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The Darboux transformation operator technique is applied to the generalized Schréodinger equation
with a position-dependent effective mass and with linearly energy-dependent potentials. It is shown
how to construct the quantum well potentials in nanoelectronics with a given spectrum. The method is
illustrated by several examples.
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INTRODUCTION

The problem of generating exactly solvable models in quantum mechanics has been con-
sidered for more than 50 years starting from the Schréodinger paper [1]. Many advances
have been made in the area of their different applications and in the ˇeld of classifying
quantum mechanical potentials according to their symmetry properties. Recently the research
efforts on this topic have been considerably intensiˇed due to the rapid development of na-
noelectronics, the basic elements of which are low-dimensional structures such as quantum
wells, wires, dots and superlattices [2,3]. For investigation of nonuniform semiconductors, in
which carrier effective mass depends on position, the generalized Schréodinger equation with
position-dependent effective mass is used [5Ä12].

One of the most important problems of quantum engineering is the construction of multi-
quantum well structures possessing desirable spectral properties. The technique of Darboux
transformations [9Ä14] allows one to model quantum well potentials with the given spectrum.
The method of Darboux transformations allows one to eliminate or add bound states (see,
e.g., [9,10]) or construct phase-equivalent potentials whose scattering data coincide and differ
only by normalization factors (e.g., [13, 15, 16]). The paper is devoted to an application
of the Darboux transformations (or an intertwining operator technique) to the generalized
Schréodinger equation. We use concrete examples to demonstrate how to generate potentials
with required spectrum.
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1. CHAIN OF DARBOUX TRANSFORMATIONS

Here we apply the intertwining operator technique to the equation with a position-
dependent mass and weighted energy

−
[

d

dx

(
1

m(x)

)
d

dx

]
φ(x) + v(x)φ(x) = h(x) Eφ(x), (1)

in order to construct the potential which supports the desirable spectrum. Here m(x) stands
for the particle's effective mass; h(x) and v(x) denote the potentials; φ(x) is the wave
function and E denotes the real-valued energy. In fact, (1) is the effective mass Schréodinger
equation with linearly energy-dependent potential. This equation can be rewritten as

Hφ(x) = Eφ(x), H = − 1
hm

d2

dx2
− 1

h

(
1
m

)′
d

dx
+

v

h
, (2)

where the prime denotes differentiation with respect to x and arguments have been omitted.
For the purpose of simpliˇcation of the description, below let us introduce the ˇrst-order
Darboux transformations obtained in [10]. By using the technique of intertwining relations

LH = H1L, (3)

we have obtained the intertwining operator L, the transformed potential v1(x), and the corre-
sponding solutions φ1(x) in the form

L =
1√
h m

(
d

dx
+ K

)
, K = −U ′

1

U1
, (4)

v1 = v +
2
√

h√
m

d

dx

K√
mh

−
√

h√
m

d

dx

[
1
h

d

dx

( √
h√
m

)]
, (5)

φ1 = Lφ =
1√
hm

[
d

dx
− (lnU1)′

]
φ. (6)

Note that the transformation function U1 deˇnes the transformation operator L and the new
potential v1 and corresponding solutions φ1. The new potential depends not only on the
potential v and on the additional potentials m and h. Evidently, employing the Darboux
transformation once again to the obtained model, one can construct new exactly solvable
models for the generalized Schrödinger equation.

Iterating the procedure n times in regard to the given operator H, one arrives at the
operator Hn, which satisˇes the intertwining relation

LH = HnL.

In this way one gets

vn = vn−1 + 2

√
h

m

d

dx

Kn√
mh

−
√

h

m

d

dx

[
1
h

d

dx

(√
h

m

)]
, (7)

φn = Lφ = Lnφn−1 = LnLn−1 · · · L1φ, (8)
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where L is the nth order differential operator:

L = LnLn−1 · · · L1, Ln =
1√
mh

(
d

dx
+ Kn

)
,

Kn = −χ′
n−1χ

−1
n−1, K1 = −U ′

1

U1

(9)

and χn−1 ≡ χn−1(x, λn) is obtained by means of the ®n¯-order transformation, applied to
the solution Un of Eq. (1) or (2) with the eigenvalue λn

χn−1 = Ln−1Un =
1√
mh

(
d

dx
+ Kn−1

)
Un. (10)

It is clear that χn−1 is the solution of Eq. (2) with the potential vn−1, and χn−1 can be taken
as a new transformation function for the Hamiltonian Hn−1 to generate a new potential. It
should be noted that the chain of n ˇrst-order Darboux transformations results in a chain of
exactly solvable Hamiltonians H → H1 → . . . → Hn.

Consider as an example the 2nd order transformation in detail. Using the explicit expres-
sions (7)Ä(9), we get a formula for the potential v2:

v2 = v1 +
2
√

h√
m

d

dx

K2√
mh

−
√

h√
m

d

dx

[
1
h

d

dx

( √
h√
m

)]
(11)

and corresponding solutions
φ2 = Lφ = L2φ1. (12)

Here L = L2L1, where L1 is actually L deˇned in (4), whereas L2 is determined as follows:

L2 =
1√
m h

(
d

dx
+ K2

)
, K2 = −χ′

1

χ1
, (13)

and χ1 ≡ χ1(x, λ2) is obtained by means of the ˇrst-order transformation, applied to the
solution U2 of Eq. (1) or (2) with the eigenvalue λ2

χ1 = L1U2 =
1√
m h

(
d

dx
− U ′

1

U1

)
U2. (14)

Let us represent χ1 as follows:

χ1 =
1√
mh

W1,2

U1
, (15)

where W1,2 = U1U ′
2 − U ′

1U2 is the Wronskian of the functions U1 and U2. With this and
taking into account v1, after some transformations the new potential can be expressed as

v2 = v − 2

√
h

m

d

dx

⎡
⎢⎣

√
m

h

d

dx
(W1,2/m)

W1,2

⎤
⎥⎦ . (16)
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By using (12) ˇnd now the corresponding functions φ2, φ2 =
(

d

dx
+ K2

)
φ1. By analogy

with χ1, the function φ1 can be written in terms of the Wronskian W1,E = U1φ
′ − U ′

1φ:

φ1 =
1√
mh

W1,E
U1

. (17)

Let us now calculate the derivative of φ1 = L1φ, that is

(L1φ)′ =
(

1√
mh U1

)′
W1,E +

1√
mh

φ′′ − 1√
mh

U ′′
1

U1
φ.

Making use of the last expression and the relation for K2, we obtain, after some simpliˇcation,
the formula

φ2 =
1

mh

(
φ′′ − U ′′

1

U1
φ

)
− d

dx

(
ln W1,2

) 1
mh

W1,E
U1

=
1

mh

W1,2,E
W1,2

. (18)

It is easily seen from (16) and (18) that due to the 2nd order Darboux transformation, the
potential and solutions obtained in this way are completely expressed in terms of the known
effective mass function m and energy-dependent potential h and the solutions U1,U2, φ to the
initial equation, with no use of the solutions to the intermediate one with the potential v1.

Clearly, for the next transformation step to be made, one should take a new transformation
function χ2, which corresponds to the potential v2. It can be obtained by applying the operator
L = L2L1 to the solutions U3 corresponding to the eigenvalue λ3. Then it can be used to
produce a new transformed operator L3 = d/dx + K3, K3 = −χ′

2χ
−1
2 for generating new

potential v3 and solutions φ3 and so on, according to (7)Ä(9).
By using the second-order Darboux transformation, one can construct the phase-equivalent

potentials without changing spectrum of the initial potential. For this let us present the 2nd
order transformation at the energy λ2 = λ1 = λ and rewrite them in the integral form

v2 = v − 2

√
h

m

d

dx

⎛
⎜⎜⎜⎝ 1√

mh

h ΓU2

1 + Γ
x∫

x0

dx′ h(x′)U2(x′)

⎞
⎟⎟⎟⎠ , (19)

φ2 = φ − ΓU

1 + Γ
x∫

x0

h(x′)U2(x′) dx′

⎡
⎣C +

x∫
x0

h(x′)U(x′)φ(x′) dx′

⎤
⎦ , (20)

where the limits of integration depend on the boundary conditions. For example, for regular
solutions satisfying the boundary conditions φ(x = 0) = 0, φ′|x=0 = 1, the integration
limits are [0, x]. Here Γ plays a role of a normalization constant or a difference between the
normalization constants of the bound state λ for the potentials v2 and v, respectively. For the
ˇrst case two Hamiltonians H and H2 differ by one bound state. For the second case H and
H2 are phase-equivalent Hamiltonians.
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2. APPLICATION

As an illustrative example we present the transformed potential and solutions correspond-
ing to the second- and third-order Darboux transformations. We start with the generalized
Schréodinger equation (1) taken in the form

−
[

d

dx
(x)

d

dx

]
φ(x) +

1
4x

φ(x) = xEφ(x). (21)

The general solution of this equation is

φ(x) =
C1 sin (kx)

k
√

x
+

C2 cos (kx)
k
√

x
. (22)

By using the Darboux transformation technique, one can generate potentials with one bound
state and obtain corresponding solutions on the base of exact solutions for the effective mass
Schréodinger equation [10]. Here we construct the potentials for the generalized equation (1)
with two and three bound states and also construct the family of phase equivalent potentials.
By a ˇrst-order supersymmetry transformation applied to a special case U1 of the general so-

lution (22) U1 =
C cosh (κ1x)

κ1
√

x
, we obtain the potential v1 and corresponding solutions φ1 as

v1(x) =
1
4x

− 2xκ2
(
1 − tanh2(κ1x)

)
,

φ1(x) =
C1 cos (kx)√

x
− C1κ1 sin (kx) tanh (κ1x)

k
√

x
.

The solution at the energy of transformation E1 = −κ2
1 reads

η =
√

m

h

1
U =

κ1

C
√

x cosh (κ1x)
(23)

and corresponds to the bound state E1 = λ1. The transformed potential having two bound
states at energies λ1 = −κ2

1 and λ2 = −κ2
2 can be written as

v2 =
9
4x

− 2x
d2

dx2
ln W1,2, (24)

where W1,2 =
C2

κ2κ1x

(
κ2 cosh (κ1x) cosh (κ2x) − κ1 sinh (κ2x) sinh (κ1x)

)
and the corre-

sponding solutions are

φ2 =
κ1

√
x

C cosh (κ1x)

⎛
⎝ d

dx
W1,E −

d
(
ln W1,2

)
dx

W1,E

⎞
⎠ ,

where W1,E =
C1C

kκ1x

(
k cosh (κ1x) cos (kx) − κ1 sinh (κ1x) sin (kx)

)
.
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By using (7) one can construct the potential v3 for the generalized Schréodinger equation (1)
having three bound states

v3 = v2 − 2x
d

dx
ln χ2 +

1
x

, (25)

where v2 is determined in (24) and χ2 is determined as

χ2 =
1

mh

W1,2,3

W1,2
. (26)

For our case W1,2,3 is given by

W1,2,3 =
C3

x3/2κ1κ2κ3

[
cosh (κ1x) cosh (κ2x)κ2 sinh (κ3x)κ2

3−

− cosh (κ1x) sinh (κ2x)κ2
2 cosh (κ3x)κ3 − sinh (κ1x)κ1 sinh (κ2x) sinh (κ3x)κ2

3+

+ sinh (κ1x)κ1 sinh(κ3x) sinh (κ2x)κ2
2 + cosh (κ1x) sinh (κ2x)κ2

1 cosh (κ3x)κ3−

− cosh (κ1x)κ2
1 cosh (κ2x)κ2 sinh (κ3x)

]
. (27)

Fig. 1. a) Potentials vn, n = 1, 2, 3, having one, two and three bound states, respectively; b) the
corresponding solutions φn taken at k = 6

Fig. 2. Phase-equivalent potentials v2(x) with the bound state λ = −16 at a different choice of the
normalization Γ
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As an illustrative example we present the potentials v1, obtained at the energy of transfor-
mation E1 = 4, v2 obtained at the energies of transformation E1 = 4, E2 = 16 and v3 at the
energies of transformation E1 = 4, E2 = 16, E3 = 25. They are depicted in Fig. 1 with their
corresponding solutions, calculated at k = 6. Phase-equivalent potentials v2, calculated in
correspondence with (19) at a different choice of the normalization Γ, are presented in Fig. 2.

CONCLUSION

We have constructed a chain of Darboux transformations for a generalized Schréodinger
equation with position-dependent mass and with energy-dependent potentials. Using concrete
examples, we have shown how to apply the Darboux transformation technique for model-
ing quantum well potentials with the given spectrum for investigation of low-dimensional
structures in nanoelectronics.
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