусловлено рассогласованием между используемыми моделями описания (например, профиля рефлексов, их асимметрии, учета преимущественной ориентации и т.д.) и реальными данными.

Подводя итог сопоставительному анализу, отметим следующее. Как и ожидалось, использование синхротронного излучения ($\lambda = 1,5443$ Å) позволило повысить точность структурных характеристик по сравнению с использованием лабораторных данных с близкой длиной волны ($\lambda = 1,5418$ Å) и в той же области углов рассеяния. Однако использование лабораторных дифракционных данных для более длинноволнового излучения ($\lambda = 1,7902$ Å, СоК α) дало результаты, по точности не уступающие таковым при использовании СИ. Вероятно, это является следствием того факта, что в случае СоК α -излучения использованная область углов рассеяния значительно больше (табл. 1), и при одинаковом инкременте $\Delta 2\vartheta$ дифракционная кривая содержит существенно большее число экспериментальных точек (6473 по сравнению с 4501). В конечном счете, это позволяет описать дифракционную картину более детально.

Работа выполнена при финансовой поддержке Фонда фундаментальных исследований Республики Белоруссии (грант № Х06Р-117) и Российского фонда фундаментальных исследований (грант № 06-02-81033-Бел_а).

СПИСОК ЛИТЕРАТУРЫ

- Ivashkevich L.S. et al. An X-ray Powder Investigation of Catena-poly[[(μ-1,5-dimethyltetrazolek²N³: N⁴)copper(II)]-di-μ-chloro] // Acta Cryst. 2006. V. C62. P. m607–m609.
- 2. *Rodriguez-Carvajal J.* FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis // Abstr. of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990. P. 127–132.
- 3. Sheldrick G. M. SHELXL97. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany, 1997.
- Marsh A. Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation // Z. Kristallogr. 1932. Bd. 81. S. 285–287.
- 5. *Dollase W.A.* Correction of Intensities for Preferred Orientation in Powder Diffractometry: Application of the March Model // J. Appl. Crystallogr. 1986. V. 19. P. 267–272.
- 6. Farrugia L. J. Ortep-3 for Windows // J. Appl. Cryst. 1997. V. 30. P. 565-571.
- 7. Young R.A. The Rietveld Method / Ed. R.A. Young. Oxford Press, 1993. P. 1-38.

Получено 14 марта 2007 г.